JP6849915B2 - 比較プログラム、比較方法および比較装置 - Google Patents
比較プログラム、比較方法および比較装置 Download PDFInfo
- Publication number
- JP6849915B2 JP6849915B2 JP2017071439A JP2017071439A JP6849915B2 JP 6849915 B2 JP6849915 B2 JP 6849915B2 JP 2017071439 A JP2017071439 A JP 2017071439A JP 2017071439 A JP2017071439 A JP 2017071439A JP 6849915 B2 JP6849915 B2 JP 6849915B2
- Authority
- JP
- Japan
- Prior art keywords
- machine learning
- performance
- sample size
- variance
- prediction performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/211—Selection of the most significant subset of features
- G06F18/2113—Selection of the most significant subset of features by ranking or filtering the set of features, e.g. using a measure of variance or of feature cross-correlation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Computer Hardware Design (AREA)
- Algebra (AREA)
- Operations Research (AREA)
- Databases & Information Systems (AREA)
- Computational Linguistics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
[第1の実施の形態]
第1の実施の形態を説明する。
第1の実施の形態の比較装置10は、機械学習に用いる訓練データのサンプルサイズと学習モデルの予測性能との間の関係を示す予測性能曲線を推定し、異なる機械学習アルゴリズムの間で予測性能に関する比較を行う。比較装置10は、ユーザが操作するクライアント装置でもよいしサーバ装置でもよい。比較装置10はコンピュータでもよい。
予測性能測定値17a,17bは、処理部12によって算出される。処理部12は、第1の機械学習アルゴリズムにより同一のデータ母集合から抽出されるサンプルサイズ16a,16bの訓練データを用いて異なる学習モデルを生成し、異なる学習モデルが有する予測性能の測定結果を示す予測性能測定値17a,17bを算出する。予測性能測定値17aはサンプルサイズ16aに対応し、予測性能測定値17bはサンプルサイズ16bに対応する。第1の実施の形態では説明を簡単にするため、処理部12は2つのサンプルサイズに対応する2つの予測性能測定値を算出しているが、3以上のサンプルサイズに対応する3以上の予測性能測定値を算出してもよい。なお、機械学習アルゴリズムの種類には、ロジスティック回帰分析、サポートベクタマシン、ランダムフォレストなどが含まれる。予測性能は、未知の事例の結果を正確に予測する能力であり「精度」と言うこともできる。予測性能の指標には、正答率(Accuracy)、適合率(Precision)、平均二乗誤差(MSE)、二乗平均平方根誤差(RMSE)などが含まれる。
次に、第2の実施の形態を説明する。
図2は、機械学習装置のハードウェア例を示すブロック図である。
第2の実施の形態の機械学習では、既知の事例を示す複数の単位データを含むデータを予め収集しておく。機械学習装置100または他の情報処理装置が、センサデバイスなどの各種デバイスからネットワーク114経由でデータを収集してもよい。収集されるデータは、「ビッグデータ」と呼ばれるサイズの大きなデータであってもよい。各単位データは、通常、1以上の説明変数の値と1つの目的変数の値とを含む。例えば、商品の需要予測を行う機械学習では、気温や湿度など商品需要に影響を与える要因を説明変数とし、商品需要量を目的変数とした実績データを収集する。
図3は、サンプルサイズと予測性能の関係例を示すグラフである。
曲線22〜24は、著名なデータ集合(CoverType)を用いて測定された学習時間と予測性能の間の関係を示している。予測性能の指標として、ここでは正答率を用いている。曲線22は、機械学習アルゴリズムとしてロジスティック回帰分析を用いた場合の学習時間と予測性能の間の関係を示す。曲線23は、機械学習アルゴリズムとしてサポートベクタマシンを用いた場合の学習時間と予測性能の間の関係を示す。曲線24は、機械学習アルゴリズムとしてランダムフォレストを用いた場合の学習時間と予測性能の間の関係を示す。なお、図4の横軸は、学習時間について対数目盛になっている。
