JP6834249B2 - Powder filling equipment and sintered magnet manufacturing equipment - Google Patents

Powder filling equipment and sintered magnet manufacturing equipment Download PDF

Info

Publication number
JP6834249B2
JP6834249B2 JP2016165067A JP2016165067A JP6834249B2 JP 6834249 B2 JP6834249 B2 JP 6834249B2 JP 2016165067 A JP2016165067 A JP 2016165067A JP 2016165067 A JP2016165067 A JP 2016165067A JP 6834249 B2 JP6834249 B2 JP 6834249B2
Authority
JP
Japan
Prior art keywords
powder
internal space
powder filling
filling
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016165067A
Other languages
Japanese (ja)
Other versions
JP2017145047A (en
Inventor
牧野 直幸
直幸 牧野
清明 新美
清明 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to CN201710087123.7A priority Critical patent/CN107088656B/en
Publication of JP2017145047A publication Critical patent/JP2017145047A/en
Application granted granted Critical
Publication of JP6834249B2 publication Critical patent/JP6834249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Basic Packing Technique (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、粉末を容器(以下、「充填対象容器」と呼ぶ)に充填するための粉末充填装置、及び該粉末充填装置を用いた焼結磁石製造装置に関する。 The present invention relates to a powder filling device for filling a container (hereinafter, referred to as a “filling target container”) with powder, and a sintered magnet manufacturing device using the powder filling device.

焼結磁石を製造する方法の1つに、原料粉末を所定の密度で充填対象容器に充填した後、圧縮成形を行うことなく磁界中配向及び焼結を行うPLP(press-less process)法がある(特許文献1)。この方法には、残留磁束密度を低下させることなく保磁力を高くすることができると共に、最終製品に近い形状の焼結磁石を得ることができるという利点がある。ここで原料粉末を充填対象容器に充填する密度は、原料粉末を単に充填対象容器に投入しただけ(自然充填)の密度よりも高く(且つ、圧縮成形体の密度よりも低く)することが求められる。以下、このような密度で粉末を充填対象容器に充填することを「高密度充填」と呼ぶ。 One of the methods for manufacturing sintered magnets is the PLP (press-less process) method, in which raw material powder is filled in a container to be filled at a predetermined density, and then oriented and sintered in a magnetic field without compression molding. There is (Patent Document 1). This method has an advantage that the coercive force can be increased without lowering the residual magnetic flux density and that a sintered magnet having a shape close to that of the final product can be obtained. Here, the density of filling the raw material powder into the container to be filled is required to be higher than the density of simply putting the raw material powder into the container to be filled (natural filling) (and lower than the density of the compression molded product). Be done. Hereinafter, filling the container to be filled with the powder at such a density is referred to as "high density filling".

特許文献2には、充填対象容器に粉末を高密度充填するエアタッピング装置が開示されている。この装置では、筒状ガイド部材がその下部開口において充填対象容器と連通するように、該充填対象容器が着脱可能且つ密閉可能に装着される。筒状ガイド部材の下部開口には、一定間隔で複数本張設されたワイヤや孔が多数穿設された板材等で形成されたグリッド部材が設けられている。また、筒状ガイド部材の上部開口には蓋が着脱可能且つ密閉可能に装着され、この蓋には、圧縮気体源から筒状ガイド部材の内部に気体を供給する気体供給管、及び筒状ガイド部材の内部から気体を排出する気体排出管が接続されている。気体供給管には電磁バルブが設けられている。一方、気体排出管には電磁バルブが設けられていてもよいし、電磁バルブを設けることなく気体が自然排出されるようになっていてもよい。このエアタッピング装置では、上部開口から筒状ガイド部材内に粉末を投入したうえで上部開口に蓋を装着すると共に、下部開口に充填対象容器を装着し、気体供給管に設けられた電磁バルブの開閉を繰り返すことにより、筒状ガイド部材内の粉末の上部空間の圧力を交互に上昇及び下降させ、該粉末をグリッド部材を通して充填対象容器に高密度充填する。 Patent Document 2 discloses an air tapping device that fills a container to be filled with powder at a high density. In this device, the container to be filled is detachably and hermetically mounted so that the tubular guide member communicates with the container to be filled at its lower opening. The lower opening of the tubular guide member is provided with a grid member formed of a plurality of wires stretched at regular intervals or a plate material in which a large number of holes are bored. In addition, a lid is detachably and hermetically attached to the upper opening of the tubular guide member, and the lid is equipped with a gas supply pipe that supplies gas from a compressed gas source to the inside of the tubular guide member, and a tubular guide. A gas discharge pipe that discharges gas from the inside of the member is connected. The gas supply pipe is provided with a solenoid valve. On the other hand, the gas discharge pipe may be provided with an electromagnetic valve, or the gas may be naturally discharged without providing the electromagnetic valve. In this air tapping device, powder is poured into the tubular guide member from the upper opening, a lid is attached to the upper opening, a container to be filled is attached to the lower opening, and an electromagnetic valve provided in the gas supply pipe is used. By repeating opening and closing, the pressure in the upper space of the powder in the tubular guide member is alternately increased and decreased, and the powder is densely filled in the filling target container through the grid member.

特開2006-019521号公報Japanese Unexamined Patent Publication No. 2006-019521 特開2001-072001号公報Japanese Unexamined Patent Publication No. 2001-072001

しかし、本発明者が調べたところ、このようなエアタッピング法を用いて充填対象容器に粉末を充填した場合、充填対象容器内の位置によって粉末の充填密度が異なり、充填密度が充填対象容器全体で必ずしも均一にならないことが明らかとなった。さらに詳細に調べたところ、充填対象容器内において充填密度の粗密が生じる位置は、使用するエアタッピング装置によっても相違することが判明した。 However, as a result of investigation by the present inventor, when powder is filled in a container to be filled by using such an air tapping method, the filling density of the powder differs depending on the position in the container to be filled, and the filling density is the entire container to be filled. It became clear that it was not always uniform. Upon closer examination, it was found that the position where the filling density becomes coarse and dense in the container to be filled differs depending on the air tapping device used.

本発明が解決しようとする課題は、充填対象容器内全体で充填密度が均一に近くなるように充填対象容器内に粉末を高密度充填することができる粉末充填装置、及び該粉末充填装置を用いた焼結磁石製造装置を提供することである。 The problem to be solved by the present invention is to use a powder filling device capable of densely filling the filling container with powder so that the filling density is close to uniform in the entire filling container, and the powder filling device. It is to provide the sintered magnet manufacturing apparatus which was used.

上記課題を解決するために成された本発明に係る粉末充填装置は、充填対象容器が有する複数個の粉末充填部に粉末を充填する装置であって、
a) 粉末を収容するための内部空間と、該内部空間の設けられたと、該内部空間の設けられた、前記粉末充填部と同数の複数個の下部開口とを有し、該複数個の下部開口が前記複数個の粉末充填部と同じ間隔で設けられており、該内部空間と該複数個の粉末充填部が該複数個の下部開口を介して密閉空間を形成することが可能な粉末収容室と、
b) 前記複数個の下部開口の各々に設けられたグリッド部材と、
c) 前記蓋に二次元状に設けられた3個以上の排気口と、
d) 前記蓋の、前記3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に設けられた給気口と、
e) 前記給気口を通して前記内部空間に圧縮気体をパルス状に繰り返し供給する気体供給部と
を備えることを特徴とする。
The powder filling device according to the present invention, which has been made to solve the above problems, is a device for filling a plurality of powder filling portions of a container to be filled with powder.
an internal space for accommodating a a) powder, a lid provided on the upper side of the internal space, provided on the lower side of the internal space, and a plurality of lower apertures in the same number as that of said powder filling portion The plurality of lower openings are provided at the same intervals as the plurality of powder filling portions , and the internal space and the plurality of powder filling portions provide a closed space through the plurality of lower openings. and flour powder storage chamber capable of forming,
b) With the grid members provided in each of the plurality of lower openings,
c) Three or more exhaust ports provided two-dimensionally on the lid,
d) An air supply port provided inside the area of the lid surrounded by any three of the three or more exhaust ports, and
e) It is characterized by including a gas supply unit that repeatedly supplies compressed gas in a pulse shape to the internal space through the air supply port.

本発明に係る粉末充填装置では排気口は蓋に二次元状に、すなわち一本の直線上には載らない配置で、3個以上設けられており、これら3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に給気口が設けられている。ここで「3個の排気口に囲まれた領域」とは、これら3個の排気口を結ぶ直線で囲まれた領域(三角形)として規定される。「領域の内部」には、これら直線上も含まれる。排気口が4個以上設けられている場合、それら排気口について上記要件を満たす給気口が追加的に設けられていてもよい。 In the powder filling device according to the present invention, three or more exhaust ports are provided on the lid in a two-dimensional manner, that is, in an arrangement not to be placed on one straight line, and any one of these three or more exhaust ports is provided. An air supply port is provided inside the area surrounded by the three exhaust ports. Here, the "region surrounded by three exhaust ports" is defined as a region (triangle) surrounded by a straight line connecting these three exhaust ports. The "inside of the area" also includes these straight lines. When four or more exhaust ports are provided, additional air supply ports satisfying the above requirements may be provided for those exhaust ports.

前記蓋は、粉末収容室に固定されていてもよいし、取り外し可能であってもよい。 The lid may be fixed to the powder storage chamber or may be removable.

本発明に係る粉末充填装置を使用する際には、まず、内部空間に粉末を収容する。蓋が取り外し可能である場合には該蓋を取り外してそこから内部空間に粉末を供給すればよく、蓋が粉末収容室に固定されている場合には別途粉末供給口を粉末収容室に設けておいてそこから粉末を内部空間に供給してもよいし、下部開口から供給してもよい。そして、充填対象容器の粉末充填部と密閉空間を形成するように下部開口に充填対象容器を装着したうえで、前記給気口を通して前記内部空間に圧縮気体をパルス状に繰り返し供給する。これにより、内部空間内の粉末の上部空間の圧力を交互に上昇及び下降させ、該粉末をグリッド部材を通して充填対象容器に高密度充填する。 When using the powder filling device according to the present invention, first, the powder is stored in the internal space. If the lid is removable, the lid may be removed and powder may be supplied to the internal space from there. If the lid is fixed to the powder storage chamber, a separate powder supply port is provided in the powder storage chamber. The powder may be supplied from there to the internal space, or may be supplied from the lower opening. Then, the filling target container is attached to the lower opening so as to form a closed space with the powder filling portion of the filling target container, and then the compressed gas is repeatedly supplied to the internal space in a pulse shape through the air supply port. As a result, the pressure in the upper space of the powder in the internal space is alternately increased and decreased, and the powder is densely filled in the filling target container through the grid member.

