JP6836714B2 - Manufacturing method of metal / resin composite material - Google Patents

Manufacturing method of metal / resin composite material Download PDF

Info

Publication number
JP6836714B2
JP6836714B2 JP2017028603A JP2017028603A JP6836714B2 JP 6836714 B2 JP6836714 B2 JP 6836714B2 JP 2017028603 A JP2017028603 A JP 2017028603A JP 2017028603 A JP2017028603 A JP 2017028603A JP 6836714 B2 JP6836714 B2 JP 6836714B2
Authority
JP
Japan
Prior art keywords
metal
intermediate layer
thickness
composite material
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017028603A
Other languages
Japanese (ja)
Other versions
JP2018134739A (en
Inventor
英之 佐川
英之 佐川
遠藤 裕寿
裕寿 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017028603A priority Critical patent/JP6836714B2/en
Publication of JP2018134739A publication Critical patent/JP2018134739A/en
Application granted granted Critical
Publication of JP6836714B2 publication Critical patent/JP6836714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、高周波伝送用ケーブル、アンテナ、高周波回路基板、または可とう楕円導波管などの電気部品、フッ素樹脂コーティングを有するガイドワイヤなどの医療機器、あるいはフッ素樹脂コーティングを有するフライパンなどの加熱調理器具などに用いられる金属・樹脂複合材の製造方法に関する。 The present invention relates to, for example, high-frequency transmission cables, antennas, high-frequency circuit boards, or electrical components such as flexible elliptical waveguides, medical devices such as guide wires having a fluororesin coating, or frying pans having a fluororesin coating. The present invention relates to a method for producing a metal / resin composite material used for a heating cooker or the like.

フッ素系樹脂は、耐熱性、耐薬品性、電気的特性などの様々な特性に優れた高分子材料として知られている。このフッ素系樹脂と金属部品を一体化することで、フッ素系樹脂の特性と、金属部品の持つ優れた加工性や導電性、強度を合わせ持つ高機能材料が期待され、これまでにもいくつかの形態が提案されている。(特許文献1、2参照) Fluorine-based resins are known as polymer materials having various properties such as heat resistance, chemical resistance, and electrical properties. By integrating this fluorinated resin and metal parts, high-performance materials that combine the characteristics of fluorinated resins with the excellent workability, conductivity, and strength of metal parts are expected, and some have been released so far. The form of is proposed. (See Patent Documents 1 and 2)

しかしながら、フッ素系樹脂は、異種材料との密着性が低いので、特に金属部品との密着性を向上させる方法がこれまでに数多く検討されてきた。 However, since the fluororesin has low adhesion to different materials, many methods for improving the adhesion to metal parts have been studied so far.

特許文献1には、フッ素系樹脂表面にサンドブラストやウェットブラストと呼ばれる粗面化処理を行い、アンカー効果を利用して、フッ素系樹脂と金属部品との密着性を高める方法が提案されている。 Patent Document 1 proposes a method of roughening the surface of a fluororesin surface by sandblasting or wet blasting to improve the adhesion between the fluororesin and a metal part by utilizing the anchor effect.

特許文献2には、薬液を用いたエッチング処理などにより、フッ素系樹脂表面または金属表面の粗面化を行い、アンカー効果を利用して、フッ素系樹脂と金属部品との密着性を高める方法が提案されている。 Patent Document 2 describes a method in which the surface of a fluororesin or a metal surface is roughened by an etching treatment using a chemical solution, and the adhesion between the fluororesin and a metal part is improved by utilizing the anchor effect. Proposed.

特開平11−61054号公報Japanese Unexamined Patent Publication No. 11-61054 特開2013−52671号公報Japanese Unexamined Patent Publication No. 2013-52671

しかしながら、サンドブラストやウェットブラストによる粗面化処理では、主にアルミナなどを成分とする硬質微粒子の研磨剤を使用するが、高速・高圧でふきつけられた研磨剤の一部が、軟質のフッ素系樹脂に埋没・残存し、金属部品/フッ素系樹脂界面の密着性を低下させる恐れがある。 However, in the roughening treatment by sandblasting or wet blasting, a polishing agent of hard fine particles mainly composed of alumina or the like is used, but a part of the polishing agent wiped at high speed and high pressure is a soft fluororesin. There is a risk that it will be buried or remain in the metal parts and the adhesion of the metal part / fluororesin interface will be reduced.

また、表面に粗面(凹凸面)が形成された金属部品は、例えば、表皮効果により導体表層に多くの電流が流れる高速伝送用途の部材として使用されると、この粗面が伝送特性の低下を引き起こす恐れがある。また、樹脂表面に凹凸面を形成した場合であっても、金属(導体)と貼り合わせた際にこの凹凸面が金属表面に転写されてしまうため、高速伝送用途の部材として使用すると、転写された粗面が伝送特性の低下を引き起こす恐れがある。 Further, when a metal part having a rough surface (uneven surface) formed on the surface is used as a member for high-speed transmission in which a large amount of current flows through the surface layer of a conductor due to the skin effect, the rough surface deteriorates transmission characteristics. May cause. Further, even when an uneven surface is formed on the resin surface, the uneven surface is transferred to the metal surface when bonded to a metal (conductor), so that the uneven surface is transferred when used as a member for high-speed transmission. The rough surface may cause deterioration of transmission characteristics.

その他、ブラスト法は、装置が大掛かりで高コストの製品となる。また、ブラスト法は物理的な加工であるため、大面積の表面を均一に粗面化したり、立体形状の部材を粗面化することが難しい。 In addition, the blast method is a large-scale device and a high-cost product. Further, since the blast method is a physical process, it is difficult to uniformly roughen the surface of a large area or roughen a three-dimensional member.

別の手段として、薬液による化学エッチング処理法を選択した場合、フッ素系樹脂は、耐薬品性に優れる性質であるため、一般の薬品処理では容易に粗面化が出来ず、例えば、金属ナトリウム溶液を用いた特殊な方法を用いることが考えられる。 When a chemical etching treatment method using a chemical solution is selected as another means, the fluororesin has excellent chemical resistance and cannot be easily roughened by general chemical treatment. For example, a metallic sodium solution. It is conceivable to use a special method using.

薬液処理により形成された凹凸面は、フッ素系樹脂表面側だけでなく金属部材表面側に形成されていたとしても、上述のブラスト法と同様、高速伝送用途の場合、伝送特性の低下を引き起こす恐れがある。 Even if the uneven surface formed by the chemical treatment is formed not only on the surface side of the fluororesin but also on the surface side of the metal member, it may cause deterioration of transmission characteristics in the case of high-speed transmission application as in the above-mentioned blast method. There is.

