JP2018145512A - Powdery filling device, sintered magnet manufacturing installation and sintered magnet manufacturing method - Google Patents

Powdery filling device, sintered magnet manufacturing installation and sintered magnet manufacturing method Download PDF

Info

Publication number
JP2018145512A
JP2018145512A JP2017044858A JP2017044858A JP2018145512A JP 2018145512 A JP2018145512 A JP 2018145512A JP 2017044858 A JP2017044858 A JP 2017044858A JP 2017044858 A JP2017044858 A JP 2017044858A JP 2018145512 A JP2018145512 A JP 2018145512A
Authority
JP
Japan
Prior art keywords
powder
gas
filled
main body
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017044858A
Other languages
Japanese (ja)
Other versions
JP6848544B2 (en
Inventor
牧野 直幸
Naoyuki Makino
直幸 牧野
清明 新美
Kiyoaki Niimi
清明 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2017044858A priority Critical patent/JP6848544B2/en
Publication of JP2018145512A publication Critical patent/JP2018145512A/en
Application granted granted Critical
Publication of JP6848544B2 publication Critical patent/JP6848544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powdery filling device which can fill powder with uniformity and high density to a container for filling.SOLUTION: A powdery filling device 1 comprises: a powder housing chamber 10 having an opening 111 with a grid member 15 and a connection 112 to connect the opening 111 and a container for filling 20 in airtight in the bottom edge; multiple gas feed pipes 123 connected to the upper part of the powder housing chamber 10; a valve main body 131 provided so that multiple gas duct in main body 1311 connected to the multiple gas feed pipes 123 respectively go through inside independently each other; a cylindrical shaft intrusion hole 1312 arranged to cross with all of the multiple gas duct in main body 1311 in the valve main body 131, and a columnar shaft 132 fitted to the shaft intrusion hole 1312 rotatably; gas duct in shaft 1321 provided corresponding to the multiple gas duct in main body 1311 in the shaft 132; and multiple resource side gas feed pipe 14 connecting the multiple gas duct in main body 1311 to gas resource respectively.SELECTED DRAWING: Figure 1

Description

本発明は、粉末を容器(以下、「充填対象容器」と呼ぶ)に充填するための粉末充填装置、該粉末充填装置を用いた焼結磁石製造装置、及び焼結磁石製造方法に関する。   The present invention relates to a powder filling device for filling powder into a container (hereinafter referred to as a “filler container”), a sintered magnet manufacturing apparatus using the powder filling device, and a sintered magnet manufacturing method.

焼結磁石を製造する際には、従来より、原料粉末を磁界中で配向しつつ圧縮成形を行って成形体を作製したうえで焼結を行う圧縮成形法が用いられてきたが、最近、原料粉末を所定の密度で充填対象容器に充填した後、圧縮成形を行うことなく磁界中配向及び焼結を行うPLP(press-less process)法が開発された(特許文献1)。PLP法には、圧縮成形を行わないことで原料粉末の粒子が配向し易くなると共に、圧縮成形を行わないことで装置の小型化が可能となり、それにより容易に無酸素雰囲気にすることができるため、原料粉末を酸化させることなく粒径を小さくすることができるため、保磁力を高くすることができるという利点がある。また、PLP法には、最終製品に近い形状の焼結磁石を得ることができるという利点もある。ここで原料粉末を充填対象容器に充填する密度は、原料粉末を単に充填対象容器に投入しただけ(自然充填)の密度よりも高く(且つ、圧縮成形法における成形体の密度よりも低く)することが求められる。以下、このような密度で粉末を充填対象容器に充填することを「高密度充填」と呼ぶ。   When producing a sintered magnet, conventionally, a compression molding method has been used in which sintering is performed after producing a compact by performing compression molding while orienting the raw material powder in a magnetic field. A PLP (press-less process) method has been developed in which a raw material powder is filled in a container to be filled at a predetermined density and then oriented and sintered in a magnetic field without performing compression molding (Patent Document 1). The PLP method makes it easy to orient the particles of the raw material powder by not performing compression molding, and it is possible to reduce the size of the apparatus by not performing compression molding, thereby easily making an oxygen-free atmosphere. Therefore, since the particle size can be reduced without oxidizing the raw material powder, there is an advantage that the coercive force can be increased. The PLP method also has an advantage that a sintered magnet having a shape close to that of the final product can be obtained. Here, the density at which the raw material powder is filled in the container to be filled is higher than the density in which the raw material powder is simply put into the container to be filled (natural filling) (and lower than the density of the compact in the compression molding method). Is required. Hereinafter, filling a container to be filled with such a density is referred to as “high density filling”.

特許文献2には、充填対象容器に粉末を高密度充填するための粉末充填装置が開示されている。この粉末充填装置では、筒状ガイド部材がその下部開口において充填対象容器と連通するように、筒状ガイド部材が充填対象容器に着脱可能且つ密閉可能に装着される。筒状ガイド部材の下部開口には、一定間隔で複数本張設されたワイヤメッシュや孔が多数穿設された板材等で形成されたグリッド部材が設けられている。また、筒状ガイド部材の上部開口には蓋が密閉可能に取り付けられる。この蓋には、圧縮気体源から筒状ガイド部材の内部に気体を供給する気体供給管、及び筒状ガイド部材の内部から気体を排出する気体排出管が接続されている。気体供給管には電磁弁が設けられている。   Patent Document 2 discloses a powder filling apparatus for filling a filling target container with powder at high density. In this powder filling apparatus, the cylindrical guide member is detachably and hermetically attached to the filling target container so that the cylindrical guide member communicates with the filling target container at the lower opening thereof. The lower opening of the cylindrical guide member is provided with a grid member formed of a plurality of wire meshes stretched at regular intervals, a plate member with a large number of holes, or the like. Further, a lid is attached to the upper opening of the cylindrical guide member so as to be hermetically sealed. A gas supply pipe that supplies gas from the compressed gas source to the inside of the cylindrical guide member and a gas discharge pipe that discharges gas from the inside of the cylindrical guide member are connected to the lid. The gas supply pipe is provided with an electromagnetic valve.

この粉末充填装置では、筒状ガイド部材内に上部開口から粉末を投入したうえで上部開口に蓋を取り付けることにより、下面(下部開口)をグリッド部材とする粉末収容室が形成される。そして、下部開口に充填対象容器を装着し、気体供給管に設けられた電磁弁の開閉を繰り返すことにより、粉末収容室内の圧力を交互に上昇及び下降させ、該粉末をグリッド部材を通して充填対象容器に高密度充填する。   In this powder filling apparatus, powder is put into a cylindrical guide member from an upper opening, and a lid is attached to the upper opening, whereby a powder storage chamber having a lower surface (lower opening) as a grid member is formed. Then, the container to be filled is attached to the lower opening, and the pressure in the powder storage chamber is alternately raised and lowered by repeatedly opening and closing the electromagnetic valve provided in the gas supply pipe, and the powder to be filled through the grid member. High density filling.

特開2006-019521号公報JP 2006-019521 A 特開2001-072001号公報JP 2001-072001

特許文献2に記載の粉末充填装置では、気体供給管は粉末収容室に1本接続されている。しかし、気体供給管が1本のみであると、筒状ガイド部材内の気体の圧力を均一にすることが難しく、それゆえ充填対象容器への粉末の充填密度を均一にすることが難しい。粉末の充填密度が不均一になると、充填密度が高い部分では粉末が磁界中配向し難くなって磁気特性が低下する。また、充填密度が低い部分では焼結後に収縮率が大きくなって凹みや空洞等が生じてしまう。また、気体供給管が1本のみであると、筒状ガイド部材内の気体の圧力を高くすることができず、所定の高密度充填を行うことができない場合がある。   In the powder filling apparatus described in Patent Document 2, one gas supply pipe is connected to the powder storage chamber. However, if there is only one gas supply pipe, it is difficult to make the pressure of the gas in the cylindrical guide member uniform, and hence it is difficult to make the filling density of the powder into the filling target container uniform. When the packing density of the powder becomes non-uniform, the powder becomes difficult to be oriented in the magnetic field at the portion where the packing density is high, and the magnetic characteristics are deteriorated. Further, in the portion where the packing density is low, the shrinkage rate becomes large after sintering, and a dent or a cavity is generated. In addition, when there is only one gas supply pipe, the gas pressure in the cylindrical guide member cannot be increased, and predetermined high-density filling may not be performed.

これらの理由により、気体供給管は粉末収容室に複数本接続されている方が望ましい。しかし、それら複数本の気体供給管にそれぞれ電磁弁を設けると、それら複数の電磁弁の開放及び閉鎖のタイミングを完全に一致させることは難しい。複数の電磁弁の開放・閉鎖のタイミングがずれると、複数本の気体供給管の位置関係に依存して、粉末収容室内で圧力が不均一になる。また、粉末収容室内全体の気体の最高圧力も低くなってしまう。そのため、均一且つ高密度で粉末を充填することができない。   For these reasons, it is desirable that a plurality of gas supply pipes are connected to the powder storage chamber. However, if the plurality of gas supply pipes are respectively provided with solenoid valves, it is difficult to completely match the timings of opening and closing the plurality of solenoid valves. If the timing of opening / closing the plurality of solenoid valves is shifted, the pressure becomes non-uniform in the powder storage chamber depending on the positional relationship between the plurality of gas supply pipes. Moreover, the maximum pressure of the gas in the entire powder storage chamber is also lowered. Therefore, the powder cannot be filled uniformly and at a high density.

本発明が解決しようとする課題は、均一に且つ高密度で粉末を充填対象容器に充填することができる粉末充填装置、並びに、磁気特性が高く凹みや空洞等が生じていない焼結磁石を製造することができる、該粉末充填装置を用いた焼結磁石製造装置及び焼結磁石製造方法を提供することである。   The problem to be solved by the present invention is to produce a powder filling apparatus capable of filling a container to be filled with powder uniformly and at a high density, and a sintered magnet having high magnetic properties and free from dents and cavities. It is possible to provide a sintered magnet manufacturing apparatus and a sintered magnet manufacturing method using the powder filling apparatus.

上記課題を解決するために成された本発明に係る粉末充填装置は、
a) 下端に、グリッド部材が備えられた開口と、該開口において充填対象容器と気密に接続するための接続部を有する粉末収容室と、
b) 前記粉末収容室の上部に接続された複数の気体供給管と、
c) 前記複数の気体供給管にそれぞれ接続される複数の本体内気体流路が互いに独立に内部を貫くように設けられた弁本体と
d) 前記弁本体の内部を、前記複数の本体内気体流路の全てに交差するように設けられた円筒状のシャフト嵌入孔及び該シャフト嵌入孔に回転可能に嵌入された円柱状のシャフトと、
e) 前記シャフトに、前記複数の本体内気体流路にそれぞれ対応して設けられたシャフト内気体流路と、
f) 前記複数の本体内気体流路をそれぞれ気体供給源に接続する複数の供給源側気体供給管と
を備えることを特徴とする。
The powder filling apparatus according to the present invention, which has been made to solve the above problems,
a) A powder storage chamber having an opening provided with a grid member at the lower end, and a connection portion for airtight connection with a container to be filled in the opening;
b) a plurality of gas supply pipes connected to the upper part of the powder storage chamber;
c) a valve body provided so that a plurality of gas passages in the body respectively connected to the plurality of gas supply pipes penetrate through the interior independently of each other;
d) a cylindrical shaft insertion hole provided inside the valve main body so as to intersect all of the plurality of gas flow paths in the main body, and a columnar shaft rotatably inserted in the shaft insertion hole; ,
e) A gas flow path in the shaft provided on the shaft corresponding to each of the gas flow paths in the plurality of main bodies, and
f) A plurality of supply side gas supply pipes respectively connecting the plurality of gas flow paths in the main body to a gas supply source.