本発明に係る粉末充填装置では、給気口から前記内部空間に供給される圧縮気体は給気口から、横方向に拡がりながら下方に向い、粉末を下部開口側に押す。そして、圧縮気体は粉末層からの反作用により上に向かい、さらに横方向に拡がりながら排気口に達し、外部に排出される。その際、給気口が3個の排気口に囲まれた領域の内部に配置されていることにより、横方向に拡がった気体が偏りなく排気口から排出される。そのため、内部空間内で局所的に圧力が上昇又は低下することを抑えることができ、それにより、開口からグリッド部材を通して充填対象容器に、均一に近い密度になるように粉末を供給することができる。 In the powder filling device according to the present invention, the compressed gas supplied from the air supply port to the internal space is directed downward while spreading laterally from the air supply port, and pushes the powder toward the lower opening side. Then, the compressed gas moves upward due to the reaction from the powder layer, reaches the exhaust port while spreading in the lateral direction, and is discharged to the outside. At that time, since the air supply port is arranged inside the area surrounded by the three exhaust ports, the gas spread in the lateral direction is discharged from the exhaust port without bias. Therefore, it is possible to suppress a local increase or decrease in pressure in the internal space, whereby the powder can be supplied from the opening through the grid member to the container to be filled so as to have a density close to uniform. ..

前記給気口は、前記3個の排気口から等距離の位置に配置されていることが望ましい。これにより、より一層、内部空間内での圧力分布が均一に近くなり、充填対象容器に均一に近い密度になるように粉末を供給することができる。ここで、給気口の位置は、前記等距離の位置からわずかにずれている、具体的には該距離の10%以下だけずれていても許容される。 It is desirable that the air supply ports are arranged at equidistant positions from the three exhaust ports. As a result, the pressure distribution in the internal space becomes closer to uniform, and the powder can be supplied to the container to be filled so as to have a density close to uniform. Here, the position of the air supply port is slightly deviated from the equidistant position, specifically, it is permissible to deviate by 10% or less of the distance.

前記排気口は正方格子、長方格子又は三角格子から成る格子の格子点に配置されており、前記給気口は該格子における単位格子の重心に配置されていることが望ましい。これらの格子における単位格子の重心は、該単位格子が有する4個の格子点のうち3個を(結果的には残りの1個も)結ぶ直線で囲まれる領域内(前記の通り、直線上を含む)にあり、3個の排気口から等距離の位置にあるため、上述の理由により、内部空間内での圧力分布を均一に近くすることができる。 It is desirable that the exhaust port is arranged at a lattice point of a lattice composed of a square lattice, a rectangular lattice or a triangular lattice, and the air supply port is arranged at the center of gravity of the unit lattice in the lattice. The center of gravity of the unit grid in these grids is within the region surrounded by a straight line connecting three (and eventually the remaining one) of the four grid points of the unit grid (as described above, on the straight line). Because it is located at the same distance from the three exhaust ports, the pressure distribution in the internal space can be made close to uniform for the above reasons.

本発明に係る焼結磁石製造装置は、
a) 充填対象容器が有する複数個の粉末充填部に焼結磁石の原料となる粉末を充填する装置であって、
a-1) 前記粉末を収容するための内部空間と、該内部空間の設けられたと、該内部空間の設けられた、前記粉末充填部と同数の複数個の下部開口とを有し、該複数個の下部開口が前記複数個の粉末充填部と同じ間隔で設けられており、該内部空間と該複数個の粉末充填部が該複数個の下部開口を介して密閉空間を形成することが可能な粉末収容室と、
a-2) 前記複数個の下部開口の各々に設けられたグリッド部材と、
a-3) 前記蓋に二次元状に設けられた3個以上の排気口と、
a-4) 前記蓋の、前記3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に設けられた給気口と、
a-5) 前記給気口を通して前記内部空間に圧縮気体をパルス状に繰り返し供給する気体供給部と
を有する粉末充填装置と、
b) 前記粉末が、前記複数個の粉末充填部の各々に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向部と、
c) 前記粉末が、前記複数個の粉末充填部の各々
に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結部と、
を備えることを特徴とする。
The sintered magnet manufacturing apparatus according to the present invention is
a) A device that fills a plurality of powder filling parts of a container to be filled with powder that is a raw material for sintered magnets.
a-1) and the powder interior space for housing and a lid provided on the upper side of the internal space, provided on the lower side of the internal space, the powder filling portion and the same number of plurality of lower It has openings, and the plurality of lower openings are provided at the same intervals as the plurality of powder filling portions , and the internal space and the plurality of powder filling portions are provided through the plurality of lower openings. and flour powder storage chamber capable of forming a closed space,
a-2) With the grid members provided in each of the plurality of lower openings,
a-3) Three or more exhaust ports provided two-dimensionally on the lid,
a-4) An air supply port provided inside the area of the lid surrounded by any three of the three or more exhaust ports, and
a-5) A powder filling device having a gas supply unit that repeatedly supplies compressed gas in a pulse shape to the internal space through the air supply port, and
b) With the alignment portion for orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions. ,
c) With a sintered portion in which the powder is sintered by heating the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions. ,
It is characterized by having.

本発明に係る焼結磁石製造方法は、
a) 充填対象容器が有する複数個の粉末充填部に焼結磁石の原料となる粉末を充填する工程であって、
1) 前記粉末を収容するための内部空間と、該内部空間の設けられたと、該内部空間の設けられた、前記粉末充填部と同数の複数個の下部開口とを有し、該複数個の下部開口が前記複数個の粉末充填部と同じ間隔で設けられており、該内部空間と該複数個の粉末充填部が該複数個の下部開口を介して密閉空間を形成することが可能な粉末収容室と、
2) 前記複数個の下部開口の各々に設けられたグリッド部材と、
3) 前記蓋に二次元状に設けられた3個以上の排気口と、
4) 前記蓋の、前記3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に設けられた給気口と、
5) 前記給気口を通して前記内部空間に圧縮気体をパルス状に繰り返し供給する気体供給部と
を有する粉末充填装置の前記内部空間に粉末を収容し、該内部空間に圧縮気体をパルス状に繰り返し供給することにより、前記複数個の粉末充填部の各々に粉末を充填する粉末充填工程と、
b) 前記粉末が、前記複数個の粉末充填部の各々に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向工程と、
c) 前記粉末が、前記複数個の粉末充填部の各々に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結工程と
を行うことを特徴とする。
The sintered magnet manufacturing method according to the present invention
The powder of the sintered magnet raw material into a plurality of powder filling unit having: a) filling the target container comprising the steps of Hama charge,
1) and internal space for accommodating the powder, a lid provided on the upper side of the internal space, provided on the lower side of the internal space, and a plurality of lower opening of the same number as the powder filling portion The plurality of lower openings are provided at the same intervals as the plurality of powder filling portions , and the internal space and the plurality of powder filling portions are sealed spaces via the plurality of lower openings. and flour powder storage chamber capable of forming,
2) With the grid members provided in each of the plurality of lower openings,
3) Three or more exhaust ports provided two-dimensionally on the lid,
4) An air supply port provided inside the area of the lid surrounded by any three of the three or more exhaust ports, and
5) The powder is housed in the internal space of the powder filling device having a gas supply unit that repeatedly supplies the compressed gas to the internal space in a pulse shape through the air supply port, and the compressed gas is repeatedly pulsed in the internal space. A powder filling step of filling each of the plurality of powder filling portions with powder by supplying the powder.
b) An orientation step of orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions. ,
c) Performing a sintering step in which the powder is sintered by heating the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions. It is a feature.

本発明により、充填密度が均一に近くなるように充填対象容器内に粉末を高密度充填することができる。 According to the present invention, powder can be densely filled in a container to be filled so that the filling density is close to uniform.

本発明に係る粉末充填装置の全体構成を示す概略図(a)及び給気口及び排気口の配置を示す上面図(b)。A schematic view (a) showing the overall configuration of the powder filling device according to the present invention and a top view (b) showing the arrangement of the air supply port and the exhaust port. 本実施例の粉末充填装置における本体の外側底面を示す図。The figure which shows the outer bottom surface of the main body in the powder filling apparatus of this Example. 本実施例の粉末充填装置を用いて粉末を充填する充填対象容器の一例を示す上面図(a)及び縦断面図(b)。Top view (a) and vertical cross-sectional view (b) showing an example of a container to be filled to be filled with powder using the powder filling device of this embodiment. 本実施例の粉末充填装置の動作を示す概略図。The schematic diagram which shows the operation of the powder filling apparatus of this Example. 充填対象容器に粉末を充填した後の高密度化処理の例を説明する概略図。The schematic diagram explaining the example of the densification treatment after filling a container with a filling with powder. 粉末充填装置の変形例である、蓋の内側に膜等を設けた例を示す概略図。The schematic diagram which shows the example which provided the membrane or the like inside the lid which is the modification of the powder filling apparatus. 給気口及び排気口の配置の4つの変形例を示す上面図。Top view showing four modified examples of arrangement of air supply port and exhaust port. エアタッピング時に本体内の粉末に印加される圧力の空間分布を計算で求めた結果を実施例1(a-1)及び実施例2(b-1)について示す図、並びにキャビティへの充填密度の分布を実験で求めた結果を実施例1(a-2)及び実施例2(b-2)について示す図。The figure showing the results of calculating the spatial distribution of the pressure applied to the powder in the main body during air tapping for Example 1 (a-1) and Example 2 (b-1), and the filling density of the cavity. The figure which shows the result of having obtained the distribution by an experiment about Example 1 (a-2) and Example 2 (b-2). 実施例及び比較例について充填密度の平均値及びばらつきの大きさを示すグラフ。The graph which shows the average value of the packing density and the magnitude of variation about an Example and a comparative example. 外周部排気口を有する例(実施例3及び4)を示す上面図。Top view showing an example (Examples 3 and 4) having an outer peripheral exhaust port. エアタッピング時に本体内の粉末に印加される圧力の空間分布を計算で求めた結果を実施例3(a-1)及び実施例4(b-1)について示す図、並びにキャビティへの充填密度の分布を実験で求めた結果を実施例3(a-2)及び実施例4(b-2)について示す図。The figure showing the results of calculating the spatial distribution of the pressure applied to the powder in the main body during air tapping for Example 3 (a-1) and Example 4 (b-1), and the filling density of the cavity. The figure which shows the result of having obtained the distribution by an experiment about Example 3 (a-2) and Example 4 (b-2). 本実施例に係る焼結磁石製造装置の全体構成を示す概略図。The schematic diagram which shows the whole structure of the sintered magnet manufacturing apparatus which concerns on this Example.