そこで、本発明は、金属基材表面に凹凸を形成することなく、金属基材上に密着性に優れたフッ素系樹脂基材を有する金属・樹脂複合材料を提供することを目的とする。 Therefore, an object of the present invention is to provide a metal / resin composite material having a fluorine-based resin base material having excellent adhesion on the metal base material without forming irregularities on the surface of the metal base material.

本発明は、上記目的を達成するために、下記[1]〜[4]の金属・樹脂複合材料を提供する。 The present invention provides the following metal / resin composite materials [1] to [4] in order to achieve the above object.

[1]金属部材と、フッ素系樹脂基材との間に、亜鉛もしくは亜鉛を含む合金からなる中間層を備えた金属・樹脂複合材料。 [1] A metal / resin composite material provided with an intermediate layer made of zinc or an alloy containing zinc between a metal member and a fluororesin base material.

[2]前記中間層と、前記フッ素系樹脂基材の界面に、亜鉛とフッ素からなる化合物が形成されている、[1]に記載の金属・樹脂複合材料。 [2] The metal / resin composite material according to [1], wherein a compound composed of zinc and fluorine is formed at the interface between the intermediate layer and the fluorine-based resin base material.

[3]前記金属部材が銅もしくは銅合金である、[1]または[2]に記載の金属・樹脂複合材料。 [3] The metal / resin composite material according to [1] or [2], wherein the metal member is copper or a copper alloy.

[4]前記中間層の厚さが3nm以上である、[1]乃至[3]に記載の金属・樹脂複合材料。 [4] The metal / resin composite material according to [1] to [3], wherein the thickness of the intermediate layer is 3 nm or more.

本発明によれば、金属基材表面に凹凸を形成することなく、金属基材上に密着性に優れたフッ素系樹脂基材を有する金属・樹脂複合材料を提供することができる。 According to the present invention, it is possible to provide a metal / resin composite material having a fluorine-based resin base material having excellent adhesion on the metal base material without forming irregularities on the surface of the metal base material.

本発明の第1の実施形態に係る金属・樹脂複合材料の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the metal-resin composite material which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る金属・樹脂複合材料の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the metal-resin composite material which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る金属・樹脂複合材料の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the metal-resin composite material which concerns on 3rd Embodiment of this invention. 本発明の第4の実施形態に係る金属・樹脂複合材料の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the metal-resin composite material which concerns on 4th Embodiment of this invention. 本発明の第5の実施形態に係る金属・樹脂複合材料の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the metal-resin composite material which concerns on 5th Embodiment of this invention. 本発明の第9の実施例に係る金属・樹脂複合材料のオージェ分析結果を示すグラフである。It is a graph which shows the Auger analysis result of the metal-resin composite material which concerns on the 9th Example of this invention. 線材密着性評価試験の概念図である。It is a conceptual diagram of a wire rod adhesion evaluation test.

(第1の実施の形態)
以下、本発明の第1の実施の形態を、図1を参照して説明する。なお、以下に示す実施の形態は、本発明を実施する上での好適な具体例として示すものであり、技術的に好ましい種々の技術的事項を具体的に例示している部分もあるが、本発明の技術的範囲は、この具体的態様に限定されるものではない。
(First Embodiment)
Hereinafter, the first embodiment of the present invention will be described with reference to FIG. The embodiments shown below are shown as suitable specific examples for carrying out the present invention, and there are some parts that specifically exemplify various technically preferable technical matters. The technical scope of the present invention is not limited to this specific aspect.

図1は、本発明の第1の実施の形態に係る金属・樹脂複合材料1の断面構造を示す模式図である。図1に示すように、この金属・樹脂複合材料1は、金属部材4とフッ素系樹脂基材2との間に、亜鉛もしくは亜鉛を含む合金からなる中間層3を備えた構造をしている。 FIG. 1 is a schematic view showing a cross-sectional structure of the metal / resin composite material 1 according to the first embodiment of the present invention. As shown in FIG. 1, the metal / resin composite material 1 has a structure in which an intermediate layer 3 made of zinc or an alloy containing zinc is provided between the metal member 4 and the fluororesin base material 2. ..

(フッ素系樹脂基材)
フッ素系樹脂とは、分子中にフッ素原子を有する高分子化合物で、ポリフッ化ビニル(PVF)樹脂、エチレン・テトラフルオロエチレン共重合体(ETFE)樹脂、4フッ化エチレン・パーフルオロアルコキシエチレン共重合体(PFA)樹脂、4フッ化エチレン・6フッ化プロピレン共重合体(FEP)樹脂、ポリフッ化ビニリデン(PVDF)樹脂等が知られている。これらのフッ素系樹脂またはこれらを架橋してなるフッ素系樹脂をフッ素系樹脂基材2として用いることができる。
(Fluorine-based resin base material)
A fluororesin is a polymer compound having a fluorine atom in its molecule, and is a polyvinylidene fluoride (PVF) resin, an ethylene / tetrafluoroethylene copolymer (ETFE) resin, or a tetrafluoride ethylene / perfluoroalkoxyethylene coweight. Combined (PFA) resins, ethylene tetrafluoride / propylene hexafluoride copolymer (FEP) resins, polyvinylidene fluoride (PVDF) resins and the like are known. These fluorine-based resins or a fluorine-based resin obtained by cross-linking these can be used as the fluorine-based resin base material 2.

(金属部材)
フッ素系樹脂基材2と一体化させる金属部材4の一例は銅であるが、銅は、例えば、無酸素銅、タフピッチ銅、そして必ずしも純銅である必要はなく、銅合金を使用することも可能であり、例えば、3〜15mass ppmの硫黄(S)と2〜30mass ppmの酸素(O)とチタン(Ti)を5〜55mass ppm含む希薄銅合金などを使用することができる。
(Metal member)
An example of the metal member 4 to be integrated with the fluororesin base material 2 is copper, but the copper does not necessarily have to be oxygen-free copper, tough pitch copper, and pure copper, and a copper alloy can also be used. For example, a dilute copper alloy containing 3 to 15 mass ppm of sulfur (S), 2 to 30 mass ppm of oxygen (O) and titanium (Ti) at 5 to 55 mass ppm can be used.

