JP6837750B2 - Oil-containing wastewater treatment system and oil-containing wastewater treatment method - Google Patents

Oil-containing wastewater treatment system and oil-containing wastewater treatment method Download PDF

Info

Publication number
JP6837750B2
JP6837750B2 JP2016058642A JP2016058642A JP6837750B2 JP 6837750 B2 JP6837750 B2 JP 6837750B2 JP 2016058642 A JP2016058642 A JP 2016058642A JP 2016058642 A JP2016058642 A JP 2016058642A JP 6837750 B2 JP6837750 B2 JP 6837750B2
Authority
JP
Japan
Prior art keywords
treatment
tank
anaerobic
oil
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058642A
Other languages
Japanese (ja)
Other versions
JP2017170330A (en
Inventor
昌文 三井
昌文 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2016058642A priority Critical patent/JP6837750B2/en
Publication of JP2017170330A publication Critical patent/JP2017170330A/en
Application granted granted Critical
Publication of JP6837750B2 publication Critical patent/JP6837750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、油脂含有排水処理システム及び油脂含有排水処理方法に関する。 The present invention relates to a fat-containing wastewater treatment system and a fat-containing wastewater treatment method.

食品工場排水等の油脂含有排水の処理方法としては、特許文献1に示すように、油脂を分離除去した後に、分離水を好気処理により処理する方法が一般的である。 As a method for treating wastewater containing fats and oils such as wastewater from food factories, as shown in Patent Document 1, a method of separating and removing fats and oils and then treating the separated water by aerobic treatment is common.

特開平4−235799号公報Japanese Unexamined Patent Publication No. 4-235799

しかしながら、特許文献1記載の油脂含有排水の処理方法では、分離除去された油脂に係る処理が別途必要となる。油脂含有排水から油脂を除去せずに好気状態において生物学的処理をする方法も検討されているが、好気状態にするには曝気に必要な動力がかなり大きくなり、コストが上昇するという課題がある。 However, in the method for treating oil and fat-containing wastewater described in Patent Document 1, a separate treatment for the separated and removed oil and fat is required. A method of biological treatment in an aerobic state without removing the fat and oil from the wastewater containing fat and oil is also being studied, but it is said that the power required for aeration will be considerably large and the cost will increase in order to achieve the aerobic state. There are challenges.

本発明は上記を鑑みてなされたものであり、油脂含有排水をより低コストで処理することが可能な油脂含有排水処理システム及び油脂含有排水処理方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a fat-containing wastewater treatment system and a fat-containing wastewater treatment method capable of treating fat-containing wastewater at a lower cost.

上記目的を達成するため、本発明の一形態に係る油脂含有排水処理システムは、油脂含有排水を限定的な酸素供給状態で嫌気処理する前段処理部と、前記前段処理部での前段処理後の前記油脂含有排水を嫌気処理する嫌気処理部と、を備えることを特徴とする。 In order to achieve the above object, the oil-and-fat-containing wastewater treatment system according to one embodiment of the present invention includes a pre-stage treatment unit that anaerobically treats the oil-and-fat-containing wastewater in a limited oxygen supply state, and a pre-stage treatment unit after the pre-stage treatment. It is characterized by comprising an anaerobic treatment unit for anaerobically treating the oil-containing wastewater.

また、本発明の一形態に係る油脂含有排水処理方法は、油脂含有排水を限定的な酸素供給状態で嫌気処理する前段処理工程と、前記前段処理工程後の前記油脂含有排水を嫌気処理する嫌気処理工程と、を有することを特徴とする。 Further, the oil / fat-containing wastewater treatment method according to one embodiment of the present invention includes a pre-stage treatment step of anaerobically treating the oil-containing wastewater in a limited oxygen supply state and an anaerobic treatment of the oil-fat-containing wastewater after the pre-stage treatment step. It is characterized by having a processing step.

上記の油脂含有排水処理システム及び油脂含有排水処理方法によれば、嫌気処理を行う前に油脂含有排水に対して限定的な酸素供給状態で嫌気処理が行われ、このときに、限定的な酸素供給状態での嫌気処理状態で優勢となる通性嫌気性菌により油脂の分解が促進される。したがって、好気処理よりも低コストでの処理が可能な嫌気処理を採用しながら、油脂が好適に分解され、油脂含有排水の処理を行うことができる。 According to the above-mentioned oil-containing wastewater treatment system and oil-containing wastewater treatment method, anaerobic treatment is performed on the oil-containing wastewater under a limited oxygen supply state before the anaerobic treatment, and at this time, limited oxygen is applied. Decomposition of fats and oils is promoted by facultative anaerobes that predominate in the anaerobic treatment state in the supply state. Therefore, while adopting an anaerobic treatment that can be treated at a lower cost than the aerobic treatment, the fats and oils are suitably decomposed and the wastewater containing the fats and oils can be treated.

ここで、前記前段処理部と前記嫌気処理部とは独立している態様とすることができる。 Here, the pre-stage processing unit and the anaerobic processing unit can be in an independent manner.

上記のように、前段処理部と嫌気処理部とが独立していることで、前段処理部での限定的な酸素供給状態での嫌気処理、及び、嫌気処理部での嫌気処理のそれぞれについて、より好ましい条件で処理することが可能となり、処理効率の向上につながる。 As described above, since the pre-stage treatment unit and the anaerobic treatment unit are independent, the anaerobic treatment in the limited oxygen supply state in the pre-stage treatment unit and the anaerobic treatment in the anaerobic treatment unit can be performed. It becomes possible to process under more preferable conditions, which leads to improvement in processing efficiency.

前記前段処理部の酸化還元電位は−200mV〜−300mVである態様とすることができる。 The redox potential of the pre-stage treatment unit can be in an embodiment of −200 mV to −300 mV.

上記のように前段処理部の酸化還元電位を−200mV〜−300mVの状態とすると、前段処理部において限定的な酸素供給状態で嫌気処理を行う主体となる通性嫌気性菌が優勢な状態を好適に維持することができる。 As described above, when the redox potential of the pre-stage treatment section is set to -200 mV to -300 mV, the facultative anaerobic bacteria, which are the main constituents of the pre-stage treatment section that perform anaerobic treatment under a limited oxygen supply state, are in a predominant state. It can be preferably maintained.

前記嫌気処理部から前記前段処理部に対して、汚泥及び処理水の一部を返送する返送部を備える態様とすることができる。 An embodiment may be provided in which a return unit for returning a part of sludge and treated water from the anaerobic treatment unit to the pre-treatment unit is provided.

上記のように返送部を備えることで、汚泥及び処理水の一部と共に油脂の分解能力が高い通性嫌気性菌を返送することが可能となり、前段処理部での通性嫌気性菌の維持を好適に行うことができることから、前段処理部での油脂分解性能が向上する。 By providing the return unit as described above, it is possible to return facultative anaerobes having a high ability to decompose fats and oils together with a part of sludge and treated water, and maintain the facultative anaerobes in the pretreatment unit. Therefore, the oil / fat decomposition performance in the pre-stage treatment section is improved.

本発明によれば、油脂含有排水をより低コストで処理することが可能な油脂含有排水処理システム及び油脂含有排水処理方法が提供される。 According to the present invention, there is provided a fat-containing wastewater treatment system and a fat-containing wastewater treatment method capable of treating fat-containing wastewater at a lower cost.

第1実施形態に係る排水処理システムを説明する図である。It is a figure explaining the wastewater treatment system which concerns on 1st Embodiment. 第2実施形態に係る排水処理システムを説明する図である。It is a figure explaining the wastewater treatment system which concerns on 2nd Embodiment. 第3実施形態に係る排水処理システムを説明する図である。It is a figure explaining the wastewater treatment system which concerns on 3rd Embodiment. 比較例に係る排水処理システムを説明する図である。It is a figure explaining the wastewater treatment system which concerns on a comparative example. 実施例に係るシステムにおける前段処理槽の菌叢の分析結果を示す図である。It is a figure which shows the analysis result of the bacterial flora of the pre-stage treatment tank in the system which concerns on Example. 実施例に係るシステムにおける酸生成槽の菌叢の分析結果を示す図である。It is a figure which shows the analysis result of the bacterial flora of the acid production tank in the system which concerns on Example. 比較例に係るシステムにおける酸生成槽の菌叢の分析結果を示す図である。It is a figure which shows the analysis result of the bacterial flora of the acid production tank in the system which concerns on a comparative example.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted.

