JP6842621B2 - Method for producing silsesquioxane having a reactive substituent - Google Patents

Method for producing silsesquioxane having a reactive substituent Download PDF

Info

Publication number
JP6842621B2
JP6842621B2 JP2016232998A JP2016232998A JP6842621B2 JP 6842621 B2 JP6842621 B2 JP 6842621B2 JP 2016232998 A JP2016232998 A JP 2016232998A JP 2016232998 A JP2016232998 A JP 2016232998A JP 6842621 B2 JP6842621 B2 JP 6842621B2
Authority
JP
Japan
Prior art keywords
formula
cyclic siloxane
silsesquioxane
represented
independently represents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016232998A
Other languages
Japanese (ja)
Other versions
JP2018090502A (en
Inventor
雅史 海野
雅史 海野
泰暢 江川
泰暢 江川
島田 茂
茂 島田
佐藤 一彦
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Gunma University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Gunma University NUC
Priority to JP2016232998A priority Critical patent/JP6842621B2/en
Priority to PCT/JP2017/042446 priority patent/WO2018101213A1/en
Publication of JP2018090502A publication Critical patent/JP2018090502A/en
Application granted granted Critical
Publication of JP6842621B2 publication Critical patent/JP6842621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Description

本発明は、シルセスキオキサンの製造方法に関し、より詳しくは反応性置換基を有するシルセスキオキサンの製造方法に関する。 The present invention relates to a method for producing silsesquioxane, and more particularly to a method for producing silsesquioxane having a reactive substituent.

構造が規制されたケイ素化合物は、高い物性が要求される材料への応用が期待されており、近年、その合成が盛んに研究されている。特にかご型のシルセスキオキサンは、その特異的な構造から高い耐熱性、耐酸化性、耐候性が見込まれており、様々な機能性材料、特に有機−無機ハイブリット材料の基幹化合物として注目を浴びている。
かご型のシルセスキオキサンの合成については、数多くの報告があり、環状シラノールからの合成も可能で(例えば、非特許文献1〜5参照)、これまでに様々な有機基が導入されたかご型シルセスキオキサンが報告されている。
Silicon compounds with regulated structures are expected to be applied to materials that require high physical properties, and their synthesis has been actively studied in recent years. In particular, cage-type silsesquioxane is expected to have high heat resistance, oxidation resistance, and weather resistance due to its specific structure, and is attracting attention as a basic compound for various functional materials, especially organic-inorganic hybrid materials. I'm bathing.
There are many reports on the synthesis of squirrel-cage squirrel-cage, and synthesis from cyclic silanol is also possible (see, for example, Non-Patent Documents 1 to 5). Squirrel-cage type squirrel-cage has been reported.

M. Unno et al., Chem. Lett. 1998, 489.M. Unno et al., Chem. Lett. 1998, 489. M. Unno et al., Bull. Chem. Soc. Jpn. 2000, 73, 215.M. Unno et al., Bull. Chem. Soc. Jpn. 2000, 73, 215. S. Tateyama et al., J. Organomet. Chem. 2010, 695, 898.S. Tateyama et al., J. Organomet. Chem. 2010, 695, 898. H. Seki et al., J. Organomet. Chem. 2010, 695, 1363.H. Seki et al., J. Organomet. Chem. 2010, 695, 1363. Laine et al. C. R. Chimie, 2010, 13, 270.Laine et al. C.R. Chimie, 2010, 13, 270.

かご型シルセスキオキサンの中でも異なる置換基を対面に4つずつ有するものは、ヤヌスキューブと呼ばれ、両親媒材料やシランカップリング剤への応用が特に期待されているが、反応性置換基を有したヤヌスキューブを合成した例は報告されていないのが現状である。
本発明は、反応性置換基を有するシルセスキオキサン、特に片面に反応性置換基を有するヤヌスキューブを製造することができるシルセスキオキサンの製造方法を提供することを目的とする。
Among the cage-type silsesquioxane, those having four different substituents facing each other are called Janus cubes, and are particularly expected to be applied to amphipathic materials and silane coupling agents. Reactive substituents At present, no example of synthesizing a Janus cube having the above has been reported.
An object of the present invention is to provide a method for producing silsesquioxane having a reactive substituent, particularly silsesquioxane capable of producing a Janus cube having a reactive substituent on one side.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、特定のシロキシ基(−O−SiHX)を有する環状シロキサンを準備し、これを加水分解して分子内脱水縮合を進めることにより、反応性置換基であるSi−Hを有するシルセスキオキサンを効率良く製造することができることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors prepared a cyclic siloxane having a specific siloxy group (-O-SiHX 2 ), hydrolyzed the cyclic siloxane, and subjected to intramolecular dehydration condensation. By proceeding, it was found that silsesquioxane having Si—H as a reactive substituent can be efficiently produced, and the present invention has been completed.

