JP6840553B2 - Resin composition, molded product and method for producing the molded product - Google Patents

Resin composition, molded product and method for producing the molded product Download PDF

Info

Publication number
JP6840553B2
JP6840553B2 JP2017012330A JP2017012330A JP6840553B2 JP 6840553 B2 JP6840553 B2 JP 6840553B2 JP 2017012330 A JP2017012330 A JP 2017012330A JP 2017012330 A JP2017012330 A JP 2017012330A JP 6840553 B2 JP6840553 B2 JP 6840553B2
Authority
JP
Japan
Prior art keywords
mass
polymerizable monomer
radically polymerizable
resin composition
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012330A
Other languages
Japanese (ja)
Other versions
JP2017179342A (en
Inventor
史子 藤江
史子 藤江
春樹 岡田
春樹 岡田
佑樹 林
佑樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM INC.
Mitsubishi Chemical Corp
Original Assignee
ASM INC.
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM INC., Mitsubishi Chemical Corp filed Critical ASM INC.
Publication of JP2017179342A publication Critical patent/JP2017179342A/en
Application granted granted Critical
Publication of JP6840553B2 publication Critical patent/JP6840553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、樹脂組成物、該樹脂組成物を重合して得られる共重合樹脂からなる成形体及び成形体の製造方法に関する。 The present invention relates to a resin composition, a molded product made of a copolymerized resin obtained by polymerizing the resin composition, and a method for producing the molded product.

樹脂は、ガラスに比べ軽量であることから、ガラスの代替として様々な用途に用いられている。特にアクリル樹脂は、光学特性が優れており、レンズ、自動車部品、照明部品、各種電子ディスプレイ等の用途に用いられている。また、看板、サニタリー用途といった意匠性を要求される用途にも広く用いられている。
これらの用途に用いられる樹脂においては、耐衝撃性が非常に重要であり、弾性率等の強度も必要とされる。
Since resin is lighter than glass, it is used in various applications as a substitute for glass. In particular, acrylic resin has excellent optical characteristics and is used in applications such as lenses, automobile parts, lighting parts, and various electronic displays. It is also widely used in applications that require design, such as signboards and sanitary applications.
Impact resistance is very important for resins used in these applications, and strength such as elastic modulus is also required.

アクリル樹脂の耐衝撃性を向上させる方法として、アクリル樹脂にゴム粒子を添加する方法が知られている(例えば、特許文献1、2)。
しかし、この様な方法では、成形体の折り曲げや破断に際し、アクリル樹脂とゴム粒子の界面が破壊され、樹脂が白化する問題があった。
As a method for improving the impact resistance of the acrylic resin, a method of adding rubber particles to the acrylic resin is known (for example, Patent Documents 1 and 2).
However, in such a method, there is a problem that the interface between the acrylic resin and the rubber particles is destroyed when the molded product is bent or broken, and the resin is whitened.

特許文献3においては、柔軟性に富んだ長鎖分子構造による架橋構造をアクリル樹脂中に導入し、フィルム状成形体に可とう性を付与するために、ポリアルキレングリコール、ポリエステルジオール及びポリカーボネートジオールから選ばれる残基を有するジ(メタ)アクリレートを用いることが提案されている。
しかし、この方法では、長鎖分子構造の導入量に応じて成形体の弾性率が低下する問題があった。
In Patent Document 3, in order to introduce a crosslinked structure having a highly flexible long-chain molecular structure into an acrylic resin and impart flexibility to a film-like molded product, from polyalkylene glycol, polyester diol and polycarbonate diol. It has been proposed to use di (meth) acrylates with selected residues.
However, this method has a problem that the elastic modulus of the molded product decreases depending on the amount of the long-chain molecular structure introduced.

特許文献4においては、耐擦傷性の向上のため、ポリメチルメタクリレート(PMMA)樹脂に疎水性ポリロタキサンを添加することが提案されている。
しかし、PMMA樹脂に疎水性ポリロタキサンを添加しただけでは、耐衝撃性を発現することは困難であった。
Patent Document 4 proposes adding hydrophobic polyrotaxane to a polymethylmethacrylate (PMMA) resin in order to improve scratch resistance.
However, it was difficult to exhibit impact resistance only by adding hydrophobic polyrotaxane to the PMMA resin.

特開2012−087251号公報Japanese Unexamined Patent Publication No. 2012-087251 特開2002−212375号公報Japanese Unexamined Patent Publication No. 2002-212375 特開2011−111465号公報Japanese Unexamined Patent Publication No. 2011-11146 特開2007−106861号公報Japanese Unexamined Patent Publication No. 2007-106861

本発明の目的は、折り曲げや破断時の白化が生じにくく、充分な透明性及び弾性率を保持し、耐衝撃性の高い成形体が得られる樹脂組成物、該樹脂組成物を用いた成形体及び成形体の製造方法を提供することにある。 An object of the present invention is a resin composition that is less likely to cause whitening at the time of bending or breaking, maintains sufficient transparency and elastic modulus, and can obtain a molded product having high impact resistance, and a molded product using the resin composition. And to provide a method for producing a molded product.

本発明は、以下の態様を有する。
(1)単一重合体のガラス転移温度が60℃以上のラジカル重合性単量体(A)と、
単一重合体のガラス転移温度が60℃未満のラジカル重合性単量体(B)と、
ポリロタキサン(C)と、を含み、
前記ラジカル重合性単量体(A)と前記ラジカル重合性単量体(B)と前記ポリロタキサン(C)との合計に対し、前記ラジカル重合性単量体(A)が20〜98質量%、前記ラジカル重合性単量体(B)が1〜50質量%、前記ポリロタキサン(C)が1〜50質量%である樹脂組成物。
(2)前記ポリロタキサン(C)を構成する環状構造が(メタ)アクリレート基を有する、(1)に記載の樹脂組成物。
(3)前記ラジカル重合性単量体(A)が、モノ(メタ)アクリレートである、(1)または(2)に記載の樹脂組成物。
(4)前記ラジカル重合性単量体(B)が、(メタ)アクリレートである、(1)〜(3)のいずれかに記載の樹脂組成物。
(5)前記ラジカル重合性単量体(B)が、モノ(メタ)アクリレートである、(1)〜(4)のいずれかに記載の樹脂組成物。
(6)(1)〜(5)のいずれかに記載の樹脂組成物を重合した共重合樹脂からなる成形体。
(7)(1)〜(5)のいずれかに記載の樹脂組成物をシート状に配置し、重合して共重合樹脂からなるシートを得る、成形体の製造方法。
(8)(1)〜(5)のいずれかに記載の樹脂組成物をシート状に配置し、重合して共重合樹脂からなるシートを得て、前記シートを立体形状に成形する、成形体の製造方法。
(9)(1)〜(5)のいずれかに記載の樹脂組成物を注型重合して共重合樹脂からなる立体形状の成形体を得る、成形体の製造方法。
The present invention has the following aspects.
(1) A radically polymerizable monomer (A) having a glass transition temperature of a monopolymer having a glass transition temperature of 60 ° C. or higher,
A radically polymerizable monomer (B) having a glass transition temperature of less than 60 ° C. of the monopolymer,
Containing with polyrotaxane (C),
The radically polymerizable monomer (A) is 20 to 98% by mass based on the total of the radically polymerizable monomer (A), the radically polymerizable monomer (B), and the polyrotaxane (C). A resin composition containing 1 to 50% by mass of the radically polymerizable monomer (B) and 1 to 50% by mass of the polyrotaxane (C).
(2) The resin composition according to (1), wherein the cyclic structure constituting the polyrotaxane (C) has a (meth) acrylate group.
(3) The resin composition according to (1) or (2), wherein the radically polymerizable monomer (A) is a mono (meth) acrylate.
(4) The resin composition according to any one of (1) to (3), wherein the radically polymerizable monomer (B) is a (meth) acrylate.
(5) The resin composition according to any one of (1) to (4), wherein the radically polymerizable monomer (B) is a mono (meth) acrylate.
(6) A molded product made of a copolymerized resin obtained by polymerizing the resin composition according to any one of (1) to (5).
(7) A method for producing a molded product, wherein the resin composition according to any one of (1) to (5) is arranged in a sheet shape and polymerized to obtain a sheet made of a copolymer resin.
(8) A molded product in which the resin composition according to any one of (1) to (5) is arranged in a sheet shape and polymerized to obtain a sheet made of a copolymer resin, and the sheet is molded into a three-dimensional shape. Manufacturing method.
(9) A method for producing a molded product, wherein the resin composition according to any one of (1) to (5) is cast-polymerized to obtain a three-dimensional molded product made of a copolymer resin.