ここでは説明を簡単にするため、機械学習アルゴリズムA,B,Cの3つの機械学習アルゴリズムが存在する場合を考える。機械学習アルゴリズムAのみを使用してプログレッシブサンプリング法を行う場合、学習ステップ31,32,33(A1,A2,A3)が順に実行される。機械学習アルゴリズムBのみを使用してプログレッシブサンプリング法を行う場合、学習ステップ34,35,36(B1,B2,B3)が順に実行される。機械学習アルゴリズムCのみを使用してプログレッシブサンプリング法を行う場合、学習ステップ37,38,39(C1,C2,C3)が順に実行される。なお、ここでは、学習ステップ33,36,39でそれぞれ停止条件が満たされるものと仮定する。
図6は、予測性能の分布例を示すグラフである。
あるサンプルサイズに対する予測性能の実測値は、機械学習アルゴリズムとデータの母集合の性質とから決まる期待値から乖離するリスクがある。すなわち、同じデータ母集合を使用しても、訓練データおよびテストデータの選択の偶然性などによって、予測性能の実測値にばらつきが生じる。予測性能のばらつき(分散や標準偏差など)は、サンプルサイズが小さいほど大きく、サンプルサイズが大きいほど小さくなる傾向にある。
ここでは、複数のサンプルサイズのうち小さい方から6つについて学習ステップを実行して予測性能の実測値を取得し、その6つの予測性能の実測値を用いて予測性能曲線を推定している。そして、それ以降のサンプルサイズについて学習ステップを進め、取得された予測性能の実測値と推定した予測性能曲線とを対比している。
まず、バイアス・バリアンス分解の考え方について説明する。バイアス・バリアンス分解は、1つの機械学習アルゴリズムの良否や機械学習アルゴリズムに適用するハイパーパラメータの良否を評価するために用いられることがある。バイアス・バリアンス分解では、ロス(損失)とバイアスとバリアンスという3つの指標が用いられる。ロス=バイアスの二乗+バリアンスという関係が成立する。
同一のデータ母集合からK個の訓練データDk(k=1,2,…,K)が抽出され、K個のモデルが生成されたとする。また、上記のデータ母集合からn個のテストケースを含むテストデータTが抽出されたとする。i番目のテストケースは、説明変数の値Xiと目的変数の真の値Yiとを含む(i=1,2,…,n)。k番目のモデルからは説明変数の値Xiに対して目的変数の予測値yikが算出される。
曲線43はサンプルサイズとロスの推定値との間の関係を示すロス曲線である。図3では縦軸が予測性能であるのに対し、図8では縦軸がロスに変換されている。前述のように予測性能とロスは、予測性能の指標とロスの指標に応じて相互に変換可能である。曲線43は、サンプルサイズの増加に応じてロスが単調に減少し一定の下限ロスに漸近する非線形曲線である。サンプルサイズが小さいうちはロスの減少量が大きく、サンプルサイズが大きくなるとロスの減少量が小さくなっていく。
次に、機械学習装置100が行う処理について説明する。
機械学習装置100は、データ記憶部121、管理テーブル記憶部122、学習結果記憶部123、制限時間入力部131、ステップ実行部132、時間推定部133、性能改善量推定部134および学習制御部135を有する。データ記憶部121、管理テーブル記憶部122および学習結果記憶部123は、例えば、RAM102またはHDD103に確保した記憶領域を用いて実装される。制限時間入力部131、ステップ実行部132、時間推定部133、性能改善量推定部134および学習制御部135は、例えば、CPU101が実行するプログラムモジュールを用いて実装される。
学習結果記憶部123は、機械学習の結果を記憶する。機械学習の結果には、目的変数と1以上の説明変数との間の関係を示すモデルが含まれる。例えば、各説明変数の重みを示す係数が機械学習によって決定される。また、機械学習の結果には、学習されたモデルの予測性能が含まれる。また、機械学習の結果には、モデルの学習に用いた機械学習アルゴリズムとサンプルサイズを示す情報が含まれる。機械学習アルゴリズムを示す情報には、使用されたハイパーパラメータが含まれることがある。
管理テーブル122aは、学習制御部135によって生成されて管理テーブル記憶部122に記憶される。管理テーブル122aは、アルゴリズムID、サンプルサイズ、改善速度、予測性能および実行時間の項目を含む。
性能改善量推定部134は、推定式生成部141、重み設定部142、非線形回帰部143、分散推定部144、予測性能推定部145および推定値出力部146を有する。
(S10)学習制御部135は、データ記憶部121を参照して、プログレッシブサンプリング法における学習ステップのサンプルサイズs1,s2,s3,…を決定する。例えば、学習制御部135は、データ記憶部121に記憶されたデータ集合Dのサイズに基づいて、s1=|D|/210,sj=s1×2j-1と決定する。