即ち、本発明は以下の通りである。
<1> 水の存在下、下記式(B)で表される環状シロキサンから下記式(C)で表されるシルセスキオキサンを生成する反応工程を含む、シルセスキオキサンの製造方法。

(式(B)及び(C)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
<2> 下記式(A)で表される環状シロキサンとトリハロシランを反応させて下記式(B)で表される環状シロキサンを生成する準備工程を含む、<1>に記載のシルセスキオキサンの製造方法。

(式(A)及び(B)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
<3> 下記式(B)で表される環状シロキサン。

(式(B)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
<4> 下記式(C)で表されるシルセスキオキサン。

(式(C)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を表す。)
That is, the present invention is as follows.
<1> A method for producing silsesquioxane, which comprises a reaction step of producing silsesquioxane represented by the following formula (C) from a cyclic siloxane represented by the following formula (B) in the presence of water.

(In the formulas (B) and (C), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
<2> The silsesquioxane according to <1>, which comprises a preparatory step of reacting a cyclic siloxane represented by the following formula (A) with trihalosilane to produce a cyclic siloxane represented by the following formula (B). Manufacturing method.

(In the formulas (A) and (B), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
<3> Cyclic siloxane represented by the following formula (B).

(In the formula (B), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
<4> Silsesquioxane represented by the following formula (C).

(In the formula (C), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms.)

本発明によれば、反応性置換基を有するシルセスキオキサンを製造することができる。特に片面に反応性置換基を有するヤヌスキューブを製造するために有効である。 According to the present invention, silsesquioxane having a reactive substituent can be produced. It is particularly effective for producing Janus cubes having a reactive substituent on one side.

本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。 In explaining the present invention, specific examples will be given, but the contents are not limited to the following as long as the gist of the present invention is not deviated, and the present invention can be appropriately modified.

<シルセスキオキサンの製造方法>
本発明の一態様であるシルセスキオキサンの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、水の存在下、下記式(B)で表される環状シロキサンから下記式(C)で表されるシルセスキオキサンを生成する反応工程(以下、「反応工程」と略す場合がある。)を含むことを特徴とする。

(式(B)及び(C)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
本発明者らは、反応性置換基を有するシルセスキオキサンを合成すべく検討を重ねた結果、特定のシロキシ基(−O−SiHX)を有する環状シロキサン(式(B)で表される環状シロキサン)を準備し、これを加水分解して分子内脱水縮合を進めることにより、反応性置換基としてSi−Hを有するシルセスキオキサンを効率良く製造することができることを見出したのである。
以下、「式(B)で表される環状シロキサン」、反応工程の条件等について、詳細に説明する。
<Manufacturing method of silsesquioxane>
The method for producing silsesquioxane, which is one aspect of the present invention (hereinafter, may be abbreviated as "the production method of the present invention"), is made from cyclic siloxane represented by the following formula (B) in the presence of water. It is characterized by including a reaction step (hereinafter, may be abbreviated as "reaction step") for producing silsesquioxane represented by the following formula (C).

(In the formulas (B) and (C), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
As a result of repeated studies for synthesizing silsesquioxane having a reactive substituent, the present inventors have represented it by a cyclic siloxane (formula (B)) having a specific siloxy group (-O-SiHX 2). It was found that silsesquioxane having Si—H as a reactive substituent can be efficiently produced by preparing cyclic siloxane) and hydrolyzing it to promote intramolecular dehydration condensation.
Hereinafter, "cyclic siloxane represented by the formula (B)", conditions of the reaction step, and the like will be described in detail.