(第1実施形態)
図1は、第1の実施形態に係る油脂含有排水処理方法を採用した油脂含有排水処理システムを示す概略構成図である。
(First Embodiment)
FIG. 1 is a schematic configuration diagram showing an oil-and-fat-containing wastewater treatment system that employs the oil-and-fat-containing wastewater treatment method according to the first embodiment.

図1に示すように、排水処理システム100(油脂含有排水処理システム)は、油脂を含有する有機性排水(油脂含有排水)を処理する設備であり、原水となる油脂含有排水を導入し前段処理としての限定的な酸素供給状態における嫌気処理を行う前段処理槽1(前段処理部)と、前段処理後の水を酸発酵する酸生成槽2と、酸発酵液を導入しメタン発酵するメタン発酵槽3と、を有する。酸生成槽2及びメタン発酵槽3は、嫌気状態での生物学的処理(嫌気処理)を行う嫌気処理部として機能する。 As shown in FIG. 1, the wastewater treatment system 100 (fat-containing wastewater treatment system) is a facility for treating organic wastewater containing fats and oils (fat-containing wastewater), and introduces fat-containing wastewater as raw water for pretreatment. A pre-stage treatment tank 1 (pre-stage treatment unit) that performs anaerobic treatment in a limited oxygen supply state, an acid generation tank 2 that acid-ferments the water after the pre-stage treatment, and methane fermentation in which an acid fermentation liquid is introduced and methane fermentation is performed. It has a tank 3 and. The acid generation tank 2 and the methane fermentation tank 3 function as an anaerobic treatment unit that performs biological treatment (anaerobic treatment) in an anaerobic state.

前段処理槽1は、ラインL1を介して油脂含有排水を受け入れる。前段処理槽1は、槽内の水を限定的な酸素供給状態に維持するための酸素供給部10を備える。 The pre-stage treatment tank 1 receives the oil-and-fat-containing wastewater via the line L1. The pretreatment tank 1 includes an oxygen supply unit 10 for maintaining the water in the tank in a limited oxygen supply state.

本実施形態において、限定的な酸素供給状態とは、酸素含有ガスの供給下において、溶存酸素量(DO)が0mg/Lに近い値の状態のことを指す。そのため、溶存酸素量(DO)0mg/Lで酸化還元電位(ORP)0mV以下の状態、例えば、DOが0mg/LでORPが−100mVは一般的には嫌気状態であるが、酸素含有ガスを供給している場合には、本実施形態における限定的な酸素供給状態に該当する。 In the present embodiment, the limited oxygen supply state refers to a state in which the dissolved oxygen amount (DO) is close to 0 mg / L under the supply of oxygen-containing gas. Therefore, a state where the dissolved oxygen amount (DO) is 0 mg / L and the oxidation-reduction potential (ORP) is 0 mV or less, for example, when DO is 0 mg / L and ORP is -100 mV, the oxygen-containing gas is generally anaerobic. When supplying, it corresponds to the limited oxygen supply state in this embodiment.

前段処理槽1に供給される酸素含有ガスとしては、空気等を用いることができる。また、ガス分離膜、PSA(圧力変動吸着)方式のガス分離装置等を用いて得られる高濃度化された酸素を前段処理槽1に供給してもよい。また、酸素供給部10としては、散気管、散気パネル、開口を有する配管、マイクロバブル発生装置、ブロア・ファン、水中エアレータ等の公知のガス供給手段を利用することができる。 Air or the like can be used as the oxygen-containing gas supplied to the pretreatment tank 1. Further, the highly concentrated oxygen obtained by using a gas separation membrane, a PSA (pressure fluctuation adsorption) type gas separation device, or the like may be supplied to the pretreatment tank 1. Further, as the oxygen supply unit 10, known gas supply means such as an air diffuser pipe, an air diffuser panel, a pipe having an opening, a micro bubble generator, a blower fan, and an underwater aerator can be used.

前段処理槽1では、酸素供給部10による酸素含有ガスの導入により、槽内の水を限定的な酸素供給状態に維持すると共に、油脂含有排水を限定的な酸素供給状態で嫌気処理(Oxygen-Limited anaerobic treatment)する。前段処理槽1内に、微生物の保持のために、ウレタンやPVA、ポリオレフィンなどの一般的な担体を配置することができる。担体は、微生物が固定できれば、形態は立方体、直方体、円柱状、円筒状、ひも状などいずれでもよい。 In the pretreatment tank 1, the water in the tank is maintained in a limited oxygen supply state by introducing the oxygen-containing gas by the oxygen supply unit 10, and the oil-fat-containing wastewater is anaerobically treated in a limited oxygen supply state (Oxygen-). Limited anaerobic treatment). A general carrier such as urethane, PVA, or polyolefin can be arranged in the pretreatment tank 1 for retaining microorganisms. The carrier may be in any shape such as a cube, a rectangular parallelepiped, a columnar shape, a cylindrical shape, and a string shape as long as the microorganism can be fixed.

なお、前段処理槽1では、酸素供給部10によって、ORPが−100mV〜−500mVの状態で維持されていることが好ましい。この状態であると前段処理槽1における限定的な酸素供給状態下での嫌気処理が好適に行われ、油脂の加水分解及びβ酸化が促進されて、低級脂肪酸が生成される。前段処理槽1における限定的な酸素供給状態における嫌気処理については、後述する。 In the pre-stage treatment tank 1, it is preferable that the ORP is maintained in a state of −100 mV to −500 mV by the oxygen supply unit 10. In this state, the anaerobic treatment in the pretreatment tank 1 under the limited oxygen supply state is preferably performed, the hydrolysis of fats and oils and β-oxidation are promoted, and lower fatty acids are produced. The anaerobic treatment in the limited oxygen supply state in the pre-stage treatment tank 1 will be described later.

酸生成槽2は、ラインL2を介して前段処理槽1で生物学的処理された油脂含有排水を導入すると共に、槽内に収容される酸生成菌によって、油脂含有排水に含有される有機物(糖、タンパク質、高分子の有機酸、アルコール等)を分解し、低級脂肪酸を生成する。 The acid-producing tank 2 introduces the fat-containing wastewater biologically treated in the pretreatment tank 1 via the line L2, and the organic substances contained in the fat-containing wastewater by the acid-producing bacteria contained in the tank ( Decomposes sugars, proteins, high molecular weight organic acids, alcohols, etc.) to produce lower fatty acids.

メタン発酵槽3は、ラインL3を介して酸生成槽2からの水を導入し、槽内に収容されるメタン生成菌による嫌気性処理によって、低級脂肪酸を分解し、メタン及び二酸化炭素を主成分とするバイオガスを発生する。嫌気性処理後の処理水は、ラインL4によって後段に移送される。バイオガスは回収されて、エネルギーとして活用される。 The methane fermentation tank 3 introduces water from the acid generation tank 2 via the line L3, decomposes lower fatty acids by anaerobic treatment by methanogens housed in the tank, and contains methane and carbon dioxide as main components. Generates biogas. The treated water after the anaerobic treatment is transferred to the subsequent stage by the line L4. Biogas is recovered and used as energy.

また、メタン発酵槽3には、酸生成槽2の菌体濃度を高めるため、メタン発酵槽3から汚泥及び処理水の一部を酸生成槽2に返送するラインL5が接続される。同様に、前段処理槽1の菌体濃度を高めるため、メタン発酵槽3から汚泥及び処理水の一部を前段処理槽1に返送するラインL6が接続される。ラインL6は、嫌気処理部から前段処理部に対して、汚泥及び処理水の一部を返送する返送部として機能する。 Further, the methane fermentation tank 3 is connected to a line L5 that returns a part of sludge and treated water from the methane fermentation tank 3 to the acid generation tank 2 in order to increase the cell concentration of the acid production tank 2. Similarly, in order to increase the cell concentration of the pre-stage treatment tank 1, a line L6 for returning a part of sludge and treated water from the methane fermentation tank 3 to the pre-stage treatment tank 1 is connected. The line L6 functions as a return unit for returning a part of sludge and treated water from the anaerobic treatment unit to the pre-treatment unit.