本発明の樹脂組成物によれば、折り曲げや破断時の白化が生じにくく、充分な透明性及び弾性率を保持し、耐衝撃性の高い成形体が得られる。
本発明の成形体は、折り曲げや破断時の白化が生じにくく、充分な透明性及び弾性率を保持し、高い耐衝撃性を有する。
本発明の成形体の製造方法によれば、折り曲げや破断時の白化が生じにくく、充分な透明性及び弾性率を保持し、耐衝撃性の高い成形体が得られる。
According to the resin composition of the present invention, whitening at the time of bending or breaking is unlikely to occur, sufficient transparency and elastic modulus are maintained, and a molded product having high impact resistance can be obtained.
The molded product of the present invention is less likely to cause whitening at the time of bending or breaking, maintains sufficient transparency and elastic modulus, and has high impact resistance.
According to the method for producing a molded product of the present invention, whitening at the time of bending or breaking is unlikely to occur, sufficient transparency and elastic modulus are maintained, and a molded product having high impact resistance can be obtained.

以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
「ラジカル重合性単量体」とは、ラジカル重合可能な不飽和二重結合を分子内に一つ以上有する化合物を指す。
「(メタ)アクリレート」とは、アリクレート及びメタクリレートから選ばれる少なくとも1種を指す。
「ガラス転移温度」とは、文献、カタログ等で明らかにされている値、または、動的粘弾性の測定を行って得られるtanδ曲線の極大値を示す時の温度から定義される値を指す。
The definitions of the following terms apply throughout the specification and claims.
The "radical polymerizable monomer" refers to a compound having one or more radically polymerizable unsaturated double bonds in the molecule.
"(Meta) acrylate" refers to at least one selected from aliclate and methacrylate.
The "glass transition temperature" refers to a value clarified in literature, catalogs, etc., or a value defined from the temperature at which the maximum value of the tan δ curve obtained by measuring dynamic viscoelasticity is shown. ..

<樹脂組成物>
本発明の樹脂組成物は、以下のラジカル重合性単量体(A)と、ラジカル重合性単量体(B)と、ポリロタキサン(C)とを含む。
本発明の樹脂組成物は、必要に応じて、重合開始剤を含むことができる。
本発明の樹脂組成物は、必要に応じて、離型剤を含むことができる。
本発明の樹脂組成物は、必要に応じて、上記以外の他の成分を含むことができる。
<Resin composition>
The resin composition of the present invention contains the following radically polymerizable monomer (A), a radically polymerizable monomer (B), and a polyrotaxane (C).
The resin composition of the present invention may contain a polymerization initiator, if necessary.
The resin composition of the present invention may contain a mold release agent, if necessary.
The resin composition of the present invention may contain components other than the above, if necessary.

(ラジカル重合性単量体(A))
ラジカル重合性単量体(A)は、単一重合体のガラス転移温度が60℃以上のラジカル重合性単量体である。
ラジカル重合性単量体(A)の単一重合体のガラス転移温度が上記下限値以上であれば、樹脂組成物を重合して得られる共重合樹脂の弾性率、耐熱性が優れる。
(Radical Polymerizable Monomer (A))
The radically polymerizable monomer (A) is a radically polymerizable monomer having a glass transition temperature of a monopolymer having a glass transition temperature of 60 ° C. or higher.
When the glass transition temperature of the monopolymer of the radically polymerizable monomer (A) is at least the above lower limit value, the elastic modulus and heat resistance of the copolymerized resin obtained by polymerizing the resin composition are excellent.

ラジカル重合性単量体(A)としては、例えばメトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート等のジ(メタ)アクリレート;エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート;メチルメタクリレート、エチルメタクリレート等のアルキル(メタ)アクリレート;フェニルメタクリレート等の芳香族(メタ)アクリレート;イソボルニル(メタ)アクリレート、1−アダマンチル(メタ)アクリレート、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート等の脂環式(メタ)アクリレート;スチレン、p−メチルスチレン、α−メチルスチレン等の芳香族ビニル系単量体;(メタ)アクリロニトリル等のシアン化ビニル系単量体;等が挙げられる。
これらの中でも、得られる共重合樹脂の光学特性、耐候性が高くなることから、(メタ)アクリレートが好ましい。また、重合の均一性が良好になることから、モノ(メタ)アクリレートがより好ましい。この様なモノ(メタ)アクリレートとして、アルキル(メタ)アクリレート、芳香族(メタ)アクリレート、脂環式(メタ)アクリレート等が好ましく、アルキル(メタ)アクリレートがより好ましい。中でもメチルメタクリレートが特に好ましい。
これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the radically polymerizable monomer (A) include methoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonane. Di (meth) acrylates such as diol di (meth) acrylate; tri (meth) acrylate of isocyanuric acid ethoxylated, pentaerythritol tri (meth) acrylate, trimethylol propane tri (meth) acrylate, trimethylol propanetetra (meth) acrylate and the like. Trifunctional or higher functional (meth) acrylates; alkyl (meth) acrylates such as methyl methacrylate and ethyl methacrylate; aromatic (meth) acrylates such as phenyl methacrylate; isobornyl (meth) acrylates, 1-adamantyl (meth) acrylates, Alicyclic (meth) acrylates such as 2-methyl-2-adamantyl (meth) acrylate and 2-ethyl-2-adamantyl (meth) acrylate; aromatic vinyls such as styrene, p-methylstyrene and α-methylstyrene. Monomer; Vinyl cyanide-based monomer such as (meth) acrylonitrile; and the like can be mentioned.
Among these, (meth) acrylate is preferable because the obtained copolymer resin has high optical properties and weather resistance. In addition, mono (meth) acrylate is more preferable because the uniformity of polymerization is improved. As such mono (meth) acrylate, alkyl (meth) acrylate, aromatic (meth) acrylate, alicyclic (meth) acrylate and the like are preferable, and alkyl (meth) acrylate is more preferable. Of these, methyl methacrylate is particularly preferable.
One of these may be used alone, or two or more thereof may be used in combination.

(ラジカル重合性単量体(B))
ラジカル重合性単量体(B)は、単一重合体のガラス転移温度が60℃未満のラジカル重合性単量体である。
ラジカル重合性単量体(B)の単一重合体のガラス転移温度が上記上限値以下であれば、樹脂組成物を重合して得られる共重合樹脂の耐衝撃性が優れる。ラジカル重合性単量体(B)の単一重合体のガラス転移温度は、0℃未満であることが好ましい。
(Radical Polymerizable Monomer (B))
The radically polymerizable monomer (B) is a radically polymerizable monomer having a glass transition temperature of less than 60 ° C. of the monopolymer.
When the glass transition temperature of the monopolymer of the radically polymerizable monomer (B) is not more than the above upper limit value, the impact resistance of the copolymerized resin obtained by polymerizing the resin composition is excellent. The glass transition temperature of the monopolymer of the radically polymerizable monomer (B) is preferably less than 0 ° C.