金属部材4としては、銅に限らず、本発明の効果を奏する限りにおいては、アルミ、鉄、ステンレス、チタン、マグネシウム、及びそれらを主成分とする合金を使用することができる。 The metal member 4 is not limited to copper, and aluminum, iron, stainless steel, titanium, magnesium, and alloys containing them as main components can be used as long as the effects of the present invention are exhibited.

(中間層)
中間層3としては、純亜鉛のほか、Zn−Ni、Zn−Al、Zn−Cu、Zn−Snなどで構成されるZn系合金が挙げられる。
(Middle layer)
Examples of the intermediate layer 3 include pure zinc and a Zn-based alloy composed of Zn—Ni, Zn—Al, Zn—Cu, Zn—Sn and the like.

中間層3の厚さの上限値は、密着性の確保のためには特に限定されるものではなく、金属部材4の表面が被覆されていればよく、実用上の下限の被覆厚さは3nm程度である。ただし、高速伝送用途として用いる場合、金属部材4の表層に導電率の低いZn系の中間層が厚く存在すると伝送特性の低下につながるため、中間層3の厚さは、1μm以下が好ましく、より好ましくは0.8μm以下がよい。 The upper limit of the thickness of the intermediate layer 3 is not particularly limited in order to ensure the adhesion, and it is sufficient that the surface of the metal member 4 is coated, and the practical lower limit of the coating thickness is 3 nm. Degree. However, when used for high-speed transmission, if a Zn-based intermediate layer having low conductivity is thickly present on the surface layer of the metal member 4, transmission characteristics will be deteriorated. Therefore, the thickness of the intermediate layer 3 is preferably 1 μm or less, more preferably. It is preferably 0.8 μm or less.

(金属・樹脂複合材料の製造方法)
本発明の金属・樹脂複合材料1の製造は、例えば、まず金属部材4の表面に、めっき法、スパッタ法、真空蒸着法、またはクラッド法等で亜鉛もしくは亜鉛を含む合金からなる中間層3を形成する。次に、この中間層3が形成された金属部材4とフッ素系樹脂基材2とを一体化し、金属・樹脂複合材料1を製造する。
(Manufacturing method of metal / resin composite material)
In the production of the metal / resin composite material 1 of the present invention, for example, first, an intermediate layer 3 made of zinc or an alloy containing zinc is formed on the surface of the metal member 4 by a plating method, a sputtering method, a vacuum vapor deposition method, a clad method or the like. Form. Next, the metal member 4 on which the intermediate layer 3 is formed and the fluororesin base material 2 are integrated to manufacture the metal / resin composite material 1.

この一体化は、例えば、中間層3が形成された金属部材4及びフッ素系樹脂基材2がシート形状や板形状のものであれば、プレス等で可能である。密着力をより高めるためには、100℃〜350℃の高温プレスのほかに、100℃以下の低温プレス後に50℃〜350℃で等温保持するなどの方法が適用できる。 This integration can be performed by, for example, pressing if the metal member 4 on which the intermediate layer 3 is formed and the fluororesin base material 2 have a sheet shape or a plate shape. In order to further enhance the adhesion, a method such as maintaining an isothermal temperature at 50 ° C. to 350 ° C. after a low temperature press at 100 ° C. or lower can be applied in addition to a high temperature press at 100 ° C. to 350 ° C.

なお、金属部材4がシート(箔)形状の場合、フッ素系樹脂基材2と接する片側面のみに中間層3が形成されている構成のみに限られない。めっき法などにより中間層3を形成する場合、作業性の観点からシート(箔)の両面に中間層3が形成されていてもよい。 When the metal member 4 has a sheet (foil) shape, the structure is not limited to the configuration in which the intermediate layer 3 is formed only on one side surface in contact with the fluororesin base material 2. When the intermediate layer 3 is formed by a plating method or the like, the intermediate layer 3 may be formed on both sides of the sheet (foil) from the viewpoint of workability.

また、上記製造方法では、まず金属部材4の表面に中間層3を形成したが、フッ素系樹脂基材2の表面にスパッタ法やめっき法などで中間層3を形成しても同様な方法で金属・樹脂複合材料1を製造することもできる。中間層3が形成されたフッ素系樹脂基材2と金属部材4とは、例えばクラッド法等により一体化することができる。なお、シート形状のフッ素系樹脂基材2の表面にめっき法などにより中間層3を形成する場合、作業性の観点からシートの両面に中間層3が形成されていてもよい。 Further, in the above manufacturing method, the intermediate layer 3 is first formed on the surface of the metal member 4, but the same method can be used even if the intermediate layer 3 is formed on the surface of the fluororesin base material 2 by a sputtering method, a plating method, or the like. The metal / resin composite material 1 can also be manufactured. The fluororesin base material 2 on which the intermediate layer 3 is formed and the metal member 4 can be integrated by, for example, a clad method or the like. When the intermediate layer 3 is formed on the surface of the sheet-shaped fluororesin base material 2 by a plating method or the like, the intermediate layers 3 may be formed on both sides of the sheet from the viewpoint of workability.

(他の実施の形態)
次に、本発明の他の実施の形態について、図2乃至図5を参照して説明する。
図2は、本発明の第2の実施の形態に係る金属・樹脂複合材料1の断面構造を示す模式図である。図2に示すように、この金属・樹脂複合材料1は、例えば、熱を加えることにより、亜鉛もしくは亜鉛を含む合金からなる中間層3と、フッ素系樹脂基材2の界面に、亜鉛とフッ素からなる化合物5が形成されている。この亜鉛とフッ素からなる化合物5により、フッ素系樹脂基材2と金属部材4の密着性(接合強度)がより向上するものと本発明者らは考えている。
(Other embodiments)
Next, other embodiments of the present invention will be described with reference to FIGS. 2 to 5.
FIG. 2 is a schematic view showing a cross-sectional structure of the metal / resin composite material 1 according to the second embodiment of the present invention. As shown in FIG. 2, in this metal / resin composite material 1, for example, when heat is applied, zinc and fluorine are formed at the interface between the intermediate layer 3 made of zinc or an alloy containing zinc and the fluorine-based resin base material 2. A compound 5 composed of the above is formed. The present inventors believe that the compound 5 composed of zinc and fluorine further improves the adhesion (bonding strength) between the fluorine-based resin base material 2 and the metal member 4.