式(B)で表される環状シロキサンのRは、それぞれ独立して炭素原子数1〜20の炭化水素基を表しているが、「炭化水素基」は、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素−炭素不飽和結合のそれぞれを有していてもよいものとする(分岐構造、環状構造、及び炭素−炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
の炭化水素基の炭素原子数は、好ましくは16以下、より好ましくは12以下、好ましくは8以下である。
としては、メチル基(−CH)、エチル基(−C)、ビニル基(−CH=CH)、エチニル基(−C≡CH)、n−プロピル基(−)、i−プロピル基(−)、n−ブチル基(−)、i−ブチル基(−)、t−ブチル基(−)、n−ペンチル基(−11)、n−ヘキシル基(−13)、c−ヘキシル基(−11)、フェニル基(−C)、ナフチル基(−C10)等が挙げられる。
式(B)で表される環状シロキサンのXは、それぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表しているが、塩素原子が特に好ましい。
R 1 of the cyclic siloxane represented by the formula (B) independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the “hydrocarbon group” is a linear saturated hydrocarbon group. It is not limited to, and may have each of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond (at least selected from the group consisting of a branched structure, a cyclic structure, and a carbon-carbon unsaturated bond). You may have one kind.).
The number of carbon atoms of the hydrocarbon group of R 1 is preferably 16 or less, more preferably 12 or less, and preferably 8 or less.
R 1 includes methyl group (-CH 3 ), ethyl group (-C 2 H 5 ), vinyl group (-CH = CH 2 ), ethynyl group (-C ≡ CH), n-propyl group ( -n C). 3 H 7 ), i-propyl group ( -i C 3 H 7 ), n- butyl group ( -n C 4 H 9 ), i-butyl group ( -i C 4 H 9 ), t-butyl group (-) t C 4 H 9 ), n-pentyl group ( -n C 5 H 11 ), n-hexyl group ( -n C 6 H 13 ), c-hexyl group ( -c C 6 H 11 ), phenyl group (-c C 6 H 11) C 6 H 5 ), a naphthyl group (-C 10 H 7 ) and the like can be mentioned.
The X of the cyclic siloxane represented by the formula (B) independently represents a chlorine atom, a bromine atom, or an iodine atom, but a chlorine atom is particularly preferable.

反応工程は、水の存在下、式(B)で表される環状シロキサンから式(C)で表されるシルセスキオキサンを生成する工程であるが、水の使用量(仕込量)は、式(B)で表される環状シロキサンに対して物質量換算で、通常10倍以上、好ましくは100倍以上、より好ましくは200倍以上であり、通常500倍以下、好ましくは400倍以下、より好ましくは300倍以下である。上記範囲内であれば、反応性置換基を有したシルセスキオキサンをより効率良く製造することができる。 The reaction step is a step of producing silsesquioxane represented by the formula (C) from the cyclic siloxane represented by the formula (B) in the presence of water. It is usually 10 times or more, preferably 100 times or more, more preferably 200 times or more, usually 500 times or less, preferably 400 times or less, more than the cyclic siloxane represented by the formula (B). It is preferably 300 times or less. Within the above range, silsesquioxane having a reactive substituent can be produced more efficiently.

