JP6848362B2 - ラクチド回収方法 - Google Patents

ラクチド回収方法 Download PDF

Info

Publication number
JP6848362B2
JP6848362B2 JP2016219186A JP2016219186A JP6848362B2 JP 6848362 B2 JP6848362 B2 JP 6848362B2 JP 2016219186 A JP2016219186 A JP 2016219186A JP 2016219186 A JP2016219186 A JP 2016219186A JP 6848362 B2 JP6848362 B2 JP 6848362B2
Authority
JP
Japan
Prior art keywords
lactide
line
condenser
recovery method
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016219186A
Other languages
English (en)
Other versions
JP2018076257A (ja
Inventor
伊藤 卓郎
卓郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2016219186A priority Critical patent/JP6848362B2/ja
Priority to PCT/JP2017/038174 priority patent/WO2018088182A1/ja
Priority to TW106136818A priority patent/TWI742185B/zh
Publication of JP2018076257A publication Critical patent/JP2018076257A/ja
Application granted granted Critical
Publication of JP6848362B2 publication Critical patent/JP6848362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、樹脂混合物中に含まれるラクチドを回収する方法に関するものである。
近年におけるプラスチック使用量の増大に伴うプラスチック廃棄物の異常な増大を解決する手段として、バクテリヤや真菌類が体外に放出する酵素の作用で崩壊する生分解性プラスチックが注目されている。このような生分解性プラスチックの中でも、工業的に量産されて入手が容易であり、環境にも優しい脂肪族ポリエステルとして、ポリ乳酸が注目され、広範囲の分野での使用が種々提案されている。
ポリ乳酸(PLA)は、トウモロコシなどの穀物でんぷんを原料とする樹脂であり、でんぷんの乳酸発酵物、L−乳酸及びD−乳酸をモノマーとする直接重縮合の重合体や、そのダイマーであるラクチドの開環重合により製造される重合体である。この重合体は、自然界に存在する微生物により、水と炭酸ガスに分解され、生物的な完全リサイクルシステム型の樹脂としても着目されている。
最近では、ポリ乳酸のリサイクルシステムとして、ポリ乳酸を分解して再利用し得るケミカルリサイクル法が最も注目を浴びている。この方法は、ポリ乳酸を解重合用触媒の存在下で加熱することにより解重合を行い、得られるラクチドを再度開環重合に供してポリ乳酸として再利用するというものである。
このようなケミカルリサイクルに適用されるポリ乳酸からのラクチド回収装置は、例えば特許文献1及び2で提案されている。これら特許文献で提案されている装置では、ポリ乳酸と解重合用触媒及びキャリヤ樹脂が、二軸押出機中に投入されて溶融混練され、溶融混練物は、二軸押出機中のスクリューによりベント室(ベントゾーン)に搬送され、ポリ乳酸の解重合により生成したラクチドがこのベント室でガス化して他の成分と分離して回収される。即ち、ポリ乳酸の解重合により生成するラクチド、(分子量M=144)は、標準大気圧下の沸点が255℃と高いため、大気圧条件下での分離が困難である。そのため、減圧下に保持されたベント室にポリ乳酸の解重合により生成したラクチドと解重合用触媒とを含む溶融混練物を供給することにより、ラクチドの沸点を降下させ、ラクチドをガス状化して回収するというものである。
このような回収装置で実施されるラクチドの回収方法では、ガス状化したラクチドは、凝縮器での冷却トラップにより、気体から液体への相転移を起こし、液体として回収されるのであるが、大量のポリ乳酸を投入して、大量のラクチドを回収する工業的実施を行う場合、配管の詰まりを生じやすく、定期的な配管洗浄等が必要になり、一旦大気圧に戻して配管洗浄し、その後所定真空度に戻すため時間がかかり、連続的な稼働が困難であるという問題があった。特に、配管の屈曲している部分や凹んでいる部分等に異物の付着堆積が顕著である。
また、本発明者は、ポリ乳酸を解重合することにより生成するラクチドをガス状化して回収する方法を先に提案したが(特願2015−240041号、特願2016−015501号、特願2016−007553号参照)、上記のような配管詰まり等についての検討はしていなかった。
特開2010−126490号公報 特許第5051729号公報
従って、本発明の目的は、樹脂混合物中に含まれるラクチドをガス状化し、ガス状化したラクチドを、凝縮器を用いて液化して回収するに際して、配管詰まりの問題を有効に抑制することが可能な回収方法を提供することにある。
本発明の他の目的は、ラクチド回収ライン中の配管洗浄を、ラクチド回収プロセスを停止することなく行なえるラクチド回収方法を提供することにある。
本発明者は、ガス状化したラクチドを液化して回収する際に生じる配管詰まりについて多くの実験を行った結果、ガス状化したラクチドを含むガス混合物に含まれる低分子量成分が要因となって、配管詰まりや配管内での異物の付着堆積を生じるという知見を見出し、本発明を完成させるに至った。
本発明によれば、ラクチドを含む樹脂混合物を減圧下に保持し、該樹脂混合物中に含まれるラクチドをガス化し、ガス状ラクチドを含むガス混合物を真空引きしながら、凝縮ラインに導入してラクチドを回収する方法において、
前記凝縮ラインは、冷却温度が順次低くなるように、複数の凝縮器が直列に配列しており、これらの凝縮器によって前記ガス混合物から、ラクチドの捕集及びラクチド以外の不純物の分離を行うことを特徴とするラクチド回収方法が提供される。
本発明のラクチド回収方法においては、以下の対応を好適に行うことができる。