図3は本発明の第3の実施の形態に係る金属・樹脂複合材料1の断面構造を示す模式図であり、図4は本発明の第4の実施の形態に係る金属・樹脂複合材料1の断面構造を示す模式図である。図3、4に示すような線材の形状も可能である。また、線材の形状でなく、平角材の形状とすることも可能である。 FIG. 3 is a schematic view showing a cross-sectional structure of the metal / resin composite material 1 according to the third embodiment of the present invention, and FIG. 4 is a schematic view showing the cross-sectional structure of the metal / resin composite material 1 according to the fourth embodiment of the present invention. It is a schematic diagram which shows the cross-sectional structure of. The shape of the wire rod as shown in FIGS. 3 and 4 is also possible. It is also possible to use a flat lumber shape instead of a wire rod shape.

中間層3が形成された金属部材4が、線材や平角材の形状である場合、250℃〜350℃に加熱したフッ素系樹脂を長手方向に連続的に押出し成形することにより、中間層3を介して金属部材4とフッ素系樹脂基材2とを一体化させることも可能である。 When the metal member 4 on which the intermediate layer 3 is formed is in the shape of a wire rod or a flat lumber, the intermediate layer 3 is formed by continuously extruding a fluororesin heated to 250 ° C. to 350 ° C. in the longitudinal direction. It is also possible to integrate the metal member 4 and the fluororesin base material 2 through the metal member 4.

一般に、押出し成形の場合、生産性向上による低コスト化を図るため、製造速度の高速化が望まれる。しかし、製造速度を速めるため、押出し後のフッ素系樹脂の冷却速度を上げると、フッ素系樹脂の熱収縮時に発生する金属と樹脂界面の応力が大きくなり、金属と樹脂との間に空隙が生じてしまう。
これに対し、本発明の方法は、亜鉛もしくは亜鉛を含む合金からなる中間層3が存在することで、中間層3とフッ素系樹脂基材2間の密着力が高いため、空隙が生じることがなく、冷却速度を速めた、つまり、高速での押出し成形による製造が可能となる。
Generally, in the case of extrusion molding, it is desired to increase the production speed in order to reduce the cost by improving the productivity. However, if the cooling rate of the fluororesin after extrusion is increased in order to increase the production rate, the stress at the metal-resin interface generated during heat shrinkage of the fluororesin increases, and a gap is created between the metal and the resin. It ends up.
On the other hand, in the method of the present invention, since the intermediate layer 3 made of zinc or an alloy containing zinc is present, the adhesion between the intermediate layer 3 and the fluororesin base material 2 is high, so that voids may be generated. Instead, the cooling rate is increased, that is, the production by high-speed extrusion molding becomes possible.

図5は、本発明の第5の実施の形態に係る金属・樹脂複合材料1の断面構造を示す模式図である。図5に示すように、中間層3と金属部材4の間に、金属部材4を構成する元素と亜鉛からなる拡散層6が形成されていてもよい。また、中間層3として存在する亜鉛は、金属亜鉛に限らず、表面(フッ素系樹脂基材2に対向する面)側が一部酸化し、酸化亜鉛となっていてもかまわない。 FIG. 5 is a schematic view showing a cross-sectional structure of the metal / resin composite material 1 according to the fifth embodiment of the present invention. As shown in FIG. 5, a diffusion layer 6 made of the elements constituting the metal member 4 and zinc may be formed between the intermediate layer 3 and the metal member 4. Further, the zinc existing as the intermediate layer 3 is not limited to metallic zinc, and the surface (the surface facing the fluororesin base material 2) may be partially oxidized to become zinc oxide.

なお、図1、図2、図5に示す金属・樹脂複合材料1は、フッ素系樹脂基材2が金属部材4の片面だけに形成される構成としたが、フッ素系樹脂基材2が金属部材4を挟むように両面に形成される構成としてもよい。また、金属部材4がフッ素系樹脂基材2を挟むように両面に形成される構成としてもよい。 The metal / resin composite material 1 shown in FIGS. 1, 2 and 5 has a configuration in which the fluorine-based resin base material 2 is formed on only one side of the metal member 4, but the fluorine-based resin base material 2 is a metal. The structure may be formed on both sides so as to sandwich the member 4. Further, the metal member 4 may be formed on both sides so as to sandwich the fluororesin base material 2.

以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれらの実施例にのみ制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1〜7、比較例1〜5及び従来例1の評価試料の構成を表1に示す。また、後述する評価項目についての評価結果も表1に示す。 Table 1 shows the configurations of the evaluation samples of Examples 1 to 7, Comparative Examples 1 to 5, and Conventional Example 1. Table 1 also shows the evaluation results for the evaluation items described later.

Figure 0006836714
Figure 0006836714

以下に、実施例1〜7、比較例1〜5及び従来例1の詳細を示す。 Details of Examples 1 to 7, Comparative Examples 1 to 5 and Conventional Example 1 are shown below.

(実施例1)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気亜鉛めっきにより厚さ0.003μmのZnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Example 1)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Zn having a thickness of 0.003 μm was formed only on one side surface without the seal by electrogalvanization. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(実施例2)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気亜鉛めっきにより厚さ0.01μmのZnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Example 2)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Zn having a thickness of 0.01 μm was formed only on one side surface without the seal by electrogalvanization. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(実施例3)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気亜鉛めっきにより厚さ0.1μmのZnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Example 3)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Zn having a thickness of 0.1 μm was formed only on one side surface without the seal by electrogalvanization. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(実施例4)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気亜鉛めっきにより厚さ0.5μmのZnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Example 4)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Zn having a thickness of 0.5 μm was formed only on one side surface without the seal by electrogalvanization. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(実施例5)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気亜鉛めっきにより厚さ0.8μmのZnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Example 5)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Zn having a thickness of 0.8 μm was formed only on one side surface without the seal by electrogalvanization. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(実施例6)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気亜鉛めっきにより厚さ1.0μmのZnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Example 6)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Zn having a thickness of 1.0 μm was formed only on one side surface without the seal by electrogalvanization. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

なお、実施例1〜6において、Zn厚さの制御は、めっきの電流密度を一定にし、めっき時間を変えることで行った。 In Examples 1 to 6, the Zn thickness was controlled by keeping the plating current density constant and changing the plating time.

(実施例7)
厚さ0.07mmtの電解銅箔の片側面上にのみ電気めっき法により厚さ0.5μmのZn−5mass%Niからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Example 7)
An intermediate layer made of Zn-5 mass% Ni having a thickness of 0.5 μm was formed only on one side surface of an electrolytic copper foil having a thickness of 0.07 mmt by an electroplating method. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(比較例1)
厚さ0.07mmtの電解銅箔の表面を有機溶剤による脱脂洗浄のみ行い、その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、脱脂洗浄面を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Comparative Example 1)
The surface of the electrolytic copper foil with a thickness of 0.07 mmt is only degreased and washed with an organic solvent, and then the electrolytic copper foil is laminated through the degreased and cleaned surface by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) are applied. And the FEP sheet (thickness 0.5 mmt) were integrated to prepare a sample.