反応工程の具体的な操作手順、反応条件等は特に限定されないが、溶媒で希釈した式(B)で表される環状シロキサンを、溶媒で希釈した水に低温下で滴下し、それを加熱して行うことが好ましい。
式(B)で表される環状シロキサンを希釈する溶媒としては、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒が挙げられる。
水を希釈する溶媒としては、アセトン、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒が挙げられる。
滴下温度は、通常34℃以下、好ましくは10℃以下、より好ましくは0℃以下である。
加熱温度は、通常25℃以上、好ましくは30℃以上、より好ましくは34℃以上であり、通常100℃以下、好ましくは70℃以下、より好ましくは56℃以下である。
加熱時間は、通常12時間以上、好ましくは1日以上、通常7日以下、好ましくは5日以下、より好ましくは3日以下である。
反応工程は、通常窒素、アルゴン等の不活性雰囲気下で行う。
なお、上記条件等であれば、反応性置換基を有したシルセスキオキサンをより効率良く製造することができる。
The specific operating procedure, reaction conditions, etc. of the reaction step are not particularly limited, but the cyclic siloxane represented by the formula (B) diluted with a solvent is added dropwise to water diluted with a solvent at a low temperature, and the cyclic siloxane is heated. It is preferable to carry out.
Examples of the solvent for diluting the cyclic siloxane represented by the formula (B) include ether solvents such as diethyl ether, 1,4-dioxane and tetrahydrofuran (THF).
Examples of the solvent for diluting water include aprotic polar solvents such as acetone and dimethyl sulfoxide (DMSO).
The dropping temperature is usually 34 ° C. or lower, preferably 10 ° C. or lower, and more preferably 0 ° C. or lower.
The heating temperature is usually 25 ° C. or higher, preferably 30 ° C. or higher, more preferably 34 ° C. or higher, and usually 100 ° C. or lower, preferably 70 ° C. or lower, more preferably 56 ° C. or lower.
The heating time is usually 12 hours or more, preferably 1 day or more, usually 7 days or less, preferably 5 days or less, and more preferably 3 days or less.
The reaction step is usually carried out in an inert atmosphere such as nitrogen or argon.
Under the above conditions and the like, silsesquioxane having a reactive substituent can be produced more efficiently.

本発明の製造方法は、前述の反応工程を含むものであれば、その他は特に限定されないが、下記式(A)で表される環状シロキサンとトリハロシラン(SiHX)を反応させて下記式(B)で表される環状シロキサンを生成する準備工程(以下、「準備工程」と略す場合がある。)を含み、生成した式(B)で表される環状シロキサンを反応工程に利用することが好ましい。

(式(A)及び(B)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
以下、「式(A)で表される環状シロキサン」、準備工程の条件等について、詳細に説明する。なお、式(A)で表される環状シロキサンのRとトリハロシランのハロゲン原子は、式(B)で表される環状シロキサンと同一のものになる。
The production method of the present invention is not particularly limited as long as it includes the above-mentioned reaction step, but the cyclic siloxane represented by the following formula (A ) is reacted with trihalosilane (SiHX 3 ) to form the following formula (SiHX 3). It is possible to use the produced cyclic siloxane represented by the formula (B) in the reaction step, which includes a preparatory step for producing the cyclic siloxane represented by B) (hereinafter, may be abbreviated as “preparation step”). preferable.

(In the formulas (A) and (B), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
Hereinafter, "cyclic siloxane represented by the formula (A)", conditions of the preparation step, and the like will be described in detail. Incidentally, R 1 and halogen atom trihalosilanes cyclic siloxane represented by the formula (A) will the same as the cyclic siloxane of the formula (B).

式(A)で表される環状シロキサンは、例えば下記式(i)又は(ii)で表されるようなトリクロロ(アルキル)シランやトリアルコキシ(アルキル)シラン等の縮合反応によって製造することができる。


なお、式(i)で表される反応の詳細については、J. F. Brown et al., J. Am. Chem.
Soc., 1965, 87, 4317、J. F. Brown, Jr. et al., J. Am. Chem. Soc., 1965, 87, 4313、F. J. Feher et al., Main Group Chem., 1997, 2, 123、M. Unno et al., Bull. Chem. Soc. Jpn., 2000, 73, 215等を参照することができ、式(ii)で表される反応の詳細については、O. I. Shchegolikhina et al., Inorg. Chem., 2002, 41, 6892、R. Ito et al., Chem. Lett., 2009, 38, 364、Y. A. Pozdnyakova et al., Inorg. Chem., 2010, 49, 572等を参照することができる。
The cyclic siloxane represented by the formula (A) can be produced, for example, by a condensation reaction of trichloro (alkyl) silane, trialkoxy (alkyl) silane, or the like as represented by the following formula (i) or (ii). ..