本発明に係る粉末充填装置では、粉末収容室内に粉末を供給したうえで、充填対象容器を接続部に気密に接続する。そのうえで、シャフトを回転させながら、複数の供給源側気体供給管の各々から、それに接続された本体内気体流路に気体を供給する。これにより、シャフトの回転によって本体内気体流路とシャフト内気体流路が連通したタイミングで、気体が本体内気体流路からシャフト内気体流路、並びに該シャフト内気体流路及び粉末収容室の上部(開口よりも上側)に接続された気体供給管を通って粉末収容室内に供給される。こうして、粉末収容室内の粉末に繰り返し圧力が印加され、粉末がグリッド部材を通して充填対象容器に充填される。本体内気体流路とシャフト内気体流路は、シャフトが半回転する毎に連通するため、粉末収容室にはシャフトの回転周期の1/2の周期で繰り返し気体が供給されることとなる。   In the powder filling apparatus according to the present invention, the powder is supplied into the powder storage chamber, and the container to be filled is connected to the connection portion in an airtight manner. In addition, while rotating the shaft, gas is supplied from each of the plurality of supply-source-side gas supply pipes to the gas flow passage in the main body connected thereto. Thereby, at the timing when the gas flow path in the main body and the gas flow path in the shaft communicate with each other by the rotation of the shaft, the gas flows from the gas flow path in the main body to the gas flow path in the shaft, and the gas flow path in the shaft and the powder storage chamber. The powder is supplied into the powder storage chamber through a gas supply pipe connected to the upper part (above the opening). Thus, pressure is repeatedly applied to the powder in the powder storage chamber, and the powder is filled into the filling target container through the grid member. Since the in-body gas flow channel and the in-shaft gas flow channel communicate each time the shaft rotates halfway, the gas is repeatedly supplied to the powder storage chamber at a cycle that is 1/2 of the rotation cycle of the shaft.

本発明に係る粉末充填装置によれば、いずれの気体供給管からも、気体はシャフトが所定の回転位置まで回転した時に、同時に粉末収容室に供給される。そのため、粉末収容室の圧力を均一に近くすることができ、それによって充填対象容器に均一に粉末を充填することができる。また、各気体供給管から供給される気体の圧力が最大となる時刻を一致させることができ、粉末収容室内全体の圧力の平均値を高くすることができるため、充填対象容器に高密度で粉末を充填することができる。   According to the powder filling apparatus according to the present invention, the gas is supplied from any gas supply pipe to the powder storage chamber at the same time when the shaft rotates to a predetermined rotational position. Therefore, the pressure in the powder storage chamber can be made nearly uniform, whereby the filling target container can be uniformly filled with the powder. In addition, the time at which the pressure of the gas supplied from each gas supply pipe becomes maximum can be matched, and the average value of the pressure in the entire powder storage chamber can be increased. Can be filled.

本体内気体流路及びシャフト内気体流路の断面は、特定の形状には限定されないが、シャフトの軸に平行な2辺を有する長方形(正方形を含む)であることが望ましい。これにより、シャフトを回転してゆくと、本体内気体流路とシャフト内気体流路はシャフトの軸方向の全体が同時に連通を開始及び終了するため、パルス状に近い圧力の印加が可能になる。特に、本体内気体流路及びシャフト内気体流路の断面の形状を、シャフトの軸に平行な2辺を長辺とする長方形とすることにより、1回当たりの気体の供給時間を短く、且つ単位時間当たりの気体の供給量を多くすることができるため、よりパルス状に近い圧力の印加が可能になる。あるいは、製造時の窄孔が容易であるという点では、本体内気体流路及びシャフト内気体流路の断面を円形としてもよい。   The cross sections of the gas flow path in the body and the gas flow path in the shaft are not limited to a specific shape, but are desirably rectangular (including a square) having two sides parallel to the shaft axis. As a result, when the shaft is rotated, the gas flow path in the main body and the gas flow path in the shaft start and end at the same time in the entire axial direction of the shaft, so that it is possible to apply a pressure close to a pulse shape. . In particular, by making the cross-sectional shapes of the gas flow path in the main body and the gas flow path in the shaft into a rectangle having two sides parallel to the shaft axis as long sides, the gas supply time per time can be shortened, and Since the supply amount of gas per unit time can be increased, it is possible to apply a pressure closer to a pulse shape. Alternatively, the cross section of the gas flow path in the main body and the gas flow path in the shaft may be circular in that the constriction hole at the time of manufacture is easy.

本発明に係る粉末充填装置において、前記粉末収容室が蓋と粉末収容室本体を備え、該蓋と該粉末収容室本体の境界に、シール用気体(粉末収容室の内部空間に供給される気体とは異なる)が供給されることにより膨張するシール材と、該シール材にシール用気体を供給するシール用気体供給経路と、該蓋と該粉末収容室本体を互いに押さえつける押圧機構とを備えることが望ましい。この構成によれば、供給経路を通してシール材にシール用気体を供給することでシール材を膨張させつつ、押圧機構により蓋と粉末収容室本体を互いに押さえつけることで、蓋と粉末収容室本体の間の気密性を高くし、充填対象容器への粉末の充填密度を高くすることができる。   In the powder filling apparatus according to the present invention, the powder storage chamber includes a lid and a powder storage chamber main body, and a sealing gas (gas supplied to the internal space of the powder storage chamber) is formed at the boundary between the lid and the powder storage chamber main body. A sealing material that expands when supplied with the gas, a sealing gas supply path that supplies the sealing gas to the sealing material, and a pressing mechanism that presses the lid and the powder container body together. Is desirable. According to this configuration, the sealing material is expanded by supplying the sealing gas to the sealing material through the supply path, and the lid and the powder storage chamber body are pressed against each other by the pressing mechanism, so that The airtightness of the container can be increased, and the packing density of the powder into the container to be filled can be increased.

本発明に係る焼結磁石製造装置は、
本発明に係る粉末充填装置と、
前記粉末充填装置により前記充填対象容器に充填された焼結磁石の原料となる粉末が、該充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末に磁界を印加させることにより該粉末を配向させる配向部と、
前記粉末が前記充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末を加熱することにより焼結させる焼結部と、
を備える。
The sintered magnet manufacturing apparatus according to the present invention includes:
A powder filling device according to the present invention;
Applying a magnetic field to the powder without applying mechanical pressure while the powder that is the raw material of the sintered magnet filled in the container to be filled by the powder filling device is filled in the container to be filled An orientation part for orienting the powder,
A sintered part that is sintered by heating the powder without applying a mechanical pressure in a state where the powder is filled in the container to be filled;
Is provided.

本発明に係る焼結磁石製造方法は、
本発明に係る粉末充填装置を用いて焼結磁石の原料となる粉末を充填対象容器に充填する粉末充填工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結工程と
を行うことを特徴とする。
The method for producing a sintered magnet according to the present invention comprises:
A powder filling step of filling a container to be filled with powder as a raw material of a sintered magnet using the powder filling apparatus according to the present invention;
An orientation step of orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in the container to be filled;
A sintering step is performed in which the powder is sintered by heating without applying mechanical pressure while the powder is filled in the container to be filled.

本発明により、均一に近く且つ高密度で粉末を充填対象容器に充填することができ、それにより、磁気特性が高く凹みや空洞等が生じていない焼結磁石を製造することができる。   According to the present invention, it is possible to fill a container to be filled with powder at a nearly uniform and high density, and thereby it is possible to manufacture a sintered magnet having high magnetic properties and free from dents and cavities.

本発明に係る粉末充填装置の一実施形態の全体構成を示す概略図(a)、並びに給気口及び排気口の配置を示す上面図(b)。BRIEF DESCRIPTION OF THE DRAWINGS Schematic (a) which shows the whole structure of one Embodiment of the powder filling apparatus which concerns on this invention, and the top view (b) which shows arrangement | positioning of an air supply port and an exhaust port. 本実施形態の粉末充填装置における本体の下面図。The bottom view of the main body in the powder filling apparatus of this embodiment. 本実施形態の粉末充填装置におけるシャフト内気体流路の平面形状を示す断面図。Sectional drawing which shows the planar shape of the gas flow path in a shaft in the powder filling apparatus of this embodiment. 本実施形態の粉末充填装置を用いて粉末を充填する充填対象容器の一例を示す上面図(a)及び縦断面図(b)。The top view (a) and longitudinal cross-sectional view (b) which show an example of the filling object container filled with powder using the powder filling apparatus of this embodiment. 本実施形態の粉末充填装置を用いて粉末を充填する動作を示す概略図。Schematic which shows the operation | movement which fills powder using the powder filling apparatus of this embodiment. シャフトが回転してゆく様子を該シャフトの軸に垂直な断面で示す図。The figure which shows a mode that a shaft rotates in a cross section perpendicular | vertical to the axis | shaft of this shaft. キャビティの上端からはみ出した粉末をスクレーパで掻き取る様子を示す図。The figure which shows a mode that the powder which protruded from the upper end of the cavity is scraped off with a scraper. 粉末充填装置の変形例である、蓋の内側に膜等を設けた例を示す概略図。Schematic which shows the example which provided the film | membrane etc. inside the lid | cover which is a modification of a powder filling apparatus. 充填対象容器に粉末を充填した後の高密度化処理の例を説明する概略図。Schematic explaining the example of the densification process after filling the powder into a filling object container. 本実施形態(変形例)(a)と比較例(b)の粉末充填装置につき、気体供給管を通過する圧縮気体の流量の時間変化を測定した結果を示すグラフ。The graph which shows the result of having measured the time change of the flow volume of the compressed gas which passes a gas supply pipe | tube about the powder filling apparatus of this embodiment (modification) (a) and a comparative example (b). 変形例の粉末充填装置につき、粉末収容室内の圧力の時間変化を測定した結果を示すグラフ。The graph which shows the result of having measured the time change of the pressure in a powder storage room about the powder filling apparatus of a modification. 変形例の粉末充填装置につき、圧縮気体の圧力の相違による、充填対象容器への充填密度の平均値及びキャビティ毎の給粉重量のバラツキを実験で求めた結果を示すグラフ。The graph which shows the result of having calculated | required the variation of the average value of the filling density to the filling object container by the difference of the pressure of compressed gas, and the powder feeding weight for every cavity about the powder filling apparatus of a modification. 変形例の粉末充填装置につき、充填対象容器への充填密度の目標値を3.3g/cm3としたときの実際の充填密度の平均値及びキャビティ毎の給粉重量のバラツキを実験で求めた結果を示すグラフ。Results of experimentally determining the average value of the actual packing density and the variation in the powder feeding weight for each cavity when the target value of the packing density to the filling target container is 3.3 g / cm 3 for the powder filling device of the modified example Graph showing. 変形例の粉末充填装置につき、充填対象容器への充填密度の目標値を3.5g/cm3としたときの実際の充填密度の平均値及びキャビティ毎の給粉重量のバラツキを実験で求めた結果を示すグラフ。Results of experimentally determining the average value of the actual packing density and the variation in the powder feeding weight for each cavity when the target value of the packing density to the filling target container is 3.5 g / cm 3 for the powder filling device of the modified example Graph showing. 本体内気体流路及びシャフト内気体流路の断面形状が異なる2つの例について、粉末収容室内の圧力の時間変化を測定した結果を示すグラフ。The graph which shows the result of having measured the time change of the pressure in a powder storage chamber about two examples from which the cross-sectional shape of the gas flow path in a main body and the gas flow path in a shaft differs. 本体内気体流路及びシャフト内気体流路の断面形状が異なる2つの例について、充填対象容器への充填密度を測定した結果を示すグラフ。The graph which shows the result of having measured the filling density to the filling object container about two examples from which the cross-sectional shape of the gas flow path in a main body and the gas flow path in a shaft differs. 本実施例に係る焼結磁石製造装置の全体構成を示す概略図。Schematic which shows the whole structure of the sintered magnet manufacturing apparatus which concerns on a present Example.