図1〜図12を用いて、本発明に係る粉末充填装置及び焼結磁石製造装置の実施例を説明する。 Examples of the powder filling device and the sintered magnet manufacturing device according to the present invention will be described with reference to FIGS. 1 to 12.

図1(a)は、本実施例の粉末充填装置10の全体の構成を示す概略図である。粉末充填装置10は、本体11、蓋12、及び気体供給源13を有している。 FIG. 1A is a schematic view showing the overall configuration of the powder filling device 10 of this embodiment. The powder filling device 10 has a main body 11, a lid 12, and a gas supply source 13.

本体11は直方体の箱状のものであって、天井部の全体が開放されており、底部には後述の下部開口111が設けられている。蓋12は、本体11と同じ横断面を有する直方体の箱状のものであって、底部の全体が開放されており、天井部には後述の給気口121及び排気口122が設けられている。本体11及び蓋12には、ステンレス鋼やアルミニウム等から成るものを用いることができる。 The main body 11 has a rectangular parallelepiped box shape, and the entire ceiling portion is open, and a lower opening 111, which will be described later, is provided at the bottom portion. The lid 12 is a rectangular parallelepiped box having the same cross section as the main body 11, and the entire bottom portion is open, and the ceiling portion is provided with an air supply port 121 and an exhaust port 122, which will be described later. .. As the main body 11 and the lid 12, those made of stainless steel, aluminum, or the like can be used.

蓋12の側壁の下端にはその全周に亘ってシール材123が設けられている。また、蓋12の上面には、それを下方に押すための、押さえシリンダ124の可動部と接続する接続具125が設けられている。本体11の上に蓋12を載置したうえで押さえシリンダ124によって蓋12を本体11側に押しつけることにより、本体11と蓋12の境界における気密性が確保され、前記下部開口111、前記給気口121及び前記排気口122以外が密閉された内部空間102を有する粉末収容室101が形成されるようになっている。なお、シール材123は、本体11の側壁の上端に設けてもよい。 A sealing material 123 is provided at the lower end of the side wall of the lid 12 over the entire circumference thereof. Further, on the upper surface of the lid 12, a connector 125 for connecting to the movable portion of the pressing cylinder 124 is provided for pushing the lid 12 downward. By placing the lid 12 on the main body 11 and pressing the lid 12 toward the main body 11 by the pressing cylinder 124, airtightness at the boundary between the main body 11 and the lid 12 is ensured, and the lower opening 111 and the air supply are provided. A powder storage chamber 101 having an internal space 102 other than the port 121 and the exhaust port 122 is formed. The sealing material 123 may be provided at the upper end of the side wall of the main body 11.

本体11の底部には、長方形の下部開口111が、該底部の長方形の長辺方向に等間隔に6個、短辺方向には長辺方向よりも長い等間隔で3個、合計18個設けられている。また、本体11の外側の底面には、これら18個の下部開口111の全体を囲むようにシール材113が設けられている(図2参照)。 At the bottom of the main body 11, six rectangular lower openings 111 are provided at equal intervals in the long side direction of the bottom rectangle, and three at equal intervals longer than the long side direction in the short side direction, for a total of 18 pieces. Has been done. Further, a sealing material 113 is provided on the outer bottom surface of the main body 11 so as to surround the entire 18 lower openings 111 (see FIG. 2).

各下部開口111にはグリッド部材15が取り付けられている。グリッド部材15は、縦及び横にそれぞれワイヤが一定間隔で複数本張設されて成る。本実施例では、平均粒径が3μmの粉末を充填対象容器への充填の対象として、グリッド部材15のワイヤの間隔は3mmとした。このように、グリッド部材15のワイヤの間隔は粉末の平均粒径よりも3桁大きいが、粉末の粒子が凝集することにより、単にグリッド部材15の上に粉末を載置しただけでは、粉末がワイヤの間を通過して落下することはない。 A grid member 15 is attached to each lower opening 111. The grid member 15 is formed by stretching a plurality of wires vertically and horizontally at regular intervals. In this example, the powder having an average particle size of 3 μm was to be filled into the container to be filled, and the interval between the wires of the grid member 15 was set to 3 mm. As described above, the distance between the wires of the grid member 15 is three orders of magnitude larger than the average particle size of the powder, but the powder is produced by simply placing the powder on the grid member 15 due to the aggregation of the powder particles. It does not fall through between the wires.

本体11の側の底面にはスペーサ30を介して充填対象容器20が装着される。充填対象容器20は、長方形の平板状の本体21の上面側に平板状のキャビティ22が、粉末充填装置10の本体11の下部開口111と同じ間隔で長辺方向に6個、短辺方向に3個、合計18個設けられたものである(図3参照)。キャビティ22の上面は該下部開口111と同形状である。また、スペーサ30は、板材に18個の貫通孔31が、該下部開口111と同形状且つ同じ配置で設けられ、これら18個の貫通孔31の全体を囲むようにシール材32が下面に設けられたものである。下から順に充填対象容器20、スペーサ30及び本体11を、キャビティ22、貫通孔31及び下部開口111の位置を合わせて重ね、押さえシリンダ124によって蓋12を介して本体11を充填対象容器20側に押しつけることにより、本体11とスペーサ30、及びスペーサ30と充填対象容器20の境界における気密性がシール材113及び32によって確保され、本体11の下部開口111が充填対象容器20で密閉されるようになっている。なお、本実施例の粉末充填装置10を使用する際に、本体11と充填対象容器20の間にスペーサ30を介することは必須ではなく、本体11の底面を直接充填対象容器20の上に重ねてもよい。スペーサ30を使用する目的は、粉末充填装置10の使用方法を説明する際に述べる。 The filling target container 20 is mounted on the bottom surface on the side of the main body 11 via the spacer 30. In the container 20 to be filled, there are six flat plate-shaped cavities 22 on the upper surface side of the rectangular flat plate-shaped main body 21 at the same intervals as the lower opening 111 of the main body 11 of the powder filling device 10 in the long side direction and in the short side direction. Three, a total of 18 are provided (see FIG. 3). The upper surface of the cavity 22 has the same shape as the lower opening 111. Further, in the spacer 30, 18 through holes 31 are provided in the plate material in the same shape and in the same arrangement as the lower opening 111, and a sealing material 32 is provided on the lower surface so as to surround the entire 18 through holes 31. It was done. The filling target container 20, the spacer 30 and the main body 11 are stacked in this order from the bottom so that the cavities 22, the through holes 31 and the lower opening 111 are aligned, and the main body 11 is placed on the filling target container 20 side via the lid 12 by the pressing cylinder 124. By pressing, the airtightness at the boundary between the main body 11 and the spacer 30 and the spacer 30 and the filling target container 20 is ensured by the sealing materials 113 and 32, and the lower opening 111 of the main body 11 is sealed by the filling target container 20. It has become. When using the powder filling device 10 of this embodiment, it is not essential to insert a spacer 30 between the main body 11 and the filling target container 20, and the bottom surface of the main body 11 is directly overlapped on the filling target container 20. You may. The purpose of using the spacer 30 will be described when explaining how to use the powder filling device 10.

蓋12の天井部には、図1(b)の上面図に示すように、給気口121が6個、排気口122が18個設けられている。なお、図1(b)では、本体11、蓋12、スペーサ30及び充填対象容器20を重ねたときに充填対象容器20のキャビティ22が配置される位置を破線で示している。排気口122は、天井部の長方形の長辺方向に等間隔で6個、短辺方向には長辺方向よりも長い等間隔で3個、2次元状に配置されている。すなわち、これら排気口122は、長方格子の格子点上に配置されている。各排気口122の位置は、蓋12を本体11に装着した際に、下部開口111の長方形の重心の直上となる位置である。給気口121は、長辺方向には排気口122の2倍の間隔で3個、短辺方向には排気口122と同じ間隔で2個、2次元状に配置されている。ここで図1(b)に示す4個の排気口122、122、122、122のうちいずれか3個を結ぶ直線で規定される三角形から成る領域に着目する。例えば、3個の排気口122、122、122を結ぶ直線で規定される三角形から成る領域122Aに着目すると、給気口121はこの直線上、すなわち上記の定義の通り領域122A内に配置されている。排気口122、122、122等、他の排気口の組み合わせでも同様である。また、排気口122と122、及び排気口122と122はそれぞれ、給気口121を対称点とする点対称の位置にある。従って、4個の排気口122、122、122、122のうち任意の3個を結ぶ直線で規定される三角形から成る領域は、給気口121を対称点とする点対称の位置にある2個の排気口を有している。さらに、給気口121は、排気口122が配置された長方格子の単位格子122Uの重心の位置とも一致している。以上のように、上記4個の排気口122、122、122、122は、いずれも排気口121と等距離の位置にある。 As shown in the top view of FIG. 1B, the ceiling of the lid 12 is provided with six air supply ports 121 and 18 exhaust ports 122. In FIG. 1B, the position where the cavity 22 of the filling target container 20 is arranged when the main body 11, the lid 12, the spacer 30, and the filling target container 20 are stacked is shown by a broken line. Six exhaust ports 122 are arranged two-dimensionally in the long side direction of the rectangle of the ceiling portion at equal intervals and three exhaust ports 122 in the short side direction at equal intervals longer than the long side direction. That is, these exhaust ports 122 are arranged on the grid points of the rectangular grid. The position of each exhaust port 122 is a position directly above the rectangular center of gravity of the lower opening 111 when the lid 12 is attached to the main body 11. Three air supply ports 121 are arranged two-dimensionally in the long side direction at twice the interval of the exhaust port 122, and two in the short side direction at the same interval as the exhaust port 122. Here, attention is paid to a region consisting of a triangle defined by a straight line connecting any three of the four exhaust ports 122 1 , 122 2 , 122 3 , and 122 4 shown in FIG. 1 (b). For example, focusing on the region 122A consisting of a triangle defined by a straight line connecting the three exhaust ports 122 1 , 122 2 , and 122 3, the air supply port 121 is on this straight line, that is, in the region 122A as defined above. Have been placed. Exhaust port 122 1, 122 2, 122 4, etc., is the same in other combinations of the exhaust port. The exhaust port 122 1 and 122 3, and an exhaust port 122 2 and 122 4, respectively, in a position of point symmetry to the air supply port 121 and the point of symmetry. Therefore, the region consisting of a triangle defined by a straight line connecting any three of the four exhaust ports 122 1 , 122 2 , 122 3 , and 122 4 is a point-symmetrical position with the air supply port 121 as the point of symmetry. It has two exhaust ports in. Further, the air supply port 121 also coincides with the position of the center of gravity of the unit lattice 122U of the rectangular lattice in which the exhaust port 122 is arranged. As described above, the four exhaust ports 122 1, 122 2, 122 3, 122 4 are all equidistant positions and exhaust port 121.