ラジカル重合性単量体(B)としては、例えばポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;ポリエステルジオールジ(メタ)アクリレート;ポリカーボネートジオールジ(メタ)アクリレート;ポリウレタンジ(メタ)アクリレート等の多官能(メタ)アクリレート;n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2−エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレート、メトキシ化ポリエチレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;等が挙げられる。
これらの中でも、得られる共重合樹脂の光学特性、耐候性が高くなること、添加量が少量でも効果が高いことから、単一重合体のガラス転移温度が0℃未満である(メタ)アクリレートが好ましい。例えば、分子量が100以上のポリアルキレングリコールジ(メタ)アクリレート、n−ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートが好ましい。
また、重合の均一性が良好になることから、モノ(メタ)アクリレートが好ましい。中でも、アルキル(メタ)アクリレート、ポリアルキレングリコールモノ(メタ)アクリレートが好ましい。これらを満たすものとして、n−ブチル(メタ)アクリレート、メトキシ化ポリエチレングリコール(メタ)アクリレートが最も好ましい。
これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the radically polymerizable monomer (B) include polypoly such as polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate. Alkylene glycol di (meth) acrylate; polyester diol di (meth) acrylate; polycarbonate diol di (meth) acrylate; polyfunctional (meth) acrylate such as polyurethane di (meth) acrylate; n-butyl (meth) acrylate, isobutyl (meth) acrylate. ) Alkyl (meth) acrylates such as acrylates, 2-ethylhexyl (meth) acrylates, lauryl (meth) acrylates and stearyl (meth) acrylates; polyethylene glycol mono (meth) acrylates, methoxylated polyethylene glycol mono (meth) acrylates and the like. Polyalkylene glycol mono (meth) acrylate; and the like.
Among these, (meth) acrylate in which the glass transition temperature of the monopolymer is less than 0 ° C. is preferable because the obtained copolymer resin has high optical properties, high weather resistance, and high effect even with a small amount of addition. .. For example, polyalkylene glycol di (meth) acrylate, n-butyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and polyethylene glycol mono (meth) acrylate having a molecular weight of 100 or more are preferable.
In addition, mono (meth) acrylate is preferable because the uniformity of polymerization is improved. Of these, alkyl (meth) acrylates and polyalkylene glycol mono (meth) acrylates are preferable. As those satisfying these, n-butyl (meth) acrylate and methoxylated polyethylene glycol (meth) acrylate are most preferable.
One of these may be used alone, or two or more thereof may be used in combination.

(ポリロタキサン(C))
ポリロタキサン(C)は、環状構造と、前記環状構造を貫通する直鎖状構造と、前記直鎖状構造の両末端に配置された封鎖基とを有する。
ポリロタキサン(C)としては、環状構造が直鎖状構造上を自由に動くことができるものが好ましい。環状構造が直鎖状構造上を自由に動きやすい点から、環状構造の包接率が理論上の飽和値の50質量%以下であることが好ましい。
(Polyrotaxan (C))
The polyrotaxane (C) has a cyclic structure, a linear structure penetrating the cyclic structure, and a blocking group arranged at both ends of the linear structure.
As the polyrotaxane (C), one in which the cyclic structure can freely move on the linear structure is preferable. The inclusion ratio of the cyclic structure is preferably 50% by mass or less of the theoretical saturation value because the cyclic structure can easily move freely on the linear structure.

環状構造としては、特に限定されないが、入手しやすさの観点から、シクロデキストリンが好ましい。シクロデキストリンとしては、α−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリンが好ましく、α−シクロデキストリンが最も好ましい。シクロデキストリンは、化学修飾されていてもよい。ラジカル重合性単量体(A)、(B)との相分離等が生じにくい点で、シクロデキストリンの水酸基がイソプロピル基、カプロラクトン基等で修飾されていることが好ましい。
ポリロタキサン(C)を構成する環状構造は、(メタ)アクリレート基を有することが好ましい。環状構造が(メタ)アクリレート基を有する場合、ラジカル重合性単量体(A)及びラジカル重合性単量体(B)と重合により一体化し、効果を発揮しやすくなる。
The cyclic structure is not particularly limited, but cyclodextrin is preferable from the viewpoint of availability. As the cyclodextrin, α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin are preferable, and α-cyclodextrin is most preferable. Cyclodextrin may be chemically modified. It is preferable that the hydroxyl group of cyclodextrin is modified with an isopropyl group, a caprolactone group, or the like so that phase separation from the radically polymerizable monomers (A) and (B) is unlikely to occur.
The cyclic structure constituting the polyrotaxane (C) preferably has a (meth) acrylate group. When the cyclic structure has a (meth) acrylate group, it is integrated with the radically polymerizable monomer (A) and the radically polymerizable monomer (B) by polymerization, and the effect is easily exerted.

ポリロタキサン(C)を構成する直鎖状構造としては、特に限定されないが、耐衝撃性の発現のしやすさから、ガラス転移温度が低いものが好ましい。
ガラス転移点が低い直鎖状構造としては、例えばポリエチレングリコール、ポリブチレングリコール、シリコーン樹脂、ポリブタジエン等が挙げられる。中でも、入手しやすさの観点から、ポリエチレングリコールが最も好ましい。
直鎖状構造の分子量は、5000〜10万が好ましく、1万〜4万が好ましい。上記下限値以上であれば、耐衝撃性を発現しやすく、上記上限値以下であれば、ラジカル重合性単量体(A)、(B)との相分離を抑えやすい傾向がある。
The linear structure constituting the polyrotaxane (C) is not particularly limited, but one having a low glass transition temperature is preferable from the viewpoint of easy development of impact resistance.
Examples of the linear structure having a low glass transition point include polyethylene glycol, polybutylene glycol, silicone resin, and polybutadiene. Of these, polyethylene glycol is most preferable from the viewpoint of availability.
The molecular weight of the linear structure is preferably 5,000 to 100,000, preferably 10,000 to 40,000. If it is at least the above lower limit value, impact resistance is likely to be exhibited, and if it is at least the above upper limit value, phase separation from the radically polymerizable monomers (A) and (B) tends to be easily suppressed.

ポリロタキサン(C)を構成する封鎖基は、環状構造の直鎖状構造からの脱離を防止する基であり、例えばアダマンチル基等が挙げられる。
ポリロタキサン(C)は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The blocking group constituting the polyrotaxane (C) is a group that prevents desorption of the cyclic structure from the linear structure, and examples thereof include an adamantyl group.
One type of polyrotaxane (C) may be used alone, or two or more types may be used in combination.

(重合開始剤)
重合開始剤としては、熱重合開始剤、光重合開始剤等が挙げられる。
熱重合開始剤としては、例えば過酸化ベンゾイル、ラウロイルパーオキサイド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシネオデカノエート、t−へキシルパーオキシピバレート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート等の有機過酸化物系重合開始剤;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ系重合開始剤が挙げられる。これらは一種を単独で用いてもよく2種以上を併用してもよい。
(Polymerization initiator)
Examples of the polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator.
Examples of the thermal polymerization initiator include benzoyl peroxide, lauroyl peroxide, t-butylperoxyisobutyrate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyneodecanoate, and t-. Organic peroxide-based polymerization initiators such as hexyl peroxypivalate, diisopropyl peroxy dicarbonate, and bis (4-t-butylcyclohexyl) peroxy dicarbonate; 2,2'-azobisisobutyronitrile, 2 , 2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) and other azo-based polymerization initiators. These may be used alone or in combination of two or more.

光重合開始剤としては、例えば1−ヒドロキシ−シクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、メチルフェニルグリオキシレート、アセトフェノン、ベンゾフェノン、ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−フェニル−1,2−プロパン−ジオン−2−(o−エトキシカルボニル)オキシム、2−メチル[4−(メチルチオ)フェニル]−2モルホリノ−1−プロパノン、ベンジル、ベンソインイソブチルエーテル、2−クロロチオキサントン、イソプロピルチオキサントン、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ベンゾイルジフェニルホスフィンオキサイド、2−メチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイルジメトキシホスフィンオキサド等が挙げられる。これらは一種を単独で用いてもよく2種以上を併用してもよい。 Examples of the photopolymerization initiator include 1-hydroxy-cyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methylphenylglycolate, acetophenone, benzophenone, diethoxyacetophenone, 2,2. -Dimethoxy-2-phenylacetophenone, 1-phenyl-1,2-propane-dione-2- (o-ethoxycarbonyl) oxime, 2-methyl [4- (methylthio) phenyl] -2 morpholino-1-propanone, benzyl , Bensoin isobutyl ether, 2-chlorothioxanthone, isopropylthioxanthone, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, benzoyldiphenylphosphine oxide, 2-methylbenzoyldiphenylphosphine oxide, benzoyldimethoxyphosphine oxide, etc. Can be mentioned. These may be used alone or in combination of two or more.

(離型剤)
離型剤としては、例えばジオクチルスルホコハク酸ナトリウム、リン酸ジエチルエステル、リン酸モノエチルエステル、リン酸ジエチルエステルとリン酸モノエチルエステルの混合物等が挙げられる。これらは一種を単独で用いてもよく2種以上を併用してもよい。
(Release agent)
Examples of the release agent include sodium dioctyl sulfosuccinate, phosphoric acid diethyl ester, phosphoric acid monoethyl ester, and a mixture of phosphoric acid diethyl ester and phosphoric acid monoethyl ester. These may be used alone or in combination of two or more.