For details of the reaction represented by the formula (i), refer to JF Brown et al., J. Am. Chem.
Soc., 1965, 87, 4317, JF Brown, Jr. et al., J. Am. Chem. Soc., 1965, 87, 4313, FJ Feher et al., Main Group Chem., 1997, 2, 123, M. Unno et al., Bull. Chem. Soc. Jpn., 2000, 73, 215, etc. can be referred to, and for details of the reaction represented by the formula (ii), refer to OI Shchegolikhina et al., Inorg. . Chem., 2002, 41, 6892, R. Ito et al., Chem. Lett., 2009, 38, 364, YA Pozdnyakova et al., Inorg. Chem., 2010, 49, 572 etc. it can.

準備工程におけるトリハロシランの使用量(仕込量)は、式(A)で表される環状シロキサンに対して物質量換算で、通常4倍以上、好ましくは5倍以上、より好ましくは8倍以上であり、通常20倍以下、好ましくは15倍以下、より好ましくは10倍以下である。上記範囲内であれば、式(B)で表される環状シロキサンをより効率良く生成することができる。 The amount of trihalosilane used (charged amount) in the preparation step is usually 4 times or more, preferably 5 times or more, more preferably 8 times or more in terms of substance amount with respect to the cyclic siloxane represented by the formula (A). Yes, usually 20 times or less, preferably 15 times or less, more preferably 10 times or less. Within the above range, the cyclic siloxane represented by the formula (B) can be produced more efficiently.

準備工程の具体的な操作手順、反応条件等は特に限定されないが、溶媒で希釈した式(A)で表される環状シロキサンを、溶媒で希釈したトリハロシランに低温下で滴下し、それを加熱して行うことが好ましい。
式(A)で表される環状シロキサンを希釈する溶媒としては、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒が挙げられる。
トリハロシランを希釈する溶媒としては、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒が挙げられる。
滴下温度は、通常34℃以下、好ましくは10℃以下、より好ましくは0℃以下である。
加熱温度は、通常0℃以上、好ましくは10℃以上、より好ましくは15℃以上であり、通常34℃以下、好ましくは30℃以下、より好ましくは25℃以下である。
加熱時間は、通常1時間以上、好ましくは1日以上であり、通常7日以下、好ましくは5日以下、より好ましくは3日以下である。
準備工程は、通常窒素、アルゴン等の不活性雰囲気下で行う。
なお、上記条件等であれば、式(A)で表される環状シロキサンをより効率良く生成することができる。
The specific operation procedure, reaction conditions, etc. of the preparation step are not particularly limited, but the cyclic siloxane represented by the formula (A) diluted with a solvent is added dropwise to trihalosilane diluted with a solvent at a low temperature, and the cyclic siloxane is heated. It is preferable to do this.
Examples of the solvent for diluting the cyclic siloxane represented by the formula (A) include ether solvents such as diethyl ether, 1,4-dioxane and tetrahydrofuran (THF).
Examples of the solvent for diluting trihalosilane include ether solvents such as diethyl ether, 1,4-dioxane and tetrahydrofuran (THF).
The dropping temperature is usually 34 ° C. or lower, preferably 10 ° C. or lower, and more preferably 0 ° C. or lower.
The heating temperature is usually 0 ° C. or higher, preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and usually 34 ° C. or lower, preferably 30 ° C. or lower, more preferably 25 ° C. or lower.
The heating time is usually 1 hour or more, preferably 1 day or more, usually 7 days or less, preferably 5 days or less, and more preferably 3 days or less.
The preparatory step is usually carried out in an inert atmosphere such as nitrogen or argon.
Under the above conditions and the like, the cyclic siloxane represented by the formula (A) can be produced more efficiently.

<環状シロキサン・シルセスキオキサン>
本発明の製造方法によって、式(B)で表される環状シロキサンから式(C)で表されるシルセスキオキサンを生成することができることを前述したが、式(B)で表される環状シロキサン及び式(C)で表されるシルセスキオキサンもそれぞれ本発明の一態様である。

(式(B)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)

(式(C)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を表す。)
<Cyclic siloxane / silsesquioxane>
As described above, the cyclic siloxane represented by the formula (B) can be used to produce silsesquioxane represented by the formula (C) by the production method of the present invention, but the cyclic represented by the formula (B) has been described above. Siloxane and silsesquioxane represented by the formula (C) are also aspects of the present invention.

(In the formula (B), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)

(In the formula (C), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms.)

以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention can be appropriately modified as long as the gist of the present invention is not deviated. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below.