後述のように本体11内に粉末を供給する際に蓋12を本体11の直上の位置から横に移動させるために、粉末充填装置10は蓋12の移動機構(図示せず)を有している。 As will be described later, in order to move the lid 12 laterally from a position directly above the main body 11 when supplying powder into the main body 11, the powder filling device 10 has a moving mechanism (not shown) for the lid 12. There is.

気体供給源13は、圧縮気体源131と、該圧縮気体源131から6本(図1では、うち3本のみを示す)に分岐して各給気口121に接続される圧縮気体配管132と、それら6本の圧縮気体配管132にそれぞれ設けられた電磁弁133を有する。圧縮気体には、焼結磁石の原料合金粉末等の酸化しやすい粉末を取り扱う場合には窒素ガスや希ガスといった不活性ガスを用い、酸化が問題にならない粉末を取り扱う場合にはコストの点で空気を用いるのがよい。圧縮気体配管132の一部は、蓋12を本体11の直上と他の位置の間で移動させたり本体11に押しつける際に上下に移動させることができるように、可撓性を有している。本実施例で用いる電磁弁133は、1秒間につき数十回程度の高速で開閉を繰り返すことができる弁である。なお、電磁弁133は、圧縮気体配管132のうち6本に分岐する手前(圧縮気体源131側)の位置に1個のみ設けるようにしてもよい。 The gas supply source 13 includes a compressed gas source 131 and a compressed gas pipe 132 that branches from the compressed gas source 131 into six pipes (only three of them are shown in FIG. 1) and is connected to each air supply port 121. , Each of these six compressed gas pipes 132 has a solenoid valve 133. As the compressed gas, an inert gas such as nitrogen gas or rare gas is used when handling easily oxidizable powder such as the raw material alloy powder of the sintered magnet, and in terms of cost when handling powder in which oxidation is not a problem. It is better to use air. A part of the compressed gas pipe 132 has flexibility so that the lid 12 can be moved up and down when the lid 12 is moved between the position directly above the main body 11 and another position or pressed against the main body 11. .. The solenoid valve 133 used in this embodiment is a valve that can be repeatedly opened and closed at a high speed of about several tens of times per second. It should be noted that only one solenoid valve 133 may be provided at a position (on the side of the compressed gas source 131) before branching into six of the compressed gas pipes 132.

排気口122は、本実施例では蓋12の外側にそのまま開放されているが、蓋12の外側に設けた排気管と接続し、該排気管に電磁弁を設けてもよい。このような電磁弁を用いる場合には、圧縮気体配管132の電磁弁133と開閉のタイミングを逆にする。 Although the exhaust port 122 is opened to the outside of the lid 12 as it is in this embodiment, it may be connected to an exhaust pipe provided on the outside of the lid 12 and an electromagnetic valve may be provided in the exhaust pipe. When such a solenoid valve is used, the timing of opening and closing is reversed from that of the solenoid valve 133 of the compressed gas pipe 132.

酸化しやすい粉末を取り扱う場合には、粉末充填装置10のうち少なくとも本体11及び蓋12、並びに充填対象容器20及びスペーサ30を、内部を不活性ガスで満たした(無酸素雰囲気にした)外容器(図示せず)内に収容する。 When handling powder that is easily oxidized, at least the main body 11 and lid 12 of the powder filling device 10, and the filling container 20 and the spacer 30 are filled with an inert gas (an oxygen-free atmosphere). Contain in (not shown).

図4を用いて、本実施例の粉末充填装置10の動作を説明する。まず、本体11と蓋12が分離されている状態で、粉末Pを本体11内に供給する(a)。このとき粉末Pは、下部開口111に設けられたグリッド部材15の上に載るが、前述の理由により、グリッド部材15のワイヤの間を通過して落下することはない。 The operation of the powder filling device 10 of this embodiment will be described with reference to FIG. First, the powder P is supplied into the main body 11 in a state where the main body 11 and the lid 12 are separated (a). At this time, the powder P is placed on the grid member 15 provided in the lower opening 111, but for the reason described above, the powder P does not pass between the wires of the grid member 15 and fall.

次に、上面にスペーサ30が装着された充填対象容器20を、本体11の下部開口111と充填対象容器20のキャビティ22の位置を合わせるように本体11の直下に配置する。それと共に、本体11の上に蓋12を載置する。そして、押さえシリンダ124により、蓋12を下方に押す(b)。これにより、蓋12と本体11、本体11とスペーサ30、及びスペーサ30と充填対象容器20の間の気密性が、それぞれシール材123、113及び32により確保される。 Next, the filling target container 20 having the spacer 30 mounted on the upper surface is arranged directly below the main body 11 so that the lower opening 111 of the main body 11 and the cavity 22 of the filling target container 20 are aligned with each other. At the same time, the lid 12 is placed on the main body 11. Then, the lid 12 is pushed downward by the pressing cylinder 124 (b). As a result, the airtightness between the lid 12 and the main body 11, the main body 11 and the spacer 30, and the spacer 30 and the filling container 20 is ensured by the sealing materials 123, 113 and 32, respectively.

この状態で、電磁弁133を1秒間につき数十回の周期で繰り返し開閉することにより、圧縮気体源131から圧縮気体配管132及び給気口121を通して粉末収容室101の内部空間102に圧縮気体をパルス状に繰り返し供給する(c)。供給された圧縮気体は、排気口122の排気抵抗によって給気のタイミングからやや遅れて排気口122から排出される。これにより、粉末収容室101の内部空間102では圧力が前記周期で上昇及び下降を繰り返す。粉末Pは、この圧力によって同周期で繰り返し下方に押され(エアタッピング)、グリッド部材15のワイヤの間から下方に押し出されて充填対象容器20のキャビティ22へ落下してゆく。なお、圧縮気体の圧力、周期及び1周期中の圧縮気体を供給する時間の比(デューティ比)は、取り扱う粉末毎に当業者が予備実験を行って適宜定めればよい。 In this state, the solenoid valve 133 is repeatedly opened and closed at a cycle of several tens of times per second to allow the compressed gas to flow from the compressed gas source 131 into the internal space 102 of the powder storage chamber 101 through the compressed gas pipe 132 and the air supply port 121. Repeatedly supplied in a pulsed manner (c). The supplied compressed gas is discharged from the exhaust port 122 slightly later than the timing of supply air due to the exhaust resistance of the exhaust port 122. As a result, in the internal space 102 of the powder storage chamber 101, the pressure repeatedly rises and falls in the cycle. The powder P is repeatedly pushed downward (air tapping) by this pressure in the same cycle, pushed downward from between the wires of the grid member 15, and falls into the cavity 22 of the container 20 to be filled. The pressure of the compressed gas, the period, and the ratio of the time for supplying the compressed gas in one cycle (duty ratio) may be appropriately determined by those skilled in the art by conducting a preliminary experiment for each powder to be handled.

この操作を所定時間行うことにより、キャビティ22内、及びその上にあるスペーサ30の貫通孔31のところまで粉末Pで満たされる。その後、押さえシリンダ124による押圧を解放し、充填対象容器20とスペーサ30を一体のままで、本体11から離す(d)。以上により、キャビティ22及び貫通孔31内に粉末Pを充填する操作が完了する。 By performing this operation for a predetermined time, the inside of the cavity 22 and the through hole 31 of the spacer 30 above the cavity 22 are filled with the powder P. After that, the pressing by the pressing cylinder 124 is released, and the container 20 to be filled and the spacer 30 are separated from the main body 11 while remaining integrated (d). As described above, the operation of filling the cavity 22 and the through hole 31 with the powder P is completed.

ここではスペーサ30を用いた例を説明したが、このスペーサ30は、次に述べる後処理によって更に粉末の充填密度を高くするために用いている。従って、エアタッピングにより得られる充填密度よりも高くする必要がなければ、スペーサ30を使用する必要はない。しかし、PLP法によりRFeB(R2Fe14B:RはNd等の希土類元素)系焼結磁石を製造する際には、エアタッピングだけでは必要な充填密度まで高くすることが難しいため、スペーサ30を使用して以下の高密度化処理を行うことが望ましい。 Although an example using the spacer 30 has been described here, the spacer 30 is used to further increase the packing density of the powder by the post-treatment described below. Therefore, it is not necessary to use the spacer 30 unless it is necessary to increase the filling density obtained by air tapping. However, when manufacturing RFeB (R 2 Fe 14 B: R is a rare earth element such as Nd) -based sintered magnet by the PLP method, it is difficult to increase the filling density to the required packing density only by air tapping, so the spacer 30 It is desirable to perform the following densification treatment using.