(S13)学習制御部135は、機械学習アルゴリズムaiの改善速度riが、閾値Tr未満であるか判断する。閾値Trは、予め学習制御部135に設定されていてもよい。例えば、閾値Tr=0.001/3600とする。改善速度riが閾値Tr未満である場合はステップS28に処理が進み、それ以外の場合はステップS14に処理が進む。
(S15)学習制御部135は、ステップ実行部132に対して機械学習アルゴリズムaiとサンプルサイズkiを指定する。ステップ実行部132は、機械学習アルゴリズムaiとサンプルサイズkiとに基づく学習ステップを実行する。ステップ実行部132の処理の詳細は後述する。
(S17)学習制御部135は、ステップS16で取得した予測性能pi,jと、達成予測性能P(現在までに達成された最大の予測性能)とを比較し、前者が後者より大きいか判断する。予測性能pi,jが達成予測性能Pよりも大きい場合はステップS18に処理が進み、それ以外の場合はステップS19に処理が進む。
(S20)学習制御部135は、機械学習アルゴリズムaiの更新後のサンプルサイズkiとデータ記憶部121に記憶されたデータ集合Dのサイズとを比較し、前者が後者より大きいか判断する。サンプルサイズkiがデータ集合Dのサイズよりも大きい場合はステップS21に処理が進み、それ以外の場合はステップS22に処理が進む。
(S27)学習制御部135は、機械学習を開始してからの経過時間が、制限時間入力部131から指定された制限時間を超えたか判断する。経過時間が制限時間を超えた場合はステップS28に処理が進み、それ以外の場合はステップS12に処理が進む。
ここでは、バリデーション方法として、データ集合Dのサイズに応じて、ランダムサブサンプリングバリデーションまたはクロスバリデーションを実行する場合を考える。ただし、ステップ実行部132は、他のバリデーション方法を用いてもよい。
(S35)ステップ実行部132は、学習したモデルmとデータ集合Dから抽出したテストデータDsとを用いて、モデルmの予測性能pを算出する。予測性能pを表す指標として、正答率、適合率、MSE、RMSEなど任意の指標を用いることができる。予測性能pを表す指標が、予めステップ実行部132に設定されてもよい。
(S40)時間推定部133は、学習制御部135から指定された機械学習アルゴリズムaiとサンプルサイズki=sj+1とを特定する。
(S43)時間推定部133は、サンプルサイズs1,s2と実行時間Ti,1,Ti,2を用いて、サンプルサイズsから実行時間tを推定する推定式t=α×s+βの係数α,βを決定する。係数α,βは、Ti,1をtに代入しs1をsに代入した式と、Ti,2をtに代入しs2をsに代入した式とを含む連立方程式を解くことで決定できる。ただし、機械学習アルゴリズムaiについて3以上の学習ステップを実行済みである場合、時間推定部133は、それら学習ステップの実行時間から回帰分析によって係数α,βを決定してもよい。ここでは、サンプルサイズと実行時間とが一次式で説明できると仮定している。
(S46)時間推定部133は、サンプルサイズs1,s2と実行時間Ti,1を用いて、2番目の学習ステップの実行時間ti,2をs2/s1×Ti,1と推定する。時間推定部133は、推定した実行時間ti,2を出力する。
(S50)性能改善量推定部134の推定式生成部141は、学習制御部135から指定された機械学習アルゴリズムaiとサンプルサイズki=sj+1とを特定する。
(S52)推定式生成部141は、サンプルサイズs1,s2,…と実測値としての予測性能pi,1,pi,2,…とを用いて、サンプルサイズから予測性能を推定する予測性能曲線を算出する。算出される予測性能曲線の情報は、例えば、サンプルサイズから予測性能の期待値を求める関数と、サンプルサイズから予測性能の分散を求める関数とを含む。予測性能曲線算出の詳細は後述する。
(S55)推定値出力部146は、現在の達成予測性能Pと推定上限値Upを比較して性能改善量gi,j+1を算出し、算出した性能改善量gi,j+1を出力する。性能改善量gi,j+1は、Up>PであればUp−Pであり、Up≦Pであれば0である。
この予測性能曲線算出は、上記のステップS52で実行される。
(S60)推定式生成部141は、予測性能の実測データとして、サンプルサイズxjと予測性能yjの組である<xj,yj>の集合を取得する。この実測データは、予測性能曲線を学習するための訓練データとしての意味をもつ。
(S62)非線形回帰部143は、ステップS60で取得された<xj,yj>の集合を用いて、非線形回帰分析により非線形式y=c−exp(a×log(x)+b)の係数a,b,cの値を算出する。サンプルサイズxが説明変数であり、予測性能yが目的変数である。この非線形回帰分析は、残差の評価に当たって各xjに対する重みwjを考慮する重み付き回帰分析である。重みが小さいサンプルサイズについては相対的に大きな残差が許容され、重みが大きいサンプルサイズについては相対的に残差の制限が強くなる。複数のサンプルサイズの間で異なる重みを設定できる。これにより、予測性能の等分散性が成立しない(異分散性が成立する)ことによる回帰分析の精度低下をカバーすることができる。なお、上記の非線形式は推定式の一例であり、xが増加したときにyが一定の限界値に漸近する曲線を示すような他の非線形式を用いてもよい。このような非線形回帰分析は、例えば、統計パッケージソフトウェアを用いて実行できる。