図1〜図17を用いて、本発明に係る粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法の実施形態を説明する。   Embodiments of a powder filling apparatus, a sintered magnet manufacturing apparatus, and a sintered magnet manufacturing method according to the present invention will be described with reference to FIGS.

(1) 本実施形態の粉末充填装置1の構成
図1(a)は、本実施形態の粉末充填装置1の全体の構成を示す概略図である。粉末充填装置1は、粉末収容室10を有し、粉末収容室10は本体11及び蓋12を有する。
(1) Configuration of Powder Filling Device 1 of the Present Embodiment FIG. 1 (a) is a schematic diagram showing the overall configuration of the powder filling device 1 of the present embodiment. The powder filling apparatus 1 includes a powder storage chamber 10, and the powder storage chamber 10 includes a main body 11 and a lid 12.

本体11は直方体の箱状のものであって、天井部の全体が開放されており、底部(下端)には開口111が設けられている。開口111は、本実施形態では、本体11の底部の長方形の長辺方向に等間隔に6個、短辺方向には長辺方向とは異なる間隔で等間隔に3個、合計18個設けられている。開口111は長方形であり、開口111の長辺と本体11の底部の短辺が平行になるように配置されている。この開口111の形状は、本実施形態では、PLP法によって焼結磁石を作製する際に用いるモールドである後述の充填対象容器20のキャビティの形状に合わせるように定めた。開口111の形状はこの例には限定されず、充填対象容器の形状に応じて適宜定めればよい。   The main body 11 has a rectangular parallelepiped box shape, the entire ceiling portion is open, and an opening 111 is provided at the bottom (lower end). In the present embodiment, sixteen openings 111 are provided in total at six equal intervals in the long side direction of the rectangle at the bottom of the main body 11 and three at equal intervals in the short side direction at intervals different from the long side direction. ing. The opening 111 is rectangular, and is arranged such that the long side of the opening 111 and the short side of the bottom of the main body 11 are parallel to each other. In this embodiment, the shape of the opening 111 is determined so as to match the shape of the cavity of the container 20 to be filled, which will be described later, which is a mold used when producing a sintered magnet by the PLP method. The shape of the opening 111 is not limited to this example, and may be appropriately determined according to the shape of the container to be filled.

各開口111には、グリッド部材15が取り付けられている(図2)。グリッド部材15は、縦及び横にそれぞれワイヤが一定間隔で複数本張設されて成る。本実施形態では、平均粒径が3μmのRFeB(R2Fe14B:RはNd等の希土類元素)系磁石合金の粉末を充填対象容器20への充填の対象として、グリッド部材15のワイヤの間隔は3mmとした。このように、グリッド部材15のワイヤの間隔は粉末の平均粒径よりも3桁大きいが、RFeB系磁石合金の粉末の粒子が凝集することにより、単にグリッド部材15の上に粉末を載置しただけでは、粉末がワイヤの間を通過して落下することはない。 A grid member 15 is attached to each opening 111 (FIG. 2). The grid member 15 is formed by stretching a plurality of wires at regular intervals in the vertical and horizontal directions. In this embodiment, RFeB (R 2 Fe 14 B: R is a rare earth element such as Nd) based magnetic alloy powder having an average particle diameter of 3 μm is used as a filling target in the filling target container 20, and the wire of the grid member 15 is used. The interval was 3 mm. Thus, although the wire interval of the grid member 15 is three orders of magnitude larger than the average particle size of the powder, the powder is simply placed on the grid member 15 by aggregation of the powder particles of the RFeB-based magnet alloy. By itself, the powder will not fall between the wires.

蓋12は、本体11と同じ横断面を有する直方体の箱状のものであって、本体11の天井部に取り付けられる。蓋12は底部の全体が開放されており、天井部には給気口121及び排気口122が設けられている。図1(b)は、蓋12における給気口121及び排気口122の配置を示すと共に、蓋12が本体11に取り付けられたときに蓋12の下方に位置する開口111を破線で示している。排気口122は、各開口111の直上に1個ずつ、合計18個設けられている。給気口121は、天井部の長方形の長辺方向には排気口122及び開口111の2倍の間隔で3個、短辺方向には排気口122及び開口111と同じ間隔で2個、合計6個設けられている。各給気口121は、4個の排気口122を頂点として形成される最小の長方形の重心に配置されている。   The lid 12 is a rectangular parallelepiped box having the same cross section as that of the main body 11, and is attached to the ceiling portion of the main body 11. The lid 12 is entirely open at the bottom, and an air supply port 121 and an exhaust port 122 are provided on the ceiling. FIG. 1B shows the arrangement of the air supply ports 121 and the exhaust ports 122 in the lid 12, and the opening 111 positioned below the lid 12 when the lid 12 is attached to the main body 11 is indicated by a broken line. . A total of 18 exhaust ports 122 are provided, one above each opening 111. There are three air supply ports 121 in the long side direction of the rectangle of the ceiling portion at intervals twice as large as the exhaust ports 122 and the openings 111, and two in the short side direction at the same intervals as the exhaust ports 122 and the openings 111. There are six. Each air supply port 121 is arranged at the center of gravity of a minimum rectangle formed with four exhaust ports 122 as apexes.

蓋12には、粉末収容室10の外側から各給気口121に1本ずつ、気体供給管123が接続されている。   One gas supply pipe 123 is connected to each lid 12 from the outside of the powder storage chamber 10 to each air supply port 121.

気体供給管123は、弁装置13に接続されている。弁装置13は、弁本体131とシャフト132を有する。弁本体131には、その内部を互いに独立に貫くように、気体供給管123と同数である6本の本体内気体流路1311が設けられている。本実施形態では、6本の本体内気体流路1311は互いに平行であり、等間隔に配置されている。各本体内気体流路1311の一方の端には気体供給管123がそれぞれ1本ずつ接続されており、他方の端には供給源側気体供給管14がそれぞれ1本ずつ接続されている。供給源側気体供給管14には、気体供給源であるガスボンベ(図示せず)から、大気圧よりも高圧の気体(以下、「高圧気体」とする)が供給される。この高圧気体は、本実施形態では、RFeB系磁石合金の粉末と反応しないアルゴンガスを用いる。アルゴンガスの代わりに、その他の希ガスや窒素ガスを用いてもよい。   The gas supply pipe 123 is connected to the valve device 13. The valve device 13 includes a valve main body 131 and a shaft 132. The valve body 131 is provided with six in-body gas flow paths 1311 that are the same number as the gas supply pipes 123 so as to penetrate through the inside independently. In the present embodiment, the six main body gas flow paths 1311 are parallel to each other and arranged at equal intervals. One gas supply pipe 123 is connected to one end of each in-body gas flow path 1311, and one supply source side gas supply pipe 14 is connected to the other end. A gas having a pressure higher than atmospheric pressure (hereinafter referred to as “high pressure gas”) is supplied to the supply source side gas supply pipe 14 from a gas cylinder (not shown) as a gas supply source. In this embodiment, the high-pressure gas is an argon gas that does not react with the RFeB magnet alloy powder. Instead of argon gas, other rare gas or nitrogen gas may be used.

弁本体131の内部には、6本の本体内気体流路1311の全てと交差するように、円筒状のシャフト嵌入孔1312が設けられている。本実施形態では、6本のシャフト嵌入孔1312は互いに平行に、且つ6本の本体内気体流路1311と同じ間隔で配置されている。シャフト嵌入孔1312は6本の本体内気体流路1311に直交するように設けられている。シャフト132は、シャフト嵌入孔1312に嵌入されており、6本の本体内気体流路1311にそれぞれ対応してシャフト内気体流路1321が設けられている。これらの構成により、シャフト132はシャフト嵌入孔1312が延びる方向と同方向の軸の回りに回転し、シャフト内気体流路1321は軸に直交する。シャフト132には、該シャフト132を軸の回りに回転させる駆動源であるモータ(図示せず)が接続されている。   A cylindrical shaft insertion hole 1312 is provided inside the valve main body 131 so as to intersect with all of the six in-body gas flow paths 1311. In this embodiment, the six shaft insertion holes 1312 are arranged in parallel to each other and at the same interval as the six in-body gas flow paths 1311. The shaft insertion holes 1312 are provided so as to be orthogonal to the six in-body gas flow paths 1311. The shaft 132 is inserted into the shaft insertion hole 1312, and the in-shaft gas flow path 1321 is provided corresponding to each of the six main body gas flow paths 1311. With these configurations, the shaft 132 rotates around an axis in the same direction as the direction in which the shaft insertion hole 1312 extends, and the in-shaft gas flow path 1321 is orthogonal to the axis. The shaft 132 is connected to a motor (not shown) that is a drive source for rotating the shaft 132 around its axis.

シャフト内気体流路1321の断面の形状は、本実施形態では図3に示すようにシャフト132の軸に平行な2辺を有する長方形である。本体内気体流路1311の断面の形状及び大きさはシャフト内気体流路1321のそれらと同じである。一方、気体供給管123及び供給源側気体供給管14の断面はいずれも、本体内気体流路1311との接続部では本体内気体流路1311の断面と同じく長方形であるが、該接続部から一定の長さの範囲内では接続部から離れるに従って徐々に形状が変化し、該範囲よりも外側では円形である。   In this embodiment, the cross-sectional shape of the in-shaft gas flow path 1321 is a rectangle having two sides parallel to the axis of the shaft 132 as shown in FIG. The shape and size of the cross section of the in-body gas flow channel 1311 are the same as those of the in-shaft gas flow channel 1321. On the other hand, the cross sections of the gas supply pipe 123 and the supply source side gas supply pipe 14 are both rectangular at the connection portion with the gas flow path 1311 in the main body, as in the cross section of the gas flow path 1311 in the main body. Within a certain length range, the shape gradually changes as the distance from the connection portion increases, and is circular outside the range.