図5を用いて高密度化処理を説明する。
まず、スペーサ30の上面よりもわずかに上にはみ出した粉末Pを、スクレーパ36で掻き取り、スペーサ30の上面と同一平面になるように粉末Pの上端をならす(a)。本実施例のスクレーパ36は第1〜第3の掻き取り部361〜363を有し、第1掻き取り部361から第3掻き取り部363に向かって、粉末Pと接する先端の高さが低くなっている。スクレーパ36全体を、第1掻き取り部361、第2掻き取り部362、第3掻き取り部363の順で粉末Pに接触するように移動させることにより、粉末Pを徐々に掻き取ることができる。次に、スペーサ30の貫通孔31と同形状のパンチ35を上側から該貫通孔31に挿入することにより、貫通孔31内の粉末Pを充填対象容器20のキャビティ22に押し込む(b)。これにより、キャビティ22に、粉末充填装置10による充填時よりも高い密度で粉末Pが充填される。
The densification process will be described with reference to FIG.
First, the powder P slightly protruding above the upper surface of the spacer 30 is scraped off by the scraper 36, and the upper end of the powder P is smoothed so as to be flush with the upper surface of the spacer 30 (a). The scraper 36 of this embodiment has first to third scraping portions 361 to 363, and the height of the tip in contact with the powder P is low from the first scraping portion 361 to the third scraping portion 363. It has become. The powder P can be gradually scraped by moving the entire scraper 36 in the order of the first scraping portion 361, the second scraping portion 362, and the third scraping portion 363 so as to come into contact with the powder P. .. Next, the powder P in the through hole 31 is pushed into the cavity 22 of the filling target container 20 by inserting the punch 35 having the same shape as the through hole 31 of the spacer 30 into the through hole 31 from above (b). As a result, the cavity 22 is filled with the powder P at a higher density than that at the time of filling by the powder filling device 10.

ここで、各掻き取り部361〜363及びスペーサ30には、繰り返し使用することで摩耗が生じることを抑えるために、耐摩耗性に優れた材料を用いている。各掻き取り部361〜363は、以下の表1の組成を有する冷間ダイス鋼材であるSKD11(日本工業規格(JIS) G4404に規定)から成る。SKD11は、製造時の条件にも依るが、ロックウェル硬さ(HRC)が60以上という高い値を有する。スペーサ30は、ステンレス鋼(SUS304)に硬質クロムメッキを施すことにより、表面のHRCを63以上としている。スペーサ30が摩耗すると、各掻き取り部361〜363によって掻き取られる粉末Pの量が変化し、それによりキャビティ22に充填される粉末Pの量が変化してしまうため、各掻き取り部361〜363のHRCよりもスペーサ30の表面のHRCが高い方が望ましい。
Here, a material having excellent wear resistance is used for each of the scraping portions 361 to 363 and the spacer 30 in order to prevent wear from occurring due to repeated use. Each scraping portion 361 to 363 is composed of SKD11 (specified in Japanese Industrial Standards (JIS) G4404), which is a cold die steel material having the composition shown in Table 1 below. SKD11 has a high Rockwell hardness (HRC) of 60 or more, depending on the manufacturing conditions. The spacer 30 has a surface HRC of 63 or more by applying hard chrome plating to stainless steel (SUS304). When the spacer 30 is worn, the amount of powder P scraped by each scraping portion 361-363 changes, which changes the amount of powder P filled in the cavity 22. Therefore, each scraping portion 361 to 361 It is desirable that the HRC on the surface of the spacer 30 is higher than the HRC of 363.

図6に、本実施例の変形例の粉末充填装置10Aを示す。この粉末充填装置10Aは、上記実施例と同じ構成を備える本体11と下記の構成を備える蓋12Aから成る粉末収容室101Aを有する。蓋12Aは、その内部に、横方向に張設されたシリコーンゴム製の膜126と、膜126の直下に設けられた金属製の網から成る膜抑制部材127が設けられている。それ以外の粉末充填装置10Aの構成は、上記粉末充填装置10と同じである。 FIG. 6 shows a powder filling device 10A of a modified example of this embodiment. The powder filling device 10A has a powder storage chamber 101A including a main body 11 having the same configuration as that of the above embodiment and a lid 12A having the following configuration. The lid 12A is provided with a film 126 made of silicone rubber stretched in the lateral direction and a film suppressing member 127 made of a metal net provided directly under the film 126. Other than that, the configuration of the powder filling device 10A is the same as that of the powder filling device 10.

粉末充填装置10Aの使用方法は、上記粉末充填装置10と同じである。給気口121から圧縮気体を粉末収容室101Aの内部空間102Aに導入すると、その圧縮気体自体は膜126を通過しないが膜126を下方に押す(図6中の一点鎖線)ため、膜126の下側にある気体が粉末Pを押すこととなり、上記粉末充填装置10と同様に、粉末Pをグリッド部材15のワイヤの間から下方に押し出して充填対象容器20のキャビティ22に供給することができる。そして、膜126を用いることにより、給気口121から圧縮気体を粉末収容室101Aの内部空間102Aに導入した際に、本体11内の粉末Pが該内部空間102Aのうち膜126よりも上側、すなわち給気口121及び排気口122側の領域1021Aに飛散して給気口121や排気口122に詰まることを防止することができる。 The method of using the powder filling device 10A is the same as that of the powder filling device 10. When the compressed gas is introduced into the internal space 102A of the powder storage chamber 101A from the air supply port 121, the compressed gas itself does not pass through the film 126 but pushes the film 126 downward (dashed line in FIG. 6). The gas on the lower side pushes the powder P, and similarly to the powder filling device 10, the powder P can be pushed downward from between the wires of the grid member 15 and supplied to the cavity 22 of the filling target container 20. .. Then, by using the film 126, when the compressed gas is introduced into the internal space 102A of the powder storage chamber 101A from the air supply port 121, the powder P in the main body 11 is above the film 126 in the internal space 102A. That is, it is possible to prevent the air supply port 121 and the exhaust port 122 from being scattered in the region 1021A on the side of the air supply port 121 and the exhaust port 122 and being clogged with the air supply port 121 and the exhaust port 122.

なお、膜抑制部材127が無いと、膜126が降下し過ぎて本体11内の粉末Pに接触してしまうおそれがある。膜126が粉末Pに接触すると、粉末Pに直接圧縮力が作用し、密度分布が生じる。そのため、蓋12A内で膜126の下に膜抑制部材127を設けることにより、膜126が粉末Pに接触することを防止している。 If the film suppressing member 127 is not provided, the film 126 may drop too much and come into contact with the powder P in the main body 11. When the film 126 comes into contact with the powder P, a compressive force acts directly on the powder P to produce a density distribution. Therefore, by providing the film suppressing member 127 under the film 126 in the lid 12A, the film 126 is prevented from coming into contact with the powder P.

膜126の材料は、可撓性を有するものであればシリコーンゴムには限られず、例えばポリウレタン等を用いることもできる。また、膜抑制部材127は、膜126が膜抑制部材127よりも下側まで降下することを防止し、且つ気体を通過させることができるものであれば網には限らず、例えば板材に多数の孔を空けたものや、棒材を横に並べたもの等であってもよい。 The material of the film 126 is not limited to silicone rubber as long as it has flexibility, and for example, polyurethane or the like can be used. Further, the film suppressing member 127 is not limited to a net as long as it prevents the film 126 from descending below the film suppressing member 127 and allows gas to pass through, and is not limited to a net, for example, a large number of plate materials. It may be one with holes or one in which rods are arranged side by side.

図7に、給気口121及び排気口122の配置の変形例を示す。(a)は、排気口122を配置した長方格子の全ての単位格子の重心(別の表現では、該長方格子を縦及び横に半周期ずらした長方格子の全ての格子点上)に給気口121を配置したものである。(b)は、充填対象容器20のキャビティ22の位置とは無関係に、排気口122を正方格子の格子点上に配置すると共に、給気口121を該正方格子における単位格子の重心に配置したものである。(c)は、排気口122を三角格子の格子点上に配置したうえで、該三角格子の単位格子の重心に給気口121を配置したものである。(d)は、排気口122を長方格子の格子点(但し、図1(b)の例における長方格子とは周期及び格子点の位置が異なる)上に配置したうえで、給気口121を該長方格子における単位格子の重心から、隣接する4個の排気口122との距離の10%の距離だけずれるよう(前述のように単位格子の重心の位置とは同視できない位置)に配置したものである。これらはいずれも、本発明における給気口121及び排気口122の位置の要件を満たしている。 FIG. 7 shows a modified example of the arrangement of the air supply port 121 and the exhaust port 122. (a) is the center of gravity of all the unit grids of the rectangular grid in which the exhaust port 122 is arranged (in other words, on all the grid points of the rectangular grid in which the rectangular grid is shifted by half a cycle vertically and horizontally). The air supply port 121 is arranged in the air supply port 121. In (b), the exhaust port 122 is arranged on the grid point of the square grid and the air supply port 121 is arranged on the center of gravity of the unit grid in the square grid regardless of the position of the cavity 22 of the container 20 to be filled. It is a thing. In (c), the exhaust port 122 is arranged on the grid points of the triangular lattice, and then the air supply port 121 is arranged at the center of gravity of the unit lattice of the triangular lattice. In (d), the exhaust port 122 is arranged on the grid points of the rectangular grid (however, the period and the position of the grid points are different from those of the rectangular grid in the example of FIG. 1 (b)), and then the air supply port. The 121 is displaced from the center of gravity of the unit grid in the rectangular grid by a distance of 10% of the distance from the four adjacent exhaust ports 122 (a position that cannot be equated with the position of the center of gravity of the unit grid as described above). It is the one that was placed. All of these satisfy the requirements for the positions of the air supply port 121 and the exhaust port 122 in the present invention.

次に、本実施例の粉末充填装置の構成に基づいた計算、及び本実施例の粉末充填装置を用いた実験の結果を説明する。以下に示す実験には、膜126等を有する粉末充填装置10Aを用いたが、粉末Pが粉末収容室101の内部空間102に飛散する問題を除いて、粉末充填装置10を用いても同様の実験結果が得られる。計算では、膜126及び膜抑制部材127を無視して行った。給気口121及び排気口122の位置は、図1(b)に示したもの(実施例1)と、図7(d)に示したもの(実施例2)の2種類とした。 Next, the calculation based on the configuration of the powder filling device of this example and the result of the experiment using the powder filling device of this example will be described. In the experiment shown below, the powder filling device 10A having the membrane 126 and the like was used, but the same applies to the powder filling device 10 except for the problem that the powder P is scattered in the internal space 102 of the powder storage chamber 101. Experimental results are obtained. In the calculation, the film 126 and the film suppressing member 127 were ignored. The positions of the air supply port 121 and the exhaust port 122 were two types, those shown in FIG. 1 (b) (Example 1) and those shown in FIG. 7 (d) (Example 2).