(S68)推定式生成部141は、最後にステップS62で算出された係数a,b,cを用いた推定式(ステップS62の非線形式)を、サンプルサイズから予測性能の期待値を推定する関数として生成する。また、推定式生成部141は、サンプルサイズから予測性能の分散を推定する関数を生成する。各サンプルサイズにおける予測性能の分散は、ステップS62の非線形回帰分析を通じて非線形回帰部143によって算出される。例えば、統計パッケージソフトウェアによって期待値と合わせて分散が推定される。推定式生成部141は、期待値を求める関数と分散を求める関数を出力する。
図18は、予測性能の分布の第1の推定例を示すグラフである。
このグラフは、前述の非特許文献2("Prediction of Learning Curves in Machine Translation")に従って単純な非線形回帰分析によって推定した予測性能曲線を示している。また、このグラフは、複数のサンプルサイズそれぞれに対する予測性能の実測値を示している。各サンプルサイズについて50個の予測性能の実測値がプロットされている。予測性能の指標として、値が大きいほど予測性能が高いことを示す正答率を用いている。
このグラフは、第2の実施の形態とは別の方法によって推定した予測性能曲線を示している。別の方法とは、各サンプルサイズにおける予測性能の分散が、当該サンプルサイズにおける予測性能の期待値と予測性能上限との間の差(ギャップ)に比例すると仮定して、予測性能曲線を推定する方法である。この別の方法は、第2の実施の形態よりも簡易的な推定方法であると言うこともできる。複数のサンプルサイズそれぞれに対する予測性能の実測値のプロットは、図18と同じである。
このグラフは、前述の第2の実施の形態の方法によって推定した予測性能曲線を示している。複数のサンプルサイズそれぞれに対する予測性能の実測値のプロットは、図18,19と同じである。曲線46は、サンプルサイズと予測性能の期待値との間の関係を示す予測性能曲線である。直線46aは、曲線46から推定される予測性能上限を示している。曲線46bは、回帰分析を通じて算出された95%信頼区間の上限を示している。曲線46cは、回帰分析を通じて算出された95%信頼区間の下限を示している。
(a)問題の形式的な記述
同一の母集合からm通りの訓練データD1,D2,…,DmとテストデータTが抽出されたとする。ある機械学習アルゴリズムに対して訓練データDkを与えて学習されたモデルをfkとする(k=1,2,…,m)。テストデータTをインスタンス<Yi,Xi>の集合とする(i=1,2,…,n)。Xiは説明変数の値(入力値)であり、Yiは入力値Xiに対応する目的変数の既知の値(真値)である。入力値Xiに対してモデルfkが予測した値(予測値)をyik=fk(Xi)とする。入力値Xiに対するモデルfkによる予測の誤差はeik=Yi−yikと定義される。テストデータTに含まれるインスタンスの数、すなわち、テストデータTのサイズはnである。以下では主に、添え字i,jはテストデータTのインスタンスを識別する変数、添え字kはモデルを識別する変数として使用する。
モデルによる予測で生じるロスはバイアスとバリアンスに分解できる。バイアスはモデルの予測値の偏りを示す量である。バイアスが低いモデルほど正確なモデルであると言える。表現力の低いモデル(調整可能な係数が少ないような複雑性の低いモデル)はバイアスが高くなる傾向にある。バリアンスはモデルの予測値のばらつきを示す量である。バリアンスが低いほど正確なモデルであると言える。表現力の高いモデル(調整可能な係数が多いような複雑性の高いモデル)はバリアンスが高くなる傾向にある。表現力の高いモデルには、訓練データに過剰適合するという過学習のリスクがある。
テストデータTの入力値Xiを固定して複数のモデルの誤差を並べた誤差ベクトルを考える。誤差eを確率変数とみなしてその分布が正規分布に従うと仮定すると、複数のモデルの間のロスの分散は数式(16)のように定義され、バイアスBiとバリアンスViの組またはロスLiとバイアスBiの組によって記述することができる。数式(16)の1行目から2行目への変形では、数式(17)に示す統計学上の性質(確率変数の4乗の期待値)が利用されている。数式(17)においてXは確率変数であり、Sは歪度であり、Kは尖度である。正規分布の場合はS=0かつK=3である。
分散の基本的性質から、予測性能の分散(複数のモデルの間のモデルロスの分散)について数式(18)が成立する。これをn×n行列の成分の平均と考えると、i=jである対角成分は入力値Xiに対するロスの分散を表しており、その相関係数は1になる。一方、i≠jである非対角成分の相関係数は異なる入力値の間のロスの相関を表している。異なる入力値に対する誤差の発生状況は共通点が少ないため、その相関係数は十分に小さくなることが多く、予測性能の高いモデルほどその相関係数は0に近づく。対角成分と非対角成分とは性質が異なるため、数式(19)のように両者を分離して考える。