(1)前記ラクチドが、ポリ乳酸の解重合により生成したものであること。
(2)前記ガス混合物を、乳酸オリゴマー成分を除去するための気液分離塔を通して、前記凝縮ラインに連続的に導入すること。
(3)前記複数の凝縮器として、第1の凝縮器、第2の凝縮器及び第3の凝縮器がこの順に配置されていること。
(4)0.1〜8KPaAの真空度範囲で前記ガス混合物を真空引きすること。
(5)第1の凝縮器での熱交換温度が60〜140℃に設定していること。
(6)前記凝縮ラインは、前記ガス混合物を該凝縮ラインに導入するための導入ラインと、真空引きのための真空ポンプに連なる終結ラインとを含み、更に、該導入ラインと該終結ラインとの間に切替バルブを介して枝分かれした並列ラインを有しており、該並列ラインには、それぞれ少なくとも最も下流側に位置する凝縮器を含むように少なくとも1つの凝縮器が設けられており、
前記並列ラインの枝分かれしている流路のそれぞれに、切替バルブを介して真空引き洗浄ラインが連結されていること。
(7)前記ガス混合物を前記並列ラインの枝分かれしている一方の流路に流して、ラクチドの回収を行い、同時に前記並列ラインの枝分かれしている他方の流路に連なる前記真空引き洗浄ラインを動作させて真空洗浄を行うこと。
(8)前記導入ラインに第1の凝縮器が配置され、前記並列ラインの枝分かれした流路のそれぞれに残りの凝縮器が配置されていること。
本発明のラクチドの回収方法では、ガス状化されたラクチドを含むガス混合物が凝縮ラインに導入され、この凝縮ラインでガス状ラクチドが液化されて回収されるのであるが、この凝縮ラインは直列に配列された複数の凝縮器を有しており、複数の凝縮器は冷却温度が順次低くなるような配置となっている。すなわち、初めの凝縮器でガス状ラクチドが液化されて回収され、その後の凝縮器によってラクチドよりも低分子量の異物(不可避的不純物)が液化されて除去される。従って、低分子量の異物が配管内に蓄積するという不都合が有効に抑制され、配管詰まりや、真空引きのために使用される真空ポンプの動作不良などを有効に防止することができる。
また、本発明では、上記の凝縮ラインを、切替バルブを介して枝分かれした並列ラインとし、並列ラインのそれぞれに凝縮器を設けることができる。このような態様では、並列ラインの一方を作動して、ガス状化ラクチドの液化及び低分子量異物の除去を行うと同時に、並列ラインの他方に洗浄用のガスを流す洗浄ラインを連結し、洗浄作業を行うことができる。つまり、ガス状ラクチドを液化しての回収及び低分子量異物の除去を停止せずにラインの洗浄を行うことができる。これにより、きわめて効率よくラクチドを連続的に回収することができ、大量のラクチドを回収する工業的実施に極めて有利である。
本発明の回収方法を好適に実施するために使用される回収装置の概略構造を示す図。 図1の回収装置におけるベント室の断面構造を示す図。 図1の回収装置における捕集装置の最もシンプルな態様を示す図。 図1の回収装置における捕集装置中の凝縮ラインの一例を示す図であり、該凝縮ライン中の並列ラインの一方を動作させてラクチドの回収を行っている状態を示す図。 図1の回収装置における捕集装置中の凝縮ラインの一例を示す図であり、該凝縮ライン中の並列ラインの他方を動作させてラクチドの回収を行っている状態を示す図。
図1を参照して、本発明のラクチド回収方法を実施するために使用される回収装置は、大まかに言って、押出機(溶融混練装置)1、押出機1に連なるベント室3、ベント室3の下方に位置するキャリヤ樹脂回収室4、ベント室3に連なる捕集装置5、及びキャリヤ樹脂回収室に連なるキャリヤ樹脂排出用押出機6から構成されている。捕集装置5は気液分離塔51及び凝縮ラインAを備えており、凝縮ラインAは、真空引き用の真空ポンプ7に連なっている。すなわち、真空ポンプ7の駆動により、ベント室3が所定の減圧度に保持されるようになっている。
本発明では、このような回収装置を使用し、ポリ乳酸、解重合用触媒及びキャリヤ樹脂を、押出機1のホッパーに投入し、押出機1のシリンダー内で溶融混練し、ポリ乳酸を解重合させた後、溶融混練物をベント室3に供給し、このベント室3において、ポリ乳酸の解重合により生成したラクチドをガス状化し、ガス状化したラクチドは、ベント室3に連なる捕集装置5に導入される。捕集装置5では、気液分離塔51により高分子量成分(例えばオリゴマー)が除去され、さらに、凝縮ラインAでの冷却により、ガス状化したラクチドが液体として回収される。また、キャリヤ樹脂は、ベント室3の下方のキャリヤ樹脂回収室4からキャリヤ樹脂排出用押出機6を通して排出されることとなる。
ラクチド回収のために使用されるポリ乳酸としては、市場回収品(Post Consumer)や樹脂加工メーカー工場から排出される産業廃棄物、或いはポリ乳酸樹脂の製造工程で発生するスペックアウト樹脂などが使用される。さらに、L−ポリ乳酸(PLLA)とD−ポリ乳酸(PDLA)とを混合したステレオコンプレックスタイプでもよいし、分子鎖中のL−乳酸単位とD−乳酸単位とが混在するメソタイプのものであっても差し支えない。勿論、バージンのポリ乳酸であっても問題はない。
また、用いるポリ乳酸は、少量の共重合単位が組みこまれているもの、例えば、50モル%以上が乳酸単位であることを条件として、ラクチドと共重合可能なラクトン類、環状エーテル類、環状アミド類、各種アルコール類、カルボン酸類などに由来する単位を含んでいてもよい。
ポリ乳酸の解重合用触媒としては、MgOが代表的であり、最も好適に使用されるが、CaO、SrO、BaO等のアルカリ土類金属酸化物なども使用し得る。更に、重合触媒に使用されるTin(II)2−ethyle hexanoateや難燃剤である水酸化アルミニウムAl(OH)も好適に使用することができる。またこれら触媒を混合して使用することもできる。かかる解重合用触媒は、ポリ乳酸の解重合温度を低下させるものであり、解重合用触媒の使用により、ポリ乳酸の熱分解が促進され、ポリ乳酸の低分子量化が進行し、例えば押出機1のホッパー投入時に約20万の分子量を有していたポリ乳酸が、ラクチド(M=144)まで分解する。また、MgOやアルミニウム系触媒は、熱反応時のラセミ化(光学異性化反応)現象を抑制する効果もある。
上記のポリ乳酸の解重合用触媒は、通常、ポリ乳酸100質量部当り、0.05〜5質量部の量で使用される。
キャリヤ樹脂は、ポリ乳酸の溶融物をスクリュー搬送するために使用されるものであると同時に、押出機でのバレルとスクリュー間のシール材としての機能も有している。