続いて、本実施形態に係る排水処理システム100にて行われる水処理方法を説明する。まず、ラインL1を介して、油脂含有排水を前段処理槽1に供給し、酸素供給部10により酸素含有ガスを槽内に導入することで、前段処理槽1内の水を限定的な酸素供給状態に維持しつつ嫌気処理する(前段処理工程)。限定的な酸素供給状態に維持することで、槽内の菌叢を通性嫌気性菌が優位な状態とすることができ、油脂含有排水に含まれる油脂の低級脂肪酸への分解が促進される。 Subsequently, the water treatment method performed by the wastewater treatment system 100 according to the present embodiment will be described. First, the oil-and-fat-containing wastewater is supplied to the pre-treatment tank 1 via the line L1, and the oxygen-containing gas is introduced into the tank by the oxygen supply unit 10, so that the water in the pre-treatment tank 1 is supplied with limited oxygen. Anaerobic treatment is performed while maintaining the state (pre-stage treatment step). By maintaining a limited oxygen supply state, the facultative anaerobic bacteria in the tank can be in a predominant state, and the decomposition of fats and oils contained in the fats and oils-containing wastewater into lower fatty acids is promoted. ..

続いて、前段処理槽1で前段処理を行った水をラインL2を介して酸生成槽2に供給し、嫌気状態下で生物学的処理する。前段処理槽1で酸素が十分に消費されることで、酸生成槽2以降では嫌気状態下となり、槽内に収容される酸生成菌によって、油脂含有排水に含有される有機物が低級脂肪酸に分解される。 Subsequently, the water subjected to the pre-stage treatment in the pre-stage treatment tank 1 is supplied to the acid generation tank 2 via the line L2 and biologically treated under an anaerobic state. When oxygen is sufficiently consumed in the pretreatment tank 1, the acid-producing tank 2 and subsequent tanks are in an anaerobic state, and the acid-producing bacteria contained in the tank decompose the organic substances contained in the oil-containing wastewater into lower fatty acids. Will be done.

さらに、酸生成槽2で生物学的処理を受けた水をラインL3を介してメタン発酵槽3に供給し、嫌気状態下で生物学的処理をする。これにより、水中の低級脂肪酸が二酸化炭素とメタンに分解される(嫌気処理工程)。これらの工程により得られたメタンは、例えばエネルギー源として有効に利用できる。また、メタン発酵槽3からの汚泥及び処理水の一部が、前段処理槽1及び酸生成槽2へ返送される。 Further, the water biologically treated in the acid generation tank 2 is supplied to the methane fermentation tank 3 via the line L3, and the biological treatment is performed under an anaerobic state. As a result, lower fatty acids in water are decomposed into carbon dioxide and methane (anaerobic treatment step). The methane obtained by these steps can be effectively used as an energy source, for example. Further, a part of the sludge and the treated water from the methane fermentation tank 3 is returned to the pre-stage treatment tank 1 and the acid generation tank 2.

ここで、本実施形態に係る排水処理システム100における排水処理方法では、前段処理槽1において限定的な酸素供給状態において嫌気処理をしている。前段処理槽1では、上記のように限定的な酸素供給状態を形成することで、槽内の菌叢を通性嫌気性菌が優勢な状態とすることができる。通性嫌気性菌が優勢な状態とすることで、油脂含有排水における油脂の低級脂肪酸への分解が促進される。 Here, in the wastewater treatment method in the wastewater treatment system 100 according to the present embodiment, anaerobic treatment is performed in the pre-stage treatment tank 1 in a limited oxygen supply state. In the pretreatment tank 1, by forming the limited oxygen supply state as described above, the facultative anaerobic bacteria in the tank can be in a predominant state. By making the facultative anaerobic bacteria predominant, the decomposition of fats and oils into lower fatty acids in the wastewater containing fats and oils is promoted.

油脂は、加水分解とβ酸化とを経て低級脂肪酸へ分解される。油脂(グリセリンエステル)は、まず、加水分解によってグリセリンと高級脂肪酸に分解される。その後、高級脂肪酸がβ酸化により低級脂肪酸へと分解される。前段処理槽1において、菌叢において通性嫌気性菌が優勢な状態が形成されていると、嫌気性菌が優勢な状態と比較して、油脂を低級脂肪酸へ分解するための加水分解及びβ酸化が促進される。 Fats and oils are decomposed into lower fatty acids through hydrolysis and β-oxidation. Fats and oils (glycerin esters) are first decomposed into glycerin and higher fatty acids by hydrolysis. After that, the higher fatty acid is decomposed into a lower fatty acid by β-oxidation. When a facultative anaerobic bacterium is predominantly formed in the flora in the pretreatment tank 1, hydrolysis and β for decomposing fats and oils into lower fatty acids are compared with the anaerobic bacterium predominant state. Oxidation is promoted.

油脂含有排水を処理する方法としては、従来から油脂を分離除去した後に分離水を好気処理により処理する方法が一般的であった。しかしながら、油脂の分離除去のためのコスト及び分離除去した油脂を処分するためのコスト等が増大することから、油脂含有排水を直接生物学的処理する方法が検討され始めた。油脂含有排水を生物学的処理する場合には、高級脂肪酸である油脂を分解する必要があるため、より分解能力の高い好気処理が用いられることが考えられる。しかしながら、油脂含有排水を好気処理する場合には、大容量の曝気槽が必要となり、曝気動力等のエネルギーが必要となるためコストが上昇する。一方、油脂含有排水を嫌気処理する構成とすることで排水処理に係る動力コストを低減することが可能となるが、好気処理と比較して油脂の分解速度が遅いため、効率の面から問題があった。 As a method for treating wastewater containing fats and oils, a method has conventionally been used in which the separated water is treated by aerobic treatment after separating and removing the fats and oils. However, since the cost for separating and removing fats and oils and the cost for disposing of the separated and removed fats and oils increase, a method for directly biologically treating the wastewater containing fats and oils has begun to be studied. When biologically treating wastewater containing fats and oils, it is necessary to decompose fats and oils, which are higher fatty acids, so it is conceivable that aerobic treatment with higher decomposition ability is used. However, when aerial treatment of wastewater containing fats and oils is performed, a large-capacity aeration tank is required, and energy such as aeration power is required, which increases the cost. On the other hand, it is possible to reduce the power cost related to wastewater treatment by anaerobically treating the wastewater containing fats and oils, but since the decomposition rate of fats and oils is slower than that of aerobic treatment, there is a problem in terms of efficiency. was there.

これに対して、本実施形態に係る排水処理システム100における排水処理方法では、前段処理槽1を限定的な酸素供給状態として菌叢を制御し、通性嫌気性菌が優勢な状況を形成して生物学的処理を行うことで、油脂の加水分解及びβ酸化を促進させる。その後、酸生成槽2及びメタン発酵槽3において、嫌気処理を行うことで、油脂含有排水のように、嫌気処理のように油脂の分解に時間がかかる生物学的処理であっても、前段処理槽1における限定的な酸素供給状態における嫌気処理により油脂の分解が促進されているため、後段が嫌気状態下での嫌気処理であっても、処理速度の低下を抑制することができる。したがって、油脂含有排水をより低コストで処理することが可能となる。 On the other hand, in the wastewater treatment method in the wastewater treatment system 100 according to the present embodiment, the flora is controlled by setting the pre-stage treatment tank 1 as a limited oxygen supply state, and facultative anaerobic bacteria form a predominant situation. By performing biological treatment, hydrolysis of fats and oils and β-oxidation are promoted. After that, by performing anaerobic treatment in the acid generation tank 2 and the methane fermentation tank 3, even if it is a biological treatment such as anaerobic treatment that takes a long time to decompose fats and oils, such as wastewater containing fats and oils, the pretreatment is performed. Since the decomposition of fats and oils is promoted by the anaerobic treatment in the limited oxygen supply state in the tank 1, it is possible to suppress the decrease in the treatment speed even if the subsequent stage is the anaerobic treatment under the anaerobic state. Therefore, it is possible to treat the wastewater containing oil and fat at a lower cost.