シャフト132の直径は、本実施形態では16mmとした。シャフト内気体流路1321の間隔は24mmとした。本体内気体流路1311及びシャフト内気体流路1321の断面の大きさは、本実施例では長辺を6.5mm、短辺を3.8mmとした。なお、これらは一例であって、本発明はこの例には限定されない。本体内気体流路1311及びシャフト内気体流路1321の断面の長辺の長さは、隣接する本体内気体流路1311の間に気体供給管123及び供給源側気体供給管14を取り付けるための孔の無い部分を設けることができる範囲内で、長い方が一度に粉末収容室10に供給できる高圧気体の量を多くすることができるため望ましい。一方、本体内気体流路1311及びシャフト内気体流路1321の断面の短辺の長さは、シャフト132を軸の回りに回転させる間に本体内気体流路1311とシャフト内気体流路1321が連通する時間が全体の5〜20%程度となるよう、シャフト132の直径を勘案して定めることが望ましい。   The diameter of the shaft 132 is 16 mm in this embodiment. The interval between the gas flow paths 1321 in the shaft was 24 mm. In this embodiment, the cross-sectional sizes of the in-body gas flow path 1311 and the in-shaft gas flow path 1321 are 6.5 mm for the long side and 3.8 mm for the short side. These are merely examples, and the present invention is not limited to these examples. The length of the long side of the cross section of the gas flow path 1311 in the body and the gas flow path 1321 in the shaft is for attaching the gas supply pipe 123 and the supply source side gas supply pipe 14 between the adjacent gas flow paths 1311 in the main body. Within the range in which a hole-free portion can be provided, the longer one is desirable because the amount of high-pressure gas that can be supplied to the powder storage chamber 10 at a time can be increased. On the other hand, the length of the short side of the cross section of the gas flow path 1311 within the main body and the gas flow path 1321 within the shaft is such that the gas flow path 1311 within the main body and the gas flow path 1321 within the shaft are rotated while the shaft 132 is rotated around the axis. It is desirable to determine the diameter of the shaft 132 so that the communication time is about 5 to 20% of the whole.

本体11の壁の下端には、充填対象容器20と気密に接続するための下部シール材112から成る接続部が設けられている。一方、本体11の壁の上端には、蓋12と気密に接続するための上部シール材113が設けられている。下部シール材112及び上部シール材113はいずれも、高圧気体が供給されることによって膨張する風船状のものである。本体11の壁内には、下部シール材112及び上部シール材113に高圧気体を供給するシール用気体供給経路114が設けられており、シール用気体供給経路114は、シール用気体を供給するシール用気体供給源(図示せず)に接続されている。このシール用気体供給源は供給源側気体供給管14に高圧気体を供給する気体供給源とは別に設けられており、供給される高圧気体は空気である。更に、蓋12の上面には、蓋12を下方に押さえつける押さえシリンダ(押圧機構)124が接続されている。押さえシリンダ124で蓋12を下方に押さえつけつつ、下部シール材112及び上部シール材113にシール用気体を供給してそれらを膨張させることにより、本体11と充填対象容器20の間、及び蓋12と本体11の間の気密が保持されるようになっている。   At the lower end of the wall of the main body 11, a connecting portion made of a lower seal material 112 for airtight connection with the filling target container 20 is provided. On the other hand, an upper seal material 113 for airtight connection with the lid 12 is provided at the upper end of the wall of the main body 11. Both the lower sealing material 112 and the upper sealing material 113 are balloon-shaped things that expand when supplied with high-pressure gas. A sealing gas supply path 114 that supplies high-pressure gas to the lower sealing material 112 and the upper sealing material 113 is provided in the wall of the main body 11, and the sealing gas supply path 114 is a seal that supplies sealing gas. Connected to a gas supply source (not shown). This sealing gas supply source is provided separately from the gas supply source that supplies the high-pressure gas to the supply-side gas supply pipe 14, and the supplied high-pressure gas is air. Further, a pressing cylinder (pressing mechanism) 124 that presses the lid 12 downward is connected to the upper surface of the lid 12. While the lid 12 is pressed downward by the holding cylinder 124, a sealing gas is supplied to the lower sealing material 112 and the upper sealing material 113 to expand them, so that the space between the main body 11 and the filling target container 20 and the lid 12 are increased. The airtightness between the main bodies 11 is maintained.

(2) 充填対象容器20の構成
充填対象容器20は、長方形の平板状の本体21の上面側に、粉末充填装置1の本体11の開口111と同じ平面形状を有する平板状のキャビティ22が、開口111と同じ間隔で長辺方向に6個、短辺方向に3個、合計18個設けられたものである(図1(a)及び図4)。粉末充填装置1により粉末を充填対象容器20に充填する際には、下から順に充填対象容器20と本体11を、キャビティ22と開口111の位置を合わせて重ねた状態で使用する。
(2) Structure of filling target container 20 The filling target container 20 has a flat cavity 22 having the same planar shape as the opening 111 of the main body 11 of the powder filling apparatus 1 on the upper surface side of the rectangular flat main body 21. A total of 18 pieces are provided at the same interval as the opening 111, 6 pieces in the long side direction and 3 pieces in the short side direction (FIGS. 1A and 4). When filling the filling target container 20 with the powder by the powder filling device 1, the filling target container 20 and the main body 11 are used in the state in which the positions of the cavity 22 and the opening 111 are aligned in order from the bottom.

(3) 本実施形態の粉末充填装置1の動作
図5〜図7を用いて、本実施形態の粉末充填装置1の動作を説明する。まず、本体11と蓋12が分離されている状態で、粉末Pを本体11内に供給する(図5(a))。このとき粉末Pは、開口111に設けられたグリッド部材15の上に載るが、前述の理由により、グリッド部材15のワイヤの間を通過して落下することはない。
(3) Operation | movement of the powder filling apparatus 1 of this embodiment Operation | movement of the powder filling apparatus 1 of this embodiment is demonstrated using FIGS. First, the powder P is supplied into the main body 11 with the main body 11 and the lid 12 being separated (FIG. 5A). At this time, the powder P is placed on the grid member 15 provided in the opening 111, but does not fall between the wires of the grid member 15 for the reason described above.

次に、充填対象容器20を、本体11の開口111と充填対象容器20のキャビティ22の位置を合わせるように本体11の直下に配置する。それと共に、本体11の上に蓋12を載置する。そして、シール用気体供給源からシール用気体供給経路114を通して下部シール材112及び上部シール材113に高圧気体を供給すると共に、押さえシリンダ124により蓋12を下方に押す(図5(b))。これにより、本体11と充填対象容器20の間、及び蓋12と本体11の間の気密性が、それぞれ下部シール材112及び上部シール材113により確保される。   Next, the filling target container 20 is arranged directly below the main body 11 so that the opening 111 of the main body 11 and the position of the cavity 22 of the filling target container 20 are aligned. At the same time, the lid 12 is placed on the main body 11. Then, high-pressure gas is supplied from the sealing gas supply source to the lower sealing material 112 and the upper sealing material 113 through the sealing gas supply path 114, and the lid 12 is pushed downward by the pressing cylinder 124 (FIG. 5B). Thereby, the airtightness between the main body 11 and the filling target container 20 and between the lid 12 and the main body 11 is ensured by the lower sealing material 112 and the upper sealing material 113, respectively.

この状態で、気体供給源であるガスボンベから各供給源側気体供給管14に高圧気体を供給すると共に、駆動源であるモータによりシャフト132を軸の回りに等速で回転させる。   In this state, high-pressure gas is supplied from the gas cylinder, which is a gas supply source, to each supply source-side gas supply pipe 14, and the shaft 132 is rotated around the axis at a constant speed by a motor, which is a drive source.

図6に、シャフト132が回転してゆく様子を、シャフト132の軸に垂直な断面で示す。同図に示された本体内気体流路1311は、図の上方で供給源側気体供給管14に接続され、図の下方で気体供給管123に接続されている。同図に太線で示された矢印はシャフト132の回転方向を示し、細線で示された矢印は高圧気体の流れを示している。図6(a)に示すように、本体内気体流路1311とシャフト内気体流路1321が連通していないときには、ガスボンベから供給源側気体供給管14を通して本体内気体流路1311に供給された高圧気体はシャフト132により遮られ、気体供給管123及びその先の粉末収容室10には供給されない。その後、シャフト132が回転してゆくことでシャフト内気体流路1321の一部が本体内気体流路1311と連通する(図6(b))と、高圧気体は供給源側気体供給管14からシャフト内気体流路1321を通過し、本体内気体流路1311の残りの部分と気体供給管123を通して粉末収容室10に供給される。単位時間あたりの高圧気体の供給量は、本体内気体流路1311とシャフト内気体流路1321が連通し始めてから回転角度が進むに従って増加してゆき、本体内気体流路1311とシャフト内気体流路1321の角度が一致したときに最大となり(図6(c))、その後減少してゆく。更に回転角度が進むと、本体内気体流路1311とシャフト内気体流路1321が連通しなくなり(図6(d))、気体供給管123及び粉末収容室10に高圧気体が供給されなくなる。ここまでの動作は、シャフト132が半回転する毎に繰り返され、粉末収容室10にはシャフト132の回転周期の1/2の周期で繰り返し高圧気体が供給される。また、図6では1組の本体内気体流路1311とシャフト内気体流路1321のみを示しているが、6本の本体内気体流路1311及びシャフト内気体流路1321が平行に配置され、且つ、シャフト内気体流路1321がシャフト132が回転する軸に直交していることから、全てのシャフト内気体流路1321は同じタイミングで本体内気体流路1311と連通を開始及び終了する。   FIG. 6 shows a state in which the shaft 132 rotates in a cross section perpendicular to the axis of the shaft 132. The main body gas flow path 1311 shown in the figure is connected to the supply source side gas supply pipe 14 in the upper part of the figure, and is connected to the gas supply pipe 123 in the lower part of the figure. In the drawing, an arrow indicated by a thick line indicates the rotation direction of the shaft 132, and an arrow indicated by a thin line indicates the flow of high-pressure gas. As shown in FIG. 6 (a), when the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft are not in communication, the gas flow was supplied from the gas cylinder to the gas flow path 1311 in the main body through the supply source side gas supply pipe 14. The high-pressure gas is blocked by the shaft 132 and is not supplied to the gas supply pipe 123 and the powder storage chamber 10 ahead. Thereafter, when the shaft 132 rotates, a part of the in-shaft gas flow path 1321 communicates with the main body gas flow path 1311 (FIG. 6B), and the high pressure gas is supplied from the supply source side gas supply pipe 14. It passes through the in-shaft gas flow path 1321 and is supplied to the powder containing chamber 10 through the remaining part of the main body gas flow path 1311 and the gas supply pipe 123. The supply amount of the high-pressure gas per unit time increases as the rotation angle advances after the in-body gas flow path 1311 and the in-shaft gas flow path 1321 begin to communicate, and the in-body gas flow path 1311 and the in-shaft gas flow It becomes maximum when the angle of the path 1321 coincides (FIG. 6C), and then decreases. When the rotation angle further advances, the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft do not communicate with each other (FIG. 6 (d)), and the high pressure gas is not supplied to the gas supply pipe 123 and the powder storage chamber 10. The operation up to this point is repeated every time the shaft 132 makes a half rotation, and the high-pressure gas is repeatedly supplied to the powder storage chamber 10 at a cycle that is half the rotation cycle of the shaft 132. FIG. 6 shows only one set of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft, but the six gas flow paths in the main body 1311 and the gas flow path 1321 in the shaft are arranged in parallel, In addition, since the in-shaft gas flow path 1321 is orthogonal to the axis around which the shaft 132 rotates, all the in-shaft gas flow paths 1321 start and end communication with the in-body gas flow path 1311 at the same timing.