即ち、ラクチドを含んだポリ乳酸は、その分子量によっても異なるが、概して溶融粘度が通常のポリマーに比してかなり低いため、スクリューによるポリ乳酸溶融物の搬送効率が悪く、スクリューが空回りに近い状態となってしまう虞がある。このため、キャリヤ樹脂を併用することにより、押出機中でのポリ乳酸溶融物を含む溶融樹脂の粘性を高め、効率よく、ポリ乳酸の溶融物をスクリュー搬送することができる。
また、キャリヤ樹脂は、ラクチドを含んだポリ乳酸に比して溶融粘度が高いことから、これをある程度以上の量で使用してポリ乳酸と溶融混合することにより、押出機のシリンダー内面とスクリューとの間の空隙を溶融混合物が充満した状態を維持しながら、該溶融混合物をスクリュー搬送することができる。即ち、キャリヤ樹脂の使用により、シリンダー内面とスクリューとの間の空隙が常にシールされている状態を保持することが可能となり、これにより、ベント室3の減圧を効果的に行うことができる。
また、溶融粘度が低いキャリヤ樹脂の場合においても、PLAの解重合温度より高い熱分解温度を有する樹脂(PET・PC・PSなど)であれば、それ自体が熱分解することがないため、ポリ乳酸、及び、その解重合物をスクリュー搬送(前走)させることができ、適用することが可能である。
このようなキャリヤ樹脂としては、ポリ乳酸の解重合に悪影響を与えず、且つポリ乳酸の解重合により生成するラクチドに対して反応性を示さない限りにおいて、種々の熱可塑性樹脂を使用することができるが、一般的には、ポリエチレン、ポリプロピレン等のオレフィン系樹脂が好適に使用されるが、ポリエチレンテレフタレート(PET)等のポリエステル樹脂やポリカーボネート(PC)等のポリエーテルやポリスチレン(PS)などのスチロール樹脂なども好適に使用することができる。またこれらの樹脂は、上述した機能を発揮するに十分な分子量を有しており、十分な溶融粘度を有するものが使用される。
本発明において、上記のキャリヤ樹脂は、一般に、装置の仕様等に応じて適宜の量範囲に設定される。例えば、ポリ乳酸100質量部当り20〜10000質量部程度、より好適には20〜100質量部であり、スクリュー搬送性及び真空シール性を確保し得るような量に設定される。
上述したポリ乳酸、解重合用触媒及びキャリヤ樹脂は、その所定量が押出機1のホッパーから投入され、この押出機1のシリンダー内で溶融混合されることとなる。
即ち、押出機1のシリンダーを覆うように設けられているヒーター(図示せず)によりシリンダー内部が加熱され、シリンダー内部を走行しているスクリューにより、撹拌及び搬送されながら、溶融混合が行われ、250℃以上の温度でポリ乳酸を解重合することとなる。押出機1としては、通常、2本以上のスクリューを備えた2軸押出機が使用され、シリンダー内部を250℃〜350℃に加熱して溶融混合が行われ、この溶融混合に伴い、ポリ乳酸の解重合が始まり、ポリ乳酸の低分子量化が進行していくこととなる。
上記の溶融混合によりポリ乳酸の低分子量化が進行していき、ポリ乳酸の基本単位を形成しているラクチド(乳酸2量体)が得られるが、このラクチドの標準大気圧下での沸点は255℃であるため、このままでは、沸点が高く、安定したガス捕集が困難である。即ち、ラクチドが液状のままの状態では、溶融キャリヤ樹脂との分離を効果的、且つ安定的に行うことができないため、この溶融混練物を減圧状態に保持されたベント室3内に導入することで、ラクチドの沸点を降下させ、ガス化を促進させる必要がある。
図2を図1と併せて参照して、ベント室3は、第1のスクリュー搬送路11を備えており、この第1のスクリュー搬送路11の下方には、キャリヤ樹脂回収室4が配置されていると同時に、第1のスクリュー搬送路11から上方に立ち上がっている側壁13の上部には、捕集装置5に連なる捕集管15が連結されている。
また、このベント室3の天井壁17は、傾斜構造を有しており、この傾斜した部分に覗き窓19が取り付けられており、この覗き窓19からベント室3の内部、特に第1のスクリュー搬送路11の状態を常時観察できるようになっている。
さらに、上記の覗き窓19の下方端部は、第1のスクリュー搬送路11から上方に立ち上がっている側壁13の外側部分にまで延びており、その下側には、還流液の受け槽21が設けられている。即ち、この受け槽21は、上記の側壁13によって第1のスクリュー搬送路11とは区画されており、還流液がスクリュー搬送路11に混ざらないようになっている。
このような構造のベント室3において、スクリュー搬送路11は、同方向に回転する一対の第1搬送スクリュー23a,23bと、一方の第1搬送スクリュー23aの上部に適宜配置される落とし込みスクリュー25と、第1搬送スクリュー23a,23bを収容しているシリンダー壁(バレル)27とから構成されている。
上記のシリンダー壁27は、押出機1のシリンダー壁が延長して伸びているものであり、同様に、第1搬送スクリュー23a,23bは、押出機1のスクリューが延長しているものであり、前述した溶融混合物は、押出機1から図2の紙面手前に搬送され、ベント室3内に導入されるようになっている。
また、適宜配置される落とし込みスクリュー25は、ベント室3内に選択的に設けられているものであり、第1搬送スクリュー23aと係合しており且つ搬送スクリュー23aとは逆方向(ニップ位置では同方向)に回転するように設けられている。
即ち、ベント室3は、真空ポンプ7による真空引きによって減圧される。また、シリンダー壁27に取り付けられているヒーター(図示せず)によって、第1のスクリュー搬送路11内は、押出機1内のシリンダー部分と同様、250℃〜350℃程度に加熱されている。これにより、第1のスクリュー搬送路11内を延びている上記の第1搬送スクリュー23a,23bによってベント室3内に導入された溶融混合物に含まれるポリ乳酸の解重合により生成したラクチドがガス状化され、ガス状化したラクチドは、上記の捕集管15から捕集装置5に導入される。
尚、スクリュー搬送される溶融混合物は、蒸気圧の高いポリ乳酸解重合物を含有し、かつ圧縮されながら、減圧されているベント室3内に導入されるため、このベント室3内で膨張し、スクリュー23a,23bから浮いた状態の樹脂塊30が発生してしまうことがある。従って、この回収装置の運転を続けていくと、ベント室3内で、一対の第1搬送スクリュー23a,23bから浮いてしまった樹脂塊30を連続して生じてしまうことがある。この樹脂塊30は、主としてキャリヤ樹脂により形成されたカサブタのようなものであり、この樹脂塊30が成長して大きくなっていくと、ラクチドガス回収を妨げる閉塞物となるばかりか、飛散した樹脂塊30が捕集管15を通って捕集装置5内に入り込んでしまい、捕集管15全体を閉塞してしまうこともある。即ち、ベントアップを引き起こしてしまう。
