JP6848544B2 - Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method - Google Patents

Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method Download PDF

Info

Publication number
JP6848544B2
JP6848544B2 JP2017044858A JP2017044858A JP6848544B2 JP 6848544 B2 JP6848544 B2 JP 6848544B2 JP 2017044858 A JP2017044858 A JP 2017044858A JP 2017044858 A JP2017044858 A JP 2017044858A JP 6848544 B2 JP6848544 B2 JP 6848544B2
Authority
JP
Japan
Prior art keywords
powder
filled
gas
container
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017044858A
Other languages
Japanese (ja)
Other versions
JP2018145512A (en
Inventor
牧野 直幸
直幸 牧野
清明 新美
清明 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2017044858A priority Critical patent/JP6848544B2/en
Publication of JP2018145512A publication Critical patent/JP2018145512A/en
Application granted granted Critical
Publication of JP6848544B2 publication Critical patent/JP6848544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、粉末を容器(以下、「充填対象容器」と呼ぶ)に充填するための粉末充填装置、該粉末充填装置を用いた焼結磁石製造装置、及び焼結磁石製造方法に関する。 The present invention relates to a powder filling device for filling a container (hereinafter, referred to as a “filling target container”) with powder, a sintered magnet manufacturing device using the powder filling device, and a sintered magnet manufacturing method.

焼結磁石を製造する際には、従来より、原料粉末を磁界中で配向しつつ圧縮成形を行って成形体を作製したうえで焼結を行う圧縮成形法が用いられてきたが、最近、原料粉末を所定の密度で充填対象容器に充填した後、圧縮成形を行うことなく磁界中配向及び焼結を行うPLP(press-less process)法が開発された(特許文献1)。PLP法には、圧縮成形を行わないことで原料粉末の粒子が配向し易くなると共に、圧縮成形を行わないことで装置の小型化が可能となり、それにより容易に無酸素雰囲気にすることができるため、原料粉末を酸化させることなく粒径を小さくすることができるため、保磁力を高くすることができるという利点がある。また、PLP法には、最終製品に近い形状の焼結磁石を得ることができるという利点もある。ここで原料粉末を充填対象容器に充填する密度は、原料粉末を単に充填対象容器に投入しただけ(自然充填)の密度よりも高く(且つ、圧縮成形法における成形体の密度よりも低く)することが求められる。以下、このような密度で粉末を充填対象容器に充填することを「高密度充填」と呼ぶ。 In the production of sintered magnets, a compression molding method has been conventionally used in which raw material powder is oriented in a magnetic field and compression molding is performed to prepare a molded product, and then sintering is performed. A PLP (press-less process) method has been developed in which raw material powder is filled in a container to be filled at a predetermined density and then oriented and sintered in a magnetic field without performing compression molding (Patent Document 1). In the PLP method, the particles of the raw material powder are easily oriented by not performing compression molding, and the device can be miniaturized by not performing compression molding, whereby an oxygen-free atmosphere can be easily created. Therefore, since the particle size can be reduced without oxidizing the raw material powder, there is an advantage that the coercive force can be increased. In addition, the PLP method has an advantage that a sintered magnet having a shape close to that of the final product can be obtained. Here, the density of filling the raw material powder into the container to be filled is higher than the density of simply putting the raw material powder into the container to be filled (natural filling) (and lower than the density of the molded product in the compression molding method). Is required. Hereinafter, filling the container to be filled with the powder at such a density is referred to as "high density filling".

特許文献2には、充填対象容器に粉末を高密度充填するための粉末充填装置が開示されている。この粉末充填装置では、筒状ガイド部材がその下部開口において充填対象容器と連通するように、筒状ガイド部材が充填対象容器に着脱可能且つ密閉可能に装着される。筒状ガイド部材の下部開口には、一定間隔で複数本張設されたワイヤメッシュや孔が多数穿設された板材等で形成されたグリッド部材が設けられている。また、筒状ガイド部材の上部開口には蓋が密閉可能に取り付けられる。この蓋には、圧縮気体源から筒状ガイド部材の内部に気体を供給する気体供給管、及び筒状ガイド部材の内部から気体を排出する気体排出管が接続されている。気体供給管には電磁弁が設けられている。 Patent Document 2 discloses a powder filling device for filling a container to be filled with powder at a high density. In this powder filling device, the tubular guide member is detachably and hermetically attached to the filling target container so that the tubular guide member communicates with the filling target container at its lower opening. The lower opening of the tubular guide member is provided with a grid member formed of a wire mesh stretched at regular intervals, a plate material having a large number of holes bored, or the like. In addition, a lid is hermetically attached to the upper opening of the tubular guide member. A gas supply pipe that supplies gas from the compressed gas source to the inside of the tubular guide member and a gas discharge pipe that discharges gas from the inside of the tubular guide member are connected to the lid. A solenoid valve is provided in the gas supply pipe.

この粉末充填装置では、筒状ガイド部材内に上部開口から粉末を投入したうえで上部開口に蓋を取り付けることにより、下面(下部開口)をグリッド部材とする粉末収容室が形成される。そして、下部開口に充填対象容器を装着し、気体供給管に設けられた電磁弁の開閉を繰り返すことにより、粉末収容室内の圧力を交互に上昇及び下降させ、該粉末をグリッド部材を通して充填対象容器に高密度充填する。 In this powder filling device, a powder storage chamber having a lower surface (lower opening) as a grid member is formed by pouring powder into the tubular guide member from the upper opening and then attaching a lid to the upper opening. Then, a container to be filled is attached to the lower opening, and the pressure in the powder storage chamber is alternately increased and decreased by repeatedly opening and closing the solenoid valve provided in the gas supply pipe, and the powder is passed through the grid member to the container to be filled. Fill with high density.

特開2006-019521号公報Japanese Unexamined Patent Publication No. 2006-019521 特開2001-072001号公報Japanese Unexamined Patent Publication No. 2001-072001

特許文献2に記載の粉末充填装置では、気体供給管は粉末収容室に1本接続されている。しかし、気体供給管が1本のみであると、筒状ガイド部材内の気体の圧力を均一にすることが難しく、それゆえ充填対象容器への粉末の充填密度を均一にすることが難しい。粉末の充填密度が不均一になると、充填密度が高い部分では粉末が磁界中配向し難くなって磁気特性が低下する。また、充填密度が低い部分では焼結後に収縮率が大きくなって凹みや空洞等が生じてしまう。また、気体供給管が1本のみであると、筒状ガイド部材内の気体の圧力を高くすることができず、所定の高密度充填を行うことができない場合がある。 In the powder filling device described in Patent Document 2, one gas supply pipe is connected to the powder storage chamber. However, if there is only one gas supply pipe, it is difficult to make the pressure of the gas in the tubular guide member uniform, and therefore it is difficult to make the filling density of the powder in the container to be filled uniform. When the packing density of the powder becomes non-uniform, it becomes difficult for the powder to be oriented in a magnetic field in a portion where the packing density is high, and the magnetic characteristics deteriorate. Further, in the portion where the packing density is low, the shrinkage rate becomes large after sintering, and dents and cavities occur. Further, if there is only one gas supply pipe, the pressure of the gas in the tubular guide member cannot be increased, and a predetermined high-density filling may not be possible.

これらの理由により、気体供給管は粉末収容室に複数本接続されている方が望ましい。しかし、それら複数本の気体供給管にそれぞれ電磁弁を設けると、それら複数の電磁弁の開放及び閉鎖のタイミングを完全に一致させることは難しい。複数の電磁弁の開放・閉鎖のタイミングがずれると、複数本の気体供給管の位置関係に依存して、粉末収容室内で圧力が不均一になる。また、粉末収容室内全体の気体の最高圧力も低くなってしまう。そのため、均一且つ高密度で粉末を充填することができない。 For these reasons, it is desirable that a plurality of gas supply pipes are connected to the powder storage chamber. However, if solenoid valves are provided in each of the plurality of gas supply pipes, it is difficult to completely match the opening and closing timings of the plurality of solenoid valves. If the opening / closing timings of the plurality of solenoid valves are deviated, the pressure becomes non-uniform in the powder storage chamber depending on the positional relationship of the plurality of gas supply pipes. In addition, the maximum pressure of the gas in the entire powder storage chamber is also lowered. Therefore, it is not possible to fill the powder uniformly and at high density.

本発明が解決しようとする課題は、均一に且つ高密度で粉末を充填対象容器に充填することができる粉末充填装置、並びに、磁気特性が高く凹みや空洞等が生じていない焼結磁石を製造することができる、該粉末充填装置を用いた焼結磁石製造装置及び焼結磁石製造方法を提供することである。 The problem to be solved by the present invention is to manufacture a powder filling device capable of uniformly and densely filling a container to be filled with powder, and a sintered magnet having high magnetic characteristics and no dents or cavities. It is an object of the present invention to provide a sintered magnet manufacturing apparatus and a sintered magnet manufacturing method using the powder filling apparatus.

上記課題を解決するために成された本発明に係る粉末充填装置は、
a) 下端に、グリッド部材が備えられた開口と、該開口において充填対象容器と気密に接続するための接続部を有する粉末収容室と、
b) 前記粉末収容室の上部に接続された複数の気体供給管と、
c) 前記複数の気体供給管にそれぞれ接続される複数の本体内気体流路が互いに独立に内部を貫くように設けられた弁本体と
d) 前記弁本体の内部を、前記複数の本体内気体流路の全てに交差するように設けられた円筒状のシャフト嵌入孔及び該シャフト嵌入孔に回転可能に嵌入された円柱状のシャフトと、
e) 前記シャフトに、前記複数の本体内気体流路にそれぞれ対応して設けられたシャフト内気体流路と、
f) 前記複数の本体内気体流路をそれぞれ気体供給源に接続する複数の供給源側気体供給管と
を備えることを特徴とする。
The powder filling device according to the present invention made to solve the above problems is
a) At the lower end, an opening provided with a grid member, and a powder storage chamber having a connection portion for airtightly connecting to the container to be filled at the opening.
b) With a plurality of gas supply pipes connected to the upper part of the powder storage chamber,
c) With a valve body provided so that a plurality of gas flow paths in the main body connected to the plurality of gas supply pipes penetrate the inside independently of each other.
d) A cylindrical shaft fitting hole provided so as to intersect all of the plurality of gas flow paths in the main body and a cylindrical shaft rotatably fitted into the shaft fitting hole inside the valve body. ,
e) A gas flow path in the shaft provided on the shaft corresponding to each of the plurality of gas flow paths in the main body, and a gas flow path in the shaft.
f) It is characterized by including a plurality of source-side gas supply pipes for connecting the plurality of gas flow paths in the main body to the gas supply source.