また、排水処理システム100のように前段処理槽1と、酸生成槽2及びメタン発酵槽3と、が独立していることで、前段処理槽1での限定的な酸素供給状態での嫌気処理、及び、酸生成槽2及びメタン発酵槽3での嫌気処理のそれぞれについて、より好ましい条件で処理することが可能となり、処理効率の向上につながる。 Further, since the pre-stage treatment tank 1 and the acid generation tank 2 and the methane fermentation tank 3 are independent as in the wastewater treatment system 100, the anaerobic treatment in the pre-stage treatment tank 1 in a limited oxygen supply state is performed. , And each of the anaerobic treatments in the acid generation tank 2 and the methane fermentation tank 3 can be treated under more preferable conditions, which leads to an improvement in treatment efficiency.

また、前段処理槽1を限定的な酸素供給状態とすることで、前段処理槽1内の菌叢において通性嫌気性菌が優勢な状態になると、前段処理槽1で生存する通性嫌気性菌は、水の移動と共に、後段の酸生成槽2及びメタン発酵槽3へも流入する。通性嫌気性菌は、酸生成槽2及びメタン発酵槽3のような嫌気状態でも育成可能な菌である。酸生成槽2及びメタン発酵槽3に流入した通性嫌気性菌は、前段処理槽1の通性嫌気性菌と同様に、各槽において油脂の低級脂肪酸への分解を行う。したがって、油脂含有排水における油脂の分解をさらに促進することができる。 Further, by setting the pre-stage treatment tank 1 in a limited oxygen supply state, when facultative anaerobic bacteria become predominant in the bacterial flora in the pre-stage treatment tank 1, the facultative anaerobic bacteria that survive in the pre-stage treatment tank 1 survive. The bacteria flow into the acid production tank 2 and the methane fermentation tank 3 in the subsequent stage as the water moves. Facultative anaerobic bacteria are bacteria that can be grown even in an anaerobic state, such as an acid production tank 2 and a methane fermentation tank 3. The facultative anaerobic bacteria that have flowed into the acid generation tank 2 and the methane fermentation tank 3 decompose the fats and oils into lower fatty acids in each tank in the same manner as the facultative anaerobic bacteria in the pretreatment tank 1. Therefore, the decomposition of fats and oils in the fats and oils-containing wastewater can be further promoted.

また、ラインL5により、汚泥及び処理水の一部と共に油脂の分解能力が高い通性嫌気性菌をメタン発酵槽3から酸生成槽2に返送することで、酸生成槽2での通性嫌気性菌の維持を好適に行うことができる。同様に、ラインL6により、汚泥及び処理水の一部と共に油脂の分解能力が高い通性嫌気性菌をメタン発酵槽3から前段処理槽1に返送することで、前段処理槽1での通性嫌気性菌の維持を好適に行うことができる。 Further, by returning the facultative anaerobic bacteria having a high ability to decompose fats and oils together with a part of sludge and treated water from the methane fermentation tank 3 to the acid generation tank 2, the facultative anaerobic bacteria in the acid generation tank 2 are returned by the line L5. The maintenance of sexual bacteria can be preferably performed. Similarly, by returning the facultative anaerobic bacteria having a high ability to decompose fats and oils together with a part of sludge and treated water from the methane fermentation tank 3 to the pre-treatment tank 1, the facultative anaerobic bacteria in the pre-treatment tank 1 are returned by the line L6. The maintenance of anaerobic bacteria can be preferably performed.

なお、前段処理槽1は、ORPが−100mV〜−500mVの状態で維持されていることで、通性嫌気性菌が優勢な状態を形成することができる。このうち、ORPを−200mV〜−300mVの状態とすると、通性嫌気性菌が優勢な状態を好適に維持することができる。なお、ORPが−500mVよりも低くなると、通性嫌気性菌の割合が減少し嫌気性菌の割合が増加するため、油脂に係る処理効率が低下する可能性がある。一方、ORPが−100mVよりも大きくなると、通性嫌気性菌の割合が減少し好気性菌の割合が増加するため、油脂以外の易分解性有機物が分解される。この場合、後段の嫌気処理の対象となる有機物が減少し、その結果、バイオガスの発生量が低減する。上述したように、バイオガスは回収してエネルギーとして利用されるため、嫌気処理の対象となる有機物の減少はエネルギーの損失につながる。 In the pretreatment tank 1, the ORP is maintained at −100 mV to −500 mV, so that facultative anaerobic bacteria can form a predominant state. Of these, when the ORP is in a state of −200 mV to −300 mV, a state in which facultative anaerobic bacteria predominate can be suitably maintained. When the ORP is lower than −500 mV, the proportion of facultative anaerobic bacteria decreases and the proportion of anaerobic bacteria increases, so that the treatment efficiency of fats and oils may decrease. On the other hand, when the ORP becomes larger than -100 mV, the proportion of facultative anaerobes decreases and the proportion of aerobic bacteria increases, so that easily decomposable organic substances other than fats and oils are decomposed. In this case, the amount of organic matter to be anaerobically treated in the subsequent stage is reduced, and as a result, the amount of biogas generated is reduced. As described above, since biogas is recovered and used as energy, a decrease in organic matter subject to anaerobic treatment leads to energy loss.

また、前段処理槽1での油脂含有排水の滞留時間が長くなり、前段処理槽1における限定的な酸素供給状態における嫌気処理により分解される有機物が増加すると、上記と同様に、嫌気処理の対象となる有機物が減少し、エネルギーの損失につながる。したがって、前段処理槽1では、有機物の分解率が、投入前の油脂含有排水における有機物の全量に対して10%〜50%程度となるように、前段処理槽1内の環境及び油脂含有排水の滞留時間を設定することが好ましい。油脂含有排水の油脂を含む有機物の含有量等に応じて、前段処理槽1における油脂含有排水の滞留時間は大きく変わるが、例えば、1時間〜12時間程度とすることができる。 Further, when the residence time of the oil-containing wastewater in the pre-stage treatment tank 1 becomes long and the amount of organic substances decomposed by the anaerobic treatment in the limited oxygen supply state in the pre-stage treatment tank 1 increases, the target of the anaerobic treatment is the same as described above. Organic matter is reduced, leading to energy loss. Therefore, in the pre-treatment tank 1, the decomposition rate of organic matter is about 10% to 50% of the total amount of organic matter in the oil-containing wastewater before charging, so that the environment in the pre-treatment tank 1 and the oil-containing wastewater It is preferable to set the residence time. The residence time of the oil-and-fat-containing wastewater in the pre-stage treatment tank 1 varies greatly depending on the content of the organic matter containing the oil and fat in the oil-and-fat-containing wastewater, but can be, for example, about 1 hour to 12 hours.

なお、上記実施形態では、前段処理槽1を限定的な酸素供給状態に維持するために酸素供給部10が設けられている例を説明したが、限定的な酸素供給状態に維持することで、菌叢の状態を通性嫌気性菌が優勢となるように制御することが目的である。したがって、限定的な酸素供給状態を維持するための手法は酸素含有ガスの供給に限定されず、例えば、酸化剤・還元剤、pH調整剤、栄養塩等の添加により、限定的な酸素供給状態を維持する構成としてもよい。なお、pHは6〜8程度に調整することで、菌叢の状態を通性嫌気性菌が優勢としやすくなる。 In the above embodiment, an example in which the oxygen supply unit 10 is provided to maintain the pre-stage treatment tank 1 in a limited oxygen supply state has been described, but by maintaining the oxygen supply state in a limited state, The purpose is to control the state of the flora so that facultative anaerobes dominate. Therefore, the method for maintaining a limited oxygen supply state is not limited to the supply of oxygen-containing gas, and for example, a limited oxygen supply state is provided by adding an oxidizing agent / reducing agent, a pH adjuster, a nutrient salt, or the like. It may be configured to maintain. By adjusting the pH to about 6 to 8, facultative anaerobic bacteria tend to predominate in the state of the flora.