上記の第1搬送スクリュー23aの上側に設けられている落とし込みスクリュー25は、図2から理解されるように、第1搬送スクリュー23aとは逆方向に回転するように設けられている。このため、第1のスクリュー搬送路11から浮いてしまった状態の樹脂塊30は、この落とし込みスクリュー25によって再び第1搬送スクリュー23a上に戻され、次いで第2のスクリュー搬送路60に落下し、キャリア樹脂とともに排出される。
このように、落とし込みスクリュー25は、樹脂塊30を第1のスクリュー搬送路11に戻すための戻し部材として機能し、これにより、樹脂塊30の成長を抑制し、樹脂塊30の成長による不都合を有効に防止することができる。
上述した戻し部材として使用される落とし込みスクリュー25の回転は、第1搬送スクリュー23a・23bと同期する回転であってもよく、同期しない回転であってもよい。
また、スクリュー搬送路11から浮いてしまった樹脂塊30をスクリュー搬送路11に戻すことができる限り、落とし込みスクリュー25以外の部材を戻し部材として用いることもできる。例えば、第1搬送スクリュー23a,23bにより搬送されている溶融混合物からガス状化して捕集管15に流れるラクチドの流路を阻害しないように、第1搬送スクリュー23a及び/または23bの上方を覆うようにプレート状の戻し部材や、スクリュー羽根の代わりに楕円形状の羽根が複数配列されている回転シャフトなども戻し部材として好適に使用することができる。
尚、ガス化したラクチドが覗き窓19などに接触して冷却されて再び液化(即ち、還流)してしまうと、ベントアップを生じることもあるが、上記のような構造のベント室3では、ラクチドの還流液による不都合を有効に防止することができる。
即ち、ポリ乳酸、解重合用触媒及びキャリヤ樹脂を含む溶融混合物を、第1のスクリュー搬送路11により押出機1からベント室3に導入していき、ラクチドのガス状化を連続して行っていくと、覗き窓19の面で結露による液滴31(即ち、還流液)を生じる場合がある。この液滴31が第1のスクリュー搬送路11に滴下すると、この搬送路11を走行している第1搬送スクリュー23a,23bの表面或いはシリンダー壁27の内表面を覆うように液膜が形成されてしまい、溶融混合物がスリップし易くなり、結果として、前述した樹脂塊30を生成し易くなってしまう。
しかるに、図2に示されているような構造のベント室3では、覗き窓19が傾斜して設けられており、結露による液滴31は、覗き窓19の面に沿って流れ落ち、側壁13によって第1のスクリュー搬送路11とは完全に区画された受け槽21に収容されることとなる。即ち、液滴31が第1のスクリュー搬送路11内に滴下し、樹脂塊30の発生を促してしまうという不都合を有効に回避することができる。
また、液滴31の第1のスクリュー搬送路11への落下は、ラクチドの気化と液化の繰り返しをもたらし、ラクチドのラセミ化を促進させ、得られるラクチドの光学的純度を低下させるが、上記のような構造のベント室3では、このような不都合も有効に回避することができる。
尚、上述した覗き窓19は、図2に示されているように二重窓とし、Oリング33a,33bを備えたガスケット35により、天井壁17に取り付けられていることが好適である。このような構造により、覗き窓19の保温性を高め、結露を防止でき、還流液の生成を有効に回避することができる。
また、上述した液滴31(還流液)を捕集する受け槽21の底部には、受け槽21に溜まった還流液31aを回収する回収ライン37が設けられており、その側壁の上部には、ベント室3の真空度を保持し或いは真空をブレイクするための真空ブレイク/復旧ライン39が設けられている。このような構造により、受け槽21に溜まった還流液31aを回収することができる。
受け槽21の構造は、図2に示されている構造に限定されるものではなく、例えば、受け槽21の底部に、捕集ラインを介して一時的捕集槽を連結し、この一時的捕集槽に真空ブレイク/復旧ライン及び回収ラインを設けることにより、受け槽21に溜まった還流液31aを、ベント室3の真空系を破壊せずに、捕集ラインを介して一時的捕集槽に移動させて回収することができる。
さらに、ベント室3によりガス状化されたラクチドは、側壁13の上部に設けられている捕集管15を介して捕集装置5に導入されるが、図2に示されているように、この捕集管15は、上方に傾斜して延びており且つ、真空ブレイク防止弁50が設けられており、プロセス運転に異常があった場合には、この弁50を開閉し得るようになっている。
また、この捕集管15の入り口部分にも、還流液を受けるための受け槽15aを設けておくことが望ましい。即ち、捕集管15内で液化した還流液は、この受け槽15aで捕集され、スクリュー搬送路11内に流れ落ちないような構造としておくことが好適である。尚、この受け槽15aにも、真空ブレイク/復旧ライン15b及び回収ライン15cが設けられる。
捕集管15から捕集装置5内に導入され、ガス状化したラクチドを含むガス混合物は、捕集装置5内の気液分離塔51及び凝縮ラインAを通り、このガス混合物からラクチドが液体として回収される。
このようにしてラクチドの回収を行う本発明において、ベント室3内は、真空ポンプ7による真空引きによって0.1〜8KPaAの圧力に保持され、これにより加熱されたラクチドがベント室3内でガス化され、ガス状化ラクチドが捕集管15から捕集装置5内に導入されて、凝縮ラインAから回収される。例えば、ベント室3内の圧力が、上記範囲よりも低いと、真空度が高すぎるため、樹脂塊が多くできることとなり、ベントアップしやすくなってしまい、上記範囲よりもベント室3内の圧力が高いと、真空度が低すぎるため、ラクチドの沸点降下が不十分であり、ラクチドガス化が不十分となり、回収効率が低下する傾向がある。また、このような回収作業は、ベント室3内の圧力変動を極力抑制して行うことが必要である。具体的には、圧力変動が±1KPaA内に抑制されることが望ましい。この圧力変動が過度に大きいと、溶融樹脂混合物中に含まれるラクチドの沸点変化が大きくなり、その結果、ベントアップが生じやすくなったり、あるいは、回収効率の低下の原因となる。
上述した回収装置において、捕集管15に連なる捕集装置5は、例えば図3に示されているように、気液分離塔51を備え、この気液分離塔51は、凝縮ラインAに通じており、凝縮ラインAは、真空ポンプ7に連なっている。すなわち、捕集管15から流れ込んだガス状ラクチドを含むガス混合物は、気液分離塔51に通され、気液分離塔51内に設けられているデミスターによって、高分子量成分(例えば乳酸のオリゴマー)が除去され、さらに、凝縮ラインAでの冷却により、ガス状ラクチドを液化しての回収及び低分子量成分の除去が行われる。即ち、ベント室3から捕集されたラクチドを含むガス混合物には、ラクチド以外に、乳酸のオリゴマー、ポリ乳酸或いはキャリヤ樹脂に配合されていた重合開始剤等に由来する各種低分子量化合物などが含まれているため、これらを除去する必要がある。具体的には、ガス回収したラクチドを、気液分離塔51に通し気液分離塔内のデミスターで高分子量成分を除去後、第1の凝縮器71に導入し、ラクチドのみ液化させ、液状ラクチドとして回収する。