このように粉末収容室10に供給された高圧気体は、排気口122の排気抵抗によって給気のタイミングからやや遅れて排気口122から排出される。これにより、粉末収容室10内では圧力が前記周期で上昇及び下降を繰り返す。粉末Pは、この圧力によって同周期で繰り返し下方に押され(エアタッピング)、グリッド部材15のワイヤの間から下方に押し出されて充填対象容器20のキャビティ22へ落下してゆく(図5(c))。なお、高圧気体の圧力は、取り扱う粉末毎に当業者が予備実験を行って適宜定めればよい。また、1周期中の圧縮気体を供給する時間の比(デューティ比)は、本実施形態の粉末充填装置1では本体内気体流路1311及びシャフト内気体流路1321の断面の短辺の長さ、すなわち回転方向の長さで定まるが、この長さは、例えば電磁弁を用いた従来の粉末充填装置で予備実験を行うことによって適切なデューティ比を求めたうえで設計すればよい。   The high-pressure gas supplied to the powder storage chamber 10 in this way is discharged from the exhaust port 122 with a slight delay from the supply timing due to the exhaust resistance of the exhaust port 122. Thereby, in the powder storage chamber 10, a pressure repeats a raise and fall with the said period. The powder P is repeatedly pushed downward (air tapping) at the same period by this pressure, pushed downward from between the wires of the grid member 15, and falls into the cavity 22 of the container 20 to be filled (FIG. 5 (c). )). Note that the pressure of the high-pressure gas may be appropriately determined by a person skilled in the art through preliminary experiments for each powder to be handled. Moreover, the ratio (duty ratio) of supplying compressed gas in one cycle is the length of the short side of the cross section of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft in the powder filling apparatus 1 of the present embodiment. In other words, the length is determined by the length in the rotational direction, and this length may be designed after obtaining an appropriate duty ratio by conducting a preliminary experiment with a conventional powder filling apparatus using a solenoid valve, for example.

この操作を所定時間行うことにより、キャビティ22の上端付近まで粉末Pで満たされる。その後、押さえシリンダ124による押圧を解放し、充填対象容器20を本体11から離す(図5(d))。以上により、キャビティ22内に粉末Pを充填する操作が完了する。   By performing this operation for a predetermined time, the vicinity of the upper end of the cavity 22 is filled with the powder P. Thereafter, the pressing by the holding cylinder 124 is released, and the filling target container 20 is separated from the main body 11 (FIG. 5 (d)). Thus, the operation of filling the cavity 22 with the powder P is completed.

なお、実際には充填対象容器20を本体11の直下に配置したときに、充填対象容器20のキャビティ22の上端と本体11のグリッド部材15の間にわずかな隙間が存在するため、粉末Pはキャビティ22の上端からわずかにはみ出すように、キャビティ22に供給される。そこで、図7に示すように、キャビティ22の上端からわずかにはみ出した粉末Pを、スクレーパ36で掻き取り、充填対象容器20の上面と同一平面になるように粉末Pの上端をならす。スクレーパ36は第1〜第3の掻き取り部361〜363を有し、第1掻き取り部361から第3掻き取り部363に向かって、粉末Pと接する先端の高さが低くなっている。スクレーパ36全体を、第1掻き取り部361、第2掻き取り部362、第3掻き取り部363の順で粉末Pに接触するように移動させることにより、粉末Pを徐々に掻き取ることができる。   Actually, when the container 20 to be filled is arranged immediately below the main body 11, there is a slight gap between the upper end of the cavity 22 of the container 20 to be filled and the grid member 15 of the main body 11. It is supplied to the cavity 22 so as to slightly protrude from the upper end of the cavity 22. Therefore, as shown in FIG. 7, the powder P slightly protruding from the upper end of the cavity 22 is scraped off by the scraper 36, and the upper end of the powder P is leveled so as to be flush with the upper surface of the filling target container 20. The scraper 36 has first to third scraping portions 361 to 363, and the height of the tip in contact with the powder P decreases from the first scraping portion 361 toward the third scraping portion 363. By moving the entire scraper 36 so as to come into contact with the powder P in the order of the first scraper 361, the second scraper 362, and the third scraper 363, the powder P can be gradually scraped. .

本実施形態の粉末充填装置1によれば、シャフト132が回転している間に、全てのシャフト内気体流路1321が同じタイミングで本体内気体流路1311と連通を開始及び終了するため、粉末収容室10では全ての給気口121から同じタイミングで圧縮空気の供給が開始及び終了する。そのため、各時刻における粉末収容室10内の気体の圧力を均一に近くすることができ、それによって充填対象容器20に均一に粉末Pを充填することができる。また、各給気口121から供給される圧縮気体の圧力が最大となる時刻を一致させることができる。そのため、粉末収容室10内全体の圧力の平均値を高くすることができ、それによって充填対象容器20に高密度で粉末Pを充填することができる。   According to the powder filling device 1 of the present embodiment, since all the in-shaft gas passages 1321 start and end communication with the in-body gas passage 1311 at the same timing while the shaft 132 is rotating, In the storage chamber 10, the supply of compressed air from all the air supply ports 121 starts and ends at the same timing. Therefore, the pressure of the gas in the powder storage chamber 10 at each time can be made nearly uniform, whereby the filling target container 20 can be filled with the powder P uniformly. Moreover, the time when the pressure of the compressed gas supplied from each air supply port 121 becomes maximum can be matched. Therefore, the average value of the pressure in the entire powder storage chamber 10 can be increased, whereby the filling target container 20 can be filled with the powder P at a high density.

(4) 本実施形態の粉末充填装置の変形例
図8に、本実施形態の粉末充填装置の変形例を示す。この変形例の粉末充填装置1Aは、粉末収容室10Aの蓋12Aの内部に、横方向に張設されたシリコーンゴム製の膜126と、膜126の直下に設けられた金属製の網から成る膜抑制部材127が設けられている。それ以外の構成は、上述の粉末充填装置1と同じである。
(4) Modified Example of Powder Filling Device of the Present Embodiment FIG. 8 shows a modified example of the powder filling device of the present embodiment. A powder filling apparatus 1A according to this modification includes a silicone rubber film 126 stretched in a lateral direction inside a lid 12A of a powder storage chamber 10A, and a metal net provided directly below the film 126. A film suppression member 127 is provided. Other configurations are the same as those of the powder filling apparatus 1 described above.

粉末充填装置1Aの使用方法は、上記粉末充填装置1と同じである。給気口121から圧縮気体を粉末収容室10Aに導入すると、その圧縮気体自体は膜126を通過しないが膜126を下方に押す(図8中の一点鎖線)ため、膜126の下側にある気体が粉末Pを押すこととなり、上記粉末充填装置1と同様に、粉末Pをグリッド部材15のワイヤの間から下方に押し出して充填対象容器20のキャビティ22に供給することができる。そして、膜126を用いることにより、給気口121から圧縮気体を粉末収容室10Aに導入した際に、本体11内の粉末Pが膜126よりも上側、すなわち給気口121及び排気口122側の領域に飛散して給気口121や排気口122に詰まることを防止することができる。   The method of using the powder filling apparatus 1A is the same as that of the powder filling apparatus 1. When the compressed gas is introduced into the powder storage chamber 10A from the air supply port 121, the compressed gas itself does not pass through the membrane 126, but pushes the membrane 126 downward (a dashed line in FIG. 8), so that it is below the membrane 126. The gas pushes the powder P, and the powder P can be pushed downward from between the wires of the grid member 15 and supplied to the cavity 22 of the container 20 to be filled, as in the powder filling device 1. By using the membrane 126, when the compressed gas is introduced into the powder storage chamber 10A from the air supply port 121, the powder P in the main body 11 is above the membrane 126, that is, the air supply port 121 and the exhaust port 122 side. It is possible to prevent the air supply port 121 and the exhaust port 122 from being clogged by being scattered in the region.

なお、膜抑制部材127が無いと、膜126が降下し過ぎて本体11内の粉末Pに接触してしまうおそれがある。膜126が粉末Pに接触すると、粉末Pに直接圧縮力が作用し、密度分布が生じる。そのため、蓋12A内で膜126の下に膜抑制部材127を設けることにより、膜126が粉末Pに接触することを防止している。   If the film suppression member 127 is not provided, the film 126 may move down too much and come into contact with the powder P in the main body 11. When the membrane 126 comes into contact with the powder P, a compressive force acts directly on the powder P, and a density distribution is generated. Therefore, the film | membrane 126 is prevented from contacting the powder P by providing the film | membrane suppression member 127 under the film | membrane 126 in the lid | cover 12A.

膜126の材料は、可撓性を有するものであればシリコーンゴムには限られず、例えばポリウレタン等を用いることもできる。また、膜抑制部材127は、膜126が膜抑制部材127よりも下側まで降下することを防止し、且つ気体を通過させることができるものであれば網には限らず、例えば板材に多数の孔を空けたものや、棒材を横に並べたもの等であってもよい。   The material of the film 126 is not limited to silicone rubber as long as it has flexibility. For example, polyurethane or the like can be used. The film suppressing member 127 is not limited to a net as long as it prevents the film 126 from descending below the film suppressing member 127 and allows gas to pass therethrough. It may be a hole or a bar arranged side by side.

図8では、本体11の下に直接充填対象容器20を配置する代わりに、本体11と充填対象容器20の間にスペーサ30を配置した状態を示している。なお、このスペーサ30は、変形例の粉末充填装置1Aのみならず、前述の粉末充填装置1で使用してもよい。スペーサ30は、板材に18個の貫通孔31が、開口111と同形状且つ同じ配置で設けられ、これら18個の貫通孔31の全体を囲むようにシール材32が下面に設けられたものである。粉末を充填対象容器20に充填する際には、下から順に充填対象容器20、スペーサ30及び本体11を、キャビティ22、貫通孔31及び開口111の位置を合わせて重ねる。シール用気体供給源から下部シール材112及び上部シール材113に高圧気体を供給すると共に押さえシリンダ124により蓋12を下方に押すと、蓋12と本体11、本体11とスペーサ30、及びスペーサ30と充填対象容器20の間の気密性が、それぞれ上部シール材113、下部シール材112、及びシール材32により確保される。   FIG. 8 shows a state in which the spacer 30 is arranged between the main body 11 and the filling target container 20 instead of arranging the filling target container 20 directly below the main body 11. The spacer 30 may be used not only in the powder filling apparatus 1A of the modified example but also in the powder filling apparatus 1 described above. The spacer 30 is formed by providing 18 through holes 31 in the plate material in the same shape and in the same arrangement as the opening 111, and a sealing material 32 provided on the lower surface so as to surround the entire 18 through holes 31. is there. When filling the container 20 with the powder, the container 20, the spacer 30, and the main body 11 are stacked in order from the bottom with the positions of the cavity 22, the through hole 31, and the opening 111 aligned. When the high pressure gas is supplied from the sealing gas supply source to the lower sealing material 112 and the upper sealing material 113 and the lid 12 is pushed downward by the holding cylinder 124, the lid 12 and the main body 11, the main body 11 and the spacer 30, and the spacer 30 Airtightness between the filling target containers 20 is ensured by the upper seal material 113, the lower seal material 112, and the seal material 32, respectively.