本発明に係る粉末充填装置では、粉末収容室内に粉末を供給したうえで、充填対象容器を接続部に気密に接続する。そのうえで、シャフトを回転させながら、複数の供給源側気体供給管の各々から、それに接続された本体内気体流路に気体を供給する。これにより、シャフトの回転によって本体内気体流路とシャフト内気体流路が連通したタイミングで、気体が本体内気体流路からシャフト内気体流路、並びに該シャフト内気体流路及び粉末収容室の上部(開口よりも上側)に接続された気体供給管を通って粉末収容室内に供給される。こうして、粉末収容室内の粉末に繰り返し圧力が印加され、粉末がグリッド部材を通して充填対象容器に充填される。本体内気体流路とシャフト内気体流路は、シャフトが半回転する毎に連通するため、粉末収容室にはシャフトの回転周期の1/2の周期で繰り返し気体が供給されることとなる。 In the powder filling device according to the present invention, the powder is supplied into the powder storage chamber, and then the container to be filled is airtightly connected to the connection portion. Then, while rotating the shaft, gas is supplied from each of the plurality of source-side gas supply pipes to the gas flow path in the main body connected to the pipes. As a result, at the timing when the gas flow path in the main body and the gas flow path in the shaft communicate with each other due to the rotation of the shaft, the gas flows from the gas flow path in the main body to the gas flow path in the shaft, and the gas flow path in the shaft and the powder storage chamber. It is supplied into the powder storage chamber through a gas supply pipe connected to the upper part (above the opening). In this way, pressure is repeatedly applied to the powder in the powder storage chamber, and the powder is filled in the filling target container through the grid member. Since the gas flow path in the main body and the gas flow path in the shaft communicate with each other every half rotation of the shaft, the gas is repeatedly supplied to the powder storage chamber at a cycle of 1/2 of the rotation cycle of the shaft.

本発明に係る粉末充填装置によれば、いずれの気体供給管からも、気体はシャフトが所定の回転位置まで回転した時に、同時に粉末収容室に供給される。そのため、粉末収容室の圧力を均一に近くすることができ、それによって充填対象容器に均一に粉末を充填することができる。また、各気体供給管から供給される気体の圧力が最大となる時刻を一致させることができ、粉末収容室内全体の圧力の平均値を高くすることができるため、充填対象容器に高密度で粉末を充填することができる。 According to the powder filling device according to the present invention, gas is supplied from any gas supply pipe to the powder storage chamber at the same time when the shaft rotates to a predetermined rotation position. Therefore, the pressure in the powder storage chamber can be made close to uniform, so that the container to be filled can be uniformly filled with the powder. In addition, the time when the pressure of the gas supplied from each gas supply pipe becomes maximum can be matched, and the average value of the pressure in the entire powder storage chamber can be increased, so that the powder can be filled in the container to be filled with high density. Can be filled.

本体内気体流路及びシャフト内気体流路の断面は、特定の形状には限定されないが、シャフトの軸に平行な2辺を有する長方形(正方形を含む)であることが望ましい。これにより、シャフトを回転してゆくと、本体内気体流路とシャフト内気体流路はシャフトの軸方向の全体が同時に連通を開始及び終了するため、パルス状に近い圧力の印加が可能になる。特に、本体内気体流路及びシャフト内気体流路の断面の形状を、シャフトの軸に平行な2辺を長辺とする長方形とすることにより、1回当たりの気体の供給時間を短く、且つ単位時間当たりの気体の供給量を多くすることができるため、よりパルス状に近い圧力の印加が可能になる。あるいは、製造時の窄孔が容易であるという点では、本体内気体流路及びシャフト内気体流路の断面を円形としてもよい。 The cross section of the gas flow path in the main body and the gas flow path in the shaft is not limited to a specific shape, but is preferably a rectangle (including a square) having two sides parallel to the axis of the shaft. As a result, as the shaft is rotated, the gas flow path in the main body and the gas flow path in the shaft start and end communication in the entire axial direction of the shaft at the same time, so that a pressure close to a pulse can be applied. .. In particular, by making the cross-sectional shape of the gas flow path in the main body and the gas flow path in the shaft a rectangle having two long sides parallel to the axis of the shaft, the gas supply time per time is shortened and the gas supply time is shortened. Since the amount of gas supplied per unit time can be increased, it becomes possible to apply a pressure closer to a pulse. Alternatively, the cross section of the gas flow path in the main body and the gas flow path in the shaft may be circular in that constriction during manufacturing is easy.

本発明に係る粉末充填装置において、前記粉末収容室が蓋と粉末収容室本体を備え、該蓋と該粉末収容室本体の境界に、シール用気体(粉末収容室の内部空間に供給される気体とは異なる)が供給されることにより膨張するシール材と、該シール材にシール用気体を供給するシール用気体供給経路と、該蓋と該粉末収容室本体を互いに押さえつける押圧機構とを備えることが望ましい。この構成によれば、供給経路を通してシール材にシール用気体を供給することでシール材を膨張させつつ、押圧機構により蓋と粉末収容室本体を互いに押さえつけることで、蓋と粉末収容室本体の間の気密性を高くし、充填対象容器への粉末の充填密度を高くすることができる。 In the powder filling device according to the present invention, the powder storage chamber includes a lid and a powder storage chamber main body, and a sealing gas (a gas supplied to the internal space of the powder storage chamber) is provided at the boundary between the lid and the powder storage chamber main body. A sealing material that expands when supplied (different from), a sealing gas supply path that supplies the sealing gas to the sealing material, and a pressing mechanism that presses the lid and the powder storage chamber body against each other. Is desirable. According to this configuration, the sealing material is expanded by supplying the sealing gas to the sealing material through the supply path, and the lid and the powder storage chamber main body are pressed against each other by the pressing mechanism, thereby between the lid and the powder storage chamber main body. It is possible to increase the airtightness of the powder and increase the filling density of the powder in the container to be filled.

本発明に係る焼結磁石製造装置は、
本発明に係る粉末充填装置と、
前記粉末充填装置により前記充填対象容器に充填された焼結磁石の原料となる粉末が、該充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末に磁界を印加させることにより該粉末を配向させる配向部と、
前記粉末が前記充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末を加熱することにより焼結させる焼結部と、
を備える。
The sintered magnet manufacturing apparatus according to the present invention is
The powder filling device according to the present invention and
A magnetic field is applied to the powder without applying mechanical pressure while the powder as a raw material of the sintered magnet filled in the container to be filled by the powder filling device is still filled in the container to be filled. An orientation portion that orients the powder by allowing the powder to be oriented,
A sintered portion that sinters the powder by heating the powder without applying mechanical pressure while the powder is still filled in the container to be filled.
To be equipped.

本発明に係る焼結磁石製造方法は、
本発明に係る粉末充填装置を用いて焼結磁石の原料となる粉末を充填対象容器に充填する粉末充填工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結工程と
を行うことを特徴とする。
The method for manufacturing a sintered magnet according to the present invention is
A powder filling step of filling a container to be filled with powder as a raw material for a sintered magnet using the powder filling device according to the present invention.
An orientation step of orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in the container to be filled.
It is characterized in that a sintering step is performed in which the powder is sintered by heating the powder without applying mechanical pressure while the powder is still filled in the container to be filled.

本発明により、均一に近く且つ高密度で粉末を充填対象容器に充填することができ、それにより、磁気特性が高く凹みや空洞等が生じていない焼結磁石を製造することができる。 INDUSTRIAL APPLICABILITY According to the present invention, powder can be filled in a container to be filled with powder at a density close to uniform and high density, whereby a sintered magnet having high magnetic properties and no dents or cavities can be manufactured.

本発明に係る粉末充填装置の一実施形態の全体構成を示す概略図(a)、並びに給気口及び排気口の配置を示す上面図(b)。A schematic view (a) showing the overall configuration of an embodiment of the powder filling device according to the present invention, and a top view (b) showing the arrangement of an air supply port and an exhaust port. 本実施形態の粉末充填装置における本体の下面図。The bottom view of the main body in the powder filling apparatus of this embodiment. 本実施形態の粉末充填装置におけるシャフト内気体流路の平面形状を示す断面図。The cross-sectional view which shows the planar shape of the gas flow path in a shaft in the powder filling apparatus of this embodiment. 本実施形態の粉末充填装置を用いて粉末を充填する充填対象容器の一例を示す上面図(a)及び縦断面図(b)。Top view (a) and vertical cross-sectional view (b) showing an example of a container to be filled using the powder filling device of the present embodiment. 本実施形態の粉末充填装置を用いて粉末を充填する動作を示す概略図。The schematic diagram which shows the operation of filling powder using the powder filling device of this embodiment. シャフトが回転してゆく様子を該シャフトの軸に垂直な断面で示す図。The figure which shows the state which a shaft rotates by the cross section perpendicular to the axis of the shaft. キャビティの上端からはみ出した粉末をスクレーパで掻き取る様子を示す図。The figure which shows the state of scraping the powder protruding from the upper end of a cavity with a scraper. 粉末充填装置の変形例である、蓋の内側に膜等を設けた例を示す概略図。The schematic diagram which shows the example which provided the membrane or the like inside the lid which is the modification of the powder filling apparatus. 充填対象容器に粉末を充填した後の高密度化処理の例を説明する概略図。The schematic diagram explaining the example of the densification treatment after filling a container with a filling with powder. 本実施形態(変形例)(a)と比較例(b)の粉末充填装置につき、気体供給管を通過する圧縮気体の流量の時間変化を測定した結果を示すグラフ。The graph which shows the result of having measured the time change of the flow rate of the compressed gas passing through a gas supply pipe for the powder filling apparatus of this Embodiment (modification example) (a) and comparative example (b). 変形例の粉末充填装置につき、粉末収容室内の圧力の時間変化を測定した結果を示すグラフ。The graph which shows the result of having measured the time change of the pressure in the powder accommodating chamber for the powder filling apparatus of a modification. 変形例の粉末充填装置につき、圧縮気体の圧力の相違による、充填対象容器への充填密度の平均値及びキャビティ毎の給粉重量のバラツキを実験で求めた結果を示すグラフ。The graph which shows the result of having obtained the average value of the filling density in the container to be filled, and the variation of the powder feed weight for each cavity by an experiment for the powder filling apparatus of a modified example, due to the difference in the pressure of the compressed gas. 変形例の粉末充填装置につき、充填対象容器への充填密度の目標値を3.3g/cm3としたときの実際の充填密度の平均値及びキャビティ毎の給粉重量のバラツキを実験で求めた結果を示すグラフ。For the powder filling device of the modified example, the result of experimentally finding the average value of the actual filling density and the variation of the powder feed weight for each cavity when the target value of the filling density to the container to be filled is 3.3 g / cm 3. Graph showing. 変形例の粉末充填装置につき、充填対象容器への充填密度の目標値を3.5g/cm3としたときの実際の充填密度の平均値及びキャビティ毎の給粉重量のバラツキを実験で求めた結果を示すグラフ。For the powder filling device of the modified example, the result of experimentally finding the average value of the actual filling density and the variation of the powder feed weight for each cavity when the target value of the filling density to the container to be filled is 3.5 g / cm 3. Graph showing. 本体内気体流路及びシャフト内気体流路の断面形状が異なる2つの例について、粉末収容室内の圧力の時間変化を測定した結果を示すグラフ。The graph which shows the result of having measured the time change of the pressure in a powder accommodating chamber for two examples which the cross-sectional shape of a gas flow path in a body and a gas flow path in a shaft is different. 本体内気体流路及びシャフト内気体流路の断面形状が異なる2つの例について、充填対象容器への充填密度を測定した結果を示すグラフ。The graph which shows the result of having measured the filling density in the container to be filled about two examples which the cross-sectional shape of a gas flow path in a main body and a gas flow path in a shaft is different. 本実施例に係る焼結磁石製造装置の全体構成を示す概略図。The schematic diagram which shows the whole structure of the sintered magnet manufacturing apparatus which concerns on this Example.