従って、ベント室3からのガス状混合物の気液分離塔51及び凝縮ラインAへの供給を効率よく行うため、気液分離塔51及び凝縮ラインAはベント室3よりも高い位置に設置されていることが好適である。
凝縮ラインAには、図3から明らかなように、真空ポンプ7により真空引きされるガスの流れ方向に沿って、第1の凝縮器71、第2の凝縮器73、及び第3の凝縮器75が直列に配置されている。すなわち、第1の凝縮器71は導入ライン81により、気液分離塔51に連結されており、第2の凝縮器73は連結ライン83によって第1の凝縮器71に連結されており、第3の凝縮器75は連結ライン85によって第2凝縮器73に連結され、且つ終結ライン87によって真空ポンプ7に連結されている。従って、ベント室3からベントされるガス状ラクチドを含むガス混合物は、気液分離塔51を通り、さらに第1の凝縮器71、第2の凝縮器73、及び第3の凝縮器75に順次導入されることとなる。
第1の凝縮器71は、ガス混合物からラクチドを液状化して回収するものであり、この凝縮器71での熱交換温度は、真空引きされる真空度の範囲に応じて適宜の範囲に設定される。一般に、0.1KPaA〜8KPaAの真空度範囲で熱交換温度は60℃〜140℃が好ましく、真空度範囲が0.5PaA〜4KPaAで熱交換温度は80℃〜90℃がより好ましい。熱交換温度が上記範囲よりも低いと、低沸点不純物の液状化を生じ、回収ラクチドの純度が落ちる虞があり、熱交換温度が上記範囲よりも高いと、ラクチドが液状化しにくいため、ラクチド回収効率が低下する虞がある。
また、第1の凝縮器71には、図3に示されているように、ラクチド受け器89が連結されており、第1の凝縮器71での冷却により液化されたラクチドは、受け器89に捕集され、残るガスは、連結ライン83を通って第2の凝縮器73に導入される。
第2の凝縮器73は、ラクチドよりも低沸点の低分子量化合物を除去するためのものであり、従って、その熱交換温度は第1の凝縮器71よりも低く、一般に、40〜−20℃程度に設定されている。第2の凝縮器73での冷却により液化された低分子量化合物は、受け器90に捕集され、排出あるいは回収される。また、低分子量化合物が除去され、且つ第2の凝縮器73で冷却されたガスは、連結ライン85を介して、第3の凝縮器75に導入される。
第3の凝縮器75は、さらに沸点の低い低分子量化合物(難凝集性成分)を除去するためのものであり、従って、その熱交換温度は、第2の凝縮器73よりも低く、一般に、−40〜−60℃での極低温に設定されており、いわゆる深冷トラップによりさらなる低分子量の化合物が液化され、第3の凝縮器75内のデミスターなどにより取り除かれる。また、残ったガスは終結ライン87に設けられているフィルター93を通して真空ポンプ7により引かれて排出される。
上記のような凝縮ラインAに設けられている第1〜3の凝縮器71、73、75は、熱交換温度が上述した範囲内に設定されている限り、それ自体公知の構造を有しているものであってよく、例えば、第1の凝縮器71及び第2の凝縮器73は冷媒として、水(温水)が使用されたものでもよく、また、深冷トラップによる冷却を行う第3の凝縮器75は、冷媒として無水エタノールが使用されたものでもよい。
このように、気液分離塔51を通り、高分子量のオリゴマー成分が除去されたガス混合物を凝縮ラインAに導入し、ガス混合物中に含まれるガス状ラクチドを液化して捕集する第1の凝縮器71に加え、さらに低分子量成分を除去する第2の凝縮器73及び第3の凝縮器75を使用することにより、この凝縮ラインA中での低分子量化合物等の不純物の蓄積や配管詰まりを有効に防止することができ、このような不純物による真空ポンプ7の動作不良も有効に防止することができる。
尚、上述した図3の例では、ラクチドよりも沸点の低い低分子量化合物を除去するために、第2の凝縮器73と、第3の凝縮器75とが設けられているが、本発明はかかる態様に限定されるものではなく、さらに、熱交換温度の異なる冷却器を、例えば、第2の凝縮器73と第3の凝縮器75との間に設けることもできる。また、場合によっては、第3の凝縮器75(あるいは第2の凝縮器73)を省略することもできる。
また、図3では凝縮ラインAが単一の直列ラインとなって、第1〜3の凝縮器71、73、75が一つのラインに設けられているが、第1の凝縮器71の導入ライン81と第3の凝縮器75から真空ポンプ7への終結ライン87との間に、枝分かれした並列ラインを設けることができ、並列になっているラインのそれぞれに凝縮器を設け、真空ポンプ7の真空引きによるラクチドの捕集作業とラインの洗浄作業を並行して行うようにすることもできる。以下、真空引きによるラクチドの捕集作業を行うラインをラクチド捕集ライン、洗浄作業を行うラインを真空引き洗浄ラインと呼ぶ。
例えば、図4に示されているように、この態様においては、第1の凝縮器71から延びている連結ライン83の途中に三方バルブ等の切替バルブMが設けられ、この部分で並列ラインXa、Xbに枝分かれしている。これらの並列ラインXa、Xbはそれぞれ真空ポンプ7に連なる終結ライン87に設けられている三方バルブ等の切替バルブVまで延びている。
ここで、一方の並列ラインXaには、第2の凝縮器73aと第3の凝縮器75aとがこの順に配置されており、他方の並列ラインXbには、第2の凝縮器73bと第3の凝縮器75bとがこの順に配置されている。
上記の第2の凝縮器73a、73b及び第3の凝縮器75a、75bは、それぞれ図2における第2の凝縮器73、第3の凝縮器75に相当する。
図4から明らかなように、切替バルブMから枝分かれした一方の並列ラインXaにおいて、切替バルブMから延びている連結ライン83aには、切替バルブMaが設けられており、この連結ライン83aは、第2の凝縮器73aに連なっている。また、第2の凝縮器73aは、連結ライン85aにより、第3の凝縮器75aに連なっており、第3の凝縮器75aからは、切替バルブVに連なる終結ライン87aが延びている。この終結ライン87aには、切替バルブMa’が設けられている。