(比較例2)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気錫めっきにより厚さ0.3μmのSnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Comparative Example 2)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Sn having a thickness of 0.3 μm was formed only on one side surface without the seal by electrotin plating. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(比較例3)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみ電気錫めっきにより厚さ1.0μmのSnからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Comparative Example 3)
One side surface of the electrolytic copper foil having a thickness of 0.07 mmt was sealed so as not to adhere to the plating, and then an intermediate layer made of Sn having a thickness of 1.0 μm was formed only on one side surface without the seal by electrotin plating. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(比較例4)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみシアン浴を用いた電気Agめっきにより厚さ0.3μmのAgからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Comparative Example 4)
One side of an electrolytic copper foil with a thickness of 0.07 mmt is sealed so that plating does not adhere, and then only on one side without a seal is electro-Ag plated with a cyanide bath to form an intermediate made of Ag with a thickness of 0.3 μm. A layer was formed. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(比較例5)
厚さ0.07mmtの電解銅箔の片側面をめっきが付着しないようシールした上で、シールがない片側面上にのみシアン浴を用いた電気Agめっきにより厚さ1.0μmのAgからなる中間層を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、中間層を介して電解銅箔とFEPシート(厚さ0.5mmt)の一体化を行い、試料を作製した。
(Comparative Example 5)
One side of an electrolytic copper foil with a thickness of 0.07 mmt is sealed so that plating does not adhere, and then only on one side without a seal is electro-Ag plated with a cyanide bath to form an intermediate of 1.0 μm thick Ag. A layer was formed. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, the electrolytic copper foil and the FEP sheet (thickness 0.5 mmt) were integrated via an intermediate layer to prepare a sample.

(従来例1)
平均粒径10μmのアルミナ研磨剤を高速で吹き付けるブラスト法により、厚さ0.5mmtのFEPシートの表面に凹凸を形成した。その後、熱(300℃)と圧力(2MPa)を加えた圧延ロールによるラミネートにより、この凹凸形成面を介してFEPシート(厚さ0.5mmt)と、有機溶剤による脱脂洗浄のみ行った銅箔との一体化を行い、試料を作製した。
(Conventional example 1)
Unevenness was formed on the surface of a FEP sheet having a thickness of 0.5 mmt by a blasting method in which an alumina abrasive having an average particle size of 10 μm was sprayed at high speed. Then, by laminating with a rolling roll to which heat (300 ° C.) and pressure (2 MPa) were applied, a FEP sheet (thickness 0.5 mmt) and a copper foil that had only been degreased and washed with an organic solvent were formed through the uneven forming surface. Was integrated to prepare a sample.

(密着性評価試験)
表1に示す金属と樹脂の密着性評価は、JIS C6481に準拠し、オートグラフ(島津製作所)による引張試験で行った。引き剥がし強さが、0.5 kN/m以上を◎とし、0.2kN/m以上0.5 kN/m未満を〇、0.2 kN/m未満を×とした。
(Adhesion evaluation test)
The adhesion evaluation between the metal and the resin shown in Table 1 was carried out by a tensile test by Autograph (Shimadzu Corporation) in accordance with JIS C6481. When the peeling strength was 0.5 kN / m or more, it was evaluated as ⊚, when it was 0.2 kN / m or more and less than 0.5 kN / m, it was evaluated as ◯, and when it was less than 0.2 kN / m, it was evaluated as x.

(伝送特性評価試験)
伝送特性の評価は、ネットワークアナライザーを用い、周波数10GHzに相当する伝送損失を測定した。伝送損失が20dB/m未満を○、20dB/m以上〜25dB/m未満を△、25dB/m以上を×とした。
(Transmission characteristic evaluation test)
For the evaluation of the transmission characteristics, a network analyzer was used to measure the transmission loss corresponding to the frequency of 10 GHz. The transmission loss of less than 20 dB / m was evaluated as ◯, the transmission loss of 20 dB / m or more and less than 25 dB / m was evaluated as Δ, and the transmission loss of 25 dB / m or more was evaluated as ×.

(耐環境性評価)
耐環境性は、試料作製の際の薬品や部材の、人体や環境へ与える毒性、取扱い性のほか、それらを保管や排出された際の環境への影響度合いを評価した。
(Environmental resistance evaluation)
The environmental resistance was evaluated by evaluating the toxicity and handleability of chemicals and materials used in sample preparation to the human body and the environment, as well as the degree of environmental impact when they were stored and discharged.

(総合評価)
上記項目を総合的に評価して、1項目でも×があるものを×不適、全項目が○であるものを○良好、それ以上のものを◎最良と判断した。
(Comprehensive evaluation)
The above items were comprehensively evaluated, and those with x in even one item were judged to be x unsuitable, those with all items being ○ were judged to be good, and those with more than that were judged to be ◎ best.

表1によれば、銅箔とFEPシート間に厚さを0.003μm〜1.0μmに変化させたZnからなる中間層を備えた実施例1〜6の金属/樹脂密着性は良好であった。特にその中でも、Zn厚さが0.01μm〜0.5μmの場合、特に優れた密着性を示し好ましい。 According to Table 1, the metal / resin adhesion of Examples 1 to 6 provided with an intermediate layer made of Zn whose thickness was changed from 0.003 μm to 1.0 μm between the copper foil and the FEP sheet was good. It was. Among them, when the Zn thickness is 0.01 μm to 0.5 μm, particularly excellent adhesion is exhibited, which is preferable.

一方、中間層を備えない比較例1、Snからなる中間層を備えた比較例2,3、Agからなる中間層を備えた比較例4,5は、密着性に劣る結果となった。ブラストで形成した凹凸によるアンカー効果で密着性向上を図った従来例1では良好な結果が得られた。 On the other hand, Comparative Examples 1 having no intermediate layer, Comparative Examples 2 and 3 having an intermediate layer made of Sn, and Comparative Examples 4 and 5 having an intermediate layer made of Ag had poor adhesion. Good results were obtained in Conventional Example 1, in which the adhesion was improved by the anchor effect due to the unevenness formed by blasting.