このようにスペーサ30を用いることにより、以下に述べるように、より高い密度で粉末Pをキャビティ22に充填することができる。スペーサ30を用いて粉末充填装置1又は1Aによりキャビティ22内に粉末Pを充填すると、粉末Pは、充填対象容器20のキャビティ22と共に、キャビティ22と位置を合わせた貫通孔31内まで充填される。その後、貫通孔31の上端からはみ出した粉末Pをスクレーパ36で除去した(図9(a))うえで、スペーサ30の貫通孔31と同形状のパンチ35を上側から該貫通孔31に挿入することにより、貫通孔31内の粉末Pを充填対象容器20のキャビティ22に押し込む(図9(b))。これにより、キャビティ22に、粉末充填装置1又は1Aによる充填時よりも高い密度で粉末Pが充填される。   By using the spacer 30 as described above, the powder P can be filled into the cavity 22 at a higher density as described below. When the powder P is filled into the cavity 22 by the powder filling device 1 or 1A using the spacer 30, the powder P is filled into the through hole 31 aligned with the cavity 22 together with the cavity 22 of the filling target container 20. . Thereafter, the powder P protruding from the upper end of the through hole 31 is removed by the scraper 36 (FIG. 9A), and a punch 35 having the same shape as the through hole 31 of the spacer 30 is inserted into the through hole 31 from above. Thereby, the powder P in the through-hole 31 is pushed into the cavity 22 of the container 20 to be filled (FIG. 9B). As a result, the cavity 22 is filled with the powder P at a higher density than when filled with the powder filling device 1 or 1A.

(5) 実験結果
まず、変形例の粉末充填装置1Aにおいて、各気体供給管123に1個ずつ流量計を設け、粉末充填装置1Aの動作中に各気体供給管123を流れる圧縮気体の流量の時間変化を測定する実験を行った。なお、この実験では、圧縮気体には圧力0.4MPaの窒素を用いた。圧縮気体の供給の周期は80msecとした。併せて、比較例として、本実施形態の粉末充填装置1Aにおける弁装置13の代わりに、各気体供給管123に対して1個ずつ電磁弁を設け、電磁弁よりも粉末収容室10A側の気体供給管123に流量計を設けた装置につき、圧力0.4MPaの窒素を用いて50msecの周期で電磁弁を開閉(開状態は20sec、閉状態は30msec)し、各気体供給管123を流れる圧縮気体の流量の時間変化を測定する実験を行った。なお、本実施形態では弁装置13が全開状態のときに1本の気体供給管123を通過する圧縮気体の単位時間当たりの流量が約80L/分であるのに対して、比較例の電磁弁は圧縮気体が通過する際に抵抗となることから全開状態のときに1本の気体供給管123を通過する圧縮気体の単位時間当たりの流量が約50L/分と、本実施形態よりも少なくなる。そのため、比較例では、単位時間当たりの流量が少なくなる分を補うために、圧縮気体の供給の周期を上記のように本実施形態よりも短い50msecとした。
(5) Experimental results First, in the powder filling apparatus 1A of the modified example, one flow meter is provided in each gas supply pipe 123, and the flow rate of the compressed gas flowing through each gas supply pipe 123 during the operation of the powder filling apparatus 1A. An experiment was conducted to measure the time change. In this experiment, nitrogen having a pressure of 0.4 MPa was used as the compressed gas. The cycle of supplying the compressed gas was 80 msec. In addition, as a comparative example, instead of the valve device 13 in the powder filling device 1A of the present embodiment, one electromagnetic valve is provided for each gas supply pipe 123, and the gas on the powder storage chamber 10A side than the electromagnetic valve. Compressed gas that flows through each gas supply pipe 123 by opening and closing the solenoid valve at an interval of 50 msec using nitrogen at a pressure of 0.4 MPa for an apparatus provided with a flow meter in the supply pipe 123 (open state is 20 sec, closed state is 30 msec) An experiment was conducted to measure the time change of the flow rate. In this embodiment, the flow rate per unit time of the compressed gas passing through one gas supply pipe 123 when the valve device 13 is fully opened is about 80 L / min, whereas the electromagnetic valve of the comparative example Since it becomes resistance when compressed gas passes, the flow rate per unit time of compressed gas passing through one gas supply pipe 123 in the fully open state is about 50 L / min, which is smaller than that of the present embodiment. . Therefore, in the comparative example, in order to compensate for the decrease in the flow rate per unit time, the compressed gas supply cycle is set to 50 msec, which is shorter than that of the present embodiment as described above.

この実験の結果を、本実施形態の粉末充填装置1Aについては図10(a)に、比較例の電磁弁を用いた粉末充填装置については図10(b)に、それぞれ示す。(a)では5本の気体供給管123、(b)では6本の気体供給管での測定結果を示している。この測定結果によれば、本実施形態では5本の気体供給管123のデータがほぼ完全に重なっており、それら5本の気体供給管123からそれぞれ、ほぼ同じ流量の圧縮気体がほぼ同じ時間変化で粉末収容室10Aに供給されていることがわかる。また、流量がピークとなるときの流量の値は、いずれのピークにおいてもほぼ同じである。それに対して比較例では、流量がピークとなるときの流量の値が気体供給管123毎に異なっていると共に、同じ気体供給管123においてもピーク毎に流量の値が異なっている。また、比較例では、流量がピークとなる時刻(図10では流量測定開始からの時間で規定)も、気体供給管123毎によってわずかに異なっている。これら比較例のデータは、各電磁弁において同じ開度やタイミングで開閉を行うことが困難であることに起因していると考えられる。それに対して本実施形態の粉末充填装置1Aでは、弁装置13の各本体内気体流路1311が同じ開度且つ同じタイミングで開放されるため、電磁弁と同様の問題は生じない。   The results of this experiment are shown in FIG. 10 (a) for the powder filling apparatus 1A of the present embodiment, and in FIG. 10 (b) for the powder filling apparatus using the electromagnetic valve of the comparative example. (a) shows measurement results with five gas supply pipes 123, and (b) shows measurement results with six gas supply pipes. According to this measurement result, in the present embodiment, the data of the five gas supply pipes 123 are almost completely overlapped, and the compressed gas having substantially the same flow rate changes from the five gas supply pipes 123 with substantially the same time change. It turns out that it is supplied to 10 A of powder storage chambers. Moreover, the value of the flow rate when the flow rate reaches a peak is almost the same in any peak. On the other hand, in the comparative example, the value of the flow rate when the flow rate reaches a peak is different for each gas supply pipe 123, and the value of the flow rate is also different for each peak in the same gas supply pipe 123. In the comparative example, the time at which the flow rate reaches a peak (specified in FIG. 10 by the time from the start of the flow rate measurement) is slightly different for each gas supply pipe 123. The data of these comparative examples is considered to be caused by the difficulty in opening and closing at the same opening and timing in each solenoid valve. On the other hand, in the powder filling apparatus 1A of the present embodiment, the gas passages 1311 in the main body of the valve device 13 are opened at the same opening degree and at the same timing, so the same problem as the electromagnetic valve does not occur.

図11に、本実施形態の粉末充填装置1Aにつき、上記と同様の条件で圧縮気体を粉末収容室10A内に周期的に供給し、粉末収容室10A内の圧力を測定した結果を示す。粉末収容室10Aの圧力は、膜126よりも上側(気体供給管123側)及び下側(開口111側)でそれぞれ測定した。膜126よりも上側、下側のいずれにおいても、弁装置13による圧縮気体の供給の周期に合わせて、圧力が上昇及び下降していることがわかる。   FIG. 11 shows the results of measuring the pressure in the powder storage chamber 10A by periodically supplying compressed gas into the powder storage chamber 10A under the same conditions as above for the powder filling apparatus 1A of the present embodiment. The pressure in the powder storage chamber 10A was measured on the upper side (gas supply pipe 123 side) and the lower side (opening 111 side) of the membrane 126, respectively. It can be seen that the pressure increases and decreases in accordance with the cycle of the compressed gas supply by the valve device 13 both above and below the membrane 126.

図12に、本実施形態の粉末充填装置1Aにおいて給気口121の数を14個に増やした(排気口122の数は上記の例と同じ)装置を用い、圧縮気体の圧力が異なる複数の条件でそれぞれ、充填対象容器20に平均粒径約3μmのRFeB系磁石の合金粉末を充填する実験を行い、充填対象容器20が有する18個のキャビティでの粉末の充填密度の平均値と給粉重量のバラツキを求める実験を行った結果を示す。この実験結果より、圧縮気体の圧力を高くするに従って粉末の充填密度も高くなり、且つ、圧縮気体の圧力が0.4MPa以上の場合にはキャビティ毎の給粉重量のバラツキを0.3g(充填密度のバラツキを0.145g/cm3)未満に抑えることができることがわかる。 In FIG. 12, in the powder filling apparatus 1A of the present embodiment, a device in which the number of the air supply ports 121 is increased to 14 (the number of the exhaust ports 122 is the same as the above example) is used. Experiments were conducted to fill the container 20 to be filled with an RFeB magnet alloy powder having an average particle diameter of about 3 μm under each condition, and the average value of powder density in 18 cavities of the container 20 to be filled and the feeding The result of the experiment which calculates | requires the variation in weight is shown. From this experimental result, as the pressure of the compressed gas is increased, the packing density of the powder is also increased, and when the pressure of the compressed gas is 0.4 MPa or more, the variation in the powder weight per cavity is 0.3 g (of the packing density). It can be seen that the variation can be suppressed to less than 0.145 g / cm 3 ).

そこで、充填密度の目標値が3.3g/cm3(圧縮気体の圧力が0.53MPa)及び3.5g/cm3(同0.63MPa)の場合についてそれぞれ5回ずつ実験を行い、各回での充填密度の平均値及び給粉重量のバラツキを求めた。その結果を、目標値が3.3g/cm3の場合について図13に、3.5g/cm3の場合について図14に、それぞれ示す。いずれの場合も、5回の実験で再現性良く、目標の充填密度からほとんどずれることなく平均値が得られていると共に、キャビティ毎の給粉重量のバラツキが0.3g未満に抑えられている。 Therefore, experiments were conducted 5 times each for the target values of packing density of 3.3 g / cm 3 (compressed gas pressure 0.53 MPa) and 3.5 g / cm 3 (0.63 MPa). The average value and the variation in the weight of the feed were obtained. The results are shown in FIG. 13 when the target value is 3.3 g / cm 3 and in FIG. 14 when the target value is 3.5 g / cm 3 . In any case, the average value was obtained with good reproducibility in 5 experiments and with almost no deviation from the target packing density, and the variation in the powder feed weight for each cavity was suppressed to less than 0.3 g.