(他の成分)
他の成分としては、例えば滑剤、可塑剤、抗菌剤、防カビ剤、光安定剤、紫外線吸収剤、ブルーイング剤、染料、顔料、帯電防止剤、熱安定剤、消泡剤、分散剤等が挙げられる。
(Other ingredients)
Other components include, for example, lubricants, plasticizers, antibacterial agents, antifungal agents, light stabilizers, ultraviolet absorbers, brewing agents, dyes, pigments, antistatic agents, heat stabilizers, defoamers, dispersants, etc. Can be mentioned.

(樹脂組成物中の各成分の含有量)
本発明の樹脂組成物中、ラジカル重合性単量体(A)の含有量は、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とポリロタキサン(C)との合計(100質量%)に対し、20〜98質量%であり、35〜90質量%が好ましく、50〜80質量%がより好ましく、55〜70質量%が最も好ましい。ラジカル重合性単量体(A)の含有量が上記下限値以上であれば、ラジカル重合性単量体(A)由来の耐熱性、弾性率を得やすく、上記上限値以下であれば、耐衝撃性を発現しやすい。
(Content of each component in the resin composition)
The content of the radically polymerizable monomer (A) in the resin composition of the present invention is the sum of the radically polymerizable monomer (A), the radically polymerizable monomer (B) and the polyrotaxane (C) ( It is 20 to 98% by mass, preferably 35 to 90% by mass, more preferably 50 to 80% by mass, and most preferably 55 to 70% by mass with respect to 100% by mass). When the content of the radically polymerizable monomer (A) is at least the above lower limit value, the heat resistance and elastic modulus derived from the radically polymerizable monomer (A) can be easily obtained, and when it is at least the above upper limit value, the resistance It is easy to develop impact resistance.

ラジカル重合性単量体(B)の含有量は、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とポリロタキサン(C)との合計(100質量%)に対し、1〜50質量%であり、3〜40質量%が好ましく、5〜30質量%がより好ましく、15〜30質量%が最も好ましい。ラジカル重合性単量体(B)の含有量が上記下限値以上であれば、高い耐衝撃性を発現しやすく、上記上限値以下であれば、弾性率を維持しやすい。 The content of the radically polymerizable monomer (B) is 1 with respect to the total (100% by mass) of the radically polymerizable monomer (A), the radically polymerizable monomer (B) and the polyrotaxane (C). It is ~ 50% by mass, preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and most preferably 15 to 30% by mass. When the content of the radically polymerizable monomer (B) is at least the above lower limit value, high impact resistance is likely to be exhibited, and when it is at least the above upper limit value, the elastic modulus is likely to be maintained.

ポリロタキサン(C)の含有量は、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とポリロタキサン(C)との合計(100質量%)に対し、1〜50質量%であり、5〜45質量%が好ましく、10〜40質量%がより好ましく、10〜30質量%が最も好ましい。ポリロタキサン(C)の含有量が上記下限値以上であれば、高い耐衝撃性を発現しやすく、上記上限値以下であれば、弾性率を維持しやすい。 The content of polyrotaxane (C) is 1 to 50% by mass with respect to the total (100% by mass) of the radically polymerizable monomer (A), the radically polymerizable monomer (B) and the polyrotaxane (C). Yes, 5 to 45% by mass is preferable, 10 to 40% by mass is more preferable, and 10 to 30% by mass is most preferable. When the content of polyrotaxane (C) is at least the above lower limit value, high impact resistance is likely to be exhibited, and when it is at least the above upper limit value, the elastic modulus is likely to be maintained.

本発明の樹脂組成物が重合開始剤を含む場合、重合開始剤の含有量は、任意であるが、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とポリロタキサン(C)との合計100質量部に対し、0.01〜10質量部が好ましく、0.1〜5質量部がより好ましい。重合開始剤の含有量が上記下限値以上であれば、重合が進行しやすく、上記上限値以下であれば、重合により得られる共重合樹脂の強度がより優れる傾向がある。 When the resin composition of the present invention contains a polymerization initiator, the content of the polymerization initiator is arbitrary, but it is a radically polymerizable monomer (A), a radically polymerizable monomer (B), and a polyrotaxane (C). ), 0.01 to 10 parts by mass is preferable, and 0.1 to 5 parts by mass is more preferable. When the content of the polymerization initiator is at least the above lower limit value, the polymerization is likely to proceed, and when it is at least the above upper limit value, the strength of the copolymerized resin obtained by the polymerization tends to be more excellent.

本発明の樹脂組成物が離型剤を含む場合、離型剤の含有量は、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とポリロタキサン(C)との合計100質量部に対し、0.001〜1質量部が好ましく、0.01〜0.1質量部がより好ましい。離型剤の含有量が上記下限値以上であれば、剥離性が良好となり、上記上限値以下であれば、重合により得られる共重合樹脂の強度がより優れる傾向がある。 When the resin composition of the present invention contains a release agent, the content of the release agent is 100 in total of the radically polymerizable monomer (A), the radically polymerizable monomer (B) and the polyrotaxane (C). 0.001 to 1 part by mass is preferable, and 0.01 to 0.1 part by mass is more preferable with respect to parts by mass. When the content of the release agent is at least the above lower limit value, the peelability is good, and when it is at least the above upper limit value, the strength of the copolymerized resin obtained by polymerization tends to be more excellent.

その他の成分の量は、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とポリロタキサン(C)との合計100質量部に対し、3質量部以下が好ましく、1質量部以下がより好ましい。その他の成分の含有量が少ない方が、得られる成形体が良好な特性を発現しやすい。 The amount of other components is preferably 3 parts by mass or less, preferably 1 part by mass, based on 100 parts by mass of the total of the radically polymerizable monomer (A), the radically polymerizable monomer (B), and the polyrotaxane (C). The following is more preferable. The smaller the content of other components, the easier it is for the obtained molded product to exhibit good properties.

本発明の樹脂組成物は、前述のラジカル重合性単量体(A)と、ラジカル重合性単量体(B)と、ポリロタキサン(C)と、必要に応じて重合開始剤、離型剤等を混合し、場合によっては溶解させることにより調製できる。 The resin composition of the present invention contains the above-mentioned radically polymerizable monomer (A), radically polymerizable monomer (B), polyrotaxane (C), and if necessary, a polymerization initiator, a mold release agent, and the like. Can be prepared by mixing and, in some cases, dissolving.

<成形体>
本発明の成形体は、前述の本発明の樹脂組成物を重合した共重合樹脂からなる。
本発明の樹脂組成物を重合すると、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とが共重合して、ラジカル重合性単量体(A)に由来する構成単位とラジカル重合性単量体(B)に由来する構成単位とを有する共重合体が生じる。そのため、得られる共重合樹脂には、この共重合体とポリロタキサン(C)とが含まれる。
ポリロタキサン(C)の環状分子が(メタ)アクリレート基を有する場合には、環状分子が架橋点となって前記共重合体とポリロタキサン(C)とが架橋した状態になる。
<Molded body>
The molded product of the present invention comprises a copolymerized resin obtained by polymerizing the above-mentioned resin composition of the present invention.
When the resin composition of the present invention is polymerized, the radically polymerizable monomer (A) and the radically polymerizable monomer (B) are copolymerized to form a structural unit derived from the radically polymerizable monomer (A). And a copolymer having a constituent unit derived from the radically polymerizable monomer (B) is produced. Therefore, the obtained copolymer resin contains this copolymer and polyrotaxane (C).
When the cyclic molecule of polyrotaxane (C) has a (meth) acrylate group, the cyclic molecule serves as a cross-linking point, and the copolymer and polyrotaxane (C) are crosslinked.

本発明の成形体は、平面形状のもの、すなわちシートであってもよく、立体形状(三次元形状)のものであってもよい。
シートは、フィルムであってもよく、板であってもよい。尚、ここで「フィルム」とは、厚み1mm未満のシートを指し、「板」とは、厚み1mm以上のシートを指す。
The molded product of the present invention may have a planar shape, that is, a sheet, or a three-dimensional shape (three-dimensional shape).
The sheet may be a film or a plate. Here, the "film" refers to a sheet having a thickness of less than 1 mm, and the "plate" refers to a sheet having a thickness of 1 mm or more.

本発明の成形品は、例えば、各種レンズ、看板、照明カバー、バスタブ、洗面器、自動車ボディー用樹脂、自動車窓ガラス用樹脂等として用いることができる。 The molded product of the present invention can be used, for example, as various lenses, signboards, lighting covers, bathtubs, wash basins, resins for automobile bodies, resins for automobile window glass, and the like.