図1〜図17を用いて、本発明に係る粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法の実施形態を説明する。 An embodiment of a powder filling device, a sintered magnet manufacturing device, and a sintered magnet manufacturing method according to the present invention will be described with reference to FIGS. 1 to 17.

(1) 本実施形態の粉末充填装置1の構成
図1(a)は、本実施形態の粉末充填装置1の全体の構成を示す概略図である。粉末充填装置1は、粉末収容室10を有し、粉末収容室10は本体11及び蓋12を有する。
(1) Configuration of Powder Filling Device 1 of the Present Embodiment FIG. 1 (a) is a schematic view showing the overall configuration of the powder filling device 1 of the present embodiment. The powder filling device 1 has a powder storage chamber 10, and the powder storage chamber 10 has a main body 11 and a lid 12.

本体11は直方体の箱状のものであって、天井部の全体が開放されており、底部(下端)には開口111が設けられている。開口111は、本実施形態では、本体11の底部の長方形の長辺方向に等間隔に6個、短辺方向には長辺方向とは異なる間隔で等間隔に3個、合計18個設けられている。開口111は長方形であり、開口111の長辺と本体11の底部の短辺が平行になるように配置されている。この開口111の形状は、本実施形態では、PLP法によって焼結磁石を作製する際に用いるモールドである後述の充填対象容器20のキャビティの形状に合わせるように定めた。開口111の形状はこの例には限定されず、充填対象容器の形状に応じて適宜定めればよい。 The main body 11 has a rectangular parallelepiped box shape, and the entire ceiling portion is open, and an opening 111 is provided at the bottom portion (lower end). In the present embodiment, six openings 111 are provided at equal intervals in the long side direction of the rectangle at the bottom of the main body 11, and three openings 111 are provided at equal intervals in the short side direction at intervals different from the long side direction, for a total of 18 openings. ing. The opening 111 is rectangular, and is arranged so that the long side of the opening 111 and the short side of the bottom of the main body 11 are parallel to each other. In the present embodiment, the shape of the opening 111 is determined to match the shape of the cavity of the container 20 to be filled, which is a mold used when manufacturing a sintered magnet by the PLP method. The shape of the opening 111 is not limited to this example, and may be appropriately determined according to the shape of the container to be filled.

各開口111には、グリッド部材15が取り付けられている(図2)。グリッド部材15は、縦及び横にそれぞれワイヤが一定間隔で複数本張設されて成る。本実施形態では、平均粒径が3μmのRFeB(R2Fe14B:RはNd等の希土類元素)系磁石合金の粉末を充填対象容器20への充填の対象として、グリッド部材15のワイヤの間隔は3mmとした。このように、グリッド部材15のワイヤの間隔は粉末の平均粒径よりも3桁大きいが、RFeB系磁石合金の粉末の粒子が凝集することにより、単にグリッド部材15の上に粉末を載置しただけでは、粉末がワイヤの間を通過して落下することはない。 A grid member 15 is attached to each opening 111 (FIG. 2). The grid member 15 is formed by stretching a plurality of wires vertically and horizontally at regular intervals. In the present embodiment, RFeB (R 2 Fe 14 B: R is a rare earth element such as Nd) magnet alloy powder having an average particle size of 3 μm is filled into the filling container 20 to be filled with the wire of the grid member 15. The interval was 3 mm. As described above, the distance between the wires of the grid member 15 is three orders of magnitude larger than the average particle size of the powder, but the powder is simply placed on the grid member 15 due to the aggregation of the powder particles of the RFeB-based magnet alloy. By itself, the powder does not pass between the wires and fall.

蓋12は、本体11と同じ横断面を有する直方体の箱状のものであって、本体11の天井部に取り付けられる。蓋12は底部の全体が開放されており、天井部には給気口121及び排気口122が設けられている。図1(b)は、蓋12における給気口121及び排気口122の配置を示すと共に、蓋12が本体11に取り付けられたときに蓋12の下方に位置する開口111を破線で示している。排気口122は、各開口111の直上に1個ずつ、合計18個設けられている。給気口121は、天井部の長方形の長辺方向には排気口122及び開口111の2倍の間隔で3個、短辺方向には排気口122及び開口111と同じ間隔で2個、合計6個設けられている。各給気口121は、4個の排気口122を頂点として形成される最小の長方形の重心に配置されている。 The lid 12 is a rectangular parallelepiped box-shaped lid having the same cross section as the main body 11, and is attached to the ceiling of the main body 11. The entire bottom of the lid 12 is open, and the ceiling is provided with an air supply port 121 and an exhaust port 122. FIG. 1B shows the arrangement of the air supply port 121 and the exhaust port 122 in the lid 12, and the opening 111 located below the lid 12 when the lid 12 is attached to the main body 11 is shown by a broken line. .. A total of 18 exhaust ports 122 are provided, one directly above each opening 111. The number of air supply ports 121 is three in the long side direction of the rectangle of the ceiling at twice the interval of the exhaust port 122 and the opening 111, and two in the short side direction at the same interval as the exhaust port 122 and the opening 111, in total. Six are provided. Each air supply port 121 is arranged at the smallest rectangular center of gravity formed with the four exhaust ports 122 as vertices.

蓋12には、粉末収容室10の外側から各給気口121に1本ずつ、気体供給管123が接続されている。 A gas supply pipe 123 is connected to the lid 12 from the outside of the powder storage chamber 10, one to each air supply port 121.

気体供給管123は、弁装置13に接続されている。弁装置13は、弁本体131とシャフト132を有する。弁本体131には、その内部を互いに独立に貫くように、気体供給管123と同数である6本の本体内気体流路1311が設けられている。本実施形態では、6本の本体内気体流路1311は互いに平行であり、等間隔に配置されている。各本体内気体流路1311の一方の端には気体供給管123がそれぞれ1本ずつ接続されており、他方の端には供給源側気体供給管14がそれぞれ1本ずつ接続されている。供給源側気体供給管14には、気体供給源であるガスボンベ(図示せず)から、大気圧よりも高圧の気体(以下、「高圧気体」とする)が供給される。この高圧気体は、本実施形態では、RFeB系磁石合金の粉末と反応しないアルゴンガスを用いる。アルゴンガスの代わりに、その他の希ガスや窒素ガスを用いてもよい。 The gas supply pipe 123 is connected to the valve device 13. The valve device 13 has a valve body 131 and a shaft 132. The valve body 131 is provided with six gas flow paths 1311 in the body, which are the same number as the gas supply pipe 123, so as to penetrate the inside of the valve body 131 independently of each other. In this embodiment, the six gas flow paths in the main body 1311 are parallel to each other and are arranged at equal intervals. One gas supply pipe 123 is connected to one end of each gas flow path 1311 in the main body, and one gas supply pipe 14 on the supply source side is connected to the other end. A gas cylinder (not shown), which is a gas supply source, supplies a gas having a pressure higher than the atmospheric pressure (hereinafter, referred to as “high pressure gas”) to the gas supply pipe 14 on the supply source side. In this embodiment, the high-pressure gas uses argon gas that does not react with the powder of the RFeB-based magnet alloy. Other rare gas or nitrogen gas may be used instead of argon gas.

弁本体131の内部には、6本の本体内気体流路1311の全てと交差するように、円筒状のシャフト嵌入孔1312が設けられている。本実施形態では、6本のシャフト嵌入孔1312は互いに平行に、且つ6本の本体内気体流路1311と同じ間隔で配置されている。シャフト嵌入孔1312は6本の本体内気体流路1311に直交するように設けられている。シャフト132は、シャフト嵌入孔1312に嵌入されており、6本の本体内気体流路1311にそれぞれ対応してシャフト内気体流路1321が設けられている。これらの構成により、シャフト132はシャフト嵌入孔1312が延びる方向と同方向の軸の回りに回転し、シャフト内気体流路1321は軸に直交する。シャフト132には、該シャフト132を軸の回りに回転させる駆動源であるモータ(図示せず)が接続されている。 Inside the valve body 131, a cylindrical shaft fitting hole 1312 is provided so as to intersect with all of the six gas flow paths 1311 in the body. In this embodiment, the six shaft fitting holes 1312 are arranged parallel to each other and at the same intervals as the six gas flow paths in the main body 1311. The shaft fitting holes 1312 are provided so as to be orthogonal to the six gas flow paths in the main body 1311. The shaft 132 is fitted into the shaft fitting hole 1312, and the gas flow path 1321 in the shaft is provided corresponding to each of the six gas flow paths 1311 in the main body. With these configurations, the shaft 132 rotates about an axis in the same direction as the shaft fitting hole 1312 extends, and the gas flow path 1321 in the shaft is orthogonal to the axis. A motor (not shown), which is a drive source for rotating the shaft 132 around the shaft, is connected to the shaft 132.

シャフト内気体流路1321の断面の形状は、本実施形態では図3に示すようにシャフト132の軸に平行な2辺を有する長方形である。本体内気体流路1311の断面の形状及び大きさはシャフト内気体流路1321のそれらと同じである。一方、気体供給管123及び供給源側気体供給管14の断面はいずれも、本体内気体流路1311との接続部では本体内気体流路1311の断面と同じく長方形であるが、該接続部から一定の長さの範囲内では接続部から離れるに従って徐々に形状が変化し、該範囲よりも外側では円形である。 In the present embodiment, the shape of the cross section of the gas flow path 1321 in the shaft is a rectangle having two sides parallel to the axis of the shaft 132 as shown in FIG. The shape and size of the cross section of the gas flow path 1311 in the main body are the same as those of the gas flow path 1321 in the shaft. On the other hand, the cross sections of the gas supply pipe 123 and the gas supply pipe 14 on the supply source side are both rectangular at the connection portion with the gas flow path 1311 in the main body as in the cross section of the gas flow path 1311 in the main body. Within a certain length range, the shape gradually changes as the distance from the connection portion increases, and outside the range, the shape is circular.