(e)インスタンス成分を算出
数式(19)の第1項について検討する。上記の数式(16)より数式(20)が成立する。ここで、数式(20)の第1項と第2項を算出するために幾つかの仮定をおく。多くの機械学習アルゴリズムは不偏推定量を出力するようにモデルを学習することから、数式(21)のように誤差の期待値が0になるという仮定をおく。数式(21)からバイアスBiについて数式(22)の性質が導出される。
不動点Cor1vを数式(31)のように定義する。不動点Cor1vは、訓練データのサンプルサイズを変化させても値が変化しないかまたは非常に緩やかに変化することが多いため、ここではサンプルサイズに依存しないと仮定する。不動点Cor1vの値は0.001〜0.1程度であることが多い。
上記の数式(18),(19),(30),(39)より数式(40)の近似式が成立する。尖度K2は尖度K1に近似するため、数式(40)は数式(41)のように近似される。典型的にはK1(EL+EB2)はcor1v(EL−EB2)より十分に大きいため、数式(41)は更に数式(42)のように近似される。尖度K1は事前には不明であるが、第2の実施の形態ではその具体的な値は不要である。よって、数式(42)は比例定数Cを用いて数式(43)のように単純化できる。これにより、予測性能の分散が、期待ロスELと期待バイアスEB2の差に比例し、かつ、期待ロスELと期待バイアスEB2の和に比例するという数式が導出される。
11 記憶部
12 処理部
13 関係情報
14,15 予測性能曲線
16a,16b,16c サンプルサイズ
17a,17b 予測性能測定値
18a,18b 分散推定値
19a,19b 評価値
Claims (6)
- コンピュータに、
第1の機械学習アルゴリズムを用いて、同一のデータ母集合から抽出される複数の第1のサンプルサイズの訓練データを用いて複数の学習モデルを生成することにより、前記複数の学習モデルそれぞれが有する予測性能の測定結果を示す複数の予測性能測定値を算出し、
予測性能に関する期待値と分散との間の関係を示す関係情報と、前記複数の予測性能測定値とを用いて、前記複数の第1のサンプルサイズそれぞれに対して生じる予測性能の分散の推定結果を示す複数の分散推定値を算出し、
前記複数の予測性能測定値と前記複数の分散推定値とを用いた回帰分析により、サンプルサイズと予測性能との間の関係を示す曲線であって予測性能が一定の予測性能上限値に漸近する第1の予測性能曲線を生成し、
前記第1の予測性能曲線と第2のサンプルサイズとに基づいて前記第1の機械学習アルゴリズムに対する第1の評価値を算出し、
前記第1の評価値と、第2の機械学習アルゴリズムに対応する第2の予測性能曲線と前記第2のサンプルサイズとに基づいて算出される前記第2の機械学習アルゴリズムに対する第2の評価値とを比較する、
処理を実行させる比較プログラム。 - 前記関係情報は、予測の失敗度の期待値を示す期待ロスと前記期待ロスの低下限界を示す期待バイアスと予測性能の分散との間の関係を示し、
前記複数の分散推定値の算出では、前記複数の予測性能測定値に基づいて、前記複数の第1のサンプルサイズそれぞれに対する前記期待ロスの推定結果を示す複数の期待ロス推定値と、前記期待バイアスの推定結果を示す期待バイアス推定値とを算出し、前記複数の期待ロス推定値と前記期待バイアス推定値とを用いて前記複数の分散推定値を算出する、
請求項1記載の比較プログラム。 - 前記関係情報は、予測性能の分散が前記期待ロスと前記期待バイアスの和に比例しかつ前記期待ロスと前記期待バイアスの差に比例することを示す、
請求項2記載の比較プログラム。 - 前記第1の予測性能曲線の生成では、前記複数の分散推定値に基づいて、分散推定値が小さいほど重みが大きくなるように前記複数の予測性能測定値に対して複数の重みを割り当て、前記複数の予測性能測定値と前記複数の重みとを用いて前記回帰分析を行う、
請求項1記載の比較プログラム。 - コンピュータが実行する比較方法であって、
第1の機械学習アルゴリズムを用いて、同一のデータ母集合から抽出される複数の第1のサンプルサイズの訓練データを用いて複数の学習モデルを生成することにより、前記複数の学習モデルそれぞれが有する予測性能の測定結果を示す複数の予測性能測定値を算出し、
予測性能に関する期待値と分散との間の関係を示す関係情報と、前記複数の予測性能測定値とを用いて、前記複数の第1のサンプルサイズそれぞれに対して生じる予測性能の分散の推定結果を示す複数の分散推定値を算出し、
前記複数の予測性能測定値と前記複数の分散推定値とを用いた回帰分析により、サンプルサイズと予測性能との間の関係を示す曲線であって予測性能が一定の予測性能上限値に漸近する第1の予測性能曲線を生成し、
前記第1の予測性能曲線と第2のサンプルサイズとに基づいて前記第1の機械学習アルゴリズムに対する第1の評価値を算出し、