また、上記実施形態では、ラインL5,L6により、汚泥及び処理水の一部と共に油脂の分解能力が高い通性嫌気性菌をメタン発酵槽3から酸生成槽2及び前段処理槽1に返送する構成について説明したが、メタン発酵槽3から汚泥及び処理水の一部を返送するラインをラインL5,L6の一方側のみにしてもよい。 Further, in the above embodiment, the facultative anaerobic bacteria having a high ability to decompose fats and oils together with a part of sludge and treated water are returned from the methane fermentation tank 3 to the acid generation tank 2 and the pretreatment tank 1 by the lines L5 and L6. Although the configuration has been described, the line for returning a part of sludge and treated water from the methane fermenter 3 may be only one side of the lines L5 and L6.

(第2実施形態)
次に、図2を参照して、本発明の第2実施形態に係る排水処理システム200について説明する。本実施形態に係る排水処理システム200が、第1実施形態に係る排水処理システム100と異なる点は、メタン発酵槽3から汚泥及び処理水の一部を前段処理槽1へ返送するラインL6に代えて、酸生成槽2から汚泥及び処理水の一部を前段処理槽1へ返送するラインL7を備える点である。
(Second Embodiment)
Next, the wastewater treatment system 200 according to the second embodiment of the present invention will be described with reference to FIG. The difference between the wastewater treatment system 200 according to the present embodiment and the wastewater treatment system 100 according to the first embodiment is that the sludge and a part of the treated water are returned from the methane fermentation tank 3 to the pretreatment tank 1 instead of the line L6. Therefore, a line L7 for returning a part of sludge and treated water from the acid generation tank 2 to the pre-stage treatment tank 1 is provided.

上記の排水処理システム200のように、ラインL7により、汚泥及び処理水の一部と共に油脂の分解能力が高い通性嫌気性菌を酸生成槽2から前段処理槽1に返送する構成とした場合であっても、前段処理槽1での通性嫌気性菌の維持を好適に行うことができる。 When a facultative anaerobic bacterium having a high ability to decompose fats and oils is returned from the acid generation tank 2 to the pretreatment tank 1 by the line L7 as in the above wastewater treatment system 200. Even so, the facultative anaerobic bacteria can be preferably maintained in the pretreatment tank 1.

なお、メタン発酵槽3から汚泥及び処理水の一部を酸生成槽2へ返送するラインL5を備えず、ラインL7のみを備える構成であっても、前段処理槽1での通性嫌気性菌の維持を好適に行うことができる。 It should be noted that the facultative anaerobic bacteria in the pretreatment tank 1 are provided even if the line L5 for returning the sludge and a part of the treated water from the methane fermentation tank 3 to the acid generation tank 2 is not provided and only the line L7 is provided. Can be preferably maintained.

(第3実施形態)
次に、図3を参照して、本発明の第3実施形態に係る排水処理システム300について説明する。本実施形態に係る排水処理システム300が、第1実施形態に係る排水処理システム100と異なる点は、前段処理槽1が酸生成槽2を兼ねている点である。
(Third Embodiment)
Next, the wastewater treatment system 300 according to the third embodiment of the present invention will be described with reference to FIG. The wastewater treatment system 300 according to the present embodiment is different from the wastewater treatment system 100 according to the first embodiment in that the pre-stage treatment tank 1 also serves as the acid generation tank 2.

すなわち、排水処理システム300は、メタン発酵槽3の前段に、前段処理槽/酸生成槽4を有していて、前段処理槽/酸生成槽4を限定的な酸素供給状態に維持することで、通性嫌気性菌による油脂含有排水に含有される油脂の分解を促進すると共に、槽内に収容される酸生成菌によって、油脂含有排水に含有される有機物(糖、タンパク質、高分子の有機酸、アルコール等)を分解し、低級脂肪酸を生成する。前段処理槽/酸生成槽4で生物学的処理を受けた水をラインL3を介してメタン発酵槽3に供給し、嫌気状態下で生物学的処理をする。 That is, the wastewater treatment system 300 has a pre-stage treatment tank / acid generation tank 4 in front of the methane fermentation tank 3, and maintains the pre-stage treatment tank / acid generation tank 4 in a limited oxygen supply state. , Promotes the decomposition of fats and oils contained in fats and oils-containing wastewater by anaerobic bacteria, and organic substances (sugars, proteins, high polymers) contained in fats and oils-containing wastewater by acid-producing bacteria contained in the tank. Decomposes acids, alcohols, etc.) to produce lower fatty acids. Water that has undergone biological treatment in the pretreatment tank / acid generation tank 4 is supplied to the methane fermentation tank 3 via the line L3, and the biological treatment is performed under an anaerobic state.

また、排水処理システム300では、メタン発酵槽3から汚泥及び処理水の一部がラインL8により前段処理槽/酸生成槽4へ返送される。 Further, in the wastewater treatment system 300, sludge and a part of the treated water are returned from the methane fermentation tank 3 to the pretreatment tank / acid generation tank 4 by the line L8.

上記の排水処理システム300においても、前段処理槽/酸生成槽4を限定的な酸素供給状態として菌叢を制御し、通性嫌気性菌が優勢な状況を形成して生物学的処理を行うことで、酸生成菌による有機物の分解だけでなく、油脂の加水分解及びβ酸化を促進させることができる。その後、メタン発酵槽3において嫌気処理を行うことで、油脂含有排水のように、嫌気処理のように油脂の分解に時間がかかる生物学的処理であっても、前段処理槽/酸生成槽4における限定的な酸素供給状態における嫌気処理により油脂の分解が促進されているため、後段が嫌気状態下での嫌気処理であっても、処理速度の低下を抑制することができる。したがって、油脂含有排水をより低コストで処理することが可能となる。 Also in the above wastewater treatment system 300, the bacterial flora is controlled by setting the pre-stage treatment tank / acid generation tank 4 as a limited oxygen supply state, and facultative anaerobic bacteria form a predominant situation to perform biological treatment. As a result, not only the decomposition of organic matter by acid-producing bacteria but also the hydrolysis of fats and oils and β-oxidation can be promoted. After that, by performing anaerobic treatment in the methane fermentation tank 3, even if it is a biological treatment such as anaerobic treatment that takes time to decompose fats and oils, such as wastewater containing fats and oils, the pretreatment tank / acid generation tank 4 Since the decomposition of fats and oils is promoted by the anaerobic treatment in the limited oxygen supply state in the above, the decrease in the treatment speed can be suppressed even if the anaerobic treatment is performed in the anaerobic state in the latter stage. Therefore, it is possible to treat the wastewater containing oil and fat at a lower cost.

また、ラインL8により、汚泥及び処理水の一部と共に油脂の分解能力が高い通性嫌気性菌をメタン発酵槽3から前段処理槽/酸生成槽4に返送する構成とすることで、前段処理槽/酸生成槽4での通性嫌気性菌の維持を好適に行うことができる。 Further, the line L8 is configured to return facultative anaerobic bacteria having a high ability to decompose fats and oils together with a part of sludge and treated water from the methane fermentation tank 3 to the pre-treatment tank / acid generation tank 4 for pre-treatment. The facultative anaerobic bacteria can be preferably maintained in the tank / acid generation tank 4.

以上、本発明は上記実施形態に限定されず様々な変形態様が可能である。例えば、各槽の形式は特に限定されず、種々の形態を取ることができる。 As described above, the present invention is not limited to the above embodiment, and various modifications are possible. For example, the type of each tank is not particularly limited, and various forms can be taken.

また、前段処理槽1及び酸生成槽2(もしくは、前段処理槽/酸生成槽4)に溶存酸素濃度の検出器(DO計)、酸化還元電位の検出器(ORP計)を取り付けて、酸素供給部10からの酸素供給量、及び/又は、前段処理槽1、酸生成槽2及びメタン発酵槽3間(もしくは、前段処理槽/酸生成槽4とメタン発酵槽3間)のラインを利用した汚泥及び処理水の返送量を制御してよい。 Further, the dissolved oxygen concentration detector (DO meter) and the redox potential detector (ORP meter) are attached to the pre-stage treatment tank 1 and the acid generation tank 2 (or the pre-stage treatment tank / acid generation tank 4) to provide oxygen. The amount of oxygen supplied from the supply unit 10 and / or the line between the pre-treatment tank 1, the acid generation tank 2 and the methane fermentation tank 3 (or between the pre-treatment tank / acid generation tank 4 and the methane fermentation tank 3) is used. The amount of sludge and treated water returned may be controlled.