シャフト132の直径は、本実施形態では16mmとした。シャフト内気体流路1321の間隔は24mmとした。本体内気体流路1311及びシャフト内気体流路1321の断面の大きさは、本実施例では長辺を6.5mm、短辺を3.8mmとした。なお、これらは一例であって、本発明はこの例には限定されない。本体内気体流路1311及びシャフト内気体流路1321の断面の長辺の長さは、隣接する本体内気体流路1311の間に気体供給管123及び供給源側気体供給管14を取り付けるための孔の無い部分を設けることができる範囲内で、長い方が一度に粉末収容室10に供給できる高圧気体の量を多くすることができるため望ましい。一方、本体内気体流路1311及びシャフト内気体流路1321の断面の短辺の長さは、シャフト132を軸の回りに回転させる間に本体内気体流路1311とシャフト内気体流路1321が連通する時間が全体の5〜20%程度となるよう、シャフト132の直径を勘案して定めることが望ましい。 The diameter of the shaft 132 is 16 mm in this embodiment. The distance between the gas flow paths 1321 in the shaft was set to 24 mm. The size of the cross section of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft was 6.5 mm on the long side and 3.8 mm on the short side in this embodiment. It should be noted that these are examples, and the present invention is not limited to this example. The length of the long side of the cross section of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft is for attaching the gas supply pipe 123 and the gas supply pipe 14 on the supply source side between the adjacent gas flow paths 1311 in the main body. It is desirable that the longer one can increase the amount of high-pressure gas that can be supplied to the powder storage chamber 10 at one time within the range in which the portion without holes can be provided. On the other hand, the length of the short side of the cross section of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft is such that the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft are set while rotating the shaft 132 around the shaft. It is desirable to consider the diameter of the shaft 132 so that the communication time is about 5 to 20% of the total.

本体11の壁の下端には、充填対象容器20と気密に接続するための下部シール材112から成る接続部が設けられている。一方、本体11の壁の上端には、蓋12と気密に接続するための上部シール材113が設けられている。下部シール材112及び上部シール材113はいずれも、高圧気体が供給されることによって膨張する風船状のものである。本体11の壁内には、下部シール材112及び上部シール材113に高圧気体を供給するシール用気体供給経路114が設けられており、シール用気体供給経路114は、シール用気体を供給するシール用気体供給源(図示せず)に接続されている。このシール用気体供給源は供給源側気体供給管14に高圧気体を供給する気体供給源とは別に設けられており、供給される高圧気体は空気である。更に、蓋12の上面には、蓋12を下方に押さえつける押さえシリンダ(押圧機構)124が接続されている。押さえシリンダ124で蓋12を下方に押さえつけつつ、下部シール材112及び上部シール材113にシール用気体を供給してそれらを膨張させることにより、本体11と充填対象容器20の間、及び蓋12と本体11の間の気密が保持されるようになっている。 At the lower end of the wall of the main body 11, a connecting portion made of a lower sealing material 112 for airtightly connecting to the filling container 20 is provided. On the other hand, an upper sealing material 113 for airtightly connecting to the lid 12 is provided at the upper end of the wall of the main body 11. Both the lower sealing material 112 and the upper sealing material 113 have a balloon shape that expands when a high-pressure gas is supplied. A sealing gas supply path 114 for supplying high-pressure gas to the lower sealing material 112 and the upper sealing material 113 is provided in the wall of the main body 11, and the sealing gas supply path 114 is a seal for supplying the sealing gas. It is connected to a gas supply source (not shown). The sealing gas supply source is provided separately from the gas supply source that supplies the high-pressure gas to the supply source-side gas supply pipe 14, and the high-pressure gas supplied is air. Further, a pressing cylinder (pressing mechanism) 124 that presses the lid 12 downward is connected to the upper surface of the lid 12. While pressing the lid 12 downward with the pressing cylinder 124, the sealing gas is supplied to the lower sealing material 112 and the upper sealing material 113 to expand them, thereby causing the lid 12 to be between the main body 11 and the filling container 20 and the lid 12. The airtightness between the main bodies 11 is maintained.

(2) 充填対象容器20の構成
充填対象容器20は、長方形の平板状の本体21の上面側に、粉末充填装置1の本体11の開口111と同じ平面形状を有する平板状のキャビティ22が、開口111と同じ間隔で長辺方向に6個、短辺方向に3個、合計18個設けられたものである(図1(a)及び図4)。粉末充填装置1により粉末を充填対象容器20に充填する際には、下から順に充填対象容器20と本体11を、キャビティ22と開口111の位置を合わせて重ねた状態で使用する。
(2) Configuration of Filling Target Container 20 The filling target container 20 has a flat plate-shaped cavity 22 having the same planar shape as the opening 111 of the main body 11 of the powder filling device 1 on the upper surface side of the rectangular flat plate-shaped main body 21. Six in the long side direction and three in the short side direction are provided at the same interval as the opening 111, for a total of 18 pieces (FIGS. 1 (a) and 4). When the powder filling device 1 fills the filling target container 20 with the powder, the filling target container 20 and the main body 11 are used in a state of being overlapped with the cavities 22 and the openings 111 aligned in order from the bottom.

(3) 本実施形態の粉末充填装置1の動作
図5〜図7を用いて、本実施形態の粉末充填装置1の動作を説明する。まず、本体11と蓋12が分離されている状態で、粉末Pを本体11内に供給する(図5(a))。このとき粉末Pは、開口111に設けられたグリッド部材15の上に載るが、前述の理由により、グリッド部材15のワイヤの間を通過して落下することはない。
(3) Operation of Powder Filling Device 1 of the Present Embodiment The operation of the powder filling device 1 of the present embodiment will be described with reference to FIGS. 5 to 7. First, the powder P is supplied into the main body 11 in a state where the main body 11 and the lid 12 are separated (FIG. 5 (a)). At this time, the powder P is placed on the grid member 15 provided in the opening 111, but for the reason described above, the powder P does not pass between the wires of the grid member 15 and fall.

次に、充填対象容器20を、本体11の開口111と充填対象容器20のキャビティ22の位置を合わせるように本体11の直下に配置する。それと共に、本体11の上に蓋12を載置する。そして、シール用気体供給源からシール用気体供給経路114を通して下部シール材112及び上部シール材113に高圧気体を供給すると共に、押さえシリンダ124により蓋12を下方に押す(図5(b))。これにより、本体11と充填対象容器20の間、及び蓋12と本体11の間の気密性が、それぞれ下部シール材112及び上部シール材113により確保される。 Next, the filling target container 20 is arranged directly below the main body 11 so that the opening 111 of the main body 11 and the cavity 22 of the filling target container 20 are aligned with each other. At the same time, the lid 12 is placed on the main body 11. Then, the high-pressure gas is supplied from the sealing gas supply source to the lower sealing material 112 and the upper sealing material 113 through the sealing gas supply path 114, and the lid 12 is pushed downward by the pressing cylinder 124 (FIG. 5 (b)). As a result, the airtightness between the main body 11 and the filling target container 20 and between the lid 12 and the main body 11 is ensured by the lower sealing material 112 and the upper sealing material 113, respectively.

この状態で、気体供給源であるガスボンベから各供給源側気体供給管14に高圧気体を供給すると共に、駆動源であるモータによりシャフト132を軸の回りに等速で回転させる。 In this state, high-pressure gas is supplied from the gas cylinder, which is a gas supply source, to each supply source side gas supply pipe 14, and the shaft 132 is rotated around the shaft at a constant speed by a motor, which is a drive source.

図6に、シャフト132が回転してゆく様子を、シャフト132の軸に垂直な断面で示す。同図に示された本体内気体流路1311は、図の上方で供給源側気体供給管14に接続され、図の下方で気体供給管123に接続されている。同図に太線で示された矢印はシャフト132の回転方向を示し、細線で示された矢印は高圧気体の流れを示している。図6(a)に示すように、本体内気体流路1311とシャフト内気体流路1321が連通していないときには、ガスボンベから供給源側気体供給管14を通して本体内気体流路1311に供給された高圧気体はシャフト132により遮られ、気体供給管123及びその先の粉末収容室10には供給されない。その後、シャフト132が回転してゆくことでシャフト内気体流路1321の一部が本体内気体流路1311と連通する(図6(b))と、高圧気体は供給源側気体供給管14からシャフト内気体流路1321を通過し、本体内気体流路1311の残りの部分と気体供給管123を通して粉末収容室10に供給される。単位時間あたりの高圧気体の供給量は、本体内気体流路1311とシャフト内気体流路1321が連通し始めてから回転角度が進むに従って増加してゆき、本体内気体流路1311とシャフト内気体流路1321の角度が一致したときに最大となり(図6(c))、その後減少してゆく。更に回転角度が進むと、本体内気体流路1311とシャフト内気体流路1321が連通しなくなり(図6(d))、気体供給管123及び粉末収容室10に高圧気体が供給されなくなる。ここまでの動作は、シャフト132が半回転する毎に繰り返され、粉末収容室10にはシャフト132の回転周期の1/2の周期で繰り返し高圧気体が供給される。また、図6では1組の本体内気体流路1311とシャフト内気体流路1321のみを示しているが、6本の本体内気体流路1311及びシャフト内気体流路1321が平行に配置され、且つ、シャフト内気体流路1321がシャフト132が回転する軸に直交していることから、全てのシャフト内気体流路1321は同じタイミングで本体内気体流路1311と連通を開始及び終了する。 FIG. 6 shows how the shaft 132 rotates in a cross section perpendicular to the axis of the shaft 132. The gas flow path 1311 in the main body shown in the figure is connected to the gas supply pipe 14 on the supply source side in the upper part of the figure, and is connected to the gas supply pipe 123 in the lower part of the figure. The arrows shown by thick lines in the figure indicate the direction of rotation of the shaft 132, and the arrows indicated by thin lines indicate the flow of high-pressure gas. As shown in FIG. 6A, when the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft are not communicating with each other, the gas was supplied from the gas cylinder to the gas flow path 1311 in the main body through the gas supply pipe 14 on the supply source side. The high-pressure gas is blocked by the shaft 132 and is not supplied to the gas supply pipe 123 and the powder storage chamber 10 beyond it. After that, as the shaft 132 rotates, a part of the gas flow path 1321 in the shaft communicates with the gas flow path 1311 in the main body (FIG. 6 (b)), and the high-pressure gas flows from the gas supply pipe 14 on the supply source side. It passes through the gas flow path 1321 in the shaft and is supplied to the powder storage chamber 10 through the remaining portion of the gas flow path 1311 in the main body and the gas supply pipe 123. The amount of high-pressure gas supplied per unit time increases as the rotation angle advances after the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft start to communicate with each other, and the gas flow path 1311 in the main body and the gas flow in the shaft It becomes maximum when the angles of the roads 1321 match (FIG. 6 (c)), and then decreases. When the rotation angle further advances, the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft do not communicate with each other (FIG. 6 (d)), and the high-pressure gas is not supplied to the gas supply pipe 123 and the powder storage chamber 10. The operation up to this point is repeated every half rotation of the shaft 132, and the high-pressure gas is repeatedly supplied to the powder storage chamber 10 at a cycle of 1/2 of the rotation cycle of the shaft 132. Further, although FIG. 6 shows only one set of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft, the six gas flow paths 1311 in the main body and the gas flow path 1321 in the shaft are arranged in parallel. Moreover, since the gas flow path 1321 in the shaft is orthogonal to the axis on which the shaft 132 rotates, all the gas flow paths 1321 in the shaft start and end communication with the gas flow path 1311 in the main body at the same timing.