<実施例1>

アルゴン雰囲気において、i−Bu置換環状シラノール(5.0g,0.010mol)ジエチルエーテル(200ml)溶液をトリクロロシラン(17mL,0.094mol)、トリエチルアミン(13ml)のジエチルエーテル(200ml)溶液に氷浴下、滴下した。その後室温にて1日撹拌し、減圧下にて溶媒を留去した。続いて、ヘキサン(200ml)を加え、アルゴン下にて濾過操作を行い、塩を取り除いた。その後、ヘキサンを除き、環状シラノールのジクロロシロキシ体を得た。
環状シラノールのジクロロシロキシ体にジエチルエーテル(200ml)を加え、その溶液をアセトン(400ml)、水(50ml)混合溶媒中に氷浴下、滴下した。滴下終了後、2日室温にて撹拌した後、還流条件で1日撹拌した。ロータリーエバポレーターにて溶媒を除いたのち、ジエチルエーテルと飽和食塩水で分液操作を行った。粗生成物をサイズ排除クロマトグラフィー、湿式シリカゲルカラムクロマトグラフィーにて分離し、目的物である水素原子を置換基として有するヤヌスキューブを得た(598mg,収率:9%)。
1H-NMR (300 MHz, CDCl3, δ in ppm) 0.63(d, 8H), 0.96(d, 24H), 1.85(nonet, 4H), 4.13(s, 4H); 29Si-NMR (59 MHz, CDCl3, δ in ppm) -66.9, -84.2
<Example 1>

In an argon atmosphere, a solution of i-Bu-substituted cyclic silanol (5.0 g, 0.010 mol) diethyl ether (200 ml) is bathed in a solution of trichlorosilane (17 mL, 0.094 mol) and triethylamine (13 ml) in diethyl ether (200 ml). Below, dropped. Then, the mixture was stirred at room temperature for 1 day, and the solvent was distilled off under reduced pressure. Subsequently, hexane (200 ml) was added, and a filtration operation was performed under argon to remove salts. Then, hexane was removed to obtain a dichlorosiloxy form of cyclic silanol.
Diethyl ether (200 ml) was added to the dichlorosiloxy compound of cyclic silanol, and the solution was added dropwise to a mixed solvent of acetone (400 ml) and water (50 ml) under an ice bath. After completion of the dropping, the mixture was stirred at room temperature for 2 days and then stirred under reflux conditions for 1 day. After removing the solvent with a rotary evaporator, a liquid separation operation was performed with diethyl ether and saturated brine. The crude product was separated by size exclusion chromatography and wet silica gel column chromatography to obtain a Janus cube having a hydrogen atom as a substituent (598 mg, yield: 9%).
1 H-NMR (300 MHz, CDCl 3 , δ in ppm) 0.63 (d, 8H), 0.96 (d, 24H), 1.85 (nonet, 4H), 4.13 (s, 4H); 29 Si-NMR (59 MHz) , CDCl 3 , δ in ppm) -66.9, -84.2

本発明の製造方法によって得られるシルセスキオキサンは、シランカップリング剤、シリコーン製品に利用することができる。 The silsesquioxane obtained by the production method of the present invention can be used for silane coupling agents and silicone products.

Claims (4)

水の存在下、下記式(B)で表される環状シロキサンから下記式(C)で表されるシルセスキオキサンを生成する反応工程を含む、シルセスキオキサンの製造方法。

(式(B)及び(C)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
A method for producing silsesquioxane, which comprises a reaction step of producing silsesquioxane represented by the following formula (C) from a cyclic siloxane represented by the following formula (B) in the presence of water.

(In the formulas (B) and (C), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
下記式(A)で表される環状シロキサンとトリハロシランを反応させて下記式(B)で表される環状シロキサンを生成する準備工程を含む、請求項1に記載のシルセスキオキサンの製造方法。

(式(A)及び(B)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
The method for producing silsesquioxane according to claim 1, which comprises a preparatory step of reacting a cyclic siloxane represented by the following formula (A) with trihalosilane to produce a cyclic siloxane represented by the following formula (B). ..