また、メタン発酵槽3からの処理水の有機物濃度検出器(例えばCOD計)を取り付けて、汚泥及び処理水の返送量を制御してよい。 In addition, an organic matter concentration detector (for example, a COD meter) for the treated water from the methane fermenter 3 may be attached to control the amount of sludge and treated water returned.

さらに、メタン発酵部は、EGSB(Expanded Granular Sludge Bed)、UASB(Upflow AnaerobicSludge Blanket)、担体や膜分離を用いた嫌気性処理など形式を問わない。また、酸生成槽2を備えず、メタン発酵槽3のみで嫌気処理を行う構成としてもよい。 Further, the methane fermentation unit may be in any form such as EGSB (Expanded Granular Sludge Bed), UASB (Upflow Anaerobic Sludge Blanket), and anaerobic treatment using a carrier or membrane separation. Further, the anaerobic treatment may be performed only in the methane fermentation tank 3 without the acid generation tank 2.

また、上記実施形態では、限定的な酸素供給状態における嫌気処理を前段処理槽1で行い、通常の嫌気状態下での嫌気処理をメタン発酵槽3で行う構成について説明したが、限定的な酸素供給状態における嫌気処理及び嫌気状態下での嫌気処理を行うための槽を準備することに代えて、例えば、配管内で限定的な酸素供給状態における嫌気処理及び嫌気状態下での嫌気処理の少なくとも一方を行う構成としてもよい。また、限定的な酸素供給状態における嫌気処理を行う前段処理部と嫌気状態下での嫌気処理を行う嫌気処理部とを同一とすることもできる。この場合、例えば、酸素含有ガスの供給下で、溶存酸素量(DO)0mg/Lで酸化還元電位(ORP)0mV以下の状態のような、嫌気状態に近い状態を作ることで、限定的な酸素供給状態における嫌気処理と嫌気状態下での嫌気処理とを同時に行うことが可能となる。 Further, in the above embodiment, the configuration in which the anaerobic treatment under the limited oxygen supply state is performed in the pre-stage treatment tank 1 and the anaerobic treatment under the normal anaerobic state is performed in the methane fermentation tank 3 has been described. Instead of preparing a tank for anaerobic treatment in the supply state and anaerobic treatment in the anaerobic state, for example, at least the anaerobic treatment in the limited oxygen supply state in the pipe and the anaerobic treatment in the anaerobic state. One of them may be performed. Further, the pre-stage processing unit that performs anaerobic treatment in a limited oxygen supply state and the anaerobic treatment unit that performs anaerobic treatment under an anaerobic state can be the same. In this case, for example, by creating a state close to an anaerobic state such as a state in which the dissolved oxygen amount (DO) is 0 mg / L and the redox potential (ORP) is 0 mV or less under the supply of an oxygen-containing gas, it is limited. It is possible to simultaneously perform the anaerobic treatment in the oxygen supply state and the anaerobic treatment in the anaerobic state.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例に係る排水処理システム)
実施例として、図1に示す排水処理システム100を準備した。
(Wastewater treatment system according to the example)
As an example, the wastewater treatment system 100 shown in FIG. 1 was prepared.

(比較例に係る排水処理システム)
比較例として、図4に示すように前段での限定的な酸素供給状態における嫌気処理を行わない排水処理システム400を準備した。図4に示す排水処理システム400は、前段処理槽1を備えず、油脂含有排水を原水としてラインL1により、酸生成槽2に直接流入するシステムである。また、メタン発酵槽3からの汚泥及び処理水の一部を酸生成槽2に返送するラインL5は備えているが、当然ながら前段処理槽1に対して返送するラインL6は備えていない。
(Wastewater treatment system according to a comparative example)
As a comparative example, as shown in FIG. 4, a wastewater treatment system 400 that does not perform anaerobic treatment under the limited oxygen supply state in the previous stage was prepared. The wastewater treatment system 400 shown in FIG. 4 is a system that does not include the pre-stage treatment tank 1 and directly flows into the acid generation tank 2 by the line L1 using the oil-containing wastewater as raw water. Further, although the line L5 for returning the sludge from the methane fermentation tank 3 and a part of the treated water to the acid generation tank 2 is provided, it is not provided with the line L6 for returning the sludge and the treated water to the pre-stage treatment tank 1.

<油脂含有排水処理時の油脂分解量の評価>
処理対象液(油脂含有排水に対応する液体)として、牛乳の100倍希釈液を用いた。このとき、処理対象液のCOD濃度は2,000〜2,300mg/L、処理対象液における油脂濃度の指標であるN−ヘキサン抽出物濃度は200〜260mg/Lであった。
<Evaluation of the amount of fat decomposition during wastewater treatment containing fats and oils>
A 100-fold diluted solution of milk was used as the liquid to be treated (the liquid corresponding to the wastewater containing fats and oils). At this time, the COD concentration of the liquid to be treated was 2,000 to 2,300 mg / L, and the concentration of the N-hexane extract, which is an index of the oil and fat concentration in the liquid to be treated, was 200 to 260 mg / L.

実施例に係る排水処理システム100では、前段処理槽1において、ORPが−350〜−250mV程度になるように酸素供給部10による空気吹き込み量を調整した。このときの前段処理槽1のDOは、ほぼ0であった。また、前段処理槽1では苛性ソーダでpHを7に調整した。さらに、ラインL6を介して、メタン発酵槽3の処理水を原水に対して約10%植種液として前段処理槽1へ返送した。 In the wastewater treatment system 100 according to the embodiment, the amount of air blown by the oxygen supply unit 10 was adjusted so that the ORP was about −350 to −250 mV in the pre-stage treatment tank 1. The DO of the pre-stage treatment tank 1 at this time was almost 0. Further, in the pretreatment tank 1, the pH was adjusted to 7 with caustic soda. Further, the treated water of the methane fermentation tank 3 was returned to the pretreatment tank 1 as a seeding solution of about 10% with respect to the raw water via the line L6.

また、実施例に係る排水処理システム100及び比較例に係る排水処理システム400の双方において、酸生成槽2では苛性ソーダでpHを7に調整した。またメタン発酵槽3の処理水を原水に対して約40%植種液として酸生成槽2へ返送した。 Further, in both the wastewater treatment system 100 according to the example and the wastewater treatment system 400 according to the comparative example, the pH of the acid generation tank 2 was adjusted to 7 with caustic soda. Further, the treated water of the methane fermentation tank 3 was returned to the acid generation tank 2 as a seeding solution of about 40% of the raw water.

また、実施例に係る排水処理システム100及び比較例に係る排水処理システム400の双方において、メタン発酵槽3には有効容量1.5Lとなるようにグラニュールを充填した。 Further, in both the wastewater treatment system 100 according to the example and the wastewater treatment system 400 according to the comparative example, the methane fermentation tank 3 was filled with granules so as to have an effective capacity of 1.5 L.

上記の条件で、実施例に係る排水処理システム100及び比較例に係る排水処理システム400の双方を運転した結果を表1に示す。実施例1及び実施例2は、排水処理システム100において運転条件を変更した結果である。表1に示すように、実施例1は、空気供給量を抑えてORPを低めに設定した運転条件である。また、実施例2は、空気供給量を調整してORPを実施例1よりも50程度高めに設定した運転条件である。 Table 1 shows the results of operating both the wastewater treatment system 100 according to the example and the wastewater treatment system 400 according to the comparative example under the above conditions. The first and second embodiments are the results of changing the operating conditions in the wastewater treatment system 100. As shown in Table 1, the first embodiment is an operating condition in which the air supply amount is suppressed and the ORP is set low. Further, the second embodiment is an operating condition in which the air supply amount is adjusted and the ORP is set to be about 50 higher than that of the first embodiment.