このように粉末収容室10に供給された高圧気体は、排気口122の排気抵抗によって給気のタイミングからやや遅れて排気口122から排出される。これにより、粉末収容室10内では圧力が前記周期で上昇及び下降を繰り返す。粉末Pは、この圧力によって同周期で繰り返し下方に押され(エアタッピング)、グリッド部材15のワイヤの間から下方に押し出されて充填対象容器20のキャビティ22へ落下してゆく(図5(c))。なお、高圧気体の圧力は、取り扱う粉末毎に当業者が予備実験を行って適宜定めればよい。また、1周期中の圧縮気体を供給する時間の比(デューティ比)は、本実施形態の粉末充填装置1では本体内気体流路1311及びシャフト内気体流路1321の断面の短辺の長さ、すなわち回転方向の長さで定まるが、この長さは、例えば電磁弁を用いた従来の粉末充填装置で予備実験を行うことによって適切なデューティ比を求めたうえで設計すればよい。 The high-pressure gas supplied to the powder storage chamber 10 in this way is discharged from the exhaust port 122 slightly later than the timing of supply air due to the exhaust resistance of the exhaust port 122. As a result, the pressure in the powder storage chamber 10 repeatedly rises and falls in the cycle. The powder P is repeatedly pushed downward (air tapping) by this pressure in the same cycle, pushed downward from between the wires of the grid member 15, and falls into the cavity 22 of the container 20 to be filled (FIG. 5 (c). )). The pressure of the high-pressure gas may be appropriately determined by a person skilled in the art by conducting a preliminary experiment for each powder to be handled. Further, the ratio (duty ratio) of the time for supplying the compressed gas in one cycle is the length of the short side of the cross section of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft in the powder filling device 1 of the present embodiment. That is, it is determined by the length in the rotation direction, and this length may be designed after obtaining an appropriate duty ratio by conducting a preliminary experiment with a conventional powder filling device using a solenoid valve, for example.

この操作を所定時間行うことにより、キャビティ22の上端付近まで粉末Pで満たされる。その後、押さえシリンダ124による押圧を解放し、充填対象容器20を本体11から離す(図5(d))。以上により、キャビティ22内に粉末Pを充填する操作が完了する。 By performing this operation for a predetermined time, the powder P is filled up to the vicinity of the upper end of the cavity 22. After that, the pressing by the pressing cylinder 124 is released, and the filling target container 20 is separated from the main body 11 (FIG. 5 (d)). As described above, the operation of filling the cavity 22 with the powder P is completed.

なお、実際には充填対象容器20を本体11の直下に配置したときに、充填対象容器20のキャビティ22の上端と本体11のグリッド部材15の間にわずかな隙間が存在するため、粉末Pはキャビティ22の上端からわずかにはみ出すように、キャビティ22に供給される。そこで、図7に示すように、キャビティ22の上端からわずかにはみ出した粉末Pを、スクレーパ36で掻き取り、充填対象容器20の上面と同一平面になるように粉末Pの上端をならす。スクレーパ36は第1〜第3の掻き取り部361〜363を有し、第1掻き取り部361から第3掻き取り部363に向かって、粉末Pと接する先端の高さが低くなっている。スクレーパ36全体を、第1掻き取り部361、第2掻き取り部362、第3掻き取り部363の順で粉末Pに接触するように移動させることにより、粉末Pを徐々に掻き取ることができる。 Actually, when the filling target container 20 is arranged directly under the main body 11, there is a slight gap between the upper end of the cavity 22 of the filling target container 20 and the grid member 15 of the main body 11, so that the powder P is It is supplied to the cavity 22 so as to slightly protrude from the upper end of the cavity 22. Therefore, as shown in FIG. 7, the powder P slightly protruding from the upper end of the cavity 22 is scraped off by the scraper 36, and the upper end of the powder P is smoothed so as to be flush with the upper surface of the filling container 20. The scraper 36 has first to third scraping portions 361 to 363, and the height of the tip in contact with the powder P is lowered from the first scraping portion 361 to the third scraping portion 363. The powder P can be gradually scraped by moving the entire scraper 36 in the order of the first scraping portion 361, the second scraping portion 362, and the third scraping portion 363 so as to come into contact with the powder P. ..

本実施形態の粉末充填装置1によれば、シャフト132が回転している間に、全てのシャフト内気体流路1321が同じタイミングで本体内気体流路1311と連通を開始及び終了するため、粉末収容室10では全ての給気口121から同じタイミングで圧縮空気の供給が開始及び終了する。そのため、各時刻における粉末収容室10内の気体の圧力を均一に近くすることができ、それによって充填対象容器20に均一に粉末Pを充填することができる。また、各給気口121から供給される圧縮気体の圧力が最大となる時刻を一致させることができる。そのため、粉末収容室10内全体の圧力の平均値を高くすることができ、それによって充填対象容器20に高密度で粉末Pを充填することができる。 According to the powder filling device 1 of the present embodiment, while the shaft 132 is rotating, all the gas flow paths 1321 in the shaft start and end communication with the gas flow path 1311 in the main body at the same timing, so that the powder In the accommodation chamber 10, the supply of compressed air from all the air supply ports 121 starts and ends at the same timing. Therefore, the pressure of the gas in the powder storage chamber 10 at each time can be made close to uniform, whereby the powder P can be uniformly filled in the filling target container 20. Further, it is possible to match the time when the pressure of the compressed gas supplied from each air supply port 121 becomes maximum. Therefore, the average value of the pressure in the powder storage chamber 10 can be increased, whereby the powder P can be filled in the filling container 20 at a high density.

(4) 本実施形態の粉末充填装置の変形例
図8に、本実施形態の粉末充填装置の変形例を示す。この変形例の粉末充填装置1Aは、粉末収容室10Aの蓋12Aの内部に、横方向に張設されたシリコーンゴム製の膜126と、膜126の直下に設けられた金属製の網から成る膜抑制部材127が設けられている。それ以外の構成は、上述の粉末充填装置1と同じである。
(4) Deformation Example of Powder Filling Device of This Embodiment FIG. 8 shows a modification of the powder filling device of this embodiment. The powder filling device 1A of this modified example comprises a silicone rubber film 126 stretched laterally inside the lid 12A of the powder storage chamber 10A, and a metal net provided directly under the film 126. A film suppressing member 127 is provided. Other than that, the configuration is the same as that of the powder filling device 1 described above.

粉末充填装置1Aの使用方法は、上記粉末充填装置1と同じである。給気口121から圧縮気体を粉末収容室10Aに導入すると、その圧縮気体自体は膜126を通過しないが膜126を下方に押す(図8中の一点鎖線)ため、膜126の下側にある気体が粉末Pを押すこととなり、上記粉末充填装置1と同様に、粉末Pをグリッド部材15のワイヤの間から下方に押し出して充填対象容器20のキャビティ22に供給することができる。そして、膜126を用いることにより、給気口121から圧縮気体を粉末収容室10Aに導入した際に、本体11内の粉末Pが膜126よりも上側、すなわち給気口121及び排気口122側の領域に飛散して給気口121や排気口122に詰まることを防止することができる。 The method of using the powder filling device 1A is the same as that of the powder filling device 1. When the compressed gas is introduced into the powder storage chamber 10A from the air supply port 121, the compressed gas itself does not pass through the film 126 but pushes the film 126 downward (single point chain line in FIG. 8), so that the compressed gas is below the film 126. The gas pushes the powder P, and similarly to the powder filling device 1, the powder P can be pushed downward from between the wires of the grid member 15 and supplied to the cavity 22 of the container 20 to be filled. Then, by using the film 126, when the compressed gas is introduced into the powder storage chamber 10A from the air supply port 121, the powder P in the main body 11 is above the film 126, that is, the air supply port 121 and the exhaust port 122 side. It is possible to prevent the air supply port 121 and the exhaust port 122 from being scattered and clogged in the area of.

なお、膜抑制部材127が無いと、膜126が降下し過ぎて本体11内の粉末Pに接触してしまうおそれがある。膜126が粉末Pに接触すると、粉末Pに直接圧縮力が作用し、密度分布が生じる。そのため、蓋12A内で膜126の下に膜抑制部材127を設けることにより、膜126が粉末Pに接触することを防止している。 Without the film suppressing member 127, the film 126 may drop too much and come into contact with the powder P in the main body 11. When the film 126 comes into contact with the powder P, a compressive force acts directly on the powder P to produce a density distribution. Therefore, by providing the film suppressing member 127 under the film 126 in the lid 12A, the film 126 is prevented from coming into contact with the powder P.

膜126の材料は、可撓性を有するものであればシリコーンゴムには限られず、例えばポリウレタン等を用いることもできる。また、膜抑制部材127は、膜126が膜抑制部材127よりも下側まで降下することを防止し、且つ気体を通過させることができるものであれば網には限らず、例えば板材に多数の孔を空けたものや、棒材を横に並べたもの等であってもよい。 The material of the film 126 is not limited to silicone rubber as long as it has flexibility, and for example, polyurethane or the like can be used. Further, the film suppressing member 127 is not limited to a net as long as it prevents the film 126 from descending below the film suppressing member 127 and allows gas to pass through, and is not limited to a net, for example, a large number of plate materials. It may be a perforated material, a rod material arranged side by side, or the like.