(In the formulas (A) and (B), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
下記式(B)で表される環状シロキサン。

(式(B)中、Rはそれぞれ独立して炭素原子数1〜20の炭化水素基を、Xはそれぞれ独立して塩素原子、臭素原子、又はヨウ素原子を表す。)
Cyclic siloxane represented by the following formula (B).

(In the formula (B), R 1 independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X independently represents a chlorine atom, a bromine atom, or an iodine atom.)
下記式(C)で表されるシルセスキオキサン。

(式(C)中、Rはそれぞれ独立して炭素原子数1〜12の炭化水素基を表す。)
Silsesquioxane represented by the following formula (C).

(In the formula (C), R 1 independently represents a hydrocarbon group having 1 to 12 carbon atoms.)
JP2016232998A 2016-11-30 2016-11-30 Method for producing silsesquioxane having a reactive substituent Active JP6842621B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016232998A JP6842621B2 (en) 2016-11-30 2016-11-30 Method for producing silsesquioxane having a reactive substituent
PCT/JP2017/042446 WO2018101213A1 (en) 2016-11-30 2017-11-27 Method for producing silsesquioxane having reactive substituent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016232998A JP6842621B2 (en) 2016-11-30 2016-11-30 Method for producing silsesquioxane having a reactive substituent

Publications (2)

Publication Number Publication Date
JP2018090502A JP2018090502A (en) 2018-06-14
JP6842621B2 true JP6842621B2 (en) 2021-03-17

Family

ID=62242448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016232998A Active JP6842621B2 (en) 2016-11-30 2016-11-30 Method for producing silsesquioxane having a reactive substituent

Country Status (2)

Country Link
JP (1) JP6842621B2 (en)
WO (1) WO2018101213A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742534B (en) * 2019-02-20 2021-10-11 日商旭化成股份有限公司 Cured product, cured product modified product and curing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023199A (en) * 2003-07-02 2005-01-27 Chisso Corp Functional ultrathin membrane and method of forming the same
JP2012077008A (en) * 2010-09-30 2012-04-19 Jsr Corp Silicon-based material and method for producing the same

Also Published As

Publication number Publication date
WO2018101213A1 (en) 2018-06-07
JP2018090502A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
CN107108663B (en) Use the hydrosilylation method of the organic catalyst derived from germanium alkene
JP6938048B2 (en) Method for producing oligosiloxane and oligosiloxane from silyl acetal
JP6621226B2 (en) Siloxane and production method thereof
TW202402770A (en) Process for preparing organotin compounds
JP6842621B2 (en) Method for producing silsesquioxane having a reactive substituent
JP4655789B2 (en) Silicon compounds
JP2011098939A (en) Completely condensed oligosilsesquioxane and method for producing the same
TWI782989B (en) Method of making a halosiloxane
WO2016032767A1 (en) Preparation of fluorosilicon compounds
JP4835841B2 (en) Amino group-containing silsesquioxane protected with triorganosilyl group
WO2017065311A1 (en) Cage-type silsesquioxane having four each different substituents facing each other
Koželj et al. Synthesis of polyhedral phenylsilsesquioxanes with KF as the source of the fluoride ion
JP2019520322A (en) Cationic silicon (II) compound and method for producing the same
TW202030150A (en) Tris(trichlorosilyl)dichlorogallylgermane, process for the preparation thereof and use thereof
JP2008266248A (en) Method for producing polyhedral silsesquioxane
RU2766218C1 (en) Method of producing unsymmetrical cyclotetrasiloxanes
SU410023A1 (en)
JP3563811B2 (en) Polyfluoroaralkylsilane derivative and method for producing the same
JP5321414B2 (en) Method for producing dimethylvinylsilyl triflate
RU2565675C1 (en) Method of producing methylbenzyl alkoxysilanes
JP4891536B2 (en) Method for producing aminoaryl group-containing organosilicon compound, and method for producing an intermediate thereof
JP5057309B2 (en) Dialkylsilane compound and method for producing the same
JP6454902B2 (en) Silanes and silicones with distinct hydrophilic and oil repellent substitutions
WO2023196158A1 (en) Acylphosphine oxide photoinitiator
JP2003064088A (en) New silazane compound and method for producing the same, and new silazane compound polymer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6842621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150