エアタッピング時に本体11内の粉末Pに印加される圧力の空間分布を計算で求めた結果を、実施例1については図8(a-1)に、実施例2については同図(b-1)に示す。また、充填対象容器への充填密度の分布を実験で求めた結果を、実施例1については同図(a-2)に、実施例2については同図(b-2)に示す。充填密度の分布の実験は、図3に示した充填対象容器20の代わりに、充填対象容器20において18個のキャビティ22が設けられる領域の全体に1個のキャビティを有する充填対象容器を用いて行った。図8(b-1)及び(b-2)には、仮想的に、充填対象容器20の18個のキャビティ22を重ねて示した。図中に示された濃淡は、圧力や充填密度の相違を示しており、色が濃い(黒色に近い)程、圧力が低く、充填密度が小さいことを示している。図8より、圧力の空間分布の計算結果、キャビティ22への充填密度の分布の実験結果のいずれにおいても、実施例2よりも実施例1の方が、より均一に近いことがわかる。 The results of calculating the spatial distribution of the pressure applied to the powder P in the main body 11 during air tapping are shown in FIG. 8 (a-1) for Example 1 and in FIG. 8 (b-1) for Example 2. ). In addition, the results of experimentally determining the distribution of the filling density in the container to be filled are shown in Fig. (A-2) for Example 1 and Fig. (B-2) for Example 2. In the experiment of filling density distribution, instead of the filling target container 20 shown in FIG. 3, a filling target container having one cavity in the entire region where 18 cavities 22 are provided in the filling target container 20 is used. went. 8 (b-1) and 8 (b-2) show, virtually, 18 cavities 22 of the container 20 to be filled. The shades shown in the figure indicate the difference in pressure and filling density, and the darker the color (closer to black), the lower the pressure and the lower the filling density. From FIG. 8, it can be seen that in both the calculation result of the spatial distribution of pressure and the experimental result of the distribution of the filling density in the cavity 22, Example 1 is closer to uniform than Example 2.

図9に、図3に示した充填対象容器20の18個のキャビティ22に粉末を充填した場合の充填密度の平均値、及びキャビティ毎の粉末の質量のばらつきを実験で求めた結果をグラフで示す。グラフの横軸は、エアタッピングで圧縮気体を繰り返し供給し続けて粉末を供給した時間である給粉時間を示す。キャビティ毎の粉末の質量のばらつきは、18個のキャビティのうち質量が最大のものと最小のものの差の値で示す。キャビティの容量は2.06cm3であり、図9に示した粉末の質量のばらつきの値を該容量の値で除することにより、充填密度のばらつきが求められる。実施例2よりも実施例1の方が、充填密度の平均値はやや高く、キャビティ毎の粉末の質量(充填密度)のばらつきは大幅に小さいことがわかる。 FIG. 9 is a graph showing the results obtained by experiments on the average value of the filling density when the 18 cavities 22 of the filling container 20 shown in FIG. 3 are filled with powder, and the variation in the mass of the powder for each cavity. Shown. The horizontal axis of the graph shows the powder feeding time, which is the time during which the compressed gas is repeatedly supplied by air tapping and the powder is supplied. The variation in the mass of the powder for each cavity is indicated by the value of the difference between the one with the largest mass and the one with the smallest mass among the 18 cavities. The capacity of the cavity is 2.06 cm 3 , and the variation in packing density can be obtained by dividing the value of the variation in mass of the powder shown in FIG. 9 by the value of the capacitance. It can be seen that the average value of the packing density of Example 1 is slightly higher than that of Example 2, and the variation in the mass of the powder (filling density) for each cavity is significantly smaller.

本発明に係る粉末充填装置は、更に以下の変形が可能である。本発明に係る粉末充填装置は、蓋に二次元状に設けられた3個以上の排気口と、該3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に設けられた給気口を有するが、さらに、それら排気口及び給気口が設けられた範囲を囲うように配置された複数の排気口(外周部排気口)を前記蓋に備えることができる。粉末収容室内では、給気口から供給された気体が粉末収容室内の外周部(側壁付近)において行き場を失い、それによって外周部の圧力が中央付近よりも高くなり易い。その結果、充填対象容器では粉末の充填密度が中央付近よりも外周部側の方が高くなるという不均一性が生じる。そこで、上述の外周部排気口を設けることにより、粉末収容室内の外周部寄りのところから気体を効率よく排気することができ、粉末収容室内の圧力をより均一に近づけることができるため、充填対象容器内の粉末の充填密度がより均一に近くなる。 The powder filling device according to the present invention can be further modified as follows. The powder filling device according to the present invention is inside a region surrounded by three or more exhaust ports provided in a two-dimensional shape on the lid and any three of the three or more exhaust ports. Although it has an air supply port provided, the lid may be further provided with a plurality of exhaust ports (outer peripheral exhaust ports) arranged so as to surround the exhaust port and the range in which the air supply port is provided. In the powder storage chamber, the gas supplied from the air supply port loses its place at the outer peripheral portion (near the side wall) of the powder storage chamber, so that the pressure at the outer peripheral portion tends to be higher than that near the center. As a result, in the container to be filled, non-uniformity occurs in which the filling density of the powder is higher on the outer peripheral side than in the vicinity of the center. Therefore, by providing the above-mentioned outer peripheral exhaust port, gas can be efficiently exhausted from a place near the outer peripheral portion of the powder storage chamber, and the pressure in the powder storage chamber can be made closer to more uniform. The filling density of the powder in the container becomes closer to uniform.

図10に、外周部排気口を有する粉末充填装置における給気口121、排気口122、及び外周部排気口1220の配置の例((a)実施例3、(b)実施例4)を示す。これら実施例3及び4の粉末充填装置では、給気口121、排気口122、及び外周部排気口1220以外の構成は、他の実施例と同じであるため、詳細な説明を省略する。以下、給気口121、排気口122、及び外周部排気口1220の構成を説明する。 FIG. 10 shows an example of arrangement of the air supply port 121, the exhaust port 122, and the outer peripheral exhaust port 1220 in the powder filling device having the outer peripheral exhaust port ((a) Example 3 and (b) Example 4). .. In the powder filling devices of Examples 3 and 4, since the configurations other than the air supply port 121, the exhaust port 122, and the outer peripheral exhaust port 1220 are the same as those of the other examples, detailed description thereof will be omitted. Hereinafter, the configurations of the air supply port 121, the exhaust port 122, and the outer peripheral exhaust port 1220 will be described.

給気口121及び排気口122は、実施例3では図1(b)に示した例と同じ配置で、実施例4では図7(a)に示した例と同じ配置で、それぞれ蓋12に設けられている。外周部排気口1220は、実施例3及び4で共通の構成を有する。外周部排気口1220は、給気口121及び排気口122が配置された範囲122Xよりも粉末収容室101の外周部側(側壁寄り)に設けられており、範囲122Xの(図10(a)における)左右にそれぞれ縦方向に1列で3個ずつ、範囲122Xの(同上)上下にそれぞれ横方向に1列で8個ずつ、設けられている。外周部排気口1220の間隔は、基本的には排気口122の間隔と同じである。なお、横方向の列中の両端にある外周部排気口1220は、等間隔の配置の場合よりも内側に寄って配置されているが、これは粉末収容室101の横断面の四隅に丸みを設けている(図示せず)ことから外周部排気口1220を粉末収容室101内に収めるためである。外周部排気口1220の径はいずれも同じであってもよいが、本実施例では、横方向に並ぶ外周部排気口1220の方が、縦方向に並ぶものよりも排気口122との距離が近いため径を小さくしている。 The air supply port 121 and the exhaust port 122 are arranged on the lid 12 in the same arrangement as in the example shown in FIG. 1 (b) in Example 3 and in the same arrangement as in the example shown in FIG. 7 (a) in Example 4. It is provided. The outer peripheral exhaust port 1220 has the same configuration as in Examples 3 and 4. The outer peripheral exhaust port 1220 is provided on the outer peripheral side (closer to the side wall) of the powder storage chamber 101 than the range 122X in which the air supply port 121 and the exhaust port 122 are arranged, and is provided in the range 122X (FIG. 10 (a)). There are three in a row on the left and right in the vertical direction, and eight in a row in the horizontal direction on the top and bottom of the range 122X (same as above). The distance between the outer peripheral exhaust ports 1220 is basically the same as the distance between the exhaust ports 122. The outer peripheral exhaust ports 1220 at both ends in the row in the horizontal direction are arranged closer to the inside than in the case of the arrangement at equal intervals, but this is rounded at the four corners of the cross section of the powder storage chamber 101. This is because the outer peripheral exhaust port 1220 is housed in the powder storage chamber 101 because it is provided (not shown). The diameters of the outer peripheral exhaust ports 1220 may be the same, but in this embodiment, the outer peripheral exhaust ports 1220 arranged in the horizontal direction are closer to the exhaust ports 122 than those arranged in the vertical direction. The diameter is small because it is close.

実施例3及び4につき、エアタッピング時に本体11内の粉末Pに印加される圧力の空間分布を計算で求めた結果を図11(a-1)及び(a-2)に、充填対象容器への充填密度の分布を実験で求めた結果を図11(b-1)及び(b-2)に、それぞれ示す。実施例3と、外周部排気口1220以外の構成が実施例3と同じである実施例1(図8(a-1)、(a-2))を対比すると、実施例3の方が、充填対象容器の端部付近で充填密度が高くなることが抑えられており、充填密度がより均一に近い。また、実施例3と実施例4を対比すると、給気口121を配置する密度が高い実施例4の方が、充填対象容器の中央付近における充填密度が高くなるため、端部付近との充填密度の差が小さくなり、充填対象容器全体での充填密度の均一性が良い。 For Examples 3 and 4, the results obtained by calculating the spatial distribution of the pressure applied to the powder P in the main body 11 during air tapping are shown in FIGS. 11 (a-1) and 11 (a-2) to the container to be filled. The results of the experimental determination of the distribution of the packing density of No. 11 (b-1) and (b-2) are shown in FIGS. Comparing Example 3 with Example 1 (FIGS. 8 (a-1) and 8 (a-2)) in which the configuration other than the outer peripheral exhaust port 1220 is the same as that of Example 3, Example 3 is superior. The filling density is suppressed from becoming high near the end of the container to be filled, and the filling density is closer to uniform. Further, when comparing Example 3 and Example 4, the filling density in the vicinity of the center of the container to be filled is higher in Example 4 in which the density of arranging the air supply port 121 is higher, so that the filling with the vicinity of the end portion is performed. The difference in density becomes small, and the uniformity of the filling density in the entire filling container is good.