図8では、本体11の下に直接充填対象容器20を配置する代わりに、本体11と充填対象容器20の間にスペーサ30を配置した状態を示している。なお、このスペーサ30は、変形例の粉末充填装置1Aのみならず、前述の粉末充填装置1で使用してもよい。スペーサ30は、板材に18個の貫通孔31が、開口111と同形状且つ同じ配置で設けられ、これら18個の貫通孔31の全体を囲むようにシール材32が下面に設けられたものである。粉末を充填対象容器20に充填する際には、下から順に充填対象容器20、スペーサ30及び本体11を、キャビティ22、貫通孔31及び開口111の位置を合わせて重ねる。シール用気体供給源から下部シール材112及び上部シール材113に高圧気体を供給すると共に押さえシリンダ124により蓋12を下方に押すと、蓋12と本体11、本体11とスペーサ30、及びスペーサ30と充填対象容器20の間の気密性が、それぞれ上部シール材113、下部シール材112、及びシール材32により確保される。 FIG. 8 shows a state in which the spacer 30 is arranged between the main body 11 and the filling target container 20 instead of directly arranging the filling target container 20 under the main body 11. The spacer 30 may be used not only in the powder filling device 1A of the modified example but also in the powder filling device 1 described above. The spacer 30 is a plate material in which 18 through holes 31 are provided in the same shape and arrangement as the openings 111, and a sealing material 32 is provided on the lower surface so as to surround the entire 18 through holes 31. is there. When the powder is filled in the filling container 20, the filling container 20, the spacer 30 and the main body 11 are stacked in this order from the bottom so that the cavities 22, the through holes 31 and the openings 111 are aligned. When high-pressure gas is supplied from the sealing gas supply source to the lower sealing material 112 and the upper sealing material 113 and the lid 12 is pushed downward by the pressing cylinder 124, the lid 12 and the main body 11, the main body 11 and the spacer 30, and the spacer 30 are formed. The airtightness between the filling target containers 20 is ensured by the upper sealing material 113, the lower sealing material 112, and the sealing material 32, respectively.

このようにスペーサ30を用いることにより、以下に述べるように、より高い密度で粉末Pをキャビティ22に充填することができる。スペーサ30を用いて粉末充填装置1又は1Aによりキャビティ22内に粉末Pを充填すると、粉末Pは、充填対象容器20のキャビティ22と共に、キャビティ22と位置を合わせた貫通孔31内まで充填される。その後、貫通孔31の上端からはみ出した粉末Pをスクレーパ36で除去した(図9(a))うえで、スペーサ30の貫通孔31と同形状のパンチ35を上側から該貫通孔31に挿入することにより、貫通孔31内の粉末Pを充填対象容器20のキャビティ22に押し込む(図9(b))。これにより、キャビティ22に、粉末充填装置1又は1Aによる充填時よりも高い密度で粉末Pが充填される。 By using the spacer 30 in this way, the powder P can be filled in the cavity 22 at a higher density as described below. When the powder P is filled in the cavity 22 by the powder filling device 1 or 1A using the spacer 30, the powder P is filled together with the cavity 22 of the container 20 to be filled up to the through hole 31 aligned with the cavity 22. .. Then, the powder P protruding from the upper end of the through hole 31 is removed by the scraper 36 (FIG. 9A), and then a punch 35 having the same shape as the through hole 31 of the spacer 30 is inserted into the through hole 31 from above. As a result, the powder P in the through hole 31 is pushed into the cavity 22 of the container 20 to be filled (FIG. 9 (b)). As a result, the cavity 22 is filled with the powder P at a higher density than that at the time of filling by the powder filling device 1 or 1A.

(5) 実験結果
まず、変形例の粉末充填装置1Aにおいて、各気体供給管123に1個ずつ流量計を設け、粉末充填装置1Aの動作中に各気体供給管123を流れる圧縮気体の流量の時間変化を測定する実験を行った。なお、この実験では、圧縮気体には圧力0.4MPaの窒素を用いた。圧縮気体の供給の周期は80msecとした。併せて、比較例として、本実施形態の粉末充填装置1Aにおける弁装置13の代わりに、各気体供給管123に対して1個ずつ電磁弁を設け、電磁弁よりも粉末収容室10A側の気体供給管123に流量計を設けた装置につき、圧力0.4MPaの窒素を用いて50msecの周期で電磁弁を開閉(開状態は20sec、閉状態は30msec)し、各気体供給管123を流れる圧縮気体の流量の時間変化を測定する実験を行った。なお、本実施形態では弁装置13が全開状態のときに1本の気体供給管123を通過する圧縮気体の単位時間当たりの流量が約80L/分であるのに対して、比較例の電磁弁は圧縮気体が通過する際に抵抗となることから全開状態のときに1本の気体供給管123を通過する圧縮気体の単位時間当たりの流量が約50L/分と、本実施形態よりも少なくなる。そのため、比較例では、単位時間当たりの流量が少なくなる分を補うために、圧縮気体の供給の周期を上記のように本実施形態よりも短い50msecとした。
(5) Experimental Results First, in the powder filling device 1A of the modified example, one flow meter is provided for each gas supply pipe 123, and the flow rate of the compressed gas flowing through each gas supply pipe 123 during the operation of the powder filling device 1A is measured. An experiment was conducted to measure the change over time. In this experiment, nitrogen with a pressure of 0.4 MPa was used as the compressed gas. The cycle of supplying the compressed gas was 80 msec. In addition, as a comparative example, instead of the valve device 13 in the powder filling device 1A of the present embodiment, one solenoid valve is provided for each gas supply pipe 123, and the gas on the powder storage chamber 10A side of the solenoid valve is provided. For a device equipped with a flow meter in the supply pipe 123, the solenoid valve is opened and closed (20 sec in the open state and 30 msec in the closed state) at a cycle of 50 msec using nitrogen at a pressure of 0.4 MPa, and the compressed gas flowing through each gas supply pipe 123. An experiment was conducted to measure the time change of the flow rate of the gas. In the present embodiment, when the valve device 13 is in the fully open state, the flow rate of the compressed gas passing through one gas supply pipe 123 per unit time is about 80 L / min, whereas the solenoid valve of the comparative example Since it becomes a resistance when the compressed gas passes through, the flow rate of the compressed gas passing through one gas supply pipe 123 per unit time in the fully open state is about 50 L / min, which is smaller than that of the present embodiment. .. Therefore, in the comparative example, the cycle of supplying the compressed gas is set to 50 msec, which is shorter than that of the present embodiment, as described above, in order to compensate for the decrease in the flow rate per unit time.

この実験の結果を、本実施形態の粉末充填装置1Aについては図10(a)に、比較例の電磁弁を用いた粉末充填装置については図10(b)に、それぞれ示す。(a)では5本の気体供給管123、(b)では6本の気体供給管での測定結果を示している。この測定結果によれば、本実施形態では5本の気体供給管123のデータがほぼ完全に重なっており、それら5本の気体供給管123からそれぞれ、ほぼ同じ流量の圧縮気体がほぼ同じ時間変化で粉末収容室10Aに供給されていることがわかる。また、流量がピークとなるときの流量の値は、いずれのピークにおいてもほぼ同じである。それに対して比較例では、流量がピークとなるときの流量の値が気体供給管123毎に異なっていると共に、同じ気体供給管123においてもピーク毎に流量の値が異なっている。また、比較例では、流量がピークとなる時刻(図10では流量測定開始からの時間で規定)も、気体供給管123毎によってわずかに異なっている。これら比較例のデータは、各電磁弁において同じ開度やタイミングで開閉を行うことが困難であることに起因していると考えられる。それに対して本実施形態の粉末充填装置1Aでは、弁装置13の各本体内気体流路1311が同じ開度且つ同じタイミングで開放されるため、電磁弁と同様の問題は生じない。 The results of this experiment are shown in FIG. 10 (a) for the powder filling device 1A of the present embodiment and in FIG. 10 (b) for the powder filling device using the solenoid valve of the comparative example. (a) shows the measurement results with five gas supply pipes 123, and (b) shows the measurement results with six gas supply pipes. According to this measurement result, in the present embodiment, the data of the five gas supply pipes 123 are almost completely overlapped, and the compressed gas having almost the same flow rate changes from each of the five gas supply pipes 123 over the same time. It can be seen that the gas is supplied to the powder storage chamber 10A. In addition, the value of the flow rate when the flow rate reaches its peak is almost the same at all peaks. On the other hand, in the comparative example, the value of the flow rate when the flow rate reaches its peak is different for each gas supply pipe 123, and the value of the flow rate is different for each peak even in the same gas supply pipe 123. Further, in the comparative example, the time when the flow rate peaks (specified by the time from the start of the flow rate measurement in FIG. 10) is also slightly different for each gas supply pipe 123. It is considered that the data of these comparative examples is due to the fact that it is difficult to open and close each solenoid valve at the same opening and timing. On the other hand, in the powder filling device 1A of the present embodiment, since the gas flow paths 1311 in each main body of the valve device 13 are opened at the same opening degree and at the same timing, the same problem as that of the solenoid valve does not occur.

図11に、本実施形態の粉末充填装置1Aにつき、上記と同様の条件で圧縮気体を粉末収容室10A内に周期的に供給し、粉末収容室10A内の圧力を測定した結果を示す。粉末収容室10Aの圧力は、膜126よりも上側(気体供給管123側)及び下側(開口111側)でそれぞれ測定した。膜126よりも上側、下側のいずれにおいても、弁装置13による圧縮気体の供給の周期に合わせて、圧力が上昇及び下降していることがわかる。 FIG. 11 shows the results of measuring the pressure in the powder storage chamber 10A by periodically supplying the compressed gas into the powder storage chamber 10A under the same conditions as above for the powder filling device 1A of the present embodiment. The pressure in the powder storage chamber 10A was measured on the upper side (gas supply pipe 123 side) and the lower side (opening 111 side) of the membrane 126, respectively. It can be seen that the pressure rises and falls in accordance with the cycle of the supply of the compressed gas by the valve device 13 on both the upper side and the lower side of the membrane 126.

図12に、本実施形態の粉末充填装置1Aにおいて給気口121の数を14個に増やした(排気口122の数は上記の例と同じ)装置を用い、圧縮気体の圧力が異なる複数の条件でそれぞれ、充填対象容器20に平均粒径約3μmのRFeB系磁石の合金粉末を充填する実験を行い、充填対象容器20が有する18個のキャビティでの粉末の充填密度の平均値と給粉重量のバラツキを求める実験を行った結果を示す。この実験結果より、圧縮気体の圧力を高くするに従って粉末の充填密度も高くなり、且つ、圧縮気体の圧力が0.4MPa以上の場合にはキャビティ毎の給粉重量のバラツキを0.3g(充填密度のバラツキを0.145g/cm3)未満に抑えることができることがわかる。 In FIG. 12, a plurality of devices having different pressures of compressed gas are used in the powder filling device 1A of the present embodiment by increasing the number of air supply ports 121 to 14 (the number of exhaust ports 122 is the same as the above example). An experiment was conducted in which the container 20 to be filled was filled with an alloy powder of RFeB-based magnet having an average particle size of about 3 μm, and the average value of the filling density of the powder in the 18 cavities of the container 20 to be filled and the powder supply were performed. The result of the experiment to find the variation of the weight is shown. From this experimental result, when the pressure of the compressed gas is increased, the packing density of the powder is also increased, and when the pressure of the compressed gas is 0.4 MPa or more, the variation of the powder feed weight for each cavity is 0.3 g (filling density). It can be seen that the variation can be suppressed to less than 0.145 g / cm 3).