また、比較例1は、排水処理システム400を運転した結果である。実施例1,2及び比較例1における各条件において、1か月程度の馴養運転期間後、2週間以上の運転を行い、処理状態が安定した時点で、各槽での油脂濃度を測定した。 Further, Comparative Example 1 is the result of operating the wastewater treatment system 400. Under each condition in Examples 1 and 2 and Comparative Example 1, the operation was carried out for 2 weeks or more after the acclimatization operation period of about 1 month, and when the treatment state became stable, the oil and fat concentration in each tank was measured.

表1の結果によれば、実施例1と比べて実施例2のほうが前段処理槽、酸生成槽及び処理水の油脂濃度が低下している。実施例2では、空気供給量を調整し、実施例1よりもORPが50程度高くなるように設定し、ORPの平均が−250mV程度の状態で運転を行った。その結果、実施例2では、油脂の分解が進んだものと考えられる。 According to the results in Table 1, the oil and fat concentrations of the pre-stage treatment tank, the acid generation tank and the treated water were lower in Example 2 than in Example 1. In Example 2, the air supply amount was adjusted, the ORP was set to be about 50 higher than that in Example 1, and the operation was performed in a state where the average ORP was about −250 mV. As a result, in Example 2, it is considered that the decomposition of fats and oils has progressed.

また、比較例1は、前段処理槽1における限定的な酸素供給状態における嫌気処理を行わない従来のシステムで試験を行った結果である。従来の排水処理システム400の酸生成槽2では油脂の分解速度が遅いことから、実施例1,2における前段処理槽1と酸生成槽2を合わせた容量よりも、酸生成槽2の容量が大きい条件で試験を行った。しかし、処理水の油脂濃度は59mg/Lと高い値であり、油脂の分解が他の条件よりも進まなかったことが確認された。 Further, Comparative Example 1 is the result of a test conducted in a conventional system in which the anaerobic treatment is not performed in the limited oxygen supply state in the pre-stage treatment tank 1. Since the decomposition rate of fats and oils is slow in the acid generation tank 2 of the conventional wastewater treatment system 400, the capacity of the acid generation tank 2 is larger than the combined capacity of the pre-stage treatment tank 1 and the acid generation tank 2 in Examples 1 and 2. The test was conducted under large conditions. However, the fat and oil concentration of the treated water was as high as 59 mg / L, and it was confirmed that the decomposition of the fat and oil did not proceed more than other conditions.

また、上記の実施例1,2及び比較例1の結果から求められた各槽での油脂分解量を表2に示す。また、各槽での油脂分解速度を表3に示す。油脂分解量は、メタン発酵槽3からの汚泥及び処理水の返送を考慮して計算したものである。また、油脂分解速度は、表2の油脂分解量を各槽の水槽容量で割った結果である。 Table 2 shows the amount of fats and oils decomposed in each tank obtained from the results of Examples 1 and 2 and Comparative Example 1 above. Table 3 shows the oil and fat decomposition rates in each tank. The amount of fats and oils decomposed was calculated in consideration of the return of sludge and treated water from the methane fermenter 3. The oil / fat decomposition rate is the result of dividing the oil / fat decomposition amount in Table 2 by the water tank capacity of each tank.

表3の結果によれば、実施例1,2と比較例1とを比較すると、前段処理槽1を設けた場合(実施例1,2)のほうが、油脂分解速度が高いことが確認された。さらに、油脂分解速度は実施例1よりも実施例2のほうが高かった。これは、ORPの違いに由来するものと考えられる。 According to the results in Table 3, comparing Examples 1 and 2 with Comparative Example 1, it was confirmed that the oil / fat decomposition rate was higher when the pre-stage treatment tank 1 was provided (Examples 1 and 2). .. Further, the oil / fat decomposition rate was higher in Example 2 than in Example 1. This is considered to be due to the difference in ORP.

<各槽における菌叢の分析>
実施例に係る排水処理システム100において上記実施例2の条件で運転した際の前段処理槽1及び酸生成槽2内の菌叢を分析した。その結果を図5(前段処理槽)及び図6(酸生成槽)に示す。また、比較例に係る排水処理システム400における酸生成槽2内の菌叢を分析した。その結果を図7に示す。なお、図5〜図7では、分析結果を円グラフとして示している。図5〜図7中の各数字は、菌叢中における各菌種の割合を百分率(%)で示したものである。
<Analysis of flora in each tank>
The bacterial flora in the pre-stage treatment tank 1 and the acid production tank 2 when operated under the conditions of the above-mentioned Example 2 in the wastewater treatment system 100 according to the example was analyzed. The results are shown in FIG. 5 (pre-treatment tank) and FIG. 6 (acid generation tank). In addition, the flora in the acid generation tank 2 in the wastewater treatment system 400 according to the comparative example was analyzed. The result is shown in FIG. In FIGS. 5 to 7, the analysis results are shown as a pie chart. Each number in FIGS. 5 to 7 shows the ratio of each bacterial species in the flora as a percentage (%).

図5及び図6に示した通り、実施例に係る排水処理システム100では、前段処理槽1及び酸生成槽2の双方において、Brachymonas、Cloacibacterium、Lactococcus、Acetobacter等通性嫌気性菌が優先化していた。一方、比較例に係る従来の排水処理システム400の酸生成槽2では、Clostridium、Blautia等の偏性嫌気性菌が優先化していた。このように実施例に係る排水処理システム100では、前段処理槽1において限定的な酸素供給状態における嫌気処理を行うことで、通性嫌気性菌が優位となり、油脂の分解性が高められると考えられる。 As shown in FIGS. 5 and 6, in the wastewater treatment system 100 according to the embodiment, facultative anaerobes such as Brachymonas, Cloacibacterium, Lactococcus, and Acetobacter are prioritized in both the pretreatment tank 1 and the acid generation tank 2. It was. On the other hand, in the acid generation tank 2 of the conventional wastewater treatment system 400 according to the comparative example, obligate anaerobic bacteria such as Clostridium and Blautia were prioritized. As described above, in the wastewater treatment system 100 according to the embodiment, it is considered that facultative anaerobic bacteria become dominant and the decomposability of fats and oils is enhanced by performing anaerobic treatment in the pre-stage treatment tank 1 in a limited oxygen supply state. Be done.

なお、排水処理システム100におけるメタン発酵槽3のグラニュールの菌叢についても確認を行ったが、Methanosaeta、Methanobacterium等のメタン菌に加えて、Thermobaculaceae、Syntrophaceae、Syntrophus、Treponemaなどの偏性嫌気性菌が検出された。なお、メタン発酵槽のグラニュール以外の液中に存在する菌叢は、前段の酸生成槽の菌叢とほぼ同等ではないかと考えられる。したがって、排水処理システム100におけるメタン発酵槽3内でも油脂の分解が進みやすい環境になっていると考えられる。 The flora of the granules in the methane fermentation tank 3 in the wastewater treatment system 100 was also confirmed. In addition to methane bacteria such as Methanosaeta and Methanosaeta, obligate anaerobic bacteria such as Thermobaculaceae, Syntrophaceae, Syntrophus and Treponema Was detected. It is considered that the flora existing in the liquid other than the granule of the methane fermentation tank is almost the same as the flora of the acid production tank in the previous stage. Therefore, it is considered that the environment is such that the decomposition of fats and oils easily proceeds even in the methane fermentation tank 3 in the wastewater treatment system 100.

1…前段処理槽、2…酸生成槽、3…メタン発酵槽、4…前段処理槽/酸生成槽、100,200,300…排水処理システム。 1 ... Pre-stage treatment tank, 2 ... Acid generation tank, 3 ... Methane fermentation tank, 4 ... Pre-stage treatment tank / acid generation tank, 100, 200, 300 ... Wastewater treatment system.