前記第1の評価値と、第2の機械学習アルゴリズムに対応する第2の予測性能曲線と前記第2のサンプルサイズとに基づいて算出される前記第2の機械学習アルゴリズムに対する第2の評価値とを比較する、
比較方法。 - 同一のデータ母集合から抽出される複数の第1のサンプルサイズの訓練データおよび第1の機械学習アルゴリズムを用いて生成される複数の学習モデルそれぞれが有する予測性能の測定結果を示す複数の予測性能測定値と、予測性能に関する期待値と分散との間の関係を示す関係情報とを記憶する記憶部と、
前記関係情報と前記複数の予測性能測定値とを用いて、前記複数の第1のサンプルサイズそれぞれに対して生じる予測性能の分散の推定結果を示す複数の分散推定値を算出し、前記複数の予測性能測定値と前記複数の分散推定値とを用いた回帰分析により、サンプルサイズと予測性能との間の関係を示す曲線であって予測性能が一定の予測性能上限値に漸近する第1の予測性能曲線を生成し、前記第1の予測性能曲線と第2のサンプルサイズとに基づいて前記第1の機械学習アルゴリズムに対する第1の評価値を算出し、前記第1の評価値と、第2の機械学習アルゴリズムに対応する第2の予測性能曲線と前記第2のサンプルサイズとに基づいて算出される前記第2の機械学習アルゴリズムに対する第2の評価値とを比較する処理部と、
を有する比較装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017071439A JP6849915B2 (ja) | 2017-03-31 | 2017-03-31 | 比較プログラム、比較方法および比較装置 |
US15/940,132 US11423263B2 (en) | 2017-03-31 | 2018-03-29 | Comparison method and comparison apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017071439A JP6849915B2 (ja) | 2017-03-31 | 2017-03-31 | 比較プログラム、比較方法および比較装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018173813A JP2018173813A (ja) | 2018-11-08 |
JP6849915B2 true JP6849915B2 (ja) | 2021-03-31 |
Family
ID=63670777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017071439A Active JP6849915B2 (ja) | 2017-03-31 | 2017-03-31 | 比較プログラム、比較方法および比較装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11423263B2 (ja) |
JP (1) | JP6849915B2 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107808098B (zh) * | 2017-09-07 | 2020-08-21 | 阿里巴巴集团控股有限公司 | 一种模型安全检测方法、装置以及电子设备 |
US11157819B2 (en) * | 2018-04-27 | 2021-10-26 | International Business Machines Corporation | Technology to automatically stream confidence and prediction intervals for non-parametric and non-stationary time series data |
CN112313679A (zh) * | 2018-06-27 | 2021-02-02 | 索尼公司 | 信息处理设备、信息处理方法和程序 |
US11922314B1 (en) * | 2018-11-30 | 2024-03-05 | Ansys, Inc. | Systems and methods for building dynamic reduced order physical models |
KR102102418B1 (ko) * | 2018-12-10 | 2020-04-20 | 주식회사 티포러스 | 인공지능 솔루션을 테스트하는 장치 및 방법 |
RU2720954C1 (ru) * | 2018-12-13 | 2020-05-15 | Общество С Ограниченной Ответственностью "Яндекс" | Способ и система построения поискового индекса с использованием алгоритма машинного обучения |
JP7192895B2 (ja) * | 2019-02-12 | 2022-12-20 | 日本電気株式会社 | モデル構築装置、モデル構築方法、コンピュータプログラム及び記録媒体 |