そこで、充填密度の目標値が3.3g/cm3(圧縮気体の圧力が0.53MPa)及び3.5g/cm3(同0.63MPa)の場合についてそれぞれ5回ずつ実験を行い、各回での充填密度の平均値及び給粉重量のバラツキを求めた。その結果を、目標値が3.3g/cm3の場合について図13に、3.5g/cm3の場合について図14に、それぞれ示す。いずれの場合も、5回の実験で再現性良く、目標の充填密度からほとんどずれることなく平均値が得られていると共に、キャビティ毎の給粉重量のバラツキが0.3g未満に抑えられている。 Therefore, when the target value of packing density is 3.3 g / cm 3 (compressed gas pressure is 0.53 MPa) and 3.5 g / cm 3 (0.63 MPa), experiments are conducted 5 times each, and the packing density at each time is determined. The variation of the average value and the powdered weight was calculated. The results are shown in FIG. 13 when the target value is 3.3 g / cm 3 and in FIG. 14 when the target value is 3.5 g / cm 3. In each case, the reproducibility was good in 5 experiments, the average value was obtained with almost no deviation from the target filling density, and the variation in the powder feed weight for each cavity was suppressed to less than 0.3 g.

次に、本体内気体流路1311及びシャフト内気体流路1321の断面形状が異なる2つの例について、実験を行った結果を示す。ここでは、本体内気体流路1311及びシャフト内気体流路1321の断面形状を、シャフト132の軸に平行である長辺が5.5mm、長辺に垂直な短辺が4.5mmである長方形状の例Aと、長辺が例Aよりも長い6.5mm、短辺が例Aよりも短い3.8mmである例Bを実験対象とした。例Aと例Bでは、本体内気体流路1311及びシャフト内気体流路1321の断面積は、例Aでは24.8mm2、例Bでは24.7mm2である。圧縮気体の圧力(0.4MPa)や弁の開閉の周期(80msec)は、例Aと例Bで同じとした。給気口121の数は10個とし、排気口122の数は上記の例と同じとした。図15に、これら例Aと例Bについて、膜126よりも下側の粉末収容室10A内の圧力の時間変化を、1周期よりもやや長い100msecの時間だけ測定した結果を示す。例Aよりも例Bの方が、粉末収容室10A内の圧力の立ち上がりが早く、圧力が印加されている時間が短くなっていることがわかる。この結果は、長辺が長い例Bの方が、圧力の印加と開放のめりはりが効いていることを示している。 Next, the results of experiments are shown for two examples in which the cross-sectional shapes of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft are different. Here, the cross-sectional shapes of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft are rectangular in which the long side parallel to the axis of the shaft 132 is 5.5 mm and the short side perpendicular to the long side is 4.5 mm. The experimental subjects were Example A and Example B in which the long side was 6.5 mm longer than Example A and the short side was 3.8 mm shorter than Example A. Example A and Example B, the cross-sectional area of the main body in the gas flow path 1311 and the shaft the gas flow path 1321, 24.8 mm 2 Example A, is 24.7 mm 2 Example B. The pressure of the compressed gas (0.4 MPa) and the valve opening / closing cycle (80 msec) were the same in Example A and Example B. The number of air supply ports 121 was 10, and the number of exhaust ports 122 was the same as in the above example. FIG. 15 shows the results of measuring the time change of the pressure in the powder storage chamber 10A below the membrane 126 for a time of 100 msec, which is slightly longer than one cycle, for Examples A and B. It can be seen that in Example B, the pressure rise in the powder storage chamber 10A is faster and the time for which the pressure is applied is shorter in Example B than in Example A. This result shows that Example B, which has a long long side, is more effective in applying pressure and opening.

図16に、これら例Aと例Bについて、弁の開閉の周期が異なる複数の場合で、充填対象容器20への粉末の充填密度を測定した結果を示す。弁の開閉の周期が最も長い(100msec)の場合には例Aと例Bは充填密度がほぼ同じであったが、それよりも周期が短い場合にはいずれも、例Aよりも例Bの方が、充填密度が高くなった。これは、例Bの方が圧力の印加と開放のめりはりが効いていることによると考えられる。 FIG. 16 shows the results of measuring the filling density of the powder in the filling container 20 in a plurality of cases where the valve opening / closing cycles are different for Examples A and B. When the valve opening / closing cycle was the longest (100 msec), the filling densities of Example A and Example B were almost the same, but when the cycle was shorter than that, Example B was more than Example A. The packing density was higher. It is considered that this is because Example B is more effective in applying pressure and opening.

(6) 焼結磁石製造装置及び焼結磁石製造方法の一実施形態
次に、図17を用いて、本発明に係る焼結磁石製造装置及び焼結磁石製造方法の一実施形態を説明する。本実施形態の焼結磁石製造装置40は、粉末充填装置1(又は1A。以下、符号は「1」のみを示す。)と、粉末高密度化装置42と、蓋取付部43と、配向装置(配向部)44と、焼結炉(焼結部)45を有する。また、焼結磁石製造装置40は、粉末充填装置1、スクレーパ36、蓋取付部43、配向装置44、焼結炉45の順に充填対象容器20を搬送する搬送装置(ベルトコンベア)46を有する。これらの各装置のうち焼結炉45以外の各装置は、内部が不活性ガス雰囲気である共通の外容器47に収容されており、焼結炉45内も別途不活性ガスが供給されることで不活性ガス雰囲気となっている。これら外容器47及び焼結炉45の内部を不活性ガス雰囲気にする構成要素により、粉末充填装置1から焼結炉45に至る全体を無酸素雰囲気にすることができる。なお、粉末充填装置1のうち、供給源側気体供給管14の一部、及び気体供給源(図示せず)は、外容器47の外に配置されている。弁装置13が外容器47の中に配置されているため、弁装置13と給気口121の距離を短くすることができ、粉末収容室10の圧力の印加及び開放のめりはりが良くなる。
(6) Embodiment of Sintered Magnet Manufacturing Equipment and Sintered Magnet Manufacturing Method Next, an embodiment of the sintered magnet manufacturing apparatus and sintered magnet manufacturing method according to the present invention will be described with reference to FIG. The sintered magnet manufacturing apparatus 40 of the present embodiment includes a powder filling apparatus 1 (or 1A; hereinafter, the reference numeral is only “1”), a powder densification apparatus 42, a lid attachment portion 43, and an alignment apparatus. It has a (alignment portion) 44 and a sintering furnace (sintering portion) 45. Further, the sintered magnet manufacturing apparatus 40 includes a conveying device (belt conveyor) 46 that conveys the filling target container 20 in the order of the powder filling device 1, the scraper 36, the lid attachment portion 43, the alignment device 44, and the sintering furnace 45. Of these devices, each device other than the sintering furnace 45 is housed in a common outer container 47 having an inert gas atmosphere inside, and the inert gas is separately supplied to the inside of the sintering furnace 45 as well. It has an inert gas atmosphere. By the components that make the inside of the outer container 47 and the sintering furnace 45 an inert gas atmosphere, the whole from the powder filling device 1 to the sintering furnace 45 can be made into an oxygen-free atmosphere. In the powder filling device 1, a part of the gas supply pipe 14 on the supply source side and the gas supply source (not shown) are arranged outside the outer container 47. Since the valve device 13 is arranged in the outer container 47, the distance between the valve device 13 and the air supply port 121 can be shortened, and the pressure applied and the opening of the powder storage chamber 10 can be improved.

粉末充填装置1は、焼結磁石の原料となる粉末を充填対象容器20に充填する装置であり、上記の通りの構成を有する。スクレーパ36の構成も上記の通りである。蓋取付部43は、粉末が充填された充填対象容器20に、該充填対象容器20の蓋(粉末充填装置1の蓋12とは異なる)を取り付ける装置である。この蓋は、配向装置44における磁界や焼結炉45におけるガスの対流等によって合金粉末が充填対象容器20から飛散することを防止するために用いられる。 The powder filling device 1 is a device for filling the filling target container 20 with powder that is a raw material for the sintered magnet, and has the above-described configuration. The structure of the scraper 36 is also as described above. The lid attachment portion 43 is a device for attaching the lid of the filling target container 20 (different from the lid 12 of the powder filling device 1) to the filling target container 20 filled with powder. This lid is used to prevent the alloy powder from scattering from the filling container 20 due to a magnetic field in the alignment device 44, convection of gas in the sintering furnace 45, or the like.

配向装置44は、コイル441と容器昇降装置442を有する。コイル441は略鉛直方向(上下方向)の軸を有しており、容器昇降装置442の上方に配置されている。容器昇降装置442は、容器搬送装置46で搬送されてきた充填対象容器20をコイル441内との間で昇降させる装置である。 The alignment device 44 has a coil 441 and a container lifting device 442. The coil 441 has a shaft in a substantially vertical direction (vertical direction), and is arranged above the container elevating device 442. The container elevating device 442 is a device for elevating and lowering the filling target container 20 transported by the container transport device 46 to and from the inside of the coil 441.

焼結炉45は、充填対象容器20を多数収容する焼結室451と、外容器47と連通する搬入口452と、搬入口452に設けられた断熱性を有する扉453を有する。 The sintering furnace 45 has a sintering chamber 451 that accommodates a large number of containers 20 to be filled, a carry-in inlet 452 that communicates with the outer container 47, and a heat-insulating door 453 provided at the carry-in inlet 452.

焼結磁石製造装置40の動作、及び本発明に係る焼結磁石製造方法の一実施形態を説明する。まず、容器搬送装置46により、充填対象容器20が粉末充填装置1に搬送され、上述のように、充填対象容器20のキャビティ22内に合金粉末が充填される。次に、スクレーパ36によって上部の余分な粉末が除去される。続いて、容器搬送装置46により充填対象容器20が蓋取付部43に搬送され、充填対象容器20に蓋が取り付けられる。その後、充填対象容器20は、容器搬送装置46によって配向装置44に搬送され、配向装置44において容器昇降装置442によってコイル441内に配置され、コイル441が生成する磁界によって充填対象容器20内の粉末が配向する。この配向処理の後、充填対象容器20は、容器昇降装置442によってコイル441内から降ろされ、容器搬送装置46によって焼結炉45に搬送され、焼結室451内で所定の温度(通常、800〜1100℃)に加熱することにより充填対象容器20内の粉末を焼結する。以上のように、本実施形態の焼結磁石製造装置40及び焼結磁石製造方法によれば、圧縮成形を行うことなく磁界中配向及び焼結がなされるPLP法によって、焼結磁石が製造される。 The operation of the sintered magnet manufacturing apparatus 40 and one embodiment of the sintered magnet manufacturing method according to the present invention will be described. First, the container transport device 46 transports the filling target container 20 to the powder filling device 1, and as described above, the cavity 22 of the filling target container 20 is filled with the alloy powder. The scraper 36 then removes excess powder from the top. Subsequently, the container to be filled 20 is conveyed to the lid attachment portion 43 by the container transport device 46, and the lid is attached to the container 20 to be filled. After that, the container 20 to be filled is conveyed to the alignment device 44 by the container transfer device 46, arranged in the coil 441 by the container elevating device 442 in the alignment device 44, and the powder in the container 20 to be filled by the magnetic field generated by the coil 441. Is oriented. After this alignment treatment, the container 20 to be filled is unloaded from the coil 441 by the container elevating device 442, transported to the sintering furnace 45 by the container transport device 46, and has a predetermined temperature (usually 800) in the sintering chamber 451. The powder in the container 20 to be filled is sintered by heating to ~ 1100 ° C.). As described above, according to the sintered magnet manufacturing apparatus 40 and the sintered magnet manufacturing method of the present embodiment, the sintered magnet is manufactured by the PLP method in which orientation and sintering are performed in a magnetic field without performing compression molding. The magnet.