伝送特性に関し、実施例1〜5、比較例1,2及び4,5は、良好な結果が得られた。これに対し、実施例6及び比較例3は、伝送損失がやや大きめの結果となった。これは、素材物性として高抵抗のZnやSnが他条件の試料と比較して厚く存在するため、表皮効果により損失増加に影響があったためと考えられる。この結果から、金属/樹脂密着性の観点からは、Zn厚さは実用上の3nm程度から上限なく有効だが、高速伝送特性用途で使用する場合のZn厚さは、1.0μm以下であることがより好ましい。 Regarding the transmission characteristics, good results were obtained in Examples 1 to 5, Comparative Examples 1, 2 and 4, 5. On the other hand, in Example 6 and Comparative Example 3, the transmission loss was slightly larger. It is considered that this is because high-resistance Zn and Sn are present thicker than the samples under other conditions as the physical characteristics of the material, and thus the increase in loss is affected by the skin effect. From this result, from the viewpoint of metal / resin adhesion, the Zn thickness is practically effective from about 3 nm without an upper limit, but the Zn thickness when used for high-speed transmission characteristic applications is 1.0 μm or less. Is more preferable.

従来例1は伝送損失が高い結果となった。これは、金属/樹脂密着力の向上のため形成した樹脂表面の凹凸が金属表面に転写され、金属表面にも凹凸が形成されたことが原因と考えられる。 Conventional example 1 has a high transmission loss. It is considered that this is because the unevenness of the resin surface formed for improving the metal / resin adhesion is transferred to the metal surface, and the unevenness is also formed on the metal surface.

耐環境性について、実施例1〜6、比較例1〜3で問題ないと判断できる。Agからなる中間層を備えた比較例4,5は、作業環境や排水処理の整った場所での使用を前提としても、毒性の高いシアン浴を使用するため、環境への影響は高いので△とした。従来例1は、材質としては毒性の低いアルミナを使用しているものの、数十μmオーダの微粒粉であるため、じん肺等への影響を考え△とした。 Regarding the environmental resistance, it can be judged that there is no problem in Examples 1 to 6 and Comparative Examples 1 to 3. Comparative Examples 4 and 5 provided with an intermediate layer made of Ag use a highly toxic cyan bath even if they are used in a work environment or a place where wastewater treatment is well-prepared, and therefore have a high impact on the environment. And said. Conventional Example 1 uses alumina, which has low toxicity, as a material, but since it is a fine powder on the order of several tens of μm, it is set as Δ in consideration of the influence on pneumoconiosis and the like.

実施例1〜6に記載の複合材は、材料として安価なZnを使用しているため、比較例4,5に示すAgめっき等と比較して経済性に優れることは言うまでもない。 It goes without saying that the composite materials according to Examples 1 to 6 are economical as compared with Ag plating and the like shown in Comparative Examples 4 and 5 because inexpensive Zn is used as the material.

実施例7は、純ZnでなくZn−Ni合金の結果であるが、Zn系合金を使用した場合でも、純Znと同様の結果が得られることを確認した。 Example 7 is the result of a Zn—Ni alloy instead of pure Zn, but it was confirmed that the same result as that of pure Zn can be obtained even when a Zn-based alloy is used.

これらの結果から総合的に判断すると、金属部材とフッ素系樹脂基材の密着性が高く、更に、高速伝送用途での特性が良好な金属・樹脂複合材料として、実施例1〜7に示す複合材が提案できる。 Comprehensively judging from these results, as a metal-resin composite material having high adhesion between the metal member and the fluororesin base material and having good characteristics in high-speed transmission applications, the composites shown in Examples 1 to 7 are used. Materials can be proposed.

実施例8〜10及び比較例6,7の評価試料の構成を表2に示す。また、後述する評価項目についての評価結果も表2に示す。 Table 2 shows the configurations of the evaluation samples of Examples 8 to 10 and Comparative Examples 6 and 7. Table 2 also shows the evaluation results for the evaluation items described later.

Figure 0006836714
Figure 0006836714

以下に、実施例8〜10及び比較例6,7の詳細を示す。 Details of Examples 8 to 10 and Comparative Examples 6 and 7 are shown below.

(実施例8)
線径Φ0.25mmの純銅線に電気亜鉛めっきにより、厚さ0.008μmのZnからなる中間層を形成した。この中間層が形成された純銅線にFEPを押出し成形し一体化することにより、線材状の試料を作製した。押出し成形では、340℃にて純銅線に連続的に樹脂(厚さ0.5mmt)を被覆し、水冷による冷却を行った。
(Example 8)
An intermediate layer made of Zn having a thickness of 0.008 μm was formed by electrogalvanizing a pure copper wire having a wire diameter of Φ0.25 mm. A wire rod-shaped sample was prepared by extruding and molding FEP on the pure copper wire on which this intermediate layer was formed and integrating it. In the extrusion molding, the pure copper wire was continuously coated with a resin (thickness 0.5 mmt) at 340 ° C. and cooled by water cooling.

(実施例9)
線径Φ0.25mmの純銅線に電気亜鉛めっきにより、厚さ0.03μmのZnからなる中間層を形成した。この中間層が形成された純銅線にFEPを押出し成形し一体化することにより、試料を作製した。押出し成形では、340℃にて純銅線に連続的に樹脂(厚さ0.5mmt)を被覆し、水冷による冷却を行った。
(Example 9)
An intermediate layer made of Zn having a thickness of 0.03 μm was formed by electrogalvanizing a pure copper wire having a wire diameter of Φ0.25 mm. A sample was prepared by extruding and molding FEP on the pure copper wire on which this intermediate layer was formed and integrating it. In the extrusion molding, the pure copper wire was continuously coated with a resin (thickness 0.5 mmt) at 340 ° C. and cooled by water cooling.

(実施例10)
線径Φ0.25mmの純銅線に電気亜鉛めっきにより、厚さ0.3μmのZnからなる中間層を形成した。この中間層が形成された純銅線にFEPを押出し成形し一体化することにより、試料を作製した。押出し成形では、340℃にて純銅線に連続的に樹脂(厚さ0.5mmt)を被覆し、水冷による冷却を行った。
(Example 10)
An intermediate layer made of Zn having a thickness of 0.3 μm was formed by electrogalvanizing a pure copper wire having a wire diameter of Φ0.25 mm. A sample was prepared by extruding and molding FEP on the pure copper wire on which this intermediate layer was formed and integrating it. In the extrusion molding, the pure copper wire was continuously coated with a resin (thickness 0.5 mmt) at 340 ° C. and cooled by water cooling.