同様にして、他方の並列ラインXbにおいては、切替バルブMから延びている連結ライン83bには、切替バルブMbが設けられており、この連結ライン83bは、第2の凝縮器73bに連なっている。また、第2の凝縮器73bは、連結ライン85bにより、第3の凝縮器75bに連なっており、第3の凝縮器75bからは、切替バルブVに連なる終結ライン87bが延びている。この終結ライン87bには、切替バルブMb’が設けられている。
さらに、並列ラインXa中の切替バルブMa及び、並列ラインXb中の切替バルブMbには、調圧バルブ95を備えたクリーニングガス導入ライン101が接続されている。
また、並列ラインXa中の切替バルブMa’及び、並列ラインXb中の切替バルブMb’には、調圧バルブ103、真空チャンバー105、及びフィルター111を備え、且つクリーニング用真空ポンプ107を備えた排気ライン109が連結されている。
このような並列ラインXa、Xb、クリーニングガス導入ライン101及び、排気ライン109に設けられている各種バルブは、いずれも図示されていないバルブ制御措置によってその開閉がされており、これにより、一方の並列ラインXaに第1の凝縮器71から排出されたガス混合物が流れて、第2の凝縮器73a及び第3の凝縮器75aでの冷却により、低分子量化合物が除去されるときには、他方の並列ラインXbには、例えば室温以上、好ましくは50℃以上に加熱されたクリーニングガスが流されて、配管等の洗浄が行われるようになっている。
例えば、図4の例では、切替バルブMが並列ラインXa側に開放され(並列ラインXb側が閉じられている)、且つ、切替バルブVは並列ラインXa側に開放された状態(並列ラインXb側が閉じられた状態)に制御されている。
また、切替バルブMaのクリーニングガス導入ライン101側が閉じられ、さらに、切替バルブMa’の排気ライン109側が閉じられている。従って、第1の凝縮器71を出たガス混合物は、切替バルブMから、第2の凝縮器73aを通って低分子量化合物が除去され、さらに、第3の凝縮器75aを通ってさらに低分子量の化合物が除去され、切替バルブVを通り、フィルター93を通って、真空ポンプ7より排気される。
一方、他方の並列ラインXbでは、切替バルブMbのクリーニングガス導入ライン101側が開放され、さらに、切替バルブMb’の排気ライン109側が開放状態となり、さらに、クリーニングガス導入ライン101内の調圧バルブ95が開放状態となり、排気ライン109内の調圧バルブ103も開放状態となるように調整されている。
従って、この状態でクリーニング用真空ポンプ107を作動させると、所定のガス源からクリーニングガスが導入ライン101を通って、並列ラインXb内に流れ込み、連結ライン83b、第2の凝縮器73b、連結ライン85b、第3の凝縮器75b、終結ライン87bから、バルブMb’を通って、排気ライン109に流れ、真空チャンバー105、フィルター111の順に通り、クリーニング用真空ポンプ107から排出される。
すなわち、並列ラインXaは、真空ポンプ7に連なり、真空引きによるラクチドの捕集作業が行われるラクチド捕集ラインとなり、第1の凝縮器71を通ったガスについて、第2の凝縮器73a及び、第3の凝縮器75aによる低分子量化合物の除去が行われる。一方、並列ラインXbは、クリーニングガス導入ライン101を介してクリーニング用真空ポンプ107に連なり、洗浄作業が行われる真空引き洗浄ラインとなり、Xa側ラインの真空度を変動させることなく、クリーニングガスによりXb側ラインの各種配管及び凝縮器の洗浄が行われる。
また、並列ラインXa側の洗浄を行う場合には、上記と全く逆の操作が行われる。
すなわち、図5に示されているように、切替バルブMが並列ラインXb側に開放され(並列ラインXa側が閉じられている)、且つ、切替バルブVは並列ラインXb側に開放された状態(並列ラインXa側が閉じられた状態)に制御されている。
また、切替バルブMbのクリーニングガス導入ライン101側が閉じられ、さらに、切替バルブMb’の排気ライン109側が閉じられている。従って、第1の凝縮器71を出たガス混合物は、切替バルブMから、第2の凝縮器73bを通って低分子量化合物が除去され、さらに、第3の凝縮器75bを通ってさらに低分子量の化合物が除去され、切替バルブVを通り、フィルター93を通って、真空ポンプ7より排気される。
一方、他方の並列ラインXaでは、切替バルブMaのクリーニングガス導入ライン101側が開放され、さらに、切替バルブMa’の排気ライン109側が開放状態となり、さらに、クリーニングガス導入ライン101内の調圧バルブ95が開放状態となり、排気ライン109内の調圧バルブ103も開放状態となるように調整されている。
従って、この状態でクリーニング用真空ポンプ107を作動させると、所定のガス源からクリーニングガスが導入ライン101を通って、並列ラインXa内に流れ込み、連結ライン83a、第2の凝縮器73a、連結ライン85a、第3の凝縮器75a、終結ライン87aから、バルブMa’を通って、排気ライン109に流れ、真空チャンバー105、フィルター111の順に通り、クリーニング用真空ポンプ107から排出される。
すなわち、並列ラインXb側では、第1の凝縮器71を通ったガスについて、第2の凝縮器73b及び、第3の凝縮器75bによる低分子量化合物の除去が行われ、同時に他方の並列ラインXa側では、クリーニングガスにより各種配管及び凝縮器の洗浄が行われる。
このように、並列ラインを設けた態様では、捕集装置5のプロセス運転を停止することなく、洗浄を行うことができ、長期間にわたって連続してラクチドを回収することができ、工業的に極めて有利である。
尚、上述した図4及び図5においては、第1の凝縮器71に連なる連結ライン83に切替バルブMを設けて、並列ラインXa、Xbを形成しているが、気液分離塔51と第1の凝縮器71とをつなぐ導入ライン81に切替バルブMを設けて、並列ラインを形成することもできる。また、第2の凝縮器73と第3の凝縮器75とをつなぐ連結ライン85に切替バルブMを設けて、並列ラインを形成することもできる。ただし、第1〜3の凝縮器71、73、75を稼働させてラクチドの回収及び低分子量化合物の除去を行う場合、最も配管内への不純物の付着、堆積が生じやすいのは、第1の凝縮器71の下流側領域である。従って、図4及び図5に示されているように、第1の凝縮器71に連なる連結ライン83に切替バルブMを設けて、並列ラインXa、Xbを形成することが最も好適である。
1:押出機
3:ベント室
5:捕集装置
7:真空ポンプ
15:捕集管
51:気液分離塔
71:第1の凝縮器
73(73a、73b):第2の凝縮器
75(75a、75b):第3の凝縮器
101:クリーニングガス導入ライン
109:排気ライン
111:フィルター
A:凝縮ライン
Xa、Xb:並列ライン