次に、図12を用いて、本発明に係る焼結磁石製造装置の一実施例を説明する。本実施例の焼結磁石製造装置40は、粉末充填装置10(又は10A)と、粉末高密度化装置42と、蓋取付部43と、配向装置(上記配向部)44と、焼結炉(上記焼結部)45を有する。また、焼結磁石製造装置40は、粉末充填装置10、粉末高密度化装置42、蓋取付部43、配向装置44、焼結炉45の順に充填対象容器20を搬送する搬送装置(ベルトコンベア)46を有する。これらの各装置のうち焼結炉45以外の各装置は、内部が不活性ガス雰囲気である共通の外容器47に収容されており、焼結炉45内も別途不活性ガスが供給されることで不活性ガス雰囲気となっている。これら外容器47及び焼結炉45の内部を不活性ガス雰囲気にする構成要素により、前述の無酸素雰囲気収容部が構成されている。なお、粉末充填装置10のうち、圧縮気体源131の全体及び圧縮気体配管132の一部は外容器47の外に配置されている。 Next, an embodiment of the sintered magnet manufacturing apparatus according to the present invention will be described with reference to FIG. The sintered magnet manufacturing apparatus 40 of this embodiment includes a powder filling apparatus 10 (or 10A), a powder densification apparatus 42, a lid attachment portion 43, an alignment apparatus (the alignment portion) 44, and a sintering furnace (the above-mentioned alignment portion). It has the above-mentioned sintered portion) 45. Further, the sintered magnet manufacturing device 40 is a transport device (belt conveyor) that conveys the filling target container 20 in the order of the powder filling device 10, the powder densifying device 42, the lid mounting portion 43, the alignment device 44, and the sintering furnace 45. Has 46. Of these devices, each device other than the sintering furnace 45 is housed in a common outer container 47 having an inert gas atmosphere inside, and the inert gas is separately supplied to the inside of the sintering furnace 45 as well. It has an inert gas atmosphere. The above-mentioned oxygen-free atmosphere accommodating portion is configured by the components that make the inside of the outer container 47 and the sintering furnace 45 an inert gas atmosphere. In the powder filling device 10, the entire compressed gas source 131 and a part of the compressed gas pipe 132 are arranged outside the outer container 47.

粉末充填装置10は、焼結磁石の原料となる粉末を充填対象容器20に充填する装置であり、上述の通りの構成を有する。粉末高密度化装置42は上述のパンチ35及びスクレーパ36から成る。蓋取付部43は、粉末が充填された充填対象容器20に、該充填対象容器20の蓋(粉末充填装置10の蓋12とは異なる)を取り付ける装置である。この蓋は、配向装置44における磁界や焼結炉45におけるガスの対流等によって合金粉末が充填対象容器20から飛散することを防止するために用いられる。 The powder filling device 10 is a device for filling the filling target container 20 with powder that is a raw material for the sintered magnet, and has the above-described configuration. The powder densification device 42 includes the punch 35 and the scraper 36 described above. The lid attachment portion 43 is a device for attaching the lid of the filling target container 20 (different from the lid 12 of the powder filling device 10) to the filling target container 20 filled with powder. This lid is used to prevent the alloy powder from scattering from the filling container 20 due to a magnetic field in the alignment device 44, convection of gas in the sintering furnace 45, or the like.

配向装置44は、コイル441と容器昇降装置442を有する。コイル441は略鉛直方向(上下方向)の軸を有しており、容器昇降装置442の上方に配置されている。容器昇降装置442は、容器搬送装置46で搬送されてきた充填対象容器20をコイル441内との間で昇降させる装置である。 The alignment device 44 has a coil 441 and a container lifting device 442. The coil 441 has a shaft in a substantially vertical direction (vertical direction), and is arranged above the container elevating device 442. The container elevating device 442 is a device for elevating and lowering the filling target container 20 transported by the container transport device 46 to and from the inside of the coil 441.

焼結炉45は、充填対象容器20を多数収容する焼結室451と、外容器47と連通する搬入口452と、搬入口452に設けられた断熱性を有する扉453を有する。 The sintering furnace 45 has a sintering chamber 451 that accommodates a large number of containers 20 to be filled, a carry-in inlet 452 that communicates with the outer container 47, and a heat-insulating door 453 provided at the carry-in inlet 452.

焼結磁石製造装置40の動作を説明する。まず、容器搬送装置46により、充填対象容器20が粉末充填装置10に搬送され、上述のように、充填対象容器20のキャビティ22内に合金粉末が充填される。次に、容器搬送装置46により充填対象容器20が粉末高密度化装置42に搬送され、上述のようにパンチ35を用いて粉末を高密度化した後、スクレーパ36によって上部の余分な粉末が除去される。続いて、容器搬送装置46により充填対象容器20が蓋取付部43に搬送され、充填対象容器20に蓋が取り付けられる。その後、充填対象容器20は、搬送装置46によって配向装置44に搬送され、配向装置44において容器昇降装置442によってコイル441内に配置され、コイル441が生成する磁界によって充填対象容器20内の粉末が配向する。この配向処理の後、充填対象容器20は、容器昇降装置442によってコイル441内から降ろされ、搬送装置46によって焼結炉45に搬送され、焼結室451内で所定の温度(通常、800〜1100℃)に加熱することにより充填対象容器20内の粉末を焼結する。 The operation of the sintered magnet manufacturing apparatus 40 will be described. First, the container transport device 46 transports the filling target container 20 to the powder filling device 10, and as described above, the cavity 22 of the filling target container 20 is filled with the alloy powder. Next, the container to be filled 20 is conveyed to the powder densification device 42 by the container transfer device 46, the powder is densified using the punch 35 as described above, and then the excess powder on the upper portion is removed by the scraper 36. Will be done. Subsequently, the container to be filled 20 is conveyed to the lid attachment portion 43 by the container transport device 46, and the lid is attached to the container 20 to be filled. After that, the container 20 to be filled is conveyed to the alignment device 44 by the transfer device 46, is arranged in the coil 441 by the container elevating device 442 in the alignment device 44, and the powder in the container 20 to be filled is generated by the magnetic field generated by the coil 441. Orientate. After this alignment treatment, the container 20 to be filled is unloaded from the coil 441 by the container elevating device 442, transported to the sintering furnace 45 by the transfer device 46, and has a predetermined temperature (usually 800 to 800) in the sintering chamber 451. The powder in the filling container 20 is sintered by heating to 1100 ° C.).

以上のように、焼結磁石製造装置40では、圧縮成形を行うことなく磁界中配向及び焼結がなされるPLP法によって焼結磁石を製造することができる。 As described above, in the sintered magnet manufacturing apparatus 40, a sintered magnet can be manufactured by the PLP method in which orientation and sintering are performed in a magnetic field without performing compression molding.

10、10A…粉末充填装置
101、101A…粉末収容室
102、102A…粉末収容室の内部空間
1021A…粉末収容室の内部空間のうち、膜よりも給気口及び排気口側の領域
11…粉末充填装置の本体
111…粉末充填装置の下部開口
113、123、32…シール材
12、12A…粉末充填装置の蓋
121…給気口
122、122、122、122、122…排気口
122A…3個の排気口に囲まれた領域
122U…単位格子
122X…給気口及び排気口が配置された範囲
1220…外周部排気口
124…押さえシリンダ
125…接続具
126…膜
127…膜抑制部材
13…気体供給源
131…圧縮気体源
132…圧縮気体配管
133…電磁弁
15…グリッド部材
20…充填対象容器
21…充填対象容器の本体
22…キャビティ
30…スペーサ
31…貫通孔
35…パンチ
36…スクレーパ
361、362、363…掻き取り部
40…焼結磁石製造装置
42…粉末高密度化装置
43…蓋取付部
44…配向装置
441…コイル
442…容器昇降装置
45…焼結炉
451…焼結室
452…搬入口
453…扉
46…容器搬送装置
47…外容器
10, 10A ... Powder filling device 101, 101A ... Powder storage chambers 102, 102A ... Internal space of powder storage chamber 1021A ... Area of the internal space of the powder storage chamber on the air supply port and exhaust port side of the membrane 11 ... Powder Main body 111 of filling device ... Lower opening of powder filling device 113, 123, 32 ... Sealing material 12, 12A ... Lid of powder filling device 121 ... Air supply port 122, 122 1 , 122 2 , 122 3 , 122 4 ... Exhaust port 122A ... Area surrounded by three exhaust ports 122U ... Unit grid 122X ... Range where air supply port and exhaust port are arranged 1220 ... Outer peripheral exhaust port 124 ... Holding cylinder 125 ... Connector 126 ... Film 127 ... Film suppression Member 13 ... Gas supply source 131 ... Compressed gas source 132 ... Compressed gas piping 133 ... Electromagnetic valve 15 ... Grid member 20 ... Container to be filled 21 ... Main body of container to be filled 22 ... Cavity 30 ... Spacer 31 ... Through hole 35 ... Punch 36 ... Scrapers 361, 362, 363 ... Scraping part 40 ... Sintered magnet manufacturing device 42 ... Powder densification device 43 ... Lid mounting part 44 ... Alignment device 441 ... Coil 442 ... Container lifting device 45 ... Sintered furnace 451 ... Baking Room 452 ... Carry-in entrance 453 ... Door 46 ... Container transport device 47 ... Outer container

Claims (6)