(成形体の製造方法)
本発明の成形体の製造においては、本発明の樹脂組成物を重合する。
重合方法は特に限定されないが、塊状重合で重合するのが好ましい。この場合、重合前に樹脂組成物を予め、製造する成形体の形状として重合を行って成形体を得てもよく、重合により得られた予備成形体をさらに成形して成形体を得てもよい。前者の例として、以下の方法(α)、(β)が挙げられ、後者の例として、下の方法(γ)が挙げられる。
(α)本発明の樹脂組成物をシート状に配置し、重合して共重合樹脂からなるシートを得る方法。
(β)本発明の樹脂組成物を注型重合して共重合樹脂からなる立体形状の成形体を得る方法。
(γ)本発明の樹脂組成物をシート状に配置し、重合して共重合樹脂からなるシートを得て、前記シートを立体形状に成形する方法。
(Manufacturing method of molded product)
In the production of the molded product of the present invention, the resin composition of the present invention is polymerized.
The polymerization method is not particularly limited, but bulk polymerization is preferable. In this case, the resin composition may be polymerized in advance as the shape of the molded product to be produced before polymerization to obtain a molded product, or the pre-molded product obtained by polymerization may be further molded to obtain a molded product. Good. Examples of the former include the following methods (α) and (β), and examples of the latter include the following method (γ).
(Α) A method in which the resin composition of the present invention is arranged in a sheet shape and polymerized to obtain a sheet made of a copolymer resin.
(Β) A method of casting-polymerizing the resin composition of the present invention to obtain a three-dimensional molded product made of a copolymer resin.
(Γ) A method in which the resin composition of the present invention is arranged in a sheet shape and polymerized to obtain a sheet made of a copolymer resin, and the sheet is molded into a three-dimensional shape.

方法(α)、(γ)において、樹脂組成物をシート状に配置し、重合(塊状重合)する方法としては、特に制限しないが、注型重合またはセルキャスト重合が好ましい。
注型重合では、鋳型に前記樹脂組成物を注入し、重合硬化して成形体(シート)を得、この成形体を鋳型から剥離する。方法(β)における注型重合も同様である。
セルキャスト重合では、一対のシート(ガラス板、SUS板、PETフィルム等)の間に枠を挟んでセルを形成し、このセルに前記樹脂組成物を注入し、重合硬化して成形体(シート)を得、この成形体をセルから取り出す。
重合の手段としては特に限定されず、例えば熱、活性エネルギー線、または熱及び活性エネルギー線の併用により重合を行うことができる。
方法(γ)において、重合により得られたシートの成形方法は、特に限定されず、例えば加熱成形、プレス成形、真空成型、ブロー成形等が用いられる。成形品の形状は、いずれの方法においても目的に応じて設計可能である。
In the methods (α) and (γ), the method of arranging the resin composition in a sheet form and polymerizing (bulk polymerization) is not particularly limited, but cast polymerization or cell cast polymerization is preferable.
In casting polymerization, the resin composition is injected into a mold and polymerized and cured to obtain a molded product (sheet), and the molded product is peeled from the mold. The same applies to the cast polymerization in the method (β).
In cell cast polymerization, a cell is formed by sandwiching a frame between a pair of sheets (glass plate, SUS plate, PET film, etc.), the resin composition is injected into the cell, and the molded product (sheet) is polymerized and cured. ) Is obtained, and this molded product is taken out from the cell.
The means of polymerization is not particularly limited, and polymerization can be carried out by, for example, heat, active energy rays, or a combination of heat and active energy rays.
In the method (γ), the molding method of the sheet obtained by polymerization is not particularly limited, and for example, heat molding, press molding, vacuum molding, blow molding and the like are used. The shape of the molded product can be designed according to the purpose by any method.

(作用効果)
本発明の成形体にあっては、ラジカル重合性単量体(A)と、ラジカル重合性単量体(B)と、ポリロタキサン(C)とを特定の比率で含む樹脂組成物を重合した共重合樹脂からなるため、折り曲げや破断時の白化が生じにくく、充分な透明性及び弾性率を保持し、高い耐衝撃性を有する。
ラジカル重合性単量体(A)のみを重合した重合体は、弾性率、透明性は高いが、耐衝撃性に劣る。ラジカル重合性単量体(A)に対し、ラジカル重合性単量体(B)及びポリロタキサン(C)を組み合わせることで、充分な弾性率を保持しつつ耐衝撃性を高めることができる。これは、耐衝撃性を有するラジカル重合性単量体(B)由来の単位に加えて、ポリロタキサン(C)が有する環動効果が関与しているためと考えられる。
また、上記共重合性樹脂は、非常に高い均質性を示すため、透明性も良好である。また、ゴム粒子による界面破壊などははないため、折り曲げや破断時の白化が生じにくい。
(Action effect)
In the molded product of the present invention, a resin composition containing a radically polymerizable monomer (A), a radically polymerizable monomer (B), and a polyrotaxane (C) in a specific ratio is polymerized. Since it is made of a polymerized resin, whitening at the time of bending or breaking is unlikely to occur, it maintains sufficient transparency and elasticity, and has high impact resistance.
A polymer obtained by polymerizing only the radically polymerizable monomer (A) has high elastic modulus and transparency, but is inferior in impact resistance. By combining the radically polymerizable monomer (A) with the radically polymerizable monomer (B) and the polyrotaxane (C), the impact resistance can be enhanced while maintaining a sufficient elastic modulus. It is considered that this is because the ringing effect of polyrotaxane (C) is involved in addition to the unit derived from the radically polymerizable monomer (B) having impact resistance.
Moreover, since the above-mentioned copolymer resin exhibits extremely high homogeneity, it also has good transparency. Further, since the rubber particles do not break the interface, whitening at the time of bending or breaking is unlikely to occur.

以下、本発明について、実施例を挙げて具体的に説明するが、本発明はこれに限定されるものではない。後述する実施例5は参考例である。
後述の各例で用いた評価方法を以下に示す。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Example 5 described later is a reference example.
The evaluation methods used in each of the examples described below are shown below.

(耐衝撃性)
JIS K7111−1:2012に準拠して、エッジワイズ、ノッチなしにてシャルピー衝撃強さの評価を行った。共重合樹脂板から厚み約3mm、長さ80mmの樹脂板を切り出し、幅10mmとなるように側面を鏡面研磨して5枚の試験片を作製した。得られた試験片について、温度23℃湿度50%RHの恒温恒湿室内において、衝撃試験機IT((株)東洋精機製作所製)を用い、15Jハンマーで試験片を破壊した際の衝撃エネルギーを測定し、5枚の試験片の衝撃エネルギーの平均値を算出し衝撃強度(kJ/m)とした。尚、非破壊の場合も、同様に衝撃エネルギーの平均値を算出し衝撃強度(kJ/m)とした。非破壊の場合には「NB」と記載した。
(Impact resistance)
Charpy impact strength was evaluated without edgewise and notch according to JIS K7111-1: 2012. A resin plate having a thickness of about 3 mm and a length of 80 mm was cut out from the copolymer resin plate, and the side surfaces were mirror-polished so as to have a width of 10 mm to prepare five test pieces. For the obtained test piece, the impact energy when the test piece was broken with a 15J hammer using the impact tester IT (manufactured by Toyo Seiki Seisakusho Co., Ltd.) in a constant temperature and humidity chamber with a temperature of 23 ° C and a humidity of 50% RH. The measurement was performed, and the average value of the impact energies of the five test pieces was calculated and used as the impact strength (kJ / m 2 ). In the case of non-destructive, the average value of impact energy was calculated in the same manner and used as the impact strength (kJ / m 2 ). In the case of non-destructive, it is described as "NB".

(曲げ弾性率)
JIS K7171:2008に準拠して、共重合樹脂板から厚さ3mm、幅25mm、長さ60mmの試験片を3枚切り出した。得られた3枚の試験片それぞれについて、テンシロン万能引張試験機RTC−1250A−PL((株)エー・アンド・デイ製)を使用し、スパン幅48mm、押込み速度1mm/分で試験した際の初期弾性率を測定し、3枚の試験片の初期弾性率の平均値を算出し曲げ弾性率(MPa)とした。
(Flexural modulus)
According to JIS K7171: 2008, three test pieces having a thickness of 3 mm, a width of 25 mm, and a length of 60 mm were cut out from the copolymerized resin plate. Each of the three test pieces obtained was tested using a Tencilon universal tensile tester RTC-1250A-PL (manufactured by A & D Co., Ltd.) with a span width of 48 mm and a pushing speed of 1 mm / min. The initial elastic modulus was measured, and the average value of the initial elastic moduli of the three test pieces was calculated and used as the flexural modulus (MPa).