US11475296B2 (en) | 2019-05-29 | 2022-10-18 | International Business Machines Corporation | Linear modeling of quality assurance variables |
US11067786B2 (en) * | 2019-06-07 | 2021-07-20 | Leica Microsystems Inc. | Artifact regulation methods in deep model training for image transformation |
JP7393882B2 (ja) * | 2019-06-18 | 2023-12-07 | キヤノンメディカルシステムズ株式会社 | 医用情報処理装置及び医用情報処理システム |
JP7352070B2 (ja) * | 2019-07-30 | 2023-09-28 | 横浜ゴム株式会社 | データ処理方法、データ処理装置、及びプログラム |
JP7559762B2 (ja) | 2019-09-11 | 2024-10-02 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、及びプログラム |
CN112651534B (zh) * | 2019-10-10 | 2024-07-02 | 顺丰科技有限公司 | 一种预测资源供应链需求量的方法、装置及存储介质 |
JP7413011B2 (ja) * | 2019-12-27 | 2024-01-15 | キヤノンメディカルシステムズ株式会社 | 医用情報処理装置 |
US11592828B2 (en) * | 2020-01-16 | 2023-02-28 | Nvidia Corporation | Using neural networks to perform fault detection in autonomous driving applications |
JP6774129B1 (ja) | 2020-02-03 | 2020-10-21 | 望 窪田 | 解析装置、解析方法及び解析プログラム |
US11481682B2 (en) * | 2020-05-07 | 2022-10-25 | International Business Machines Corporation | Dataset management in machine learning |
US20220074751A1 (en) * | 2020-09-04 | 2022-03-10 | Here Global B.V. | Method, apparatus, and system for providing an estimated time of arrival with uncertain starting location |
JP2022082064A (ja) * | 2020-11-20 | 2022-06-01 | 富士通株式会社 | 混合物物性特定方法、混合物物性特定装置、及び混合物物性特定プログラム |
CN112463640B (zh) * | 2020-12-15 | 2022-06-03 | 武汉理工大学 | 一种基于联合概率域适应的跨项目软件老化缺陷预测方法 |
US20220222570A1 (en) * | 2021-01-12 | 2022-07-14 | Optum Technology, Inc. | Column classification machine learning models |
US11711257B1 (en) * | 2021-03-03 | 2023-07-25 | Wells Fargo Bank, N.A. | Systems and methods for automating incident severity classification |
CN115545124B (zh) * | 2022-11-29 | 2023-04-18 | 支付宝(杭州)信息技术有限公司 | 样本不平衡场景下的样本增量、模型训练方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6536295B2 (ja) * | 2015-08-31 | 2019-07-03 | 富士通株式会社 | 予測性能曲線推定プログラム、予測性能曲線推定装置および予測性能曲線推定方法 |
JP6555015B2 (ja) * | 2015-08-31 | 2019-08-07 | 富士通株式会社 | 機械学習管理プログラム、機械学習管理装置および機械学習管理方法 |
-
2017
- 2017-03-31 JP JP2017071439A patent/JP6849915B2/ja active Active
-
2018
- 2018-03-29 US US15/940,132 patent/US11423263B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20180285694A1 (en) | 2018-10-04 |