なお、実施例8〜10において、Zn厚さの制御は、めっきの電流密度を一定にし、めっき時間を変えることで行った。 In Examples 8 to 10, the Zn thickness was controlled by keeping the plating current density constant and changing the plating time.

(比較例6)
線径Φ0.25mmの純銅線の表面を有機溶剤による脱脂洗浄のみ行い、その後、FEPを押出し成形し一体化することにより、試料を作製した。押出し成形では、340℃にて純銅線に連続的に樹脂(厚さ0.5mmt)を被覆し、水冷による冷却を行った。
(Comparative Example 6)
A sample was prepared by only degreasing and cleaning the surface of a pure copper wire having a wire diameter of Φ0.25 mm with an organic solvent, and then extruding and integrating the FEP. In the extrusion molding, the pure copper wire was continuously coated with a resin (thickness 0.5 mmt) at 340 ° C. and cooled by water cooling.

(比較例7)
線径Φ0.25mmの純銅線にシアン浴を用いた電気Agめっきにより厚さ1.0μmのAgからなる中間層を形成した。この中間層が形成された純銅線にFEPを押出し成形し一体化することにより、試料を作製した。押出し成形では、340℃にて純銅線に連続的に樹脂(厚さ0.5mmt)を被覆し、水冷による冷却を行った。
(Comparative Example 7)
An intermediate layer made of Ag having a thickness of 1.0 μm was formed by electro-Ag plating using a cyan bath on a pure copper wire having a wire diameter of Φ0.25 mm. A sample was prepared by extruding and molding FEP on the pure copper wire on which this intermediate layer was formed and integrating it. In the extrusion molding, the pure copper wire was continuously coated with a resin (thickness 0.5 mmt) at 340 ° C. and cooled by water cooling.

(線材密着性評価試験)
表2に示す金属と樹脂の密着性評価では、図7に示すように、試料の下端に20g重の錘7をぶら下げ、直径20mmのロール8に沿って、10回/分の速度で試料に90°の繰り返し曲げを10回行った後、曲げ部の横断面観察(倍率500倍)をすることにより、金属線と樹脂の間の空隙有無を確認した。n=10本の試料のうち、2本以上に空隙が認められたものを×とし、空隙が2本未満あるいは、認められないものを○とした。
(Wire rod adhesion evaluation test)
In the evaluation of the adhesion between the metal and the resin shown in Table 2, as shown in FIG. 7, a weight 7 having a weight of 20 g was hung from the lower end of the sample, and the sample was formed at a rate of 10 times / minute along a roll 8 having a diameter of 20 mm. After repeated bending at 90 ° 10 times, the presence or absence of a gap between the metal wire and the resin was confirmed by observing the cross section of the bent portion (magnification: 500 times). Of the n = 10 samples, those in which two or more voids were found were marked with x, and those with less than two voids or no voids were marked with ◯.

(耐環境性評価及び総合評価)
耐環境性評価及び総合評価は、表1に記載のものと同じ判断基準とした。
(Environmental resistance evaluation and comprehensive evaluation)
The environmental resistance evaluation and the comprehensive evaluation were based on the same criteria as those shown in Table 1.

表2によれば、各種銅線を押出し成形によりフッ素系樹脂で被覆したケーブルにおいても、銅線とフッ素系樹脂間に厚さを0.008μm〜0.3μmに変化させたZnからなる中間層を備えた実施例8〜10の金属/樹脂密着性は良好であった。これに対し、中間層を備えない比較例6及びAgからなる中間層を備えた比較例7は、密着性に劣る結果となった。 According to Table 2, even in a cable in which various copper wires are extruded and coated with a fluororesin, an intermediate layer made of Zn whose thickness is changed from 0.008 μm to 0.3 μm between the copper wire and the fluororesin. The metal / resin adhesion of Examples 8 to 10 provided with the above was good. On the other hand, Comparative Example 6 having no intermediate layer and Comparative Example 7 having an intermediate layer made of Ag had poor adhesion.

図6に、実施例9の試料で、純銅線(導体)に被覆されているFEPを剥離した後の導体表面を、スパッタを繰り返しながらオージェ電子分光法により元素分析を行った結果を示す。図6の横軸はスパッタ時間である。なお、SiO2のスパッタレート(11nm/min)から厚さ単位に換算し、表層からの深さの目安を把握することができる。 FIG. 6 shows the results of elemental analysis of the conductor surface of the sample of Example 9 after peeling the FEP coated on the pure copper wire (conductor) by Auger electron spectroscopy while repeating sputtering. The horizontal axis of FIG. 6 is the sputtering time. It should be noted that the sputter rate (11 nm / min) of SiO 2 can be converted into a thickness unit, and a guideline for the depth from the surface layer can be grasped.

オージェ分析の結果から、導体表面のZnは、深さ30nm程度まで存在していることがわかる。また表層から6nm程度までフッ素(F)が検出されている。 From the result of Auger analysis, it can be seen that Zn on the conductor surface exists up to a depth of about 30 nm. Fluorine (F) is detected from the surface layer up to about 6 nm.

これらオージェ分析により検出された元素の結合状態を解析するため、図6と同一試料(実施例9)の表面を、X線光電子分光法(XPS)により分析した結果を表3に示す。XPSの分析個所は、(1)最表面(スパッタ無し(スパッタ時間0min))、(2)スパッタ時間0.1min、(3)スパッタ時間1minである。XPS分析の結果、Znは、金属状態や酸化物、或いはCu−Zn化合物のほか、亜鉛フッ化物(ZnF2)として存在することがわかった。金属部材と樹脂の相互成分からなるこのZnF2の形成により、本発明で示した金属とフッ素系樹脂界面の密着力が向上できていると発明者らは考えている。 Table 3 shows the results of analyzing the surface of the same sample (Example 9) as in FIG. 6 by X-ray photoelectron spectroscopy (XPS) in order to analyze the bonding state of the elements detected by these Auger analyzes. The analysis points of XPS are (1) the outermost surface (no sputtering (sputtering time 0 min)), (2) sputtering time 0.1 min, and (3) sputtering time 1 min. As a result of XPS analysis, it was found that Zn exists as a zinc fluoride (ZnF 2 ) in addition to a metallic state, an oxide, or a Cu-Zn compound. The inventors believe that the formation of this ZnF 2 composed of the mutual components of the metal member and the resin can improve the adhesion between the metal and the fluororesin interface shown in the present invention.