<実施例1>
(樹脂組成物の作製)
ラジカル重合性単量体(A)として、メタクリル酸メチル(アクリエステルM、三菱レイヨン(株)製、ガラス転移温度105℃、以下「MMA」という。)60質量部、ラジカル重合性単量体(B)として、アクリル酸n−ブチル(東京化成(株)製、ガラス転移温度−55℃、以下「nBA」という。)30質量部、ポリロタキサン(C)として、セルム(登録商標)スーパーポリマーSB1310P2(アドバンスト・ソフトマテリアルズ(株)製、以下「SB1310P2」という。)10質量部、重合開始剤として、t−へキシルペルオキシピバレート(パーへキシルPV、日油(株)製)0.437質量部、離型剤として、ジオクチルスルホコハク酸ナトリウム(AOT、日本サイテックインダストリーズ(株)製)0.08質量部を混合し、溶解させて樹脂組成物を得た。
なお、「SB1310P2」は環状構造として、ヒドロキシプロピル基、カプロラクトン鎖、ブチルカルバモイル基、アクリロイルエチルカルバモイル基の順で水酸基が修飾されたシクロデキストリン、直鎖状構造としてポリエチレングリコール(分子量1.1万)、封鎖基としてアダマンチル基を有し、環状構造の包接率が理論上の飽和値の27質量%のポリロタキサンである。
<Example 1>
(Preparation of resin composition)
As the radically polymerizable monomer (A), 60 parts by mass of methyl methacrylate (Acryester M, manufactured by Mitsubishi Rayon Co., Ltd., glass transition temperature 105 ° C., hereinafter referred to as “MMA”), radically polymerizable monomer (A). As B), 30 parts by mass of n-butyl acrylate (manufactured by Tokyo Kasei Co., Ltd., glass transition temperature -55 ° C., hereinafter referred to as "nBA"), and as polyrotaxane (C), Celm (registered trademark) superpolymer SB1310P2 (registered trademark) Advanced Soft Materials Co., Ltd., hereinafter referred to as "SB1310P2") 10 parts by mass, as a polymerization initiator, t-hexyl peroxypivalate (perhexyl PV, manufactured by Nichiyu Co., Ltd.) 0.437 mass 0.08 parts by mass of sodium dioctyl sulfosuccinate (AOT, manufactured by Nippon Cytec Industries Co., Ltd.) was mixed and dissolved as a part and a mold release agent to obtain a resin composition.
"SB1310P2" has a cyclic structure of cyclodextrin having a hydroxyl group modified in the order of a hydroxypropyl group, a caprolactone chain, a butylcarbamoyl group, and an acryloylethylcarbamoyl group, and a linear structure of polyethylene glycol (molecular weight 11,000). , A polyrotaxane having an adamantyl group as a blocking group and having a cyclic structure inclusion rate of 27% by mass of a theoretical saturation value.

(共重合樹脂板の作製)
上記樹脂組成物を、自転公転ミキサー(泡取り錬太郎ARV−200、シンキー(株)製)にて9kPaに減圧しながら1500rpmで2.5分間撹拌し、溶存酸素を除去した。これを、10cm角のガラス板を、ポリ塩化ビニル製ガスケットを介して3mm間隔で相対させて鋳型を形成した中に注入し封止した。これを、80℃湯浴内に30分浸漬して熱重合を行った。さらに、135℃空気炉で45分加熱して重合を完了させた。その後、鋳型を室温まで冷却し、型枠を脱枠して平均厚さ約3mmの共重合樹脂板を得た。この板から試験片を切り出し、曲げ弾性率、耐衝撃性の測定を行った。
(Preparation of copolymer resin plate)
The above resin composition was stirred at 1500 rpm for 2.5 minutes while reducing the pressure to 9 kPa with a rotation revolution mixer (Awatori Rentaro ARV-200, manufactured by Shinky Co., Ltd.) to remove dissolved oxygen. A 10 cm square glass plate was injected into a mold formed by facing each other at 3 mm intervals via a polyvinyl chloride gasket and sealed. This was immersed in a hot water bath at 80 ° C. for 30 minutes for thermal polymerization. Further, the polymerization was completed by heating in a 135 ° C. air furnace for 45 minutes. Then, the mold was cooled to room temperature, and the mold was removed to obtain a copolymer resin plate having an average thickness of about 3 mm. A test piece was cut out from this plate, and the flexural modulus and impact resistance were measured.

<実施例2>
MMAを60質量部、nBAを25質量部、SB1310P2を15質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 2>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 60 parts by mass, nBA was 25 parts by mass, and SB1310P2 was 15 parts by mass, and the flexural modulus and impact resistance were measured. went.

<実施例3>
MMAを60質量部、nBAを20質量部、SB1310P2を20質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 3>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 60 parts by mass, nBA was 20 parts by mass, and SB1310P2 was 20 parts by mass, and the flexural modulus and impact resistance were measured. went.

<実施例4>
MMAを60質量部、nBAを15質量部、SB1310P2を25質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 4>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 60 parts by mass, nBA was 15 parts by mass, and SB1310P2 was 25 parts by mass, and the flexural modulus and impact resistance were measured. went.

<実施例5>
MMAを60質量部、nBAを10質量部、SB1310P2を30質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 5>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 60 parts by mass, nBA was 10 parts by mass, and SB1310P2 was 30 parts by mass, and the flexural modulus and impact resistance were measured. went.

<実施例6>
MMAを55質量部、nBAを30質量部、SB1310P2を15質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 6>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 55 parts by mass, nBA was 30 parts by mass, and SB1310P2 was 15 parts by mass, and the flexural modulus and impact resistance were measured. went.

<実施例7>
MMAを55質量部、nBAを20質量部、SB1310P2を25質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 7>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 55 parts by mass, nBA was 20 parts by mass, and SB1310P2 was 25 parts by mass, and the flexural modulus and impact resistance were measured. went.

<実施例8>
MMAを65質量部、ラジカル重合性単量体(B)として、メトキシ化ポリエチレングリコールアクリレート(NKエステルAM−90G、新中村化学(株)製、ガラス転移温度−71℃、分子量468、以下「AM−90G」という。)を15質量部、SB1310P2を20質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 8>
65 parts by mass of MMA, as a radically polymerizable monomer (B), methoxylated polyethylene glycol acrylate (NK ester AM-90G, manufactured by Shin-Nakamura Chemical Co., Ltd., glass transition temperature -71 ° C., molecular weight 468, hereinafter "AM" A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that (-90G) was 15 parts by mass and SB1310P2 was 20 parts by mass, and the bending elasticity and impact resistance were measured. It was.

<実施例9>
MMAを70質量部、AM−90Gを20質量部、SB1310P2を10質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 9>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 70 parts by mass, AM-90G was 20 parts by mass, and SB1310P2 was 10 parts by mass. The measurement was performed.

<実施例10>
MMAを60質量部、AM−90Gを20質量部、SB1310P2を20質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、耐衝撃性の測定を行った。
<Example 10>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 60 parts by mass, AM-90G was 20 parts by mass, and SB1310P2 was 20 parts by mass, and impact resistance was measured. ..

<実施例11>
MMAを70質量部、ラジカル重合性単量体(B)として、メトキシ化ポリエチレングリコールアクリレート(NKエステルAM−130G、新中村化学(株)製、ガラス転移温度60℃未満、以下「AM−130G」という。)を20質量部、SB1310P2を10質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 11>
70 parts by mass of MMA, as a radically polymerizable monomer (B), methoxylated polyethylene glycol acrylate (NK ester AM-130G, manufactured by Shin-Nakamura Chemical Co., Ltd., glass transition temperature less than 60 ° C., hereinafter "AM-130G" A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that 20 parts by mass and SB1310P2 were 10 parts by mass, and the bending elasticity and impact resistance were measured.