Claims (5)

油脂含有排水を限定的な酸素供給状態で嫌気処理する前段処理部と、
前記前段処理部での前段処理後の前記油脂含有排水を嫌気処理する嫌気処理部と、を備え、
前記前段処理部は、酸素含有ガスの供給下において、溶存酸素量が0mG/Lで酸化還元電位が0mV以下となるように制御する油脂含有排水処理システム。
A pre-stage treatment unit that anaerobicly treats oil-containing wastewater under a limited oxygen supply condition,
An anaerobic treatment unit that anaerobically treats the oil-containing wastewater after the pre-stage treatment in the pre-stage treatment unit is provided.
The first-stage treatment unit is a fat-containing wastewater treatment system that controls the dissolved oxygen amount to be 0 mG / L and the redox potential to be 0 mV or less under the supply of oxygen-containing gas.
油脂含有排水を限定的な酸素供給状態で嫌気処理する前段処理部と、
前記前段処理部での前段処理後の前記油脂含有排水を嫌気処理する嫌気処理部と、
前記嫌気処理部から前記前段処理部に対して、汚泥及び処理水の一部を返送する返送部と、を備え、
前記前段処理部は、酸素含有ガスの供給下において、溶存酸素量が0mG/Lで酸化還元電位が0mV以下である油脂含有排水処理システム。
A pre-stage treatment unit that anaerobicly treats oil-containing wastewater under a limited oxygen supply condition,
An anaerobic treatment unit that anaerobically treats the oil-containing wastewater after the pre-stage treatment in the pre-stage treatment unit.
A return unit for returning a part of sludge and treated water from the anaerobic treatment unit to the pre-treatment unit is provided.
The first-stage treatment unit is a fat-containing wastewater treatment system in which the amount of dissolved oxygen is 0 mG / L and the redox potential is 0 mV or less under the supply of oxygen-containing gas.
前記前段処理部と前記嫌気処理部とは独立している、又は、
前記嫌気処理部は、酸生成槽と、前記酸生成槽の後段に設けられたメタン発酵槽と、を含む請求項1又は2に記載の油脂含有排水処理システム。
The pre-stage processing unit and the anaerobic processing unit are independent or
The oil-and-fat-containing wastewater treatment system according to claim 1 or 2, wherein the anaerobic treatment unit includes an acid generation tank and a methane fermentation tank provided after the acid generation tank.
油脂含有排水を限定的な酸素供給状態で嫌気処理する前段処理工程と、
前記前段処理工程後の前記油脂含有排水を嫌気処理する嫌気処理工程と、を有し、
前記前段処理工程は、酸素含有ガスの供給下において、溶存酸素量が0mG/Lで酸化還元電位が0mV以下となるように制御された状態で行われる油脂含有排水処理方法。
A pre-treatment process that anaerobically treats oil-containing wastewater under a limited oxygen supply condition,
It has an anaerobic treatment step of anaerobically treating the oil-containing wastewater after the pretreatment step.
The pretreatment step is a fat-containing wastewater treatment method performed in a state where the amount of dissolved oxygen is 0 mG / L and the redox potential is controlled to be 0 mV or less under the supply of oxygen-containing gas.
油脂含有排水を限定的な酸素供給状態で嫌気処理する前段処理工程と、
前記前段処理工程での前段処理後の前記油脂含有排水を嫌気処理する嫌気処理工程と、
前記嫌気処理工程から前記前段処理工程に対して、汚泥及び処理水の一部を返送する返送工程と、を有し、
前記前段処理工程は、酸素含有ガスの供給下において、溶存酸素量が0mG/Lで酸化還元電位が0mV以下の状態で行われる油脂含有排水処理方法。
A pre-treatment process that anaerobically treats oil-containing wastewater under a limited oxygen supply condition,
An anaerobic treatment step of anaerobically treating the oil-containing wastewater after the pre-treatment in the pre-treatment step,
It has a return step of returning a part of sludge and treated water from the anaerobic treatment step to the pre-treatment step.
The first-stage treatment step is a fat-containing wastewater treatment method performed in a state where the amount of dissolved oxygen is 0 mG / L and the redox potential is 0 mV or less under the supply of oxygen-containing gas.
JP2016058642A 2016-03-23 2016-03-23 Oil-containing wastewater treatment system and oil-containing wastewater treatment method Active JP6837750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058642A JP6837750B2 (en) 2016-03-23 2016-03-23 Oil-containing wastewater treatment system and oil-containing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058642A JP6837750B2 (en) 2016-03-23 2016-03-23 Oil-containing wastewater treatment system and oil-containing wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2017170330A JP2017170330A (en) 2017-09-28
JP6837750B2 true JP6837750B2 (en) 2021-03-03

Family

ID=59969855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058642A Active JP6837750B2 (en) 2016-03-23 2016-03-23 Oil-containing wastewater treatment system and oil-containing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6837750B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358128A (en) * 2020-10-27 2021-02-12 河南诺水环保科技有限公司 Landfill leachate non-membrane treatment process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852896B2 (en) * 1999-03-24 2006-12-06 株式会社荏原製作所 Method and apparatus for anaerobic treatment of oil-containing wastewater
JP4864339B2 (en) * 2005-03-31 2012-02-01 住友重機械工業株式会社 Organic waste processing apparatus and processing method
IT1392177B1 (en) * 2008-12-09 2012-02-22 Massai Giordano S R L PLANT AND PROCESS FOR BIOGAS PRODUCTION
JP2014180629A (en) * 2013-03-19 2014-09-29 Kubota Corp Water treatment method and system
JP6052893B2 (en) * 2013-09-10 2016-12-27 住友重機械エンバイロメント株式会社 Anaerobic treatment facility and anaerobic treatment method
JP6216253B2 (en) * 2014-01-14 2017-10-18 水ing株式会社 Method and apparatus for treating oil-containing wastewater
JP2015208693A (en) * 2014-04-24 2015-11-24 水ing株式会社 Method and apparatus for wastewater treatment
WO2016103949A1 (en) * 2014-12-25 2016-06-30 水ing株式会社 Treatment method and treatment device for fat and/or oil-containing waste water

Also Published As

Publication number Publication date
JP2017170330A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
Tang et al. Performance and mechanism of a novel algal-bacterial symbiosis system based on sequencing batch suspended biofilm reactor treating domestic wastewater
Silva et al. Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor
Carvalho et al. Achieving nitrogen and phosphorus removal at low C/N ratios without aeration through a novel phototrophic process
Gomes et al. Effect of enzymatic pretreatment and increasing the organic loading rate of lipid-rich wastewater treated in a hybrid UASB reactor
JP4990255B2 (en) Algae culture apparatus and algae culture method
US11046604B2 (en) Process for the treatment of wastewater containing organic material and ammonia
Yu et al. Enhanced microalgal growth and effluent quality in tertiary treatment of livestock wastewater using a sequencing batch reactor
Xu et al. Long-term continuous extraction of medium-chain carboxylates by pertraction with submerged hollow-fiber membranes
JP2010012446A (en) Fat and oil containing waste water treatment apparatus
JP6837750B2 (en) Oil-containing wastewater treatment system and oil-containing wastewater treatment method
JP2014024001A (en) Method and apparatus for treating nitrogen in methane fermentation digested liquid
WO2016103949A1 (en) Treatment method and treatment device for fat and/or oil-containing waste water
Agabo-García et al. Anaerobic sequential batch reactor for CO-DIGESTION of slaughterhouse residues: Wastewater and activated sludge
JP2016036760A (en) Method and apparatus for treating glycerin-containing liquid waste
JP6689627B2 (en) Anaerobic wastewater treatment equipment
JP7284598B2 (en) Anaerobic treatment system and control method for anaerobic treatment system
CN205061679U (en) Sewage treatment system of gasification dephosphorization
CN105776744A (en) Biological treatment method for ship building and repairing integrated wastewater
US10400255B2 (en) Method of converting marine fish waste to biomethane
JP2012035146A (en) Water treatment method
Zhou et al. Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review
CN110835159B (en) Device and method for improving anaerobic fermentation efficiency and synchronous in-situ desulfurization
UQA et al. Kinetic Study for Ultrasonic assisted Membrane Anaerobic System (UMAS) Treating Decanter Palm Oil Mill Effluent (POME)
JP2007319841A (en) Hydrogen fermentation apparatus, waste water treatment apparatus, and hydrogen fermentation method
JP6157860B2 (en) Biological treatment method of wastewater containing high concentration oil

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191224

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200207

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200218

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201020

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210112

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6837750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350