Claims (8)

  1. ラクチドを含む樹脂混合物を減圧下に保持し、該樹脂混合物中に含まれるラクチドをガス化し、ガス状ラクチドを含むガス混合物を真空引きしながら、凝縮ラインに導入してラクチドを回収する方法において、
    前記凝縮ラインは、冷却温度が順次低くなるように、複数の凝縮器が直列に配列しており、これらの凝縮器によって前記ガス混合物から、ラクチドの捕集及びラクチド以外の不純物の分離を行うために、前記ガス混合物を該凝縮ラインに導入するための導入ラインと、真空引きのための真空ポンプに連なる終結ラインとを含み、更に、該導入ラインと該終結ラインとの間に切替バルブを介して枝分かれした並列ラインを有しており、該並列ラインには、それぞれ少なくとも最も下流側に位置する凝縮器を含むように少なくとも1つの凝縮器が設けられており、
    前記並列ラインの枝分かれしている流路のそれぞれに、切替バルブを介して真空引き洗浄ラインが連結されていることを特徴とするラクチド回収方法。
  2. 前記ラクチドが、ポリ乳酸の解重合により生成したものである請求項1に記載のラクチド回収方法。
  3. 前記ガス混合物を、乳酸オリゴマー成分を除去するための気液分離塔を通して、前記凝縮ラインに連続的に導入する請求項2に記載のラクチド回収方法。
  4. 前記複数の凝縮器として、第1の凝縮器、第2の凝縮器及び第3の凝縮器がこの順に配置されている請求項1〜3の何れかに記載のラクチド回収方法。
  5. 0.1〜8KPaAの真空度範囲で前記ガス混合物を真空引きする請求項1〜4の何れかに記載のラクチド回収方法。
  6. 第1の凝縮器での熱交換温度を60〜140℃に設定している請求項4または5に記載のラクチド回収方法。
  7. 前記ガス混合物を前記並列ラインの枝分かれしている一方の流路に流して、ラクチドの回収を行い、同時に前記並列ラインの枝分かれしている他方の流路に連なる前記真空引き洗浄ラインを動作させて真空洗浄を行う請求項1〜6に記載のラクチド回収方法。
  8. 前記導入ラインに第1の凝縮器が配置され、前記並列ラインの枝分かれした流路のそれぞれに残りの凝縮器が配置されている請求項に記載のラクチド回収方法。
JP2016219186A 2016-11-09 2016-11-09 ラクチド回収方法 Active JP6848362B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016219186A JP6848362B2 (ja) 2016-11-09 2016-11-09 ラクチド回収方法
PCT/JP2017/038174 WO2018088182A1 (ja) 2016-11-09 2017-10-23 ラクチド回収方法
TW106136818A TWI742185B (zh) 2016-11-09 2017-10-26 乳酸交酯回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219186A JP6848362B2 (ja) 2016-11-09 2016-11-09 ラクチド回収方法