次に、本体内気体流路1311及びシャフト内気体流路1321の断面形状が異なる2つの例について、実験を行った結果を示す。ここでは、本体内気体流路1311及びシャフト内気体流路1321の断面形状を、シャフト132の軸に平行である長辺が5.5mm、長辺に垂直な短辺が4.5mmである長方形状の例Aと、長辺が例Aよりも長い6.5mm、短辺が例Aよりも短い3.8mmである例Bを実験対象とした。例Aと例Bでは、本体内気体流路1311及びシャフト内気体流路1321の断面積は、例Aでは24.8mm2、例Bでは24.7mm2である。圧縮気体の圧力(0.4MPa)や弁の開閉の周期(80msec)は、例Aと例Bで同じとした。給気口121の数は10個とし、排気口122の数は上記の例と同じとした。図15に、これら例Aと例Bについて、膜126よりも下側の粉末収容室10A内の圧力の時間変化を、1周期よりもやや長い100msecの時間だけ測定した結果を示す。例Aよりも例Bの方が、粉末収容室10A内の圧力の立ち上がりが早く、圧力が印加されている時間が短くなっていることがわかる。この結果は、長辺が長い例Bの方が、圧力の印加と開放のめりはりが効いていることを示している。 Next, the results of experiments performed on two examples in which the cross-sectional shapes of the in-body gas flow channel 1311 and the in-shaft gas flow channel 1321 are different are shown. Here, the cross-sectional shape of the gas flow path 1311 in the main body and the gas flow path 1321 in the shaft is a rectangular shape in which the long side parallel to the axis of the shaft 132 is 5.5 mm and the short side perpendicular to the long side is 4.5 mm. Example A and Example B, whose long side is 6.5 mm longer than Example A and whose short side is 3.8 mm shorter than Example A, were the subjects of the experiment. Example A and Example B, the cross-sectional area of the main body in the gas flow path 1311 and the shaft the gas flow path 1321, 24.8 mm 2 Example A, is 24.7 mm 2 Example B. The compressed gas pressure (0.4 MPa) and the valve opening / closing cycle (80 msec) were the same in Example A and Example B. The number of the air supply ports 121 is 10 and the number of the exhaust ports 122 is the same as the above example. FIG. 15 shows the results of measuring the time change of the pressure in the powder storage chamber 10A below the membrane 126 for these examples A and B for a time of 100 msec, which is slightly longer than one cycle. It can be seen that in Example B, the pressure rises faster in Example B than in Example A, and the time during which pressure is applied is shorter. This result shows that the application of pressure and the release are effective in Example B having a long side.

図16に、これら例Aと例Bについて、弁の開閉の周期が異なる複数の場合で、充填対象容器20への粉末の充填密度を測定した結果を示す。弁の開閉の周期が最も長い(100msec)の場合には例Aと例Bは充填密度がほぼ同じであったが、それよりも周期が短い場合にはいずれも、例Aよりも例Bの方が、充填密度が高くなった。これは、例Bの方が圧力の印加と開放のめりはりが効いていることによると考えられる。   FIG. 16 shows the results of measuring the packing density of the powder into the container 20 to be filled in these cases A and B in a plurality of cases where the valve opening and closing periods are different. In the case where the valve opening / closing cycle is the longest (100 msec), the packing density of Example A and Example B was almost the same. The packing density was higher. This is thought to be due to the application of pressure and the opening of the release in Example B.

(6) 焼結磁石製造装置及び焼結磁石製造方法の一実施形態
次に、図17を用いて、本発明に係る焼結磁石製造装置及び焼結磁石製造方法の一実施形態を説明する。本実施形態の焼結磁石製造装置40は、粉末充填装置1(又は1A。以下、符号は「1」のみを示す。)と、粉末高密度化装置42と、蓋取付部43と、配向装置(配向部)44と、焼結炉(焼結部)45を有する。また、焼結磁石製造装置40は、粉末充填装置1、スクレーパ36、蓋取付部43、配向装置44、焼結炉45の順に充填対象容器20を搬送する搬送装置(ベルトコンベア)46を有する。これらの各装置のうち焼結炉45以外の各装置は、内部が不活性ガス雰囲気である共通の外容器47に収容されており、焼結炉45内も別途不活性ガスが供給されることで不活性ガス雰囲気となっている。これら外容器47及び焼結炉45の内部を不活性ガス雰囲気にする構成要素により、粉末充填装置1から焼結炉45に至る全体を無酸素雰囲気にすることができる。なお、粉末充填装置1のうち、供給源側気体供給管14の一部、及び気体供給源(図示せず)は、外容器47の外に配置されている。弁装置13が外容器47の中に配置されているため、弁装置13と給気口121の距離を短くすることができ、粉末収容室10の圧力の印加及び開放のめりはりが良くなる。
(6) One Embodiment of Sintered Magnet Manufacturing Apparatus and Sintered Magnet Manufacturing Method Next, an embodiment of a sintered magnet manufacturing apparatus and a sintered magnet manufacturing method according to the present invention will be described with reference to FIG. The sintered magnet manufacturing apparatus 40 of the present embodiment includes a powder filling apparatus 1 (or 1A; hereinafter, only the symbol “1” is shown), a powder densification apparatus 42, a lid mounting portion 43, and an orientation apparatus. (Orientation part) 44 and sintering furnace (sintering part) 45. Moreover, the sintered magnet manufacturing apparatus 40 includes a conveying device (belt conveyor) 46 that conveys the filling target container 20 in the order of the powder filling device 1, the scraper 36, the lid attaching portion 43, the orientation device 44, and the sintering furnace 45. Among these devices, each device other than the sintering furnace 45 is housed in a common outer container 47 having an inert gas atmosphere inside, and an inert gas is separately supplied into the sintering furnace 45 as well. In an inert gas atmosphere. With the components that make the inside of the outer container 47 and the sintering furnace 45 an inert gas atmosphere, the whole from the powder filling apparatus 1 to the sintering furnace 45 can be made an oxygen-free atmosphere. In the powder filling apparatus 1, a part of the supply source side gas supply pipe 14 and a gas supply source (not shown) are arranged outside the outer container 47. Since the valve device 13 is disposed in the outer container 47, the distance between the valve device 13 and the air supply port 121 can be shortened, and the application of pressure to the powder storage chamber 10 and the opening of the opening are improved.

粉末充填装置1は、焼結磁石の原料となる粉末を充填対象容器20に充填する装置であり、上記の通りの構成を有する。スクレーパ36の構成も上記の通りである。蓋取付部43は、粉末が充填された充填対象容器20に、該充填対象容器20の蓋(粉末充填装置1の蓋12とは異なる)を取り付ける装置である。この蓋は、配向装置44における磁界や焼結炉45におけるガスの対流等によって合金粉末が充填対象容器20から飛散することを防止するために用いられる。   The powder filling apparatus 1 is an apparatus for filling a container 20 to be filled with powder that is a raw material of a sintered magnet, and has the configuration as described above. The configuration of the scraper 36 is also as described above. The lid attaching portion 43 is an apparatus for attaching a lid of the filling target container 20 (different from the lid 12 of the powder filling apparatus 1) to the filling target container 20 filled with powder. This lid is used to prevent the alloy powder from scattering from the filling target container 20 due to a magnetic field in the orientation device 44, gas convection in the sintering furnace 45, or the like.

配向装置44は、コイル441と容器昇降装置442を有する。コイル441は略鉛直方向(上下方向)の軸を有しており、容器昇降装置442の上方に配置されている。容器昇降装置442は、容器搬送装置46で搬送されてきた充填対象容器20をコイル441内との間で昇降させる装置である。   The orientation device 44 includes a coil 441 and a container lifting device 442. The coil 441 has a substantially vertical (vertical) axis and is disposed above the container lifting device 442. The container lifting device 442 is a device that lifts and lowers the filling target container 20 that has been transported by the container transporting device 46 between the container 441 and the inside of the coil 441.

焼結炉45は、充填対象容器20を多数収容する焼結室451と、外容器47と連通する搬入口452と、搬入口452に設けられた断熱性を有する扉453を有する。   The sintering furnace 45 includes a sintering chamber 451 that accommodates a large number of containers 20 to be filled, a carry-in port 452 that communicates with the outer vessel 47, and a door 453 having heat insulation provided at the carry-in port 452.

焼結磁石製造装置40の動作、及び本発明に係る焼結磁石製造方法の一実施形態を説明する。まず、容器搬送装置46により、充填対象容器20が粉末充填装置1に搬送され、上述のように、充填対象容器20のキャビティ22内に合金粉末が充填される。次に、スクレーパ36によって上部の余分な粉末が除去される。続いて、容器搬送装置46により充填対象容器20が蓋取付部43に搬送され、充填対象容器20に蓋が取り付けられる。その後、充填対象容器20は、容器搬送装置46によって配向装置44に搬送され、配向装置44において容器昇降装置442によってコイル441内に配置され、コイル441が生成する磁界によって充填対象容器20内の粉末が配向する。この配向処理の後、充填対象容器20は、容器昇降装置442によってコイル441内から降ろされ、容器搬送装置46によって焼結炉45に搬送され、焼結室451内で所定の温度(通常、800〜1100℃)に加熱することにより充填対象容器20内の粉末を焼結する。以上のように、本実施形態の焼結磁石製造装置40及び焼結磁石製造方法によれば、圧縮成形を行うことなく磁界中配向及び焼結がなされるPLP法によって、焼結磁石が製造される。   One embodiment of the operation of the sintered magnet manufacturing apparatus 40 and the sintered magnet manufacturing method according to the present invention will be described. First, the container transport device 46 transports the filling target container 20 to the powder filling device 1, and fills the cavity 22 of the filling target container 20 with the alloy powder as described above. Next, the excess powder on the top is removed by the scraper 36. Subsequently, the container transport device 46 transports the filling target container 20 to the lid attaching portion 43 and attaches the lid to the filling target container 20. Thereafter, the filling target container 20 is transported to the aligning device 44 by the container transporting device 46, placed in the coil 441 by the container lifting / lowering device 442 in the aligning device 44, and the powder in the filling target container 20 is generated by the magnetic field generated by the coil 441. Are oriented. After this orientation treatment, the container 20 to be filled is lowered from the inside of the coil 441 by the container lifting device 442, transported to the sintering furnace 45 by the container transport device 46, and a predetermined temperature (usually 800) in the sintering chamber 451. The powder in the filling target container 20 is sintered by heating to ˜1100 ° C. As described above, according to the sintered magnet manufacturing apparatus 40 and the sintered magnet manufacturing method of the present embodiment, a sintered magnet is manufactured by the PLP method in which orientation and sintering are performed in a magnetic field without performing compression molding. The

ここまで、本発明に係る粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法の実施形態を説明したが、言うまでもなく、本発明は上記の各実施形態には限定されず、本発明の主旨の範囲内で種々の変形が可能である。   So far, the embodiments of the powder filling apparatus, the sintered magnet manufacturing apparatus, and the sintered magnet manufacturing method according to the present invention have been described. Needless to say, the present invention is not limited to each of the above-described embodiments. Various modifications are possible within the scope of the gist.