<実施例12>
MMAを60質量部、ラジカル重合性単量体(B)として、メトキシ化ポリエチレングリコールメタクリレート(ブレンマーPME200、日油(株)製、ガラス転移温度−59℃、以下「PME200」という。)を20質量部、SB1310P2を20質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、耐衝撃性の測定を行った。
<Example 12>
60 parts by mass of MMA, 20 parts by mass of methoxylated polyethylene glycol methacrylate (Blemmer PME200, manufactured by Nichiyu Co., Ltd., glass transition temperature -59 ° C., hereinafter referred to as "PME200") as a radically polymerizable monomer (B). A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that the portion and SB1310P2 were 20 parts by mass, and the impact resistance was measured.

<実施例13>
MMAを60質量部、ラジカル重合性単量体(B)として、メトキシ化ポリエチレングリコールメタクリレート(ブレンマーPME400、日油(株)製、ガラス転移温度−60℃、以下「PME400」という。)を30質量部、SB1310P2を10質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 13>
60 parts by mass of MMA, 30 parts by mass of methoxylated polyethylene glycol methacrylate (Blemmer PME400, manufactured by Nichiyu Co., Ltd., glass transition temperature -60 ° C., hereinafter referred to as "PME400") as a radically polymerizable monomer (B). A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that the portion and SB1310P2 were 10 parts by mass, and the bending elasticity and impact resistance were measured.

<実施例14>
MMAを60質量部、PME400を20質量部、SB1310P2を20質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、耐衝撃性の測定を行った。
<Example 14>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 60 parts by mass, PME400 was 20 parts by mass, and SB1310P2 was 20 parts by mass, and the impact resistance was measured.

<実施例15>
MMAを60質量部、ラジカル重合性単量体(B)として、メトキシ化ポリエチレングリコールメタクリレート(ブレンマーPME1000、日油(株)製、ガラス転移温度−52℃、以下「PME1000」という。)を20質量部、SB1310P2を20質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、耐衝撃性の測定を行った。
<Example 15>
60 parts by mass of MMA, 20 parts by mass of methoxylated polyethylene glycol methacrylate (Blemmer PME1000, manufactured by Nichiyu Co., Ltd., glass transition temperature -52 ° C., hereinafter referred to as "PME1000") as a radically polymerizable monomer (B). A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that the portion and SB1310P2 were 20 parts by mass, and the impact resistance was measured.

<実施例16>
MMAを70質量部、PME1000を20質量部、SB1310P2を10質量部とした以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Example 16>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that MMA was 70 parts by mass, PME1000 was 20 parts by mass, and SB1310P2 was 10 parts by mass, and the flexural modulus and impact resistance were measured. went.

<比較例1>
MMAを100質量部用い、ラジカル重合性単量体(B)及びポリロタキサン(C)を用いなかった以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Comparative example 1>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that 100 parts by mass of MMA was used and the radically polymerizable monomer (B) and the polyrotaxane (C) were not used. Impact resistance was measured.

<比較例2>
MMAを60質量部、SB1310P2を40質量部用い、ラジカル重合性単量体(B)を用いなかった以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Comparative example 2>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that 60 parts by mass of MMA and 40 parts by mass of SB1310P2 were used and the radically polymerizable monomer (B) was not used. , Impact resistance was measured.

<比較例3>
MMAを60質量部、ラジカル重合性単量体(B)として、nBAを30質量部、及びポリブチレングリコールジメタクリレート(PBOM3000、三菱レイヨン(株)製、ガラス転移温度60℃未満、以下「PBOM」という。)を10質量部用い、ポリロタキサン(C)を用いなかった以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Comparative example 3>
60 parts by mass of MMA, 30 parts by mass of nBA as a radically polymerizable monomer (B), and polybutylene glycol dimethacrylate (PBOM3000, manufactured by Mitsubishi Rayon Co., Ltd., glass transition temperature less than 60 ° C., hereinafter "PBOM" A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that 10 parts by mass of polyrotaxane (C) was not used, and the bending elasticity and impact resistance were measured. ..

<比較例4>
MMAを70質量部、SB1310P2を30質量部用い、ラジカル重合性単量体(B)を用いなかった以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Comparative example 4>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that 70 parts by mass of MMA and 30 parts by mass of SB1310P2 were used and the radically polymerizable monomer (B) was not used. , Impact resistance was measured.

<比較例5>
MMAを65質量部、nBAを35質量部用い、ポリロタキサン(C)を用いなかった以外は実施例1と同様にして樹脂組成物及び共重合樹脂板を作製し、曲げ弾性率、耐衝撃性の測定を行った。
<Comparative example 5>
A resin composition and a copolymerized resin plate were prepared in the same manner as in Example 1 except that 65 parts by mass of MMA and 35 parts by mass of nBA were used and polyrotaxane (C) was not used. The measurement was performed.

実施例1〜16及び比較例1〜5で用いたラジカル重合性単量体(A)、(B)及びポリロタキサン(C)の種類及び量、並びに曲げ弾性率、耐衝撃性の測定結果を表1〜2に示した。
表1〜2中、ラジカル重合性単量体(A)、(B)及びポリロタキサン(C)の欄に示す数値は、ラジカル重合性単量体(A)、(B)及びポリロタキサン(C)の合計に対する割合(質量%)である。
The types and amounts of the radically polymerizable monomers (A), (B) and polyrotaxane (C) used in Examples 1 to 16 and Comparative Examples 1 to 5, as well as the measurement results of flexural modulus and impact resistance are shown. Shown in 1-2.
In Tables 1 and 2, the numerical values shown in the columns of radically polymerizable monomers (A), (B) and polyrotaxane (C) are those of the radically polymerizable monomers (A), (B) and polyrotaxane (C). Ratio to total (mass%).

Figure 0006840553
Figure 0006840553

Figure 0006840553
Figure 0006840553

実施例1〜16より、ラジカル重合性単量体(A)とラジカル重合性単量体(B)とポリロタキサン(C)とを含む樹脂組成物を重合して得られた共重合樹脂成形体は、充分に高い弾性率を保持しつつ、高い耐衝撃性を有することが確認できた。また、何れのサンプルにも折り曲げや破断時の白化がなく、透明性を保持していることを確認できた。 From Examples 1 to 16, the copolymerized resin molded product obtained by polymerizing a resin composition containing a radically polymerizable monomer (A), a radically polymerizable monomer (B), and a polyrotaxane (C) is It was confirmed that the product has high impact resistance while maintaining a sufficiently high elastic coefficient. In addition, it was confirmed that none of the samples had whitening at the time of bending or breaking, and that the transparency was maintained.

ラジカル重合性単量体(B)及びポリロタキサン(C)を含まない樹脂組成物を重合して得られた樹脂成形体(比較例1)は、弾性率は高いものの耐衝撃性が非常に低かった。
同様に、ラジカル重合性単量体(B)を含まない樹脂組成物を重合して得られた樹脂成形体(比較例2、4)は、耐衝撃性が低かった。
ポリロタキサン(C)を含まない樹脂組成物を重合して得られた樹脂成形体(比較例3)は、耐衝撃性は高かったものの、弾性率が低かった。また、樹脂成形体(比較例5)は耐衝撃性は比較的高いが、耐衝撃性が低かった。
更には、これらの結果より、ラジカル重合性単量体(B)の添加量が多すぎると(樹脂組成物100質量%中50質量%以上であると)、比較例3より一層弾性率が低くなることは明らかであった。
A resin molded product (Comparative Example 1) obtained by polymerizing a resin composition containing no radically polymerizable monomer (B) and polyrotaxane (C) had a high elastic modulus but a very low impact resistance. ..
Similarly, the resin molded product (Comparative Examples 2 and 4) obtained by polymerizing the resin composition containing no radically polymerizable monomer (B) had low impact resistance.
The resin molded product (Comparative Example 3) obtained by polymerizing a resin composition containing no polyrotaxane (C) had high impact resistance but a low elastic modulus. Further, the resin molded product (Comparative Example 5) had a relatively high impact resistance, but had a low impact resistance.
Furthermore, from these results, when the amount of the radically polymerizable monomer (B) added is too large (50% by mass or more in 100% by mass of the resin composition), the elastic modulus is further lower than that of Comparative Example 3. It was clear that it would be.

上記のとおり、単一重合体のガラス転移温度が60℃以上のラジカル重合性単量体(A)と、単一重合体のガラス転移温度が60℃未満のラジカル重合性単量体(B)と、ポリロタキサン(C)とを含む樹脂組成物を重合することで、弾性率と耐衝撃性とを両立する共重合樹脂成形体が得られる。また、この共重合樹脂成形体は、透明性にも優れる。かかる共重合樹脂成形体は、光学部材、看板、サニタリー用品等に好適に用いることができる。 As described above, the radical polymerizable monomer (A) having a glass transition temperature of the monopolymer of 60 ° C. or higher, and the radical polymerizable monomer (B) having a glass transition temperature of less than 60 ° C. of the monopolymer. By polymerizing the resin composition containing polyrotaxane (C), a copolymerized resin molded product having both elasticity and impact resistance can be obtained. In addition, this copolymer resin molded product is also excellent in transparency. Such a copolymer resin molded product can be suitably used for optical members, signboards, sanitary products and the like.

Claims (7)

単一重合体のガラス転移温度が60℃以上のモノ(メタ)アクリレートであるラジカル重合性単量体(A)と、
単一重合体のガラス転移温度が60℃未満のモノ(メタ)アクリレートであるラジカル重合性単量体(B)と、
ポリロタキサン(C)と、を含み、
前記ラジカル重合性単量体(A)と前記ラジカル重合性単量体(B)と前記ポリロタキサン(C)との合計に対し、前記ラジカル重合性単量体(A)が5580質量%、前記ラジカル重合性単量体(B)が1540質量%、前記ポリロタキサン(C)が1〜30質量%である樹脂組成物。
A radically polymerizable monomer (A) which is a mono (meth) acrylate having a glass transition temperature of 60 ° C. or higher of the monopolymer, and
A radically polymerizable monomer (B) which is a mono (meth) acrylate having a glass transition temperature of less than 60 ° C. of the monopolymer, and
Containing with polyrotaxane (C),
The radically polymerizable monomer (A) is 55 to 80 % by mass based on the total of the radically polymerizable monomer (A), the radically polymerizable monomer (B), and the polyrotaxane (C). A resin composition containing 15 to 40 % by mass of the radically polymerizable monomer (B) and 1 to 30 % by mass of the polyrotaxane (C).
前記ポリロタキサン(C)を構成する環状構造が(メタ)アクリレート基を有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the cyclic structure constituting the polyrotaxane (C) has a (meth) acrylate group. 前記ラジカル重合性単量体(A)と前記ラジカル重合性単量体(B)と前記ポリロタキサン(C)との合計に対し、前記ポリロタキサン(C)が10〜30質量%である、請求項1または2に記載の樹脂組成物。 Claim 1 in which the polyrotaxane (C) is 10 to 30% by mass with respect to the total of the radically polymerizable monomer (A), the radically polymerizable monomer (B), and the polyrotaxane (C). Alternatively, the resin composition according to 2. 請求項1〜のいずれか一項に記載の樹脂組成物を重合した共重合樹脂からなる成形体。 A molded product made of a copolymerized resin obtained by polymerizing the resin composition according to any one of claims 1 to 3. 請求項1〜のいずれか一項に記載の樹脂組成物をシート状に配置し、重合して共重合樹脂からなるシートを得る、成形体の製造方法。 A method for producing a molded product, wherein the resin composition according to any one of claims 1 to 3 is arranged in a sheet shape and polymerized to obtain a sheet made of a copolymer resin. 請求項1〜のいずれか一項に記載の樹脂組成物をシート状に配置し、重合して共重合樹脂からなるシートを得て、前記シートを立体形状に成形する、成形体の製造方法。 A method for producing a molded product, wherein the resin composition according to any one of claims 1 to 3 is arranged in a sheet shape and polymerized to obtain a sheet made of a copolymer resin, and the sheet is molded into a three-dimensional shape. .. 請求項1〜のいずれか一項に記載の樹脂組成物を注型重合して共重合樹脂からなる立体形状の成形体を得る、成形体の製造方法。 A method for producing a molded product, wherein the resin composition according to any one of claims 1 to 3 is cast-polymerized to obtain a three-dimensional molded product made of a copolymer resin.
JP2017012330A 2016-03-28 2017-01-26 Resin composition, molded product and method for producing the molded product Active JP6840553B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016064642 2016-03-28
JP2016064642 2016-03-28

Publications (2)

Publication Number Publication Date
JP2017179342A JP2017179342A (en) 2017-10-05
JP6840553B2 true JP6840553B2 (en) 2021-03-10

Family

ID=60003725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012330A Active JP6840553B2 (en) 2016-03-28 2017-01-26 Resin composition, molded product and method for producing the molded product

Country Status (1)

Country Link
JP (1) JP6840553B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179503B2 (en) * 2018-06-08 2022-11-29 東洋スチレン株式会社 Styrene-based copolymers and molded articles thereof, sheets
JP7323289B2 (en) * 2018-12-28 2023-08-08 旭化成株式会社 Copolymer, thermoplastic resin composition and molded article
JP7246923B2 (en) * 2018-12-28 2023-03-28 旭化成株式会社 Thermoplastic resin composition and molded article
JP2022547267A (en) * 2019-08-29 2022-11-11 ザ テキサス エーアンドエム ユニバーシティ システム Thermoplastic polymer composition containing polyrotaxane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470246B2 (en) * 2008-05-07 2014-04-16 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane, cross-linked product of polyrotaxane and polymer, and production method thereof
JP2014135383A (en) * 2013-01-10 2014-07-24 C I Kasei Co Ltd Solar battery sealing material and solar battery module
KR102115062B1 (en) * 2013-01-21 2020-05-25 스미또모 세이까 가부시키가이샤 Composition for soft materials, and soft material
JP6139173B2 (en) * 2013-02-25 2017-05-31 リンテック株式会社 Adhesive composition, adhesive and adhesive sheet
US10125309B2 (en) * 2013-11-11 2018-11-13 Tokuyama Corporation Photochromic composition
JP6299339B2 (en) * 2014-03-31 2018-03-28 セイコーエプソン株式会社 Inkjet ink composition, recording method, and recording apparatus

Also Published As

Publication number Publication date
JP2017179342A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US11401351B2 (en) Method of producing a rubbery polymer
JP6840553B2 (en) Resin composition, molded product and method for producing the molded product
TWI304423B (en) Plasticizer
CN102807721B (en) Impact modifier for polymethyl methacrylate resin having excellent impact strength and transparency and method of preparing the same
JP2008133452A (en) Acrylic thermoplastic resin composition
CN110891991B (en) Rubbery polymer, graft copolymer and thermoplastic resin composition
JP5486341B2 (en) Thermosetting (meth) acrylic resin composition and sheet molding compound, bulk molding compound and molded product using the same
JP5844262B2 (en) POLYMER COMPOSITION AND MOLDED ARTICLE
EP2254752A1 (en) Transparent chemical resistant impact acrylic alloy
JP2007091809A (en) Thermoplastic resin composition
JP6780722B2 (en) Dispersion type acrylic copolymer, method for producing disperse type acrylic copolymer, method for producing acrylic sheet, and method for producing acrylic sheet
TWI683830B (en) Transparent high heat resistance resin composition
KR101233469B1 (en) Transparent acrylic resin impact modifier, method for preparing the same and thermoplastic resin composition comprising the same
JP2004339442A (en) Resin composition and lamp lens for vehicle produced by using the same
JP7323289B2 (en) Copolymer, thermoplastic resin composition and molded article
JP2005023165A (en) Amorphous polyester resin composition
JP5485095B2 (en) Methacrylic polymer composition and molded article
JP2009235208A (en) Acrylic resin composition and production method thereof
JP7517495B2 (en) Deterioration inhibitor, resin composition and molded article
JP7246923B2 (en) Thermoplastic resin composition and molded article
Zheng et al. Studies of latex blends of natural rubber/poly (methyl methacrylate-co-2-ethylhexyl methacrylate) and their comparison with incompatible natural rubber/poly (methyl methacrylate)
JP2004211003A (en) (meth)acrylic resin composition
JP6398278B2 (en) Composition for (meth) acrylic resin cast plate, (meth) acrylic resin cast plate obtained by cast polymerization of this composition, and (meth) acrylic resin cast plate for cast polymerization of this composition Method
JP4353692B2 (en) Thermoplastic resin composition and molded article thereof
JP2019019237A (en) Thermoplastic resin composition, molded article, and vehicle component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210217

R150 Certificate of patent or registration of utility model

Ref document number: 6840553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250