Publications (2)

Publication Number Publication Date
JP2018076257A JP2018076257A (ja) 2018-05-17
JP6848362B2 true JP6848362B2 (ja) 2021-03-24

Family

ID=62110154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219186A Active JP6848362B2 (ja) 2016-11-09 2016-11-09 ラクチド回収方法

Country Status (3)

Country Link
JP (1) JP6848362B2 (ja)
TW (1) TWI742185B (ja)
WO (1) WO2018088182A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220013201A (ko) * 2020-07-24 2022-02-04 주식회사 엘지화학 올리고머 제조장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822906B2 (ja) * 1995-02-06 1998-11-11 株式会社島津製作所 ラクチドの製造法及び装置
JP3503127B2 (ja) * 1995-09-14 2004-03-02 トヨタ自動車株式会社 高分子量ポリ乳酸からのラクチド回収方法
JPH107773A (ja) * 1996-06-21 1998-01-13 Dainippon Ink & Chem Inc 残留モノマーの回収方法
JP3330284B2 (ja) * 1996-07-03 2002-09-30 株式会社神戸製鋼所 ポリ乳酸の製造方法
JPH10306091A (ja) * 1997-05-08 1998-11-17 Shimadzu Corp ラクチドの製造方法
JPH1135579A (ja) * 1997-07-17 1999-02-09 Shimadzu Corp 有機溶媒を用いたラクチドの製造方法
JP2006241022A (ja) * 2005-03-01 2006-09-14 Hitachi Ltd ラクチド製造装置及びラクチド製造方法
JP4696824B2 (ja) * 2005-10-07 2011-06-08 株式会社日立プラントテクノロジー ポリエステルの製造方法及びポリエステルの製造装置
JP4427571B2 (ja) * 2007-11-07 2010-03-10 株式会社日立プラントテクノロジー ポリマー合成に関する装置および方法
JP5459974B2 (ja) * 2008-04-11 2014-04-02 株式会社日立製作所 精製乳酸環状二量体の製造方法及び製造装置、並びに、ポリ乳酸の製造方法及び製造装置
ES2695928T3 (es) * 2009-03-13 2019-01-11 Natureworks Llc Métodos para producir lactida con reciclado de mesolactida
JP6206474B2 (ja) * 2015-12-09 2017-10-04 東洋製罐株式会社 ラクチドの回収方法
JP6206514B2 (ja) * 2016-01-19 2017-10-04 東洋製罐株式会社 ラクチドを回収する方法
JP6691656B2 (ja) * 2016-01-29 2020-05-13 東洋製罐株式会社 ラクチド回収方法

Also Published As

Publication number Publication date
JP2018076257A (ja) 2018-05-17
TW201827502A (zh) 2018-08-01
WO2018088182A1 (ja) 2018-05-17
TWI742185B (zh) 2021-10-11

Similar Documents

Publication Publication Date Title
TWI747867B (zh) 乳酸交酯回收方法
KR101982543B1 (ko) 폴리머 용융물로부터 고리형 디에스테르를 제거하는 장치 및 방법
JP6848362B2 (ja) ラクチド回収方法
US9700840B2 (en) Method for removing an ester from a vapor mixture
JP5077170B2 (ja) ポリヒドロキシカルボン酸の製造方法
WO2008102896A1 (ja) ポリエステル繊維廃棄物から異種素材を分離除去する方法
JP4994314B2 (ja) ラクチド及びポリ乳酸の合成方法及び装置
JP6206514B2 (ja) ラクチドを回収する方法
JP6206474B2 (ja) ラクチドの回収方法
US20090173618A1 (en) Method of an apparatus for generating a vacuum and for separating volatile compounds in polycondensation reactions
KR102081304B1 (ko) 락티드를 회수하는 방법
CA3141090A1 (en) An improved clog-free condensation system for pyrolysis vapour of pet containing polymer
CN114712885A (zh) 聚碳酸酯溶液处理装置及聚碳酸酯废料回收二氯甲烷装置
TW201504277A (zh) 聚酯的製造方法及製造裝置
CN117046150A (zh) 乙交酯冷凝系统和对乙交酯气相物料进行冷凝的方法
JPH1045888A (ja) 湿式コンデンサー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150