Figure 0006836714
Figure 0006836714

耐環境性については、表1と同様、表面処理の際にシアン浴を用いる比較例7のAgめっきに対し、非シアン系での成膜が可能なZnめっきの実施例8〜10は優れている。 Regarding the environmental resistance, as in Table 1, Zn plating Examples 8 to 10 capable of forming a non-cyanide film are superior to Ag plating of Comparative Example 7 in which a cyanide bath is used for surface treatment. There is.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。また、本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。 Although the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. It should also be noted that not all combinations of features described in the embodiments are essential to the means for solving the problems of the invention. In addition, the present invention can be appropriately modified and implemented without departing from the spirit of the present invention.

例えば、中心導体、絶縁体、外部導体及びシースとを順次備えた信号伝送ケーブルにおいて、絶縁体としてフッ素系樹脂を用い、外部導体としてZnめっき層またはZn合金めっき層を有する銅箔を巻き付けて一体化させたものを用い、絶縁体(フッ素系樹脂)と外部導体(Znめっき層またはZn合金めっき層)との密着性を向上させて十分なシールド効果を得られるようにしても良い。 For example, in a signal transmission cable having a central conductor, an insulator, an outer conductor, and a sheath in sequence, a fluororesin is used as an insulator, and a copper foil having a Zn plating layer or a Zn alloy plating layer is wound and integrated as the outer conductor. It is also possible to improve the adhesion between the insulator (fluorine-based resin) and the outer conductor (Zn plating layer or Zn alloy plating layer) so that a sufficient shielding effect can be obtained.

1 金属・樹脂複合材料
2 フッ素系樹脂基材
3 中間層
4 金属部材
5 亜鉛とフッ素からなる化合物
6 金属部材を構成する元素と亜鉛からなる拡散層
1 Metal / resin composite material 2 Fluorine-based resin base material 3 Intermediate layer 4 Metal member 5 Compound composed of zinc and fluorine 6 Diffusion layer composed of elements and zinc constituting the metal member

Claims (3)

線材の形状を成した金属部材の外周に亜鉛もしくは亜鉛を含む合金からなる中間層を形成し、さらにその外周にフッ素系樹脂基材を押出し成形する金属・樹脂複合材料の製造方法 Forming an intermediate layer made of an alloy containing zinc or zinc to the outer periphery of the metallic member the form of a wire, method of manufacturing a metal-resin composite material to extrude a full Tsu Motokei resin substrate on the outer periphery thereof. 前記中間層と、前記フッ素系樹脂基材の界面に、亜鉛フッ化物が形成されている、請求項1に記載の金属・樹脂複合材料の製造方法 The method for producing a metal / resin composite material according to claim 1, wherein zinc fluoride is formed at the interface between the intermediate layer and the fluorine-based resin base material. 前記中間層の厚さが3nm以上である、請求項1又は2に記載の金属・樹脂複合材料の製造方法 The method for producing a metal / resin composite material according to claim 1 or 2 , wherein the thickness of the intermediate layer is 3 nm or more.
JP2017028603A 2017-02-20 2017-02-20 Manufacturing method of metal / resin composite material Active JP6836714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028603A JP6836714B2 (en) 2017-02-20 2017-02-20 Manufacturing method of metal / resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028603A JP6836714B2 (en) 2017-02-20 2017-02-20 Manufacturing method of metal / resin composite material

Publications (2)

Publication Number Publication Date
JP2018134739A JP2018134739A (en) 2018-08-30
JP6836714B2 true JP6836714B2 (en) 2021-03-03

Family

ID=63365270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028603A Active JP6836714B2 (en) 2017-02-20 2017-02-20 Manufacturing method of metal / resin composite material

Country Status (1)

Country Link
JP (1) JP6836714B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264045A (en) * 1992-03-16 1993-10-12 Toyo Polymer Kk Surface treatment process for steel plate or stainless steel cooking equipment such as gas range
JPH05309786A (en) * 1992-05-14 1993-11-22 Nippon Carbide Ind Co Inc Resin laminated metal
JP2969583B2 (en) * 1992-08-20 1999-11-02 東洋ポリマー株式会社 Surface treatment method for kitchen equipment made of galvanized steel plate or stainless steel plate
JP2926287B2 (en) * 1992-12-10 1999-07-28 東洋ポリマー株式会社 Surface treatment method for steel plate or stainless steel plate used for gas cooker top plate
CA2833809A1 (en) * 2011-04-29 2012-11-01 Saint-Gobain Performance Plastics Corporation Maintenance-free slide bearing with fep or pfa in the adhesive layer

Also Published As

Publication number Publication date
JP2018134739A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2012157469A1 (en) Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
KR101920976B1 (en) Copper foil, copper foil with carrier foil, and copper-clad laminate
JP4859262B2 (en) Copper foil composite
TWI719110B (en) Manufacturing methods of copper foil, copper-clad laminates, printed wiring boards, manufacturing methods of electronic devices, manufacturing methods of transmission lines, and manufacturing methods of antennas
JP5000792B2 (en) Electromagnetic wave shielding composite
TWI487619B (en) A metal foil composite body and a flexible printed board using the same, and a molded body and a method for producing the same
JP6829213B2 (en) Electrode line material for scaly microstructure and its manufacturing method and use
JPWO2014126193A1 (en) Surface-treated copper foil and copper-clad laminate obtained by using surface-treated copper foil
WO2015001817A1 (en) Electromagnetic wave shield-use metal foil, electromagnetic wave shield material and shield cable
JP5346054B2 (en) Copper foil for printed wiring board and laminated board using the same
JP6767267B2 (en) Manufacturing method of metal-coated non-woven fabric with adhesive layer, metal-coated non-woven fabric with adhesive layer, and coated core wire
JP6836714B2 (en) Manufacturing method of metal / resin composite material
US2947069A (en) Aluminum clad copper wire and process for making the same
JP2009289746A (en) Metal compound wire with at least two metal layers
WO2022176648A1 (en) Surface-treated copper foil
JP4492806B2 (en) Flexible printed wiring board
JP2004143547A (en) Aluminum stabilized laminate
JP5345924B2 (en) Copper foil for printed wiring boards
JP7355648B2 (en) Laminate and method for manufacturing the laminate
CN107430910B (en) Insulated electric conductor
CN107852828B (en) Substrate for printed wiring board, and method for manufacturing substrate for printed wiring board
JP6075639B2 (en) coaxial cable
JP2000138014A (en) Coaxial cable
JP2014227602A (en) Electromagnetic wave shielding metal foil, electromagnetic wave shielding material and shielded cable
JP2019114447A (en) Compression stranded wire conductor and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6836714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350