ここまで、本発明に係る粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法の実施形態を説明したが、言うまでもなく、本発明は上記の各実施形態には限定されず、本発明の主旨の範囲内で種々の変形が可能である。 Up to this point, embodiments of the powder filling apparatus, the sintered magnet manufacturing apparatus, and the sintered magnet manufacturing method according to the present invention have been described, but it goes without saying that the present invention is not limited to each of the above embodiments, and the present invention is not limited to the above embodiments. Various modifications are possible within the scope of the gist.

1、1A…粉末充填装置
10、10A…粉末収容室
11…粉末収容室の本体
111…開口
112…下部シール材(接続部)
113…上部シール材
114…シール用気体供給経路
12、12A…粉末収容室の蓋
121…給気口
122…排気口
123…気体供給管
124…シリンダ
126…膜
127…膜抑制部材
13…弁装置
131…弁本体
1311…本体内気体流路
1312…シャフト嵌入孔
132…シャフト
1321…シャフト内気体流路
14…供給源側気体供給管
15…グリッド部材
20…充填対象容器
21…充填対象容器の本体
22…キャビティ
30…スペーサ
31…スペーサの貫通孔
32…シール材
35…パンチ
36…スクレーパ
361、362、363…掻き取り部
40…焼結磁石製造装置
43…蓋取付部
44…配向装置
441…コイル
442…容器昇降装置
45…焼結炉
451…焼結室
452…搬入口
453…焼結室の扉
46…容器搬送装置
47…外容器
1, 1A ... Powder filling device 10, 10A ... Powder storage chamber 11 ... Main body 111 of powder storage chamber ... Opening 112 ... Lower sealing material (connection part)
113 ... Upper sealing material 114 ... Sealing gas supply paths 12, 12A ... Powder storage chamber lid 121 ... Air supply port 122 ... Exhaust port 123 ... Gas supply pipe 124 ... Cylinder 126 ... Film 127 ... Film suppressing member 13 ... Valve device 131 ... Valve body 1311 ... Gas flow path in the main body 1312 ... Shaft fitting hole 132 ... Shaft 1321 ... Gas flow path in the shaft 14 ... Supply source side gas supply pipe 15 ... Grid member 20 ... Filling target container 21 ... Main body of filling target container 22 ... Cavity 30 ... Spacer 31 ... Spacer through hole 32 ... Sealing material 35 ... Punch 36 ... Scraper 361, 362, 363 ... Scraping part 40 ... Sintered magnet manufacturing device 43 ... Lid mounting part 44 ... Alignment device 441 ... Coil 442 ... Container lifting device 45 ... Sinter furnace 451 ... Sinter chamber 452 ... Carry-in entrance 453 ... Sinter chamber door 46 ... Container transport device 47 ... Outer container

Claims (5)

a) 下端に、グリッド部材が備えられた開口と、該開口において充填対象容器と気密に接続するための接続部を有する粉末収容室本体と、
b) 前記粉末収容室本体の天井部に取り付けられる蓋と、
c) 前記に接続された複数の気体供給管と、
d) 前記複数の気体供給管にそれぞれ接続される複数の本体内気体流路が互いに独立に内部を貫くように設けられた弁本体と、
e) 前記弁本体の内部、前記複数の本体内気体流路の全てに交差するように設けられた円筒状のシャフト嵌入孔と、
f) 前記シャフト嵌入孔に回転可能に嵌入された円柱状のシャフトと、
g) 前記シャフトに、前記複数の本体内気体流路にそれぞれ対応して設けられたシャフト内気体流路と、
h) 前記複数の本体内気体流路をそれぞれ気体供給源に接続する複数の供給源側気体供給管と
を備え
前記本体内気体流路及び前記シャフト内気体流路の断面の形状が、前記シャフトの軸に平行な2辺を有する長方形である
ことを特徴とする粉末充填装置。
a) An opening provided with a grid member at the lower end, and a powder storage chamber main body having a connection portion for airtightly connecting to the container to be filled at the opening.
b) With the lid attached to the ceiling of the powder storage chamber body,
c) Multiple gas supply pipes connected to the lid,
d) A valve main body provided so that a plurality of gas flow paths in the main body connected to the plurality of gas supply pipes penetrate the inside independently of each other.
e) inside the valve body, a cylindrical shaft insertion holes provided so as to cross all the gas flow path of the plurality of body,
f) and rotatably fitted to a cylindrical shaft to the shaft insertion hole,
g) A gas flow path in the shaft provided on the shaft corresponding to each of the plurality of gas flow paths in the main body, and a gas flow path in the shaft.
h) A plurality of source-side gas supply pipes for connecting the plurality of gas flow paths in the main body to the gas supply source are provided .
A powder filling device characterized in that the shape of the cross section of the gas flow path in the main body and the gas flow path in the shaft is a rectangle having two sides parallel to the axis of the shaft.
前記2辺が前記長方形の長辺であることを特徴とする請求項1に記載の粉末充填装置。 The powder filling device according to claim 1, wherein the two sides are long sides of the rectangle. 前記蓋と前記粉末収容室本体の境界に設けられた、シール用気体が供給されることにより膨張するシール材と、
前記シール材にシール用気体を供給するシール用気体供給経路と、
前記蓋と前記粉末収容室本体を互いに押さえつける押圧機構と
さらに備えることを特徴とする請求項1又は2に記載の粉末充填装置。
Wherein provided on the lid and the boundary of said powder housing chamber body, a seal member expands by sealing gas is supplied,
A seal gas supply path for supplying sealing gas to said sealing member,
Powder filling device according to claim 1 or 2, characterized by further comprising a pressing mechanism for pressing the powder receiving chamber body and the lid to each other.
請求項1〜3のいずれかに記載の粉末充填装置と、
前記粉末充填装置により前記充填対象容器に充填された、焼結磁石の原料となる粉末が、該充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末に磁界を印加させることにより該粉末を配向させる配向部と、
前記粉末が前記充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末を加熱することにより焼結させる焼結部と、
を備えることを特徴とする焼結磁石製造装置。
The powder filling device according to any one of claims 1 to 3.
The powder as a raw material for the sintered magnet, which is filled in the container to be filled by the powder filling device, is still filled in the container to be filled, and a magnetic field is applied to the powder without applying mechanical pressure. An alignment part that orients the powder by applying the powder,
A sintered portion that sinters the powder by heating the powder without applying mechanical pressure while the powder is still filled in the container to be filled.
A sintered magnet manufacturing apparatus, which comprises.
請求項1〜3のいずれかに記載の粉末充填装置を用いて焼結磁石の原料となる粉末を充填対象容器に充填する粉末充填工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結工程と
を行うことを特徴とする焼結磁石製造方法。
A powder filling step of filling a container to be filled with powder as a raw material for a sintered magnet using the powder filling device according to any one of claims 1 to 3.
An orientation step of orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in the container to be filled.
A method for producing a sintered magnet, which comprises performing a sintering step of sintering the powder by heating the powder without applying mechanical pressure while the powder is still filled in the container to be filled. ..
JP2017044858A 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method Active JP6848544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044858A JP6848544B2 (en) 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044858A JP6848544B2 (en) 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2018145512A JP2018145512A (en) 2018-09-20
JP6848544B2 true JP6848544B2 (en) 2021-03-24

Family

ID=63589629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044858A Active JP6848544B2 (en) 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP6848544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110871271B (en) * 2018-08-29 2022-02-25 大同特殊钢株式会社 Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164919U (en) * 1974-11-18 1976-05-21
DE3400415A1 (en) * 1984-01-07 1985-07-18 Degussa Ag, 6000 Frankfurt METHOD FOR COMPRESSING AND / OR FILLING POWDERED SUBSTANCES
JP3710184B2 (en) * 1995-12-15 2005-10-26 インターメタリックス株式会社 Filling method of filling material
JP2001220733A (en) * 2000-02-07 2001-08-17 Kumagai Gumi Co Ltd Rotary valve
KR100524827B1 (en) * 2003-04-02 2005-11-01 자화전자 주식회사 Axial pressing method for improved magnetic alignment of rare earth magnet and apparatus thereof
EP2952436B1 (en) * 2013-02-04 2017-08-09 Intermetallics Co., Ltd. Powder filling device
CN103170630B (en) * 2013-04-19 2015-03-04 安徽工业大学 Forming method and device of anisotropic neodymium iron boron bonded permanent magnet

Also Published As

Publication number Publication date
JP2018145512A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6280096B2 (en) Sintered magnet manufacturing method
JP6848544B2 (en) Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method
JPWO2016047593A1 (en) Manufacturing method of rare earth sintered magnet and manufacturing apparatus used in the manufacturing method
WO2002090097A1 (en) Composite powder filling method and composite powder filling device, and composite powder molding method and composite powder molding device
KR20170134210A (en) Resin sealed product manufacturing method and resin sealing apparatus
KR20000016643A (en) Pressurization feed shoe device and method for preliminarily compressing powdery material
CN110871271B (en) Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method
JP5744858B2 (en) NdFeB-based sintered magnet manufacturing equipment
ES2123473T3 (en) DUST COMPACTING PROCEDURE.
JP6834249B2 (en) Powder filling equipment and sintered magnet manufacturing equipment
CN107088656B (en) Powder filling apparatus, sintered magnet manufacturing equipment and sintered magnet manufacturing method
ES2876240T3 (en) Apparatus, procedure and system for molding a thermoplastic material by vacuum compression molding
JPH09169301A (en) Stuffing method of molding
TW202031455A (en) Injection molding apparatus and injection molding method
US4900491A (en) Method for forming miniature ceramic articles with small bores
WO2017141815A1 (en) Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method
CN107107398A (en) Resin molding apparatus
KR20080013370A (en) A large size o-ring of manufacturing apparatus and method
US10199076B2 (en) Cavity sealing apparatus
US5122311A (en) Method of manufacture
JPS6264499A (en) Formation of powder press
JP2010155261A (en) Machine and method of powder compression molding
JPH0332574A (en) Manufacture of resin-bond diamond or cbn wheel
JPH0280215A (en) Resin seal molding of electronic component and resin tablet used therefor
JPS63108191A (en) Hot press device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150