1、1A…粉末充填装置
10、10A…粉末収容室
11…粉末収容室の本体
111…開口
112…下部シール材(接続部)
113…上部シール材
114…シール用気体供給経路
12、12A…粉末収容室の蓋
121…給気口
122…排気口
123…気体供給管
124…シリンダ
126…膜
127…膜抑制部材
13…弁装置
131…弁本体
1311…本体内気体流路
1312…シャフト嵌入孔
132…シャフト
1321…シャフト内気体流路
14…供給源側気体供給管
15…グリッド部材
20…充填対象容器
21…充填対象容器の本体
22…キャビティ
30…スペーサ
31…スペーサの貫通孔
32…シール材
35…パンチ
36…スクレーパ
361、362、363…掻き取り部
40…焼結磁石製造装置
43…蓋取付部
44…配向装置
441…コイル
442…容器昇降装置
45…焼結炉
451…焼結室
452…搬入口
453…焼結室の扉
46…容器搬送装置
47…外容器
DESCRIPTION OF SYMBOLS 1, 1A ... Powder filling apparatus 10, 10A ... Powder storage chamber 11 ... Main body 111 of powder storage chamber ... Opening 112 ... Lower sealing material (connection part)
113 ... Upper sealing material 114 ... Sealing gas supply path 12, 12A ... Powder storage chamber lid 121 ... Air supply port 122 ... Exhaust port 123 ... Gas supply pipe 124 ... Cylinder 126 ... Membrane 127 ... Membrane suppression member 13 ... Valve device 131 ... Valve main body 1311 ... In-body gas flow path 1312 ... Shaft insertion hole 132 ... Shaft 1321 ... In-shaft gas flow path 14 ... Source-side gas supply pipe 15 ... Grid member 20 ... Filling target container 21 ... Main body of filling target container 22 ... Cavity 30 ... Spacer 31 ... Spacer through-hole 32 ... Sealing material 35 ... Punch 36 ... Scraper 361, 362, 363 ... Scraper 40 ... Sintered magnet manufacturing device 43 ... Lid mounting portion 44 ... Orientation device 441 ... Coil 442 ... Container lifting device 45 ... Sintering furnace 451 ... Sintering chamber 452 ... Carry-in entrance 453 ... Sintering chamber door 46 ... Container transfer device 47 ... External

Claims (6)

a) 下端に、グリッド部材が備えられた開口と、該開口において充填対象容器と気密に接続するための接続部を有する粉末収容室と、
b) 前記粉末収容室の上部に接続された複数の気体供給管と、
c) 前記複数の気体供給管にそれぞれ接続される複数の本体内気体流路が互いに独立に内部を貫くように設けられた弁本体と
d) 前記弁本体の内部を、前記複数の本体内気体流路の全てに交差するように設けられた円筒状のシャフト嵌入孔及び該シャフト嵌入孔に回転可能に嵌入された円柱状のシャフトと、
e) 前記シャフトに、前記複数の本体内気体流路にそれぞれ対応して設けられたシャフト内気体流路と、
f) 前記複数の本体内気体流路をそれぞれ気体供給源に接続する複数の供給源側気体供給管と
を備えることを特徴とする粉末充填装置。
a) A powder storage chamber having an opening provided with a grid member at the lower end, and a connection portion for airtight connection with a container to be filled in the opening;
b) a plurality of gas supply pipes connected to the upper part of the powder storage chamber;
c) a valve body provided so that a plurality of gas passages in the body respectively connected to the plurality of gas supply pipes penetrate through the interior independently of each other;
d) a cylindrical shaft insertion hole provided inside the valve main body so as to intersect all of the plurality of gas flow paths in the main body, and a columnar shaft rotatably inserted in the shaft insertion hole; ,
e) A gas flow path in the shaft provided on the shaft corresponding to each of the gas flow paths in the plurality of main bodies, and
f) A powder filling apparatus comprising: a plurality of supply side gas supply pipes each connecting the plurality of gas passages in the main body to a gas supply source.
前記本体内気体流路及び前記シャフト内気体流路の断面の形状が、前記シャフトの軸に平行な2辺を有する長方形であることを特徴とする請求項1に記載の粉末充填装置。   2. The powder filling apparatus according to claim 1, wherein cross-sectional shapes of the gas flow path in the main body and the gas flow path in the shaft are rectangles having two sides parallel to the axis of the shaft. 前記2辺が前記長方形の長辺であることを特徴とする請求項2に記載の粉末充填装置。   The powder filling apparatus according to claim 2, wherein the two sides are long sides of the rectangle. 前記粉末収容室が蓋と粉末収容室本体を備え、該蓋と該粉末収容室本体の境界に、シール用気体が供給されることにより膨張するシール材と、該シール材にシール用気体を供給するシール用気体供給経路と、該蓋と該粉末収容室本体を互いに押さえつける押圧機構とを備えることを特徴とする請求項1〜3のいずれかに記載の粉末充填装置。   The powder storage chamber includes a lid and a powder storage chamber main body, and a sealing material that expands when a sealing gas is supplied to a boundary between the lid and the powder storage chamber main body, and supplies the sealing gas to the sealing material The powder filling apparatus according to any one of claims 1 to 3, further comprising a gas supply path for sealing, and a pressing mechanism that presses the lid and the powder storage chamber body together. 請求項1〜4のいずれかに記載の粉末充填装置と、
前記粉末充填装置により前記充填対象容器に充填された、焼結磁石の原料となる粉末が、該充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末に磁界を印加させることにより該粉末を配向させる配向部と、
前記粉末が前記充填対象容器に充填されたままの状態で、機械的圧力を印加することなく該粉末を加熱することにより焼結させる焼結部と、
を備えることを特徴とする焼結磁石製造装置。
The powder filling device according to any one of claims 1 to 4,
A magnetic field is applied to the powder without applying mechanical pressure while the powder as a raw material of the sintered magnet filled in the container to be filled by the powder filling apparatus is filled in the container to be filled. An orientation part for orienting the powder by applying,
A sintered part that is sintered by heating the powder without applying a mechanical pressure in a state where the powder is filled in the container to be filled;
A sintered magnet manufacturing apparatus comprising:
請求項1〜4のいずれかに記載の粉末充填装置を用いて焼結磁石の原料となる粉末を充填対象容器に充填する粉末充填工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向工程と、
前記粉末が前記充填対象容器に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結工程と
を行うことを特徴とする焼結磁石製造方法。
A powder filling step of filling a container to be filled with powder that is a raw material of a sintered magnet using the powder filling device according to any one of claims 1 to 4,
An orientation step of orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in the container to be filled;
A sintered magnet manufacturing method comprising: performing a sintering process by heating the powder without applying mechanical pressure while the powder is filled in the container to be filled. .
JP2017044858A 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method Active JP6848544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044858A JP6848544B2 (en) 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044858A JP6848544B2 (en) 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2018145512A true JP2018145512A (en) 2018-09-20
JP6848544B2 JP6848544B2 (en) 2021-03-24

Family

ID=63589629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044858A Active JP6848544B2 (en) 2017-03-09 2017-03-09 Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP6848544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110871271A (en) * 2018-08-29 2020-03-10 大同特殊钢株式会社 Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164919U (en) * 1974-11-18 1976-05-21
JPS60158001A (en) * 1984-01-07 1985-08-19 デグーサ・アクチエンゲゼルシヤフト Method of compressing and/or filling powdered substance
JPH09169301A (en) * 1995-12-15 1997-06-30 Inter Metallics Kk Stuffing method of molding
JP2001220733A (en) * 2000-02-07 2001-08-17 Kumagai Gumi Co Ltd Rotary valve
US20050257855A1 (en) * 2003-04-02 2005-11-24 Dong-Hwan Kim Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
CN103170630A (en) * 2013-04-19 2013-06-26 安徽工业大学 Forming method and device of anisotropic neodymium iron boron bonded permanent magnet
WO2014119778A1 (en) * 2013-02-04 2014-08-07 インターメタリックス株式会社 Powder filling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164919U (en) * 1974-11-18 1976-05-21
JPS60158001A (en) * 1984-01-07 1985-08-19 デグーサ・アクチエンゲゼルシヤフト Method of compressing and/or filling powdered substance
JPH09169301A (en) * 1995-12-15 1997-06-30 Inter Metallics Kk Stuffing method of molding
JP2001220733A (en) * 2000-02-07 2001-08-17 Kumagai Gumi Co Ltd Rotary valve
US20050257855A1 (en) * 2003-04-02 2005-11-24 Dong-Hwan Kim Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
WO2014119778A1 (en) * 2013-02-04 2014-08-07 インターメタリックス株式会社 Powder filling device
CN103170630A (en) * 2013-04-19 2013-06-26 安徽工业大学 Forming method and device of anisotropic neodymium iron boron bonded permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110871271A (en) * 2018-08-29 2020-03-10 大同特殊钢株式会社 Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method
CN110871271B (en) * 2018-08-29 2022-02-25 大同特殊钢株式会社 Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method

Also Published As

Publication number Publication date
JP6848544B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6280096B2 (en) Sintered magnet manufacturing method
JP2012189114A (en) Method of manufacturing vacuum heat insulating material
JP2018145512A (en) Powdery filling device, sintered magnet manufacturing installation and sintered magnet manufacturing method
US8672667B2 (en) Electrically insulative structure having holes for feedthroughs
KR20170134210A (en) Resin sealed product manufacturing method and resin sealing apparatus
CN110871271B (en) Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method
CN110035846A (en) The equipment of object is successively manufactured by material powder for the powder by providing stripe shape
ES2123473T3 (en) DUST COMPACTING PROCEDURE.
JP6834249B2 (en) Powder filling equipment and sintered magnet manufacturing equipment
JP2007085460A (en) Gate valve and gate valve unit provided with the same
CN107088656B (en) Powder filling apparatus, sintered magnet manufacturing equipment and sintered magnet manufacturing method
ES2876240T3 (en) Apparatus, procedure and system for molding a thermoplastic material by vacuum compression molding
JP2008221622A (en) Compression molding method for electronic component
WO2017141815A1 (en) Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method
JPH09169301A (en) Stuffing method of molding
CN109732916A (en) Material-transporting system and its control method, increasing material manufacturing equipment
US10199076B2 (en) Cavity sealing apparatus
US9839938B2 (en) Device for carrying out a deposit of particles on a substrate and deposition method using such a device
CN207885054U (en) A kind of embedding sandwich type element and electronic product
JP2002293581A (en) Device and method for gas filling of double layered glass
AU2015251105A1 (en) Method for producing an induction component and an induction component
JP2004055238A (en) Filling method and filling device of electrolytic solution
CN107527840B (en) Fan-out type packaging, curing and passivating combined device
US2398205A (en) Article handling apparatus
JP2017001258A (en) Insulation treatment device and insulation-treated object manufactured thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150