充填対象容器が有する複数個の粉末充填部に粉末を充填する装置であって、
a) 粉末を収容するための内部空間と、該内部空間の設けられたと、該内部空間の設けられた、前記粉末充填部と同数の複数個の下部開口とを有し、該複数個の下部開口が前記複数個の粉末充填部と同じ間隔で設けられており、該内部空間と該複数個の粉末充填部が該複数個の下部開口を介して密閉空間を形成することが可能な粉末収容室と、
b) 前記複数個の下部開口の各々に設けられたグリッド部材と、
c) 前記蓋に二次元状に設けられた3個以上の排気口と、
d) 前記蓋の、前記3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に設けられた給気口と、
e) 前記給気口を通して前記内部空間に圧縮気体をパルス状に繰り返し供給する気体供給部と
を備えることを特徴とする粉末充填装置。
A device that fills a plurality of powder filling portions of a container to be filled with powder.
an internal space for accommodating a a) powder, a lid provided on the upper side of the internal space, provided on the lower side of the internal space, and a plurality of lower apertures in the same number as that of said powder filling portion The plurality of lower openings are provided at the same intervals as the plurality of powder filling portions , and the internal space and the plurality of powder filling portions provide a closed space through the plurality of lower openings. and flour powder storage chamber capable of forming,
b) With the grid members provided in each of the plurality of lower openings,
c) Three or more exhaust ports provided two-dimensionally on the lid,
d) An air supply port provided inside the area of the lid surrounded by any three of the three or more exhaust ports, and
e) A powder filling device including a gas supply unit that repeatedly supplies compressed gas in a pulse shape to the internal space through the air supply port.
前記給気口が、前記3個の排気口から等距離の位置に配置されていることを特徴とする請求項1に記載の粉末充填装置。 The powder filling device according to claim 1, wherein the air supply ports are arranged at equidistant positions from the three exhaust ports. 前記排気口が正方格子、長方格子又は三角格子から成る格子の格子点に配置されており、前記給気口が該格子における単位格子の重心に配置されていることを特徴とする請求項2に記載の粉末充填装置。 2. The second aspect of the present invention is that the exhaust port is arranged at a lattice point of a lattice composed of a square lattice, a rectangular lattice or a triangular lattice, and the air supply port is arranged at the center of gravity of a unit lattice in the lattice. The powder filling device according to. 前記排気口及前記び給気口が設けられた範囲を囲うように配置された複数の排気口である外周部排気口を前記蓋に備えることを特徴とする請求項1〜3のいずれかに記載の粉末充填装置。 One of claims 1 to 3, wherein the lid is provided with an outer peripheral exhaust port which is a plurality of exhaust ports arranged so as to surround the range provided with the exhaust port and the air supply port. The powder filling device described. a) 充填対象容器が有する複数個の粉末充填部に焼結磁石の原料となる粉末を充填する装置であって、
a-1) 前記粉末を収容するための内部空間と、該内部空間の設けられたと、該内部空間の設けられた、前記粉末充填部と同数の複数個の下部開口とを有し、該複数個の下部開口が前記複数個の粉末充填部と同じ間隔で設けられており、該内部空間と該複数個の粉末充填部が該複数個の下部開口を介して密閉空間を形成することが可能な粉末収容室と、
a-2) 前記複数個の下部開口の各々に設けられたグリッド部材と、
a-3) 前記蓋に二次元状に設けられた3個以上の排気口と、
a-4) 前記蓋の、前記3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に設けられた給気口と、
a-5) 前記給気口を通して前記内部空間に圧縮気体をパルス状に繰り返し供給する気体供給部と
を有する粉末充填装置と、
b) 前記粉末が、前記複数個の粉末充填部の各々に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向部と、
c) 前記粉末が、前記複数個の粉末充填部の各々に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結部と、
を備えることを特徴とする焼結磁石製造装置。
a) A device that fills a plurality of powder filling parts of a container to be filled with powder that is a raw material for sintered magnets.
a-1) and the powder interior space for housing and a lid provided on the upper side of the internal space, provided on the lower side of the internal space, the powder filling portion and the same number of plurality of lower It has openings, and the plurality of lower openings are provided at the same intervals as the plurality of powder filling portions , and the internal space and the plurality of powder filling portions are provided through the plurality of lower openings. and flour powder storage chamber capable of forming a closed space,
a-2) With the grid members provided in each of the plurality of lower openings,
a-3) Three or more exhaust ports provided two-dimensionally on the lid,
a-4) An air supply port provided inside the area of the lid surrounded by any three of the three or more exhaust ports, and
a-5) A powder filling device having a gas supply unit that repeatedly supplies compressed gas in a pulse shape to the internal space through the air supply port, and
b) With the alignment portion for orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions. ,
c) A sintered portion in which the powder is sintered by heating the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions.
A sintered magnet manufacturing apparatus, which comprises.
a) 充填対象容器が有する複数個の粉末充填部に焼結磁石の原料となる粉末を充填する工程であって、
1) 前記粉末を収容するための内部空間と、該内部空間の設けられたと、該内部空間の設けられた、前記粉末充填部と同数の複数個の下部開口とを有し、該複数個の下部開口が前記複数個の粉末充填部と同じ間隔で設けられており、該内部空間と該複数個の粉末充填部が該複数個の下部開口を介して密閉空間を形成することが可能な粉末収容室と、
2) 前記複数個の下部開口の各々に設けられたグリッド部材と、
3) 前記蓋に二次元状に設けられた3個以上の排気口と、
4) 前記蓋の、前記3個以上の排気口のうちいずれか3個の排気口に囲まれた領域の内部に設けられた給気口と、
5) 前記給気口を通して前記内部空間に圧縮気体をパルス状に繰り返し供給する気体供給部と
を有する粉末充填装置の前記内部空間に粉末を収容し、該内部空間に圧縮気体をパルス状に繰り返し供給することにより、前記複数個の粉末充填部の各々に粉末を充填する粉末充填工程と、
b) 前記粉末が、前記複数個の粉末充填部の各々に充填されたままの状態で機械的圧力を印加することなく、該粉末に磁界を印加させることにより、該粉末を配向させる配向工程と、
c) 前記粉末が、前記複数個の粉末充填部の各々に充填されたままの状態で機械的圧力を印加することなく、該粉末を加熱することにより焼結させる焼結工程と
を行うことを特徴とする焼結磁石製造方法。
The powder of the sintered magnet raw material into a plurality of powder filling unit having: a) filling the target container comprising the steps of Hama charge,
1) and internal space for accommodating the powder, a lid provided on the upper side of the internal space, provided on the lower side of the internal space, and a plurality of lower opening of the same number as the powder filling portion The plurality of lower openings are provided at the same intervals as the plurality of powder filling portions , and the internal space and the plurality of powder filling portions are sealed spaces via the plurality of lower openings. and flour powder storage chamber capable of forming,
2) With the grid members provided in each of the plurality of lower openings,
3) Three or more exhaust ports provided two-dimensionally on the lid,
4) An air supply port provided inside the area of the lid surrounded by any three of the three or more exhaust ports, and
5) The powder is housed in the internal space of the powder filling device having a gas supply unit that repeatedly supplies the compressed gas to the internal space in a pulse shape through the air supply port, and the compressed gas is repeatedly pulsed in the internal space. A powder filling step of filling each of the plurality of powder filling portions with powder by supplying the powder.
b) An orientation step of orienting the powder by applying a magnetic field to the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions. ,
c) Performing a sintering step in which the powder is sintered by heating the powder without applying mechanical pressure while the powder is still filled in each of the plurality of powder filling portions. A characteristic sintered magnet manufacturing method.
JP2016165067A 2016-02-18 2016-08-25 Powder filling equipment and sintered magnet manufacturing equipment Active JP6834249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710087123.7A CN107088656B (en) 2016-02-18 2017-02-17 Powder filling apparatus, sintered magnet manufacturing equipment and sintered magnet manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029303 2016-02-18
JP2016029303 2016-02-18

Publications (2)

Publication Number Publication Date
JP2017145047A JP2017145047A (en) 2017-08-24
JP6834249B2 true JP6834249B2 (en) 2021-02-24

Family

ID=59682912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165067A Active JP6834249B2 (en) 2016-02-18 2016-08-25 Powder filling equipment and sintered magnet manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6834249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110271697B (en) * 2019-05-23 2020-11-20 吴天祥 Wheel disc type partition storage device for ore dressing and screening samples and use method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3400415A1 (en) * 1984-01-07 1985-07-18 Degussa Ag, 6000 Frankfurt METHOD FOR COMPRESSING AND / OR FILLING POWDERED SUBSTANCES
JP3992376B2 (en) * 1998-09-24 2007-10-17 インターメタリックス株式会社 Powder molding method
DE19852107A1 (en) * 1998-11-12 2000-05-18 Rovema Gmbh Packaging device and method
DE102007036387A1 (en) * 2007-07-31 2009-02-05 Evonik Degussa Gmbh Process for compacting pyrogenically prepared oxides

Also Published As

Publication number Publication date
JP2017145047A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5852752B2 (en) Powder filling equipment
CN105659342B (en) Manufacturing device used in the manufacturing method of rare-earth sintered magnet and the manufacturing method
JP2006019521A5 (en)
EP2597660A3 (en) Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
KR20000016643A (en) Pressurization feed shoe device and method for preliminarily compressing powdery material
JP6834249B2 (en) Powder filling equipment and sintered magnet manufacturing equipment
EP2930727A1 (en) Method for preparing rare earth sintered magnet
US20190326054A1 (en) Method for producing rare earth magnet
CN107088656B (en) Powder filling apparatus, sintered magnet manufacturing equipment and sintered magnet manufacturing method
JP6848544B2 (en) Powder filling equipment, sintered magnet manufacturing equipment and sintered magnet manufacturing method
CN110871271B (en) Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method
EP2955731B1 (en) Sintered magnet production device and sintered magnet production method
WO2017141815A1 (en) Powder filling device, sintered magnet manufacturing device, and sintered magnet manufacturing method
JP2020535311A (en) Equipment and methods for continuous grain boundary diffusion and heat treatment
DE102015008131A1 (en) Vakuumdämmkörper
CN206936373U (en) A kind of mould for the first base of isostatic pressed compacting sintering neodymium iron boron
KR100545859B1 (en) Powder molding method and apparatus by magnetic pulse compression molding
JP2765015B2 (en) Compacting equipment for sintering compact
Tada et al. Fabrication of a dense long rod through pulse discharge sintering assisted by traveling zone heating
JP2010142861A (en) Powder compacting die device
JPS63108191A (en) Hot press device
EP3031550A1 (en) Method for producing sintered components by HIP

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150