US11423263B2 (en) | 2022-08-23 |
JP2018173813A (ja) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6849915B2 (ja) | 比較プログラム、比較方法および比較装置 | |
JP6947981B2 (ja) | 推定方法、推定装置および推定プログラム | |
US11334813B2 (en) | Method and apparatus for managing machine learning process | |
US11568300B2 (en) | Apparatus and method for managing machine learning with plurality of learning algorithms and plurality of training dataset sizes | |
JP6536295B2 (ja) | 予測性能曲線推定プログラム、予測性能曲線推定装置および予測性能曲線推定方法 | |
US11762918B2 (en) | Search method and apparatus | |
US11860617B2 (en) | Forecasting industrial aging processes with machine learning methods | |
JP2017049677A (ja) | 機械学習管理プログラム、機械学習管理装置および機械学習管理方法 | |
Araújo et al. | Hybrid morphological methodology for software development cost estimation | |
KR102239464B1 (ko) | 심층 구조를 이용한 전력 수요 예측 방법 및 장치 | |
JP7071624B2 (ja) | 探索プログラム、探索方法および探索装置 | |
JP7481902B2 (ja) | 管理計算機、管理プログラム、及び管理方法 | |
JP7231829B2 (ja) | 機械学習プログラム、機械学習方法および機械学習装置 | |
Sousa et al. | Applying Machine Learning to Estimate the Effort and Duration of Individual Tasks in Software Projects | |
Ditzler et al. | Domain adaptation bounds for multiple expert systems under concept drift | |
Reetz et al. | Expert system based fault diagnosis for railway point machines | |
Haque et al. | Parameter and Hyperparameter Optimisation of Deep Neural Network Model for Personalised Predictions of Asthma | |
JP2012181739A (ja) | 工数見積装置、工数見積方法、工数見積プログラム | |
Wohlin et al. | Software reliability | |
US20190034825A1 (en) | Automatically selecting regression techniques | |
TWI757828B (zh) | 原料採購決策方法、電子裝置與電腦程式產品 | |
Rawat et al. | A review on software reliability: metrics, models and tools. | |
KR20230077280A (ko) | 시계열 데이터 회귀 예측을 위한 예측 모델의 학습 방법 및 예측 모델을 이용한 예측 방법 | |
Shastry et al. | Bayesian Network Based Bug-fix Effort Prediction Model | |
Zio et al. | Recognizing signal trends on-line by a fuzzy-logic-based methodology optimized via genetic algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200115 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20200123 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6849915 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |