JP6838384B2 - Exhaust gas purification system and poison control method for exhaust gas purification system - Google Patents

Exhaust gas purification system and poison control method for exhaust gas purification system Download PDF

Info

Publication number
JP6838384B2
JP6838384B2 JP2016245724A JP2016245724A JP6838384B2 JP 6838384 B2 JP6838384 B2 JP 6838384B2 JP 2016245724 A JP2016245724 A JP 2016245724A JP 2016245724 A JP2016245724 A JP 2016245724A JP 6838384 B2 JP6838384 B2 JP 6838384B2
Authority
JP
Japan
Prior art keywords
exhaust gas
passage
exhaust
fine particle
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016245724A
Other languages
Japanese (ja)
Other versions
JP2018100600A (en
Inventor
美由紀 日▲高▼
美由紀 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016245724A priority Critical patent/JP6838384B2/en
Publication of JP2018100600A publication Critical patent/JP2018100600A/en
Application granted granted Critical
Publication of JP6838384B2 publication Critical patent/JP6838384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、車両に搭載した内燃機関等の排気ガスを浄化する排気ガス浄化システム、及び排気ガス浄化システムの被毒抑制方法に関する。 The present invention relates to an exhaust gas purification system that purifies the exhaust gas of an internal combustion engine or the like mounted on a vehicle, and a method for suppressing poisoning of the exhaust gas purification system.

車両に搭載した内燃機関では、排気ガスを昇温したり、NOx濃度を調整したりするための酸化触媒装置、微粒子(PM)を捕集するための微粒子捕集装置、尿素水から発生するアンモニアなどを還元剤として窒素酸化物(NOx)を浄化するための選択還元型触媒装置、アンモニアを酸化してアンモニアの外気への流出を回避するためのアンモニアスリップ触媒装置等を組み合わせた排気ガス浄化システムを採用したりして、内燃機関から排出される排気ガスを浄化している。 In the internal combustion engine mounted on the vehicle, an oxidation catalyst device for raising the temperature of exhaust gas and adjusting the NOx concentration, a fine particle collecting device for collecting fine particles (PM), and ammonia generated from urea water An exhaust gas purification system that combines a selective reduction catalyst device for purifying nitrogen oxides (NOx) using the following as a reducing agent, an ammonia slip catalyst device for oxidizing ammonia and avoiding the outflow of ammonia to the outside air, etc. Is used to purify the exhaust gas emitted from the internal combustion engine.

また、DPFを有しない内燃機関のNOx浄化システムではあるが、前段酸化触媒と尿素SCR触媒との間に、熱容量体を備えた排気バイパス通路を設けて、排気ガスを排熱容量体を通過させたり、または、排気ガスを排熱容量体を迂回させたりすることにより、SCR触媒に到達する排気ガスの温度を調整して、SCR触媒によるNOx浄化性能を安定化させる内燃機関のNOx浄化システムが提案されている(例えば、特許文献1参照。) Further, although it is a NOx purification system for an internal combustion engine that does not have a DPF, an exhaust bypass passage provided with a heat capacitance body is provided between the pre-stage oxidation catalyst and the urea SCR catalyst to allow exhaust gas to pass through the exhaust heat capacitance body. Alternatively, a NOx purification system for an internal combustion engine has been proposed in which the temperature of the exhaust gas reaching the SCR catalyst is adjusted by bypassing the exhaust gas to the exhaust heat capacitance body to stabilize the NOx purification performance by the SCR catalyst. (See, for example, Patent Document 1).

特開2016−79861号公報Japanese Unexamined Patent Publication No. 2016-79861

ところで、燃料やエンジンオイルなどに含まれている硫黄成分により硫黄酸化物(SOx)等の被毒物質が発生し、これらの被毒物質が、酸化触媒装置や微粒子捕集装置の触媒に堆積してしまうことがある。これらの被毒物質は、排気ガスの温度を上昇させて微粒子捕集装置に堆積したPMを燃焼除去する強制再生のときに、高温化された酸化触媒装置や微粒子捕集装置から離脱して、下流側(後段)に配置されている選択還元型触媒装置とアンモニアスリップ触媒装置に付着するので、この被毒物質の付着により、これらの装置のNOx浄化性能が低下する。 By the way, toxic substances such as sulfur oxides (SOx) are generated by sulfur components contained in fuel, engine oil, etc., and these toxic substances are deposited on the catalyst of the oxidation catalyst device or the fine particle collection device. It may end up. These toxic substances are separated from the heated oxidation catalyst device and fine particle collecting device during forced regeneration in which the temperature of the exhaust gas is raised to burn and remove the PM accumulated in the fine particle collecting device. Since it adheres to the selective reduction type catalyst device and the ammonia slip catalyst device arranged on the downstream side (second stage), the adhesion of the toxic substance lowers the NOx purification performance of these devices.

また、さらに、酸化触媒装置や微粒子捕集装置の触媒の活性種である貴金属(PGM)が高温になると、蒸気となって下流側の選択還元型触媒装置とアンモニアスリップ触媒装置に付着してしまい、これらの装置におけるアンモニア酸化性能の選択性が向上して、NOxの還元剤であるアンモニアが先に酸化されてしまい、NOx浄化性能が低下してしまう。 Furthermore, when the noble metal (PGM), which is the active species of the catalyst of the oxidation catalyst device and the fine particle collection device, becomes high temperature, it becomes vapor and adheres to the selective reduction type catalyst device and the ammonia slip catalyst device on the downstream side. The selectivity of the ammonia oxidation performance in these devices is improved, and ammonia, which is a NOx reducing agent, is oxidized first, and the NOx purification performance is deteriorated.

本発明の目的は、内燃機関の排気通路に、上流側から順に、酸化触媒装置、微粒子捕集装置、選択還元型触媒装置を備えた排気ガス浄化システムにおいて、硫黄酸化物や貴金属等のような被毒物質が下流側の尿素選択還元型触媒装置に付着することを防止でき、これにより、排気ガス浄化性能を高いまま維持することができる排気ガス浄化システム、及び排気ガス浄化システムの被毒抑制方法を提供することにある。 An object of the present invention is an exhaust gas purification system provided with an oxidation catalyst device, a fine particle collection device, and a selective reduction catalyst device in the exhaust passage of an internal combustion engine in order from the upstream side, such as sulfur oxides and precious metals. It is possible to prevent toxic substances from adhering to the urea selective reduction type catalyst device on the downstream side, thereby suppressing the poisoning of the exhaust gas purification system and the exhaust gas purification system that can maintain high exhaust gas purification performance. To provide a method.

上記の目的を達成するための本発明の排気ガス浄化システムは、内燃機関の排気通路に、上流側から順に、酸化触媒装置、微粒子捕集装置、選択還元型触媒装置を備えた排気ガス浄化システムにおいて、前記微粒子捕集装置と前記選択還元型触媒装置との間の前記排気通路を排気主通路と、この排気主通路に並行す排気バイパス通路とで構成し、排気ガスの流路を前記排気主通路と前記排気バイパス通路に切り替える排気切替機構と、前記排 気バイパス通路に配置された被毒物質吸着装置と、反応区画および水分区画の2つの区画 並びにこれらの両方の区画を連通する連通路を有して、前記被毒物質吸着装置を通過する 排気ガスの熱の一部を化学的反応により蓄熱する蓄熱装置と、前記水分区画を前記排気主 通路を通過する排気ガスの一部または全部で加熱する加熱用通路と、前記加熱用通路に前 記排気主通路の排気ガスを導入するための第1弁機構と、前記排気切替機構および前記第 1弁機構を制御する制御装置を備えて構成される。The exhaust gas purification system of the present invention for achieving the above object is an exhaust gas purification system in which an oxidation catalyst device, a fine particle collection device, and a selective reduction catalyst device are provided in the exhaust passage of the internal combustion engine in this order from the upstream side. in, the exhaust passage and the exhaust main passage between the particulate collection device and the selective reduction catalyst device, constituted by the exhaust gas bypass passage you parallel with the main exhaust passage, wherein the flow path of exhaust gas an exhaust switching mechanism for switching the exhaust bypass passage and the exhaust main path, communicating communicating with poisoning substance adsorber disposed in the exhaust bypass passage, the two compartments and compartments of both of these reactions compartment and water compartments A heat storage device having a passage and storing a part of the heat of the exhaust gas passing through the toxic substance adsorbing device by a chemical reaction, and a part of the exhaust gas passing through the exhaust main passage in the water compartment or comprising a heating passage heating in total, a first valve mechanism for introducing the exhaust gas before Symbol main exhaust passage to the heating passage, a control device for controlling the exhaust switching mechanism and the first valve mechanism It is composed of.

上記の目的を達成するための本発明の排気ガス浄化システムの被毒抑制方法は、内燃機関の排気ガスを、酸化触媒装置、微粒子捕集装置、選択還元型触媒装置により浄化する排気ガス浄化システムの被毒抑制方法において、前記微粒子捕集装置と前記選択還元型触媒装置との間の前記排気通路、排気主通路と、この排気主通路に並行し、かつ、被毒物質吸着装置を備えた排気バイパス通路とで構成されており、前記微粒子捕集装置の強制再生のときに、若しくは前記微粒子捕集装置に流入する排気ガスの温度が予め設定された設定温度以上のときに、前記排気バイパス通路に排気ガスを流して、前記排気バイパス通路に設けている前記被毒物質吸着装置により、前記微粒子捕集装置から流出してくる排気ガス中の被毒物質を吸着するとともに、反応区画および水分区画の2つの区画並びにこれらの 両方の区画を連通する連通路を有する蓄熱装置により、前記被毒物質吸着装置を通過する 排気ガスの熱の一部を化学的反応により蓄熱し、前記微粒子捕集装置の強制再生前の準備 段階のときに、若しくは前記微粒子捕集装置に流入する排気ガスの温度が予め設定された 準備温度以上のときに、加熱用通路を前記排気主通路から分岐させた分岐部に設けた第1 弁機構により、前記排気主通路からの排気ガスを前記加熱用通路に導入して前記蓄熱装置 の前記水分区画を前記排気主通路を通過する排気ガスの一部または全部で加熱することを特徴とする方法である。The method for suppressing poisoning of the exhaust gas purification system of the present invention for achieving the above object is an exhaust gas purification system that purifies the exhaust gas of an internal combustion engine by an oxidation catalyst device, a fine particle collection device, and a selective reduction type catalyst device. the method poisoning suppression, the exhaust passage between the particulate collection device and the selective reduction catalyst device, a main exhaust passage, parallel with the main exhaust passage, and includes a poisoning substance adsorber exhaust bypass passage and is composed of, when the forced regeneration of the particulate collection device, or when the temperature of the exhaust gas flowing into the above preset temperature of the particulate collection device, said exhaust flowing exhaust gas to the bypass passage, the it is the poisoning substance adsorbing device provided in the exhaust bypass passage, thereby adsorbing the poisoning substance of the particulate collection device the exhaust gas flowing out from the reaction zone and A part of the heat of the exhaust gas passing through the toxic substance adsorbing device is stored by a chemical reaction by a heat storage device having two compartments of the moisture compartment and a communication passage communicating both of these compartments, and the fine particles are captured. The heating passage was branched from the exhaust main passage at the preparatory stage before the forced regeneration of the collector, or when the temperature of the exhaust gas flowing into the fine particle collector was equal to or higher than the preset preparation temperature. A part or all of the exhaust gas passing through the exhaust main passage is introduced into the heating passage by the first valve mechanism provided in the branch portion, and the moisture section of the heat storage device is passed through the exhaust main passage. It is a method characterized by heating with.

本発明の排気ガス浄化システム、及び排気ガス浄化システムの被毒抑制方法によれば、内燃機関の排気通路に、上流側から順に、酸化触媒装置、微粒子捕集装置、選択還元型触媒装置を備えた排気ガス浄化システムにおいて、硫黄酸化物や貴金属等のような被毒物質が下流側の選択還元型触媒装置とアンモニアスリップ触媒装置に付着することを防止でき、これにより、排気ガス浄化性能を高いまま維持することができる。 According to the exhaust gas purification system of the present invention and the poisoning suppression method of the exhaust gas purification system, an oxidation catalyst device, a fine particle collection device, and a selective reduction type catalyst device are provided in the exhaust passage of the internal combustion engine in this order from the upstream side. In the exhaust gas purification system, it is possible to prevent toxic substances such as sulfur oxides and precious metals from adhering to the selective reduction type catalyst device and ammonia slip catalyst device on the downstream side, thereby improving the exhaust gas purification performance. Can be maintained as it is.

本発明に係る第1の実施の形態の排気ガス浄化システムの構成を模式的に示す図で、通常の状態の排気ガスの流れを示す図である。It is a figure which shows typically the structure of the exhaust gas purification system of 1st Embodiment which concerns on this invention, and is the figure which shows the flow of the exhaust gas in a normal state. 図1の排気ガス浄化システムにおける微粒子捕集装置の強制再生のときの排気ガスの流れを示す図である。It is a figure which shows the flow of the exhaust gas at the time of the forced regeneration of the fine particle collection apparatus in the exhaust gas purification system of FIG. 本発明に係る第2の実施の形態の排気ガス浄化システムの構成を模式的に示す図で、通常の状態の排気ガスの流れを示す図である。It is a figure which shows typically the structure of the exhaust gas purification system of the 2nd Embodiment which concerns on this invention, and is the figure which shows the flow of the exhaust gas in a normal state. 図3の排気ガス浄化システムにおける微粒子捕集装置の強制再生直前の準備段階のときの排気ガスの流れと水蒸気の流れを示す図である。It is a figure which shows the flow of the exhaust gas and the flow of water vapor at the time of the preparatory stage just before the forced regeneration of the fine particle collector in the exhaust gas purification system of FIG. 図3の排気ガス浄化システムにおける微粒子捕集装置の強制再生のときの排気ガスの流れを示す図である。It is a figure which shows the flow of the exhaust gas at the time of the forced regeneration of the fine particle collection apparatus in the exhaust gas purification system of FIG. 図3の被毒物質吸着装置と蓄熱装置のX−X断面を模式的に示す図である。It is a figure which shows typically the XX cross section of the toxic substance adsorption device and the heat storage device of FIG. 比較例の排気ガス浄化システムの構成を模式的に示す図で、通常の状態の排気ガスの流れを示す図である。It is a figure which shows typically the structure of the exhaust gas purification system of the comparative example, and is the figure which shows the flow of the exhaust gas in a normal state. 図7の比較例の排気ガス浄化システムにおける微粒子捕集装置の強制再生のときの排気ガスの流れを示す図である。It is a figure which shows the flow of the exhaust gas at the time of the forced regeneration of the fine particle collection apparatus in the exhaust gas purification system of the comparative example of FIG.

以下、本発明に係る実施の形態の排気ガス浄化システム、及び排気ガス浄化システムのリン被毒抑制方法について図面を参照しながら説明する。 Hereinafter, the exhaust gas purification system of the embodiment according to the present invention and the phosphorus poisoning suppression method of the exhaust gas purification system will be described with reference to the drawings.

図1及び図2に示すように、本発明の第1の実施の形態の排気ガス浄化システム1は、エンジン(内燃機関:E)10から排出される排気ガスGが通過する排気通路11に、上流側から順に、酸化触媒装置(DOC)12、微粒子捕集装置(F)13、選択還元型触媒装置(SCR)14、アンモニアスリップ触媒装置(ASC)15を備えて構成される。 As shown in FIGS. 1 and 2, the exhaust gas purification system 1 of the first embodiment of the present invention has an exhaust passage 11 through which the exhaust gas G discharged from the engine (internal combustion engine: E) 10 passes. From the upstream side, an oxidation catalyst device (DOC) 12, a fine particle collection device (F) 13, a selective reduction catalyst device (SCR) 14, and an ammonia slip catalyst device (ASC) 15 are provided.

この酸化触媒装置12は、コーディエライトなどを原料としたセラミックスで構成された、フロースルー型のハニカム構造の担持体等に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの貴金属を触媒として、排気ガスG中の酸素(O2)を使用して排気ガスG中に含まれる炭化水素(HC)や(一酸化炭素(CO)を酸化したり、粒子状物質(PM)に含まれる未燃燃焼物質(SOF)を酸化したりして、水(H2O)と二酸化炭素(CO2)に変える触媒装置である。 In this oxidation catalyst device 12, noble metals such as platinum (Pt), palladium (Pd), and rhodium (Rh) are applied to a support having a flow-through type honeycomb structure made of ceramics made of cordierite or the like. Oxygen (O 2 ) in the exhaust gas G is used as a catalyst to oxidize hydrocarbons (HC) and (carbon monoxide (CO)) contained in the exhaust gas G, or are contained in particulate matter (PM). It is a catalyst device that oxidizes the unburned combustion substance (SOF) and converts it into water (H 2 O) and carbon dioxide (CO 2).

そして、この酸化触媒装置12は、この微粒子捕集装置13に捕集されたPMを燃焼除去するような強制再生のときには、エンジン10のシリンダ内燃料噴射のポスト噴射により、若しくは、排気通路11に設けた燃料噴射ノズル(図示しない)から燃料を排気管内に直接噴射する排気管内直接噴射により、燃料を排気ガスG中に供給して、排気ガスG中の未燃燃料を増加し、この未燃燃料を酸化触媒装置12で触媒反応により酸化して、この酸化で発生する熱により排気ガスGの温度を上昇させる役割や、排気ガスG中の一酸化窒素(NO)を二酸化窒素(NO2)に酸化して排気ガスG中の「NO:NO2」の割合(モル比での割合)を「1:1」に近い値にして、微粒子捕集装置13におけるPMの燃焼を促進したりする役割を持っている。 Then, when the oxidation catalyst device 12 is forcibly regenerated by burning and removing the PM collected by the fine particle collecting device 13, the post injection of the fuel injection in the cylinder of the engine 10 or the exhaust passage 11 By direct injection in the exhaust pipe, which injects fuel directly into the exhaust pipe from a provided fuel injection nozzle (not shown), fuel is supplied into the exhaust gas G to increase the unburned fuel in the exhaust gas G, and this unburned fuel is increased. The fuel is oxidized by a catalytic reaction in the oxidation catalyst device 12, and the heat generated by this oxidation raises the temperature of the exhaust gas G, and the nitrogen monoxide (NO) in the exhaust gas G is nitrogen dioxide (NO 2 ). The ratio of "NO: NO 2 " in the exhaust gas G (ratio in molar ratio) is set to a value close to "1: 1" to promote the combustion of PM in the fine particle collecting device 13. Have a role.

また、微粒子捕集装置13は、排気ガスG中の粒子状物質(PM)を捕集するためのもので、例えば、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルターで構成される。 Further, the fine particle collecting device 13 is for collecting particulate matter (PM) in the exhaust gas G. For example, the inlet and the outlet of the cells (channels) of the porous ceramic honeycomb are alternately looked at. Consists of a sealed monolith honeycomb type wall flow type filter.

この微粒子捕集装置13では、排気ガスGは、目封じされていないセルの入口より流入し、隣接する出口を目封じされていないセルとの境界に形成されたPM捕集用のセル壁を通過して隣接する出口を目封じされていないセルの出口より流出する。このPM捕集用の壁でPMを捕集するが、捕集できるPMの捕集量には限界があるため、PM捕集量が飽和する前に、微粒子捕集装置13に高温の排気ガスGを通過させて、捕集されたPMを燃焼除去する強制PM再生制御を行って、PM捕集能力を回復している。 In this fine particle collecting device 13, the exhaust gas G flows in from the inlet of the unsealed cell, and the adjacent outlet is formed on the boundary between the unsealed cell and the cell wall for collecting PM. It passes through and exits the adjacent exit from the exit of the unsealed cell. PM is collected by this wall for collecting PM, but since there is a limit to the amount of PM that can be collected, high-temperature exhaust gas is sent to the fine particle collecting device 13 before the amount of PM collected is saturated. Forced PM regeneration control is performed to burn and remove the collected PM by passing through G, and the PM collection ability is restored.

そして、選択還元型触媒装置14は、鉄イオン交換アルミノシリケート等の触媒ゼオライトをセラミックハニカム等の担体に担持させたもので、その上流側の排気通路11に備えた尿素水供給装置16により噴射される尿素水Uが排気ガスGの熱により加水分解して生成されたアンモニア(NH3)を還元剤として、排気ガスGに含まれる窒素酸化物(NOx)を窒素(N2)に浄化する装置である。 The selective reduction catalyst device 14 has a catalyst zeolite such as iron ion exchange aluminosilicate supported on a carrier such as a ceramic honeycomb, and is injected by a urea water supply device 16 provided in an exhaust passage 11 on the upstream side thereof. A device that purifies nitrogen oxides (NOx) contained in exhaust gas G into nitrogen (N 2 ) using ammonia (NH 3 ) produced by hydrolysis of the urea water U by the heat of exhaust gas G as a reducing agent. Is.

そして、アンモニアスリップ触媒装置15は、酸化触媒装置12とほぼ同じ構成で、コーディエライトなどを原料としたセラミックスで構成された、フロースルー型のハニカム構造の担持体等に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの貴金属を触媒として構成される。そして、排気ガスG中のアンモニア(NH3)を酸化して、窒素(N2)と水(H2O)に変えることにより、選択還元型触媒装置14から流出してくるアンモニアを浄化して、排気ガス浄化システム1からアンモニアが大気中へ流出することを防止する。 The ammonia slip catalyst device 15 has almost the same configuration as the oxidation catalyst device 12, and has a flow-through type honeycomb structure carrier or the like made of ceramics made of cordierite or the like as a raw material, and platinum (Pt) or palladium. It is composed of a noble metal such as (Pd) and rhodium (Rh) as a catalyst. Then, by oxidizing ammonia (NH 3 ) in the exhaust gas G and converting it into nitrogen (N 2 ) and water (H 2 O), the ammonia flowing out from the selective reduction catalyst device 14 is purified. , Prevents ammonia from flowing out into the atmosphere from the exhaust gas purification system 1.

さらに、酸化触媒装置12に流入する排気ガスGの温度T1を検出するための第1温度センサ21、微粒子捕集装置13に流入する排気ガスGの温度T2を検出するための第2温度センサ22、微粒子捕集装置13の前後差圧を検出するための差圧センサ23、微粒子捕集装置13から流出する排気ガスGの温度T3を検出するための第3温度センサ24、選択還元型触媒装置14に流入する排気ガスGのNOx濃度を検出するための第1NOx濃度センサ25、アンモニアスリップ触媒装置(ASC)15から流出する排気ガスGのNOx濃度を検出するための第2NOx濃度センサ26などを備えて構成される。 Further, a first temperature sensor 21 for detecting the temperature T1 of the exhaust gas G flowing into the oxidation catalyst device 12, and a second temperature sensor 22 for detecting the temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13. , A differential pressure sensor 23 for detecting the front-rear differential pressure of the fine particle collecting device 13, a third temperature sensor 24 for detecting the temperature T3 of the exhaust gas G flowing out of the fine particle collecting device 13, and a selective reduction catalyst device. A first NOx concentration sensor 25 for detecting the NOx concentration of the exhaust gas G flowing into the 14, a second NOx concentration sensor 26 for detecting the NOx concentration of the exhaust gas G flowing out from the ammonia slip catalyst device (ASC) 15, and the like. Be prepared.

また、これらの各種センサ21〜26の検出値とエンジン10の検出データや制御用のデータを入力して、エンジン10や排気ガス浄化システム1を制御するための制御データ等を出力する、エンジンコントロールユニット(ECU)と呼ばれる制御装置20が設けられている。 In addition, engine control that inputs the detection values of these various sensors 21 to 26, the detection data of the engine 10, and the data for control, and outputs the control data for controlling the engine 10 and the exhaust gas purification system 1. A control device 20 called a unit (ECU) is provided.

また、排気ガス浄化システム1には、選択還元型触媒装置14でのNOx浄化のために、尿素水Uを排気ガスG中に供給する尿素水供給装置16を含む尿素水噴射システムや、排気管内直接燃料噴射のための燃料噴射システムなどが配置されるが、ここでは、これらの構成は、本発明に直接関係しないので説明の簡略化のために省略する。 Further, the exhaust gas purification system 1 includes a urea water injection system including a urea water supply device 16 that supplies urea water U into the exhaust gas G for NOx purification in the selective reduction catalyst device 14, and an exhaust pipe. A fuel injection system for direct fuel injection and the like are arranged, but these configurations are not directly related to the present invention and are omitted here for the sake of brevity.

そして、本発明の第1の実施の形態の排気ガス浄化システム1及び排気ガス浄化システムおける被毒抑制方法においては、微粒子捕集装置13と尿素水噴射弁16との間の排気通路11を、排気主通路11aと、この排気主通路11aに並行し、かつ、被毒物質吸着装置17を備えた排気バイパス通路11bとで構成する。それと共に、排気ガスGの流路を排気主通路11aと排気バイパス通路11bに切り替える排気切替機構18a、18bと、この排気切替機構18a、18bを制御する制御装置20を備えて構成されている。 Then, in the exhaust gas purification system 1 and the poisoning suppression method in the exhaust gas purification system according to the first embodiment of the present invention, the exhaust passage 11 between the fine particle collection device 13 and the urea water injection valve 16 is provided. It is composed of an exhaust main passage 11a and an exhaust bypass passage 11b parallel to the exhaust main passage 11a and provided with a toxic substance adsorption device 17. At the same time, it is provided with exhaust switching mechanisms 18a and 18b for switching the flow path of the exhaust gas G between the exhaust main passage 11a and the exhaust bypass passage 11b, and a control device 20 for controlling the exhaust switching mechanisms 18a and 18b.

この被毒物質吸着装置17は、硫黄酸化物吸着剤を保持した硫黄酸化物吸着区画17aと貴金属吸着剤を保持した貴金属吸着区画17bとを有している。この硫黄酸化物吸着剤は、基材がフロースルータイプのコージェライト製ハニカムに炭酸カルシウムを塗布したものであり、化学反応により硫黄酸化物を吸着する。一方、貴金属吸着剤は、同じく、基材がフロースルータイプのコージェライト製ハニカムにゼオライトを塗布したものであるが、物理的な吸着により貴金属を吸着する。 The toxic substance adsorbing device 17 has a sulfur oxide adsorbing section 17a holding a sulfur oxide adsorbent and a noble metal adsorbing section 17b holding a noble metal adsorbent. This sulfur oxide adsorbent is obtained by applying calcium carbonate to a honeycomb made of cordierite whose base material is a flow-through type, and adsorbs sulfur oxides by a chemical reaction. On the other hand, the noble metal adsorbent is a honeycomb made of cordierite having a flow-through base material coated with zeolite, and adsorbs the noble metal by physical adsorption.

また、排気切替機構18a、18bを2つの三方弁で構成する場合には、排気切替機構18a、18bは、排気バイパス通路11bが排気主通路11aから分岐する部分に設けた第1の三方弁18aと、排気バイパス通路11bが排気主通路11aに合流する部分に設けた第2の三方弁18bとで構成し、第1の三方弁18aと第2の三方弁18bの両方の流路を排気主通路11a側の流路とすると、排気ガスGは排気主通路11aを通過し、また、反対に、第1の三方弁18aと第2の三方弁18bの両方の流路を排気バイパス通路11b側の流路とすると、排気ガスGは排気バイパス通路11bを通過することになる。 When the exhaust switching mechanisms 18a and 18b are composed of two three-way valves, the exhaust switching mechanisms 18a and 18b are the first three-way valves 18a provided at a portion where the exhaust bypass passage 11b branches from the exhaust main passage 11a. And a second three-way valve 18b provided at a portion where the exhaust bypass passage 11b joins the exhaust main passage 11a, and both the first three-way valve 18a and the second three-way valve 18b are exhaust mains. Assuming that the flow path is on the passage 11a side, the exhaust gas G passes through the exhaust main passage 11a, and conversely, the flow paths of both the first three-way valve 18a and the second three-way valve 18b are on the exhaust bypass passage 11b side. The exhaust gas G passes through the exhaust bypass passage 11b.

また、排気切替機構18a、18bを2つの開閉弁で構成する場合には、例えば、排気バイパス通路11bが排気主通路11aから分岐する部分より下流側の排気主通路11aに設けた第1の開閉弁(図示しない)と、排気バイパス通路11bが排気主通路11aに合流する部分より上流側に設けた第2の開閉弁(図示しない)とで構成し、第1の開閉弁と第2の開閉弁の両方を開弁すると、排気ガスGは排気主通路11aを通過し、また、反対に、第1の開閉弁と第2の開閉弁の両方若しくはどちらか一方を閉弁とすると、排気ガスGは排気バイパス通路11bを通過することになる。 When the exhaust switching mechanisms 18a and 18b are composed of two on-off valves, for example, the first opening / closing provided in the exhaust main passage 11a on the downstream side of the portion where the exhaust bypass passage 11b branches from the exhaust main passage 11a. It is composed of a valve (not shown) and a second on-off valve (not shown) provided on the upstream side of the portion where the exhaust bypass passage 11b joins the exhaust main passage 11a, and is composed of a first on-off valve and a second on-off valve. When both valves are opened, the exhaust gas G passes through the exhaust main passage 11a, and conversely, when both or one of the first on-off valve and the second on-off valve is closed, the exhaust gas is exhaust gas. G will pass through the exhaust bypass passage 11b.

なお、この排気切換機構18a、18bとしては、上記以外の構成でも良く、完全に排気ガスGの流路を切り替える構成であっても、排気主通路11aを通過する流量と排気バイパス通路11bを通過する流量を調整できる流量調整機能を有していても良い。 The exhaust switching mechanisms 18a and 18b may have a configuration other than the above, and even if the exhaust gas G flow path is completely switched, the flow rate passing through the exhaust main passage 11a and the exhaust bypass passage 11b are passed. It may have a flow rate adjusting function capable of adjusting the flow rate to be performed.

この構成により、制御装置20が、微粒子捕集装置13の強制再生の時に、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された設定温度Tc以上のときに、排気切替機構18a、18bを制御して、排気ガスGの流路を排気バイパス通路11bに切り替える被毒物質吸着制御を行うと、微粒子捕集装置13の強制再生になったときにおいては、排気ガスGの温度T2が高くなっているか、強制再生になるまでに高くなるかするので、温度の高い排気ガスGが、排気バイパス通路11bに流入して、被毒物質吸着装置17を通過することになる。 With this configuration, the control device 20 switches the exhaust gas when the fine particle collecting device 13 is forcibly regenerated or when the temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 is equal to or higher than a preset set temperature Tc. When the mechanism 18a and 18b are controlled to control the adsorption of toxic substances to switch the flow path of the exhaust gas G to the exhaust bypass passage 11b, the exhaust gas G becomes forced to regenerate when the fine particle collecting device 13 is forcibly regenerated. Since the temperature T2 becomes high or becomes high before forced regeneration, the high-temperature exhaust gas G flows into the exhaust bypass passage 11b and passes through the toxic substance adsorption device 17.

この温度の高い排気ガスGが被毒物質吸着装置17を通過する際に、排気ガスG中の硫黄酸化物を硫黄酸化物吸着区画17aで吸着し、排気ガスG中の貴金属を貴金属吸着区画17bで吸着する。これにより、高温の排気ガスGに晒された酸化触媒装置12と微粒子捕集装置13から流出してくる、硫黄酸化物と貴金属などの被毒物質が、下流側の選択還元型触媒装置14とアンモニアスリップ触媒装置15に流入するのを防止できるので、これらの装置14、15における被毒物質による浄化性能の低下を抑制することができる。 When the exhaust gas G having a high temperature passes through the toxic substance adsorption device 17, the sulfur oxide in the exhaust gas G is adsorbed in the sulfur oxide adsorption section 17a, and the noble metal in the exhaust gas G is adsorbed in the noble metal adsorption section 17b. Adsorb with. As a result, toxic substances such as sulfur oxides and precious metals flowing out from the oxidation catalyst device 12 and the fine particle collection device 13 exposed to the high-temperature exhaust gas G are separated from the selective reduction catalyst device 14 on the downstream side. Since it can be prevented from flowing into the ammonia slip catalyst device 15, it is possible to suppress the deterioration of the purification performance due to the toxic substances in these devices 14 and 15.

また、この硫黄酸化物吸着剤と貴金属吸着剤はある程度の量の硫黄酸化物と貴金属を吸着してしまうと飽和してそれ以上吸着しなくなるので、制御装置20を、被毒物質吸着装置17に吸着される被毒物質の累積量を算出して、この累積量が予め設定されている警報量以上になったと判定したときに、警報を出力するように構成する。この警報の出力により、被毒物質吸着装置17の硫黄酸化物吸着剤と貴金属吸着剤の交換を促して、これらの吸着剤の飽和を未然に防止する。 Further, since the sulfur oxide adsorbent and the noble metal adsorbent are saturated when a certain amount of sulfur oxide and noble metal are adsorbed and no longer adsorbed, the control device 20 is attached to the toxic substance adsorbing device 17. The cumulative amount of the adsorbed poisonous substance is calculated, and when it is determined that the cumulative amount exceeds the preset alarm amount, an alarm is output. The output of this alarm promotes the exchange of the sulfur oxide adsorbent and the noble metal adsorbent of the toxic substance adsorbing device 17, and prevents the saturation of these adsorbents.

より具体的には、硫黄酸化物に関しては、硫黄成分は、燃料やエンジンオイルに由来するので、エンジン10の運転状態(エンジン回転速度Ne、負荷Q若しくは燃料噴射量q)から、燃料やエンジンオイルの消費される量をそれぞれ算出して、これらに含まれる硫黄成分の量から排気ガスG中に流出する硫黄酸化物の生成量、及び、硫黄酸化物吸着剤に吸着される吸着量を推定して、この硫黄酸化物の吸着量の積算値が、予め設定された硫黄酸化物の限界吸着量を超えたときに、警報を出力する。この警報としては、警報ランプの点灯や点滅等の視覚的な警報と、ブザーやベルや音声メッセージなどの聴覚的な警報があり、適宜選択してその警報を発生する。 More specifically, with respect to sulfur oxides, since the sulfur component is derived from fuel and engine oil, the fuel and engine oil are derived from the operating state of the engine 10 (engine rotation speed Ne, load Q or fuel injection amount q). The amount of sulfur oxides that flow out into the exhaust gas G and the amount of sulfur oxides adsorbed by the sulfur oxide adsorbent are estimated from the amount of sulfur components contained in them. Therefore, when the integrated value of the adsorption amount of sulfur oxide exceeds the preset limit adsorption amount of sulfur oxide, an alarm is output. The alarm includes a visual alarm such as lighting and blinking of an alarm lamp and an auditory alarm such as a buzzer, a bell, and a voice message, and the alarm is generated by appropriately selecting the alarm.

また、貴金属に関しては、酸化触媒装置12と微粒子捕集装置13に担持された触媒に由来するので、予め実験などにより、どの程度のエンジン運転、特に強制再生や高温の排気ガスGの通過などの経過状態で、どの程度の貴金属が離脱し、また、被毒物質吸着装置17に吸着されるかを把握して、データベースを作成しておき、このデータベースに基づいて累積計算して、制御の際の被毒物質吸着装置17に吸着されている貴金属量を推定する。この推定量が、予め設定された貴金属の限界吸着量を超えたときに、硫黄酸化物の場合と同様に、警報を出力する。 Further, since the precious metal is derived from the catalyst supported on the oxidation catalyst device 12 and the fine particle collecting device 13, how much engine operation, especially forced regeneration and passage of high-temperature exhaust gas G, can be determined by experiments in advance. A database is created by grasping how much precious metal is detached and adsorbed by the toxic substance adsorbing device 17 in the elapsed state, and cumulative calculation is performed based on this database during control. The amount of precious metal adsorbed on the toxic substance adsorbing device 17 is estimated. When this estimated amount exceeds the preset limit adsorption amount of the precious metal, an alarm is output as in the case of sulfur oxides.

そして、第1の実施の形態の排気ガス浄化システムの被毒抑制方法は、内燃機関10の排気ガスGを、酸化触媒装置12、微粒子捕集装置13、尿素選択還元型触媒装置14により浄化する排気ガス浄化システム1の被毒抑制方法である。この方法において、微粒子捕集装置13と選択還元型触媒装置14との間の排気通路11を、排気主通路11aと、この排気主通路11aに並行し、かつ、被毒物質吸着装置17を備えた排気バイパス通路11bとで構成する。それと共に、微粒子捕集装置13の強制再生のときに、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された設定温度Tc以上のときに、排気バイパス通路11bに排気ガスGを流して、排気バイパス通路11bに設けている被毒物質吸着装置17により、微粒子捕集装置13から流出してくる排気ガスG中の被毒物質(SOx、PGM)を吸着する方法である。 Then, in the method for suppressing poisoning of the exhaust gas purification system of the first embodiment, the exhaust gas G of the internal combustion engine 10 is purified by the oxidation catalyst device 12, the fine particle collection device 13, and the urea selective reduction catalyst device 14. This is a method for suppressing poisoning of the exhaust gas purification system 1. In this method, the exhaust passage 11 between the fine particle collecting device 13 and the selective reduction catalyst device 14 is provided in parallel with the exhaust main passage 11a and the exhaust main passage 11a, and is provided with a toxic substance adsorbing device 17. It is composed of an exhaust bypass passage 11b. At the same time, when the fine particle collecting device 13 is forcibly regenerated, or when the temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 is equal to or higher than the preset set temperature Tc, the exhaust gas enters the exhaust bypass passage 11b. This is a method in which G is flowed and the toxic substances (SOx, PGM) in the exhaust gas G flowing out from the fine particle collecting device 13 are adsorbed by the toxic substance adsorbing device 17 provided in the exhaust bypass passage 11b. ..

上記の排気ガス浄化システム1と排気ガス浄化システムの被毒抑制方法によれば、エンジン10の排気通路11に、上流側から順に、酸化触媒装置12、微粒子捕集装置13、選択還元型触媒装置14を備えた排気ガス浄化システム1において、硫黄酸化物や貴金属等のような被毒物質が後段の選択還元型触媒装置14に付着することを防止でき、これにより、選択還元型触媒装置14の排気ガス浄化性能を高いまま維持することができる。また、選択還元型触媒装置14の下流側にアンモニアスリップ触媒装置15を設けている場合は、このアンモニアスリップ触媒装置15が被毒されることも抑制でき、アンモニアスリップ触媒装置15の排気ガス浄化性能も高いまま維持することができる。 According to the above-mentioned exhaust gas purification system 1 and the exhaust gas purification system poisoning suppression method, the oxidation catalyst device 12, the fine particle collection device 13, and the selective reduction catalyst device are sequentially connected to the exhaust passage 11 of the engine 10 from the upstream side. In the exhaust gas purification system 1 provided with 14, it is possible to prevent toxic substances such as sulfur oxides and precious metals from adhering to the selective reduction type catalyst device 14 in the subsequent stage, whereby the selective reduction type catalyst device 14 of the selective reduction type catalyst device 14 can be prevented. Exhaust gas purification performance can be maintained at a high level. Further, when the ammonia slip catalyst device 15 is provided on the downstream side of the selective reduction type catalyst device 14, it is possible to prevent the ammonia slip catalyst device 15 from being poisoned, and the exhaust gas purification performance of the ammonia slip catalyst device 15 can be suppressed. Can be kept high.

更に、被毒物質吸着装置17における被毒物質の吸着量をエンジン運転状態を示すエンジン回転速度Neと負荷Qなどから算出して、この被毒物質の吸着量が限界吸着量を超えたときに、吸着剤の交換を促す警報や警告を発生するので、吸着剤の飽和を未然に防ぐことができる。 Further, when the adsorption amount of the toxic substance in the toxic substance adsorption device 17 is calculated from the engine rotation speed Ne indicating the engine operating state, the load Q, and the like, and the adsorption amount of the toxic substance exceeds the limit adsorption amount. , Since an alarm or warning for urging the replacement of the adsorbent is generated, saturation of the adsorbent can be prevented.

次に、図3〜図6に示す第2の実施の形態の排気ガス浄化システム1Aと排気ガス浄化システムの被毒抑制方法について説明する。この第2の実施の形態の排気ガス浄化システム1Aでは、第1の実施の形態の排気ガス浄化システム1の構成に、さらに、次に構成を設けて構成される。 Next, the exhaust gas purification system 1A and the method for suppressing poisoning of the exhaust gas purification system according to the second embodiment shown in FIGS. 3 to 6 will be described. In the exhaust gas purification system 1A of the second embodiment, the configuration of the exhaust gas purification system 1 of the first embodiment is further provided with the following configuration.

つまり、排気バイパス通路11bを通過する排気ガスGの熱の一部を化学的反応により蓄熱する蓄熱装置31を設けて構成される。この蓄熱装置31は、反応区画31aと水分区画31bの2つの区画とこれらの両方の区画31a、31bを連通する連通路31cとを有して構成される。 That is, a heat storage device 31 is provided to store a part of the heat of the exhaust gas G passing through the exhaust bypass passage 11b by a chemical reaction. The heat storage device 31 includes two compartments, a reaction compartment 31a and a moisture compartment 31b, and a communication passage 31c that communicates both compartments 31a and 31b.

また、蓄熱装置31の水分区画31bを排気ガスGで加熱する加熱用通路31eと、この加熱用通路31eに排気ガスGを導入するための三方弁(第1弁機構)31dと、反応区画31aからの水蒸気で酸化触媒装置12若しくは微粒子捕集装置13の少なくとも一方を加熱する放熱用通路31gと、この放熱用通路に水蒸気を導入するための開閉弁(第2弁機構)31fを設けている。 Further, a heating passage 31e for heating the moisture compartment 31b of the heat storage device 31 with the exhaust gas G, a three-way valve (first valve mechanism) 31d for introducing the exhaust gas G into the heating passage 31e, and a reaction compartment 31a. A heat radiation passage 31g for heating at least one of the oxidation catalyst device 12 or the fine particle collection device 13 with water vapor from the water vapor and an on-off valve (second valve mechanism) 31f for introducing water vapor into the heat radiation passage are provided. ..

この構成により、蓄熱装置31が加熱されて熱を蓄熱する場合には、反応区画31aにおける吸熱反応「Ca(OH)2+109kJ/mol→CaO+H2O」により、熱を吸収して蓄熱することができる。この吸熱反応は、酸化カルシウム(CaO)と水分(H2O)とが化学反応して生成した水酸化カルシウム(Ca(OH)2)が再度分解する際に生じる反応である。この水分は、連通路31cにより、反応区画31aから水分区画31bに移動して溜る。一方、蓄熱装置31から熱を取り出す場合には、水分区画31bの水分を反応区画31aに供給すると、酸化カルシウム(CaO)と水分(H2O)とが化学反応して水酸化カルシウムを生成する際の発熱反応「CaO+H2O→Ca(OH)2+109kJ/mol」により、熱を発生して放熱するので、反応区画31aに化学的に蓄熱された熱を取り出すことができる。 With this configuration, when the heat storage device 31 is heated to store heat, the heat can be absorbed and stored by the endothermic reaction "Ca (OH) 2 + 109 kJ / mol → CaO + H 2 O" in the reaction compartment 31a. it can. The endothermic reaction, calcium hydroxide and calcium oxide (CaO) water (H 2 O) and is generated by a chemical reaction (Ca (OH) 2) is a reaction that occurs when decomposing again. This water is moved from the reaction compartment 31a to the water compartment 31b and accumulated by the communication passage 31c. On the other hand, when taking out the heat from the heat storage device 31, is supplied to water moisture compartment 31b in the reaction zone 31a, and calcium oxide (CaO) water (H 2 O) and to form calcium hydroxide and reaction Since heat is generated and dissipated by the exothermic reaction "CaO + H 2 O → Ca (OH) 2 + 109 kJ / mol", the heat chemically stored in the reaction compartment 31a can be taken out.

そして、制御装置20は、微粒子捕集装置13の強制再生前の準備段階のときに、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された準備温度Ta以上のときに、三方弁(第1弁機構)31dを制御して、排気主通路11aからの排気ガスGを加熱用通路31eに導入する第1予備加熱制御を行う。なお、この準備温度Taは第1予備加熱制御若しくは第2予備加熱制御を十分に行えるだけの時間を得られるように、予め実験などによって、設定温度よりも僅かに低い温度に設定しておく。 Then, the control device 20 is in the preparatory stage before the forced regeneration of the fine particle collecting device 13, or when the temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 is equal to or higher than the preset preparation temperature Ta. , The three-way valve (first valve mechanism) 31d is controlled to perform the first preheating control for introducing the exhaust gas G from the exhaust main passage 11a into the heating passage 31e. The preparation temperature Ta is set to a temperature slightly lower than the set temperature by an experiment or the like in advance so that a sufficient time can be obtained for the first preheating control or the second preheating control.

あるいは、制御装置20は、微粒子捕集装置13の強制再生前の準備段階のときに、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された準備温度Ta以上のときに、三方弁(第1弁機構)31dを制御して、排気主通路11aからの排気ガスGを加熱用通路31eに導入すると共に、開閉弁(第2弁機構)31fを制御して、反応区画31aからの水蒸気Hを放熱用通路31gに導入する第2予備加熱制御を行う。 Alternatively, the control device 20 is in the preparatory stage before the forced regeneration of the fine particle collecting device 13, or when the temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 is equal to or higher than the preset preparation temperature Ta. , The three-way valve (first valve mechanism) 31d is controlled to introduce the exhaust gas G from the exhaust main passage 11a into the heating passage 31e, and the on-off valve (second valve mechanism) 31f is controlled to control the reaction compartment. The second preheating control is performed to introduce the water vapor H from 31a into the heat dissipation passage 31g.

これらの制御により、微粒子捕集装置13の強制再生の直前に、三方弁(第1弁機構)31dを制御して、排気ガスGの一部または全部を加熱用通路31eに導入して化学的な蓄熱装置31の周囲に流して、排気ガスGの熱で、水分区画31bの水分を温めて水蒸気にすることができる。つまり、排気ガスGの熱を利用して蓄熱装置31の発熱反応を開始させて、反応区画31aの発熱反応により発生する熱を被毒物質吸着装置17の昇温及び活性化に使用することができる。さらに、開閉弁(第2弁機構)31fを開弁することで、発熱反応で得られた熱を水蒸気Hで酸化触媒承知12と微粒子捕集装置13の少なくとも一方または両方に送り込むことができる。例えば、酸化触媒装置12と微粒子捕集装置13を入れたキャニング内に水蒸気Hを送り込む。これにより、発熱反応で得られた熱で微粒子捕集装置13の温度を上げることで強制再生のときに噴射する燃料噴射量を減らすことができ、燃費の向上と共に、余剰の炭化水素噴射(HC噴射)を抑制することで触媒のHC被毒も防ぐことができるようになる。また、この蓄熱装置31に使用する酸化カルシウム(CaO)は、定期検査や車検などのときに交換するようにする。 By these controls, immediately before the forced regeneration of the fine particle collecting device 13, the three-way valve (first valve mechanism) 31d is controlled to introduce a part or all of the exhaust gas G into the heating passage 31e and chemically. The water in the moisture compartment 31b can be heated to steam by the heat of the exhaust gas G by flowing it around the heat storage device 31. That is, the heat of the exhaust gas G can be used to start the exothermic reaction of the heat storage device 31, and the heat generated by the exothermic reaction of the reaction compartment 31a can be used for raising the temperature and activating the toxic substance adsorption device 17. it can. Further, by opening the on-off valve (second valve mechanism) 31f, the heat obtained by the exothermic reaction can be sent to at least one or both of the oxidation catalyst awareness 12 and the fine particle collecting device 13 by steam H. For example, water vapor H is sent into the canning containing the oxidation catalyst device 12 and the fine particle collecting device 13. As a result, the amount of fuel injected during forced regeneration can be reduced by raising the temperature of the fine particle collecting device 13 with the heat obtained from the exothermic reaction, which improves fuel efficiency and injects excess hydrocarbon (HC). By suppressing injection), it becomes possible to prevent HC poisoning of the catalyst. Further, the calcium oxide (CaO) used in the heat storage device 31 is replaced at the time of periodic inspection or vehicle inspection.

そして、第2の実施の形態の排気ガス浄化システムの被毒抑制方法は、第1の実施の形態の排気ガス浄化システムの被毒抑制方法に加えて、以下の第1予備加熱制御あるいは第2予備加熱制御のどちらか一方を行う方法である。 Then, the method for suppressing the poisoning of the exhaust gas purification system according to the second embodiment is the following first preheating control or the second method in addition to the method for suppressing the poisoning of the exhaust gas purification system according to the first embodiment. This is a method of performing either preheating control.

第1予備加熱制御では、制御装置20により、微粒子捕集装置13の強制再生前の準備段階のときに、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された準備温度Ta以上のときに、三方弁(第1弁機構)31dを制御して、排気主通路11aからの排気ガスGを加熱用通路31eに導入する。 In the first preheating control, the control device 20 sets a preset preparation temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 at the preparatory stage before the forced regeneration of the fine particle collecting device 13. When the temperature is Ta or higher, the three-way valve (first valve mechanism) 31d is controlled to introduce the exhaust gas G from the exhaust main passage 11a into the heating passage 31e.

第2予備加熱制御では、制御装置20により、微粒子捕集装置13の強制再生前の準備段階のときに、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された準備温度Ta以上のときに、三方弁(第1弁機構)31dを制御して、排気主通路11aからの排気ガスGを加熱用通路31eに導入すると共に、開閉弁(第2弁機構)31fを制御して、反応区画31aからの水蒸気Hを放熱用通路31gに導入する。 In the second preheating control, the control device 20 sets a preset preparation temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 at the preparatory stage before the forced regeneration of the fine particle collecting device 13. When it is Ta or more, the three-way valve (first valve mechanism) 31d is controlled to introduce the exhaust gas G from the exhaust main passage 11a into the heating passage 31e, and the on-off valve (second valve mechanism) 31f is controlled. Then, the water vapor H from the reaction compartment 31a is introduced into the heat dissipation passage 31g.

この微粒子捕集装置13の強制再生前の準備段階の検出は、例えば、強制再生が行われるPM堆積量の判定値よりも僅かに小さい準判定値を設けて、PM堆積量が準判定値になったときに、準備段階になったとして、上記の第1予備加熱制御または第2予備加熱制御を実施し、PM堆積量が判定値になったときに、強制再生になったとして、強制再生を実施する。 In the detection of the preparatory stage before the forced regeneration of the fine particle collecting device 13, for example, a quasi-judgment value slightly smaller than the determination value of the PM deposition amount at which the forced regeneration is performed is provided, and the PM deposition amount becomes the quasi-determination value. When the preparation stage is reached, the above-mentioned first preheating control or second preheating control is performed, and when the PM accumulation amount reaches the judgment value, the forced regeneration is assumed and the forced regeneration is performed. To carry out.

この強制再生が実施されるときには、第1予備加熱制御や第2予備加熱制御の実施を完了し、三方弁(第1弁機構)31dを制御して閉弁して加熱用通路31eを閉じ、また、開閉弁(第2弁機構)31fを制御して閉弁して放熱用通路31gを閉じる。なお、PM堆積量は例えば、差圧センサ23で計測する差圧で代用することもできる。この場合は、計測された差圧が、準判定差圧になったときを準備段階になったとして、第1予備加熱制御または第2予備加熱制御を実施し、計測された差圧が判定差圧になったときに強制再生を開始する。 When this forced regeneration is carried out, the first preheating control and the second preheating control are completed, the three-way valve (first valve mechanism) 31d is controlled to close the valve, and the heating passage 31e is closed. Further, the on-off valve (second valve mechanism) 31f is controlled to close the valve to close the heat dissipation passage 31g. The PM deposit amount can be substituted by, for example, the differential pressure measured by the differential pressure sensor 23. In this case, assuming that the preparatory stage is reached when the measured differential pressure reaches the quasi-judgment differential pressure, the first preheating control or the second preheating control is performed, and the measured differential pressure is the judgment difference. Forced playback starts when pressure is applied.

なお、準備段階に入って第1予備加熱制御または第2予備加熱制御を予め設定された時間の間実施した後、強制再生の判定をせずに、そのまま、強制再生に入るように構成しても良い。あるいは、強制再生の判定した後、強制再生の前に準備段階を設けて第1予備加熱制御または第2予備加熱制御を予め設定された時間の間実施した後に、強制再生に入るように構成しても良い。 After entering the preparatory stage and performing the first preheating control or the second preheating control for a preset time, the forced regeneration is configured to enter as it is without determining the forced regeneration. Is also good. Alternatively, after the forced regeneration is determined, a preparatory stage is provided before the forced regeneration, and the first preheating control or the second preheating control is performed for a preset time, and then the forced regeneration is started. You may.

これにより、第1予備加熱制御または第2予備加熱制御の実施により、排気ガスGの熱と蓄熱装置31で蓄熱した熱で被毒物質吸着装置17を加熱して昇温し、活性化する。また、第2予備加熱制御の実施により、蓄熱装置31で蓄熱した熱で、酸化触媒装置12若しくは微粒子捕集装置13を加熱して昇温する。これにより、酸化触媒装置12若しくは微粒子捕集装置13を昇温するための燃料を節約することができる。 As a result, by implementing the first preheating control or the second preheating control, the toxic substance adsorbing device 17 is heated by the heat of the exhaust gas G and the heat stored in the heat storage device 31 to raise the temperature and activate it. Further, by implementing the second preheating control, the heat stored in the heat storage device 31 heats the oxidation catalyst device 12 or the fine particle collecting device 13 to raise the temperature. As a result, it is possible to save fuel for raising the temperature of the oxidation catalyst device 12 or the fine particle collecting device 13.

そして、この準備段階の後に強制再生が実施されるので、活性化した被毒物質吸着装置17で被毒物質を効率よく吸着でき、また、予備段階で既に加熱されている酸化触媒装置12若しくは微粒子捕集装置13を昇温するので、酸化触媒装置12を昇温する構成の場合には、酸化触媒装置12の触媒の活性化により排気ガスG中の炭化水素や一酸化窒素を効率良く酸化でき、また、微粒子捕集装置13を昇温する構成の場合には、微粒子捕集装置13の昇温に要する熱量を減少できるので、より少ない燃料で強制再生できるようになる。 Since the forced regeneration is carried out after this preparatory step, the toxic substance adsorbing device 17 can efficiently adsorb the toxic substance, and the oxidation catalyst device 12 or the fine particles already heated in the preliminary step can be adsorbed. Since the temperature of the collection device 13 is raised, in the case of a configuration in which the temperature of the oxidation catalyst device 12 is raised, hydrocarbons and nitrogen monoxide in the exhaust gas G can be efficiently oxidized by activating the catalyst of the oxidation catalyst device 12. Further, in the case of the configuration in which the temperature of the fine particle collecting device 13 is raised, the amount of heat required for raising the temperature of the fine particle collecting device 13 can be reduced, so that forced regeneration can be performed with less fuel.

従って、上記の第2の実施の形態の排気ガス浄化システム1Sと排気ガス浄化システムの被毒抑制方法によれば、上記の第1予備加熱制御若しくは第2予備加熱制御により、次のような効果を得ることができる。 Therefore, according to the exhaust gas purification system 1S of the second embodiment and the poisoning suppression method of the exhaust gas purification system, the following effects are obtained by the first preheating control or the second preheating control. Can be obtained.

まず、第1予備加熱制御により、微粒子捕集装置13の強制再生のときなどの排気ガスGの温度が高いときには、排気ガスGの流路が排気バイパス通路11bに切り換えられるので、高温の排気ガスGが被毒物質吸着装置17を通過する際に、排気ガスGの熱の一部を吸熱反応により蓄熱装置31に蓄熱しておくことができる。 First, due to the first preheating control, when the temperature of the exhaust gas G is high, such as during forced regeneration of the fine particle collecting device 13, the flow path of the exhaust gas G is switched to the exhaust bypass passage 11b, so that the high temperature exhaust gas When G passes through the toxic substance adsorbing device 17, a part of the heat of the exhaust gas G can be stored in the heat storage device 31 by an endothermic reaction.

また、微粒子捕集装置13の強制再生前の準備段階のときに、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された準備温度Ta以上のときに、排気主通路11aからの排気ガスGを加熱用通路31eに導入することにより、蓄熱装置31の水分区画31bを外側から排気ガスGで加熱して、水分区画31bの水分を蒸発させて、反応区画31aに供給することができる。これにより、反応区画31aで発熱反応を行わせて、発生した熱を蓄熱装置31の内側に配置されている被毒物質吸着装置17の被毒物質吸着剤を加熱して活性化させるために使用することができる。その結果、微粒子捕集装置13の強制再生のときに、若しくは微粒子捕集装置13に流入する排気ガスGの温度T2が予め設定された設定温度Tc以上のときに、被毒物質吸着装置17で、硫黄酸化物と貴金属をより効率よく吸着できるようになる。 Further, in the preparatory stage before the forced regeneration of the fine particle collecting device 13, or when the temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 is equal to or higher than the preset preparation temperature Ta, the exhaust main passage 11a By introducing the exhaust gas G from the above into the heating passage 31e, the moisture compartment 31b of the heat storage device 31 is heated by the exhaust gas G from the outside to evaporate the moisture in the moisture compartment 31b and supply it to the reaction compartment 31a. be able to. As a result, an exothermic reaction is carried out in the reaction compartment 31a, and the generated heat is used to heat and activate the toxic substance adsorbent of the toxic substance adsorbing device 17 arranged inside the heat storage device 31. can do. As a result, when the fine particle collecting device 13 is forcibly regenerated, or when the temperature T2 of the exhaust gas G flowing into the fine particle collecting device 13 is equal to or higher than the preset set temperature Tc, the toxic substance adsorbing device 17 is used. , Sulfur oxides and precious metals can be adsorbed more efficiently.

次に、第2予備加熱制御により、第1予備加熱制御の効果に加えて、開閉弁(第2弁機構)31fを制御して、反応区画31aからの水蒸気Hを放熱用通路31gに導入することができるので、この水蒸気Hで酸化触媒装置12若しくは微粒子捕集装置13の少なくとも一方を加熱することができ、これらの酸化触媒装置12若しくは微粒子捕集装置13を昇温するために必要な燃料を節約することができるようになる。 Next, in addition to the effect of the first preheating control, the on-off valve (second valve mechanism) 31f is controlled by the second preheating control to introduce the water vapor H from the reaction compartment 31a into the heat dissipation passage 31g. Therefore, at least one of the oxidation catalyst device 12 and the fine particle collecting device 13 can be heated by the steam H, and the fuel required for raising the temperature of these oxidation catalyst device 12 or the fine particle collecting device 13 Will be able to save.

そして、図7及び図8に示すような、比較例としての排気ガス浄化システム1Xでは、エンジン(内燃機関:E)10から排出される排気ガスGが通過する排気通路11に、上流側から順に、酸化触媒装置(DOC)12、粒子状物質(PM)を捕集するための微粒子捕集装置(F)13、排気ガスG中の窒素酸化物(NOx)を浄化する選択還元型触媒装置(SCR)14、アンモニアスリップ触媒装置(ASC)15を備えて構成される。 Then, in the exhaust gas purification system 1X as a comparative example as shown in FIGS. 7 and 8, the exhaust gas G discharged from the engine (internal combustion engine: E) 10 passes through the exhaust passage 11 in order from the upstream side. , Oxidation catalyst device (DOC) 12, Fine particle collection device (F) 13 for collecting particulate matter (PM), Selective reduction catalyst device for purifying nitrogen oxides (NOx) in exhaust gas G ( It is configured to include SCR) 14 and an ammonia slip catalyst device (ASC) 15.

この比較例のような場合には、燃料やエンジンオイルなどに含まれている硫黄分により硫黄酸化物(SOx)が発生した場合に、これらの被毒物質が、酸化触媒装置12や微粒子捕集装置13の触媒に堆積して、微粒子捕集装置13に堆積したPMを燃焼除去する強制再生のときに、図8に示すように、硫黄酸化物(SOx)や貴金属(PGM)が高温化された酸化触媒装置12や微粒子捕集装置13から離脱して、下流側に配置されている選択還元型触媒装置14とアンモニアスリップ触媒装置15に付着する場合があり、これらの装置のNOx浄化性能が低下するという硫黄酸化物による被毒問題がある。 In the case of this comparative example, when sulfur oxides (SOx) are generated by the sulfur content contained in fuel, engine oil, etc., these poisonous substances are collected in the oxidation catalyst device 12 and fine particles. As shown in FIG. 8, sulfur oxides (SOx) and noble metals (PGM) are heated to a high temperature during forced regeneration in which PM deposited on the catalyst of the device 13 is burned and removed by burning and removing PM deposited on the fine particle collecting device 13. It may separate from the oxide catalyst device 12 and the fine particle collection device 13 and adhere to the selective reduction type catalyst device 14 and the ammonia slip catalyst device 15 arranged on the downstream side, and the NOx purification performance of these devices may be deteriorated. There is a problem of poisoning due to sulfur oxides that it decreases.

また、酸化触媒装置や微粒子捕集装置の触媒の活性種である貴金属(PGM)が、触媒が高温になると、蒸気となって下流側の選択還元型触媒装置14とアンモニアスリップ触媒装置15に付着してしまい、これらの装置14、15のアンモニア酸化性能の選択性が向上して、NOxの還元剤であるアンモニアが先に酸化されてしまい、NOx浄化性能が低下してしまうという貴金属による被毒問題もある。 Further, when the temperature of the catalyst becomes high, the noble metal (PGM), which is the active species of the catalyst of the oxidation catalyst device and the fine particle collecting device, becomes vapor and adheres to the selective reducing catalyst device 14 and the ammonia slip catalyst device 15 on the downstream side. As a result, the selectivity of the ammonia oxidation performance of these devices 14 and 15 is improved, and ammonia, which is a NOx reducing agent, is oxidized first, and the NOx purification performance is deteriorated. There is also a problem.

この比較例に対して、本発明に係る第1及び第2の実施の形態の排気ガス浄化システム1、1A及び排気ガス浄化システムの被毒抑制方法では、硫黄酸化物による被毒も貴金属による被毒も抑制することができ、更に、第2の実施の形態の排気ガス浄化システム1A、及び排気ガス浄化システムの被毒抑制方法では、化学的に蓄熱を行う蓄熱装置31により、排気ガスGの熱を有効利用して、燃費向上に貢献できる。 In contrast to this comparative example, in the exhaust gas purification systems 1, 1A and the exhaust gas purification system poisoning suppression method according to the first and second embodiments of the present invention, the poisoning by sulfur oxides is also covered by precious metals. Poison can also be suppressed, and further, in the exhaust gas purification system 1A of the second embodiment and the poisoning suppression method of the exhaust gas purification system, the exhaust gas G is provided by the heat storage device 31 that chemically stores heat. Effective use of heat can contribute to improving fuel efficiency.

1、1A、1X 排気ガス浄化システム
10 エンジン(内燃機関)
11 排気通路
11a 排気主通路
11b 排気バイパス通路
12 酸化触媒装置(DOC)
13 微粒子捕集装置(F)
14 選択還元型触媒装置(SCR)
15 アンモニアスリップ触媒装置(ASC)
16 尿素水噴射弁
17 被毒物質吸着装置
17a 硫黄酸化物吸着区画
17b 貴金属吸着区画
18a 第1の三方弁(排気切替機構)
18b 第2の三方弁(排気切替機構)
20 制御装置
21 第1温度センサ
22 第2温度センサ
24 第3温度センサ
23 差圧センサ
25 第1NOx濃度センサ
26 第2NOx濃度センサ
31 蓄熱装置
31a 反応区画
31b 水分区画
31c 連通路
31d 三方弁(第1弁機構)
31e 加熱用通路
31f 開閉弁(第2弁機構)
31g 放熱用通路
G 排気ガス
H 水蒸気
T1 酸化触媒装置に流入する排気ガスの温度
T2 微粒子捕集装置に流入する排気ガスの温度
T3 微粒子捕集装置から流出する排気ガスの温度
Ta 準備温度
Tc 設定温度
1,1A, 1X Exhaust gas purification system 10 Engine (internal combustion engine)
11 Exhaust passage 11a Exhaust main passage 11b Exhaust bypass passage 12 Oxidation catalyst device (DOC)
13 Fine particle collector (F)
14 Selective reduction catalyst device (SCR)
15 Ammonia slip catalyst device (ASC)
16 Urea water injection valve 17 Toxic substance adsorption device 17a Sulfur oxide adsorption section 17b Precious metal adsorption section 18a First three-way valve (exhaust switching mechanism)
18b Second three-way valve (exhaust switching mechanism)
20 Control device 21 1st temperature sensor 22 2nd temperature sensor 24 3rd temperature sensor 23 Differential pressure sensor 25 1st NOx concentration sensor 26 2nd NOx concentration sensor 31 Heat storage device 31a Reaction compartment 31b Moisture compartment 31c Communication passage 31d Three-way valve (1st Valve mechanism)
31e Heating passage 31f On-off valve (second valve mechanism)
31g Heat dissipation passage G Exhaust gas H Water vapor T1 Temperature of exhaust gas flowing into the oxidation catalyst device T2 Temperature of exhaust gas flowing into the fine particle collecting device T3 Temperature of exhaust gas flowing out of the fine particle collecting device Ta Preparation temperature Tc Set temperature

Claims (9)

内燃機関の排気通路に、上流側から順に、酸化触媒装置、微粒子捕集装置、選択還元型触媒装置を備えた排気ガス浄化システムにおいて、
前記微粒子捕集装置と前記選択還元型触媒装置との間の前記排気通路を排気主通路と、この排気主通路に並行す排気バイパス通路とで構成し、
排気ガスの流路を前記排気主通路と前記排気バイパス通路に切り替える排気切替機構 、前記排気バイパス通路に配置された被毒物質吸着装置と、反応区画および水分区画の2 つの区画並びにこれらの両方の区画を連通する連通路を有して、前記被毒物質吸着装置を 通過する排気ガスの熱の一部を化学的反応により蓄熱する蓄熱装置と、前記水分区画を前 記排気主通路を通過する排気ガスの一部または全部で加熱する加熱用通路と、前記加熱用 通路に前記排気主通路の排気ガスを導入するための第1弁機構と、前記排気切替機構およ び前記第1弁機構を制御する制御装置を備えていることを特徴とする排気ガス浄化システム。
In an exhaust gas purification system equipped with an oxidation catalyst device, a fine particle collection device, and a selective reduction catalyst device in order from the upstream side in the exhaust passage of the internal combustion engine.
The exhaust passage and the exhaust main passage between the particulate collection device and the selective reduction catalyst device, constituted by the exhaust gas bypass passage you parallel with the main exhaust passage,
Both the exhaust switching mechanism, and the poisoning substances adsorbed device disposed in the exhaust bypass passage, the two compartments of the reaction zone and the water zone and their switching the flow path of the exhaust gas to the exhaust bypass passage and the exhaust main path a communication passage for communicating the compartments, the passage and the heat storage device storing heat by chemical reaction a portion of the exhaust gas passing through the poisoning substance adsorber heat, pre SL main exhaust passage the water compartments a heating passage heating in some or all of the exhaust gas, the first valve mechanism for introducing the exhaust gas in the main exhaust passage to the heating passage and the exhaust switching mechanism and the first valve An exhaust gas purification system characterized by being equipped with a control device that controls the mechanism.
前記制御装置が、前記微粒子捕集装置の強制再生前の準備段階のときに、若しくは前記微粒子捕集装置に流入する排気ガスの温度が予め設定された準備温度以上のときに、前記加熱用通路を前記排気主通路から分岐させた分岐部に設けた前記第1弁機構を制御して、前記排気主通路からの排気ガスを前記加熱用通路に導入する第1予備加熱制御を行うことを特徴とする請求項1に記載の排気ガス浄化システム。The heating passage when the control device is in the preparatory stage before the forced regeneration of the fine particle collecting device, or when the temperature of the exhaust gas flowing into the fine particle collecting device is equal to or higher than a preset preparation temperature. The first valve mechanism provided in the branch portion branched from the exhaust main passage is controlled to perform the first preheating control for introducing the exhaust gas from the exhaust main passage into the heating passage. The exhaust gas purification system according to claim 1. 記反応区画から発生する水蒸気で前記酸化触媒装置若しくは前記微粒子捕集装置の少なくとも一方を加熱する放熱用通路と、該放熱用通路へ水蒸気を導入するための第2弁機構を備えていることを特徴とする請求項1に記載の排気浄化システム。Wherein that it comprises a radiating passage for heating at least one of the oxidation catalyst device or the particle catch arrangement, the second valve mechanism for introducing steam into the heat-dissipating passage water vapor generated from the previous SL reaction zone The exhaust purification system according to claim 1. 前記制御装置が、前記微粒子捕集装置の強制再生前の準備段階若しくは前記微粒子捕集装置に流入する排気ガスの温度が予め設定された準備温度以上のときに、前記加熱用通路を前記排気主通路から分岐させた分岐部に設けた前記第1弁機構を制御して、前記排気主通路からの排気ガスを前記加熱用通路に導入すると共に、前記第2弁機構を制御して、前記反応区画から発生する水蒸気を前記放熱用通路に導入する第2予備加熱制御を行うことを特徴とする請求項3に記載の排気ガス浄化システム。When the control device is in the preparatory stage before the forced regeneration of the fine particle collection device or when the temperature of the exhaust gas flowing into the fine particle collection device is equal to or higher than a preset preparation temperature, the heating passage is used as the exhaust main. The first valve mechanism provided in the branch portion branched from the passage is controlled to introduce the exhaust gas from the exhaust main passage into the heating passage, and the second valve mechanism is controlled to control the reaction. The exhaust gas purification system according to claim 3, further comprising performing a second preheating control for introducing water vapor generated from the compartment into the heat dissipation passage. 前記被毒物質吸着装置が硫黄酸化物吸着剤と貴金属吸着剤とを有していることを特徴とする請求項1〜4のいずれか1項に記載の排気ガス浄化システム。The exhaust gas purification system according to any one of claims 1 to 4, wherein the toxic substance adsorbing device has a sulfur oxide adsorbent and a noble metal adsorbent. 前記制御装置が、前記微粒子捕集装置の強制再生のときに、若しくは、前記微粒子捕集装置に流入する排気ガスの温度が予め設定された設定温度以上のときに、前記排気切替機構を制御して、排気ガスの流路を前記バイパス通路に切り替える被毒物質吸着制御を行うことを特徴とする請求項1〜5のいずれか1項に記載の排気ガス浄化システム。The control device controls the exhaust switching mechanism when the fine particle collecting device is forcibly regenerated or when the temperature of the exhaust gas flowing into the fine particle collecting device is equal to or higher than a preset set temperature. The exhaust gas purification system according to any one of claims 1 to 5, wherein the exhaust gas flow path is switched to the bypass passage to control the adsorption of toxic substances. 前記制御装置が、前記被毒物質吸着装置に吸着される被毒物質の累積量を算出して、この累積量が予め設定されている警報量以上になったと判定したときに、警報を出力することを特徴とする請求項1〜のいずれか1項に記載の排気ガス浄化システム。The control device calculates the cumulative amount of the poisonous substance adsorbed on the poisonous substance adsorbing device, and outputs an alarm when it is determined that the cumulative amount exceeds a preset alarm amount. The exhaust gas purification system according to any one of claims 1 to 6, wherein the exhaust gas purification system is characterized. 内燃機関の排気ガスを、酸化触媒装置、微粒子捕集装置、選択還元型触媒装置により浄化する排気ガス浄化システムの被毒抑制方法において、
前記微粒子捕集装置と前記選択還元型触媒装置との間の前記排気通路、排気主通路と、この排気主通路に並行し、かつ、被毒物質吸着装置を備えた排気バイパス通路とで構成 されており、
前記微粒子捕集装置の強制再生のときに、若しくは前記微粒子捕集装置に流入する排気ガスの温度が予め設定された設定温度以上のときに、前記排気バイパス通路に排気ガスを流して、前記排気バイパス通路に設けている前記被毒物質吸着装置により、前記微粒子捕集装置から流出してくる排気ガス中の被毒物質を吸着するとともに、反応区画および水分 区画の2つの区画並びにこれらの両方の区画を連通する連通路を有する蓄熱装置により、 前記被毒物質吸着装置を通過する排気ガスの熱の一部を化学的反応により蓄熱し、
前記微粒子捕集装置の強制再生前の準備段階のときに、若しくは前記微粒子捕集装置に 流入する排気ガスの温度が予め設定された準備温度以上のときに、加熱用通路を前記排気 主通路から分岐させた分岐部に設けた第1弁機構により、前記排気主通路からの排気ガス を前記加熱用通路に導入して前記蓄熱装置の前記水分区画を前記排気主通路を通過する排 気ガスの一部または全部で加熱することを特徴とする排気ガス浄化システムの被毒抑制方法。
In the method of suppressing poisoning of an exhaust gas purification system that purifies the exhaust gas of an internal combustion engine by an oxidation catalyst device, a fine particle collecting device, and a selective reduction type catalyst device.
The exhaust passage between the fine particle collector and the selective reduction catalyst device.But, Exhaust main passage and exhaust bypass passage parallel to this exhaust main passage and equipped with a toxic substance adsorption device. Has been
At the time of forced regeneration of the fine particle collecting device, or when the temperature of the exhaust gas flowing into the fine particle collecting device is equal to or higher than a preset set temperature, the exhaust gas is flowed through the exhaust bypass passage to exhaust the exhaust gas. Provided in the bypass passageSaidThe toxic substance adsorbing device adsorbs the toxic substance in the exhaust gas flowing out from the fine particle collecting device.Along with the reaction compartment and moisture By a heat storage device having two compartments of the compartment and a communication passage communicating both of these compartments. A part of the heat of the exhaust gas passing through the toxic substance adsorbing device is stored by a chemical reaction.
At the preparatory stage before forced regeneration of the fine particle collecting device, or to the fine particle collecting device When the temperature of the inflowing exhaust gas is equal to or higher than the preset preparation temperature, the heating passage is exhausted. Exhaust gas from the exhaust main passage is provided by the first valve mechanism provided at the branch portion branched from the main passage. Is introduced into the heating passage to pass the moisture compartment of the heat storage device through the exhaust main passage. Heat with some or all of the gasA method for controlling poisoning of an exhaust gas purification system.
前記微粒子捕集装置の強制再生前の準備段階のときに、若しくは前記微粒子捕集装置にAt the preparatory stage before forced regeneration of the fine particle collecting device, or to the fine particle collecting device 流入する排気ガスの温度が予め設定された準備温度以上のときに、第2弁機構により前記When the temperature of the inflowing exhaust gas is equal to or higher than the preset preparation temperature, the second valve mechanism causes the above. 反応区画から発生する水蒸気を放熱用通路に導入し、前記放熱用通路に導入された前記反The water vapor generated from the reaction compartment is introduced into the heat radiating passage, and the anti-reverse introduced into the heat radiating passage. 応区画から発生する水蒸気で前記酸化触媒装置若しくは前記微粒子捕集装置の少なくともAt least of the oxidation catalyst device or the fine particle collecting device with the steam generated from the response compartment. 一方を加熱することを特徴とする請求項8に記載の排気ガス浄化システムの被毒抑制方法The method for suppressing poisoning of an exhaust gas purification system according to claim 8, wherein one of them is heated. ..
JP2016245724A 2016-12-19 2016-12-19 Exhaust gas purification system and poison control method for exhaust gas purification system Active JP6838384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245724A JP6838384B2 (en) 2016-12-19 2016-12-19 Exhaust gas purification system and poison control method for exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245724A JP6838384B2 (en) 2016-12-19 2016-12-19 Exhaust gas purification system and poison control method for exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2018100600A JP2018100600A (en) 2018-06-28
JP6838384B2 true JP6838384B2 (en) 2021-03-03

Family

ID=62715137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245724A Active JP6838384B2 (en) 2016-12-19 2016-12-19 Exhaust gas purification system and poison control method for exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP6838384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190232A (en) * 2019-05-22 2020-11-26 いすゞ自動車株式会社 Exhaust emission control system of internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272546A (en) * 1993-03-17 1994-09-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008272617A (en) * 2007-04-26 2008-11-13 Babcock Hitachi Kk Exhaust gas cleaning device
US20130095013A1 (en) * 2010-06-24 2013-04-18 N.E. Chemcat Corporation Exhaust gas purification catalyst apparatus using selective reduction catalyst, exhaust gas purification method, and diesel automobile mounted with exhaust gas purification catalyst apparatus
JP2012127323A (en) * 2010-12-17 2012-07-05 Toyota Motor Corp Thermal control system for vehicle
JP2016121547A (en) * 2014-12-24 2016-07-07 いすゞ自動車株式会社 System and method of purifying exhaust gas of internal combustion engine
GB201504986D0 (en) * 2015-02-13 2015-05-06 Johnson Matthey Plc Oxidation catalyst for treating a natural gas emission

Also Published As

Publication number Publication date
JP2018100600A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US8844274B2 (en) Compact diesel engine exhaust treatment system
RU2392456C2 (en) Method and device for cleaning of exhaust gas
US7251929B2 (en) Thermal management of hybrid LNT/SCR aftertreatment during desulfation
US9597637B2 (en) Exhaust gas post-processing apparatus and control method thereof
JP5802260B2 (en) Method for reducing nitrous oxide in exhaust gas aftertreatment for lean burn engines
KR101726580B1 (en) Exhaust-gas aftertreatment system with catalytically active wall-flow filter with storage function upstream of catalytic converter with identical storage function
US20070012032A1 (en) Hybrid system comprising HC-SCR, NOx-trapping, and NH3-SCR for exhaust emission reduction
JP3885813B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
WO2006080187A1 (en) Method of raising temperature of exhaust-gas purifier and exhaust-gas purification system
JP2010120008A (en) Diesel oxidation catalyst and exhaust system provided with the same
JP2006307681A (en) Emission control method and emission control device
WO2006059470A1 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
JP2006312921A (en) System and method for purifying exhaust gas of diesel engine
JP4423818B2 (en) Exhaust gas purification device
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP2018145869A (en) Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system
JP6838384B2 (en) Exhaust gas purification system and poison control method for exhaust gas purification system
JP2006307802A (en) Exhaust emission control device
JP4567968B2 (en) Exhaust gas purification device and exhaust gas purification method
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2010156277A (en) Exhaust emission purifying method and exhaust emission purifying system
JP2013245606A (en) Exhaust gas purification system
JP2016094894A (en) Exhaust emission control system of internal combustion engine and exhaust emission control method of internal combustion engine
WO2008059726A1 (en) Filter and exhaust-gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6838384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150