JP6836318B2 - 方向性電磁鋼板とその製造方法及び方向性電磁鋼板用熱延板とその製造方法 - Google Patents

方向性電磁鋼板とその製造方法及び方向性電磁鋼板用熱延板とその製造方法 Download PDF

Info

Publication number
JP6836318B2
JP6836318B2 JP2015229824A JP2015229824A JP6836318B2 JP 6836318 B2 JP6836318 B2 JP 6836318B2 JP 2015229824 A JP2015229824 A JP 2015229824A JP 2015229824 A JP2015229824 A JP 2015229824A JP 6836318 B2 JP6836318 B2 JP 6836318B2
Authority
JP
Japan
Prior art keywords
hot
rolled
steel sheet
less
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015229824A
Other languages
English (en)
Other versions
JP2017095771A (ja
Inventor
修一 中村
修一 中村
浩作 潮田
浩作 潮田
杉山 昌章
昌章 杉山
脇坂 岳顕
岳顕 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015229824A priority Critical patent/JP6836318B2/ja
Publication of JP2017095771A publication Critical patent/JP2017095771A/ja
Application granted granted Critical
Publication of JP6836318B2 publication Critical patent/JP6836318B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、トランスや電力変換器などの鉄心素材として好適な鉄損の優れた方向性電磁鋼板に関するもので、特に、Siの含有量を高めた鋼を用いて高固有抵抗を有する方向性電磁鋼板に関し、特に、部材加工性および加工後の磁気特性を向上させた方向性電磁鋼板とその製造方法、さらに特に冷間圧延性を向上させた熱延板とその製造方法、並びに、その熱延板を用いた方向性電磁鋼板の製造方法に関するものである。
電磁鋼板の鉄損は、大別してヒステリシス損と渦電流損とからなる。ヒステリシス損は、結晶方位、欠陥、粒界等による影響を受け、渦電流損は、材料の板厚、電気抵抗及び180°磁区幅等により決まる。
従って、これまでは、ヒステリシス損低減の観点から、結晶粒組織を(110)[001]方位に高度に揃え、結晶の欠陥を少なくするなどの方法が用いられてきた。一方、渦電流損低減には、板厚薄手化が最も効果的であるが、生産性や客先での工数増加という課題があるため、合金元素の添加による高固有抵抗化が有力となっている。
高固有抵抗化の目的で添加される合金元素としては、Siが最も有効であり、添加コストも他の元素と比較して安いため、最も一般的に使われている。さらに、Si量が6.5%の時に<100>方向の結晶磁歪定数が0となるため、電気機器の低騒音化、さらに鋼板の透磁率向上、ヒステリシス損低減に非常に有効である。
一方で、Siが3%を超えさらにSi量が増加していくと材料が脆化し、常温での圧延が困難になり、製造性が低下することや、部材として加工する際の割ればかりでなく、加工工具の摩耗促進による加工形状不良が問題となる。特に、鉄心用素材は、磁気特性向上のために冷間圧延前に焼鈍を施し、再結晶・粒成長させるのが一般的であるが、再結晶・粒成長するとさらに脆化し、冷間圧延や部材加工を困難にする。
脆化の抑制には、圧延または加工温度を上昇させ、鋼板の延性−脆性遷移温度以上の温度で圧延または加工するのが有効であるが、加熱設備の設置などが必要となるため、合金元素を添加して、脆化を緩和する手段が検討されている。例えば、特許文献1には、Si:2.5〜10%、Al:5%以下とした素材にCrを1.5〜20%を添加することにより圧延性に優れた材料を得る技術が開示されている。またこの技術を改良したものとして、特許文献2には、さらにC及びNを0.005%以下に低減させて延性−脆性遷移温度を下げ、かつ、加工性を向上させる元素として、NiやCuをさらに添加する技術が開示されている。しかし、合金元素の添加や不純物の低減だけでは脆化に起因する問題を抜本的に解決するには十分なものではない。
さらに、特許文献3には、Si:4〜10%、Al:0.04〜2%などを含有する溶鋼を超急冷して直接薄帯に鋳造し、この薄帯を焼鈍することにより、規則格子が存在せず、加工性と磁気特性の優れた高けい素鋼薄帯を得る技術が開示されているが、工業的な規模で実施するには適していない。
特開平11−343544号公報 特開2001−279327号公報 特公昭61−15136号公報
本発明は、高Si鋼を用いた方向性電磁鋼板において、脆化および加工による特性劣化を抑制した方向性電磁鋼板とその製造方法、および方向性電磁鋼板製造用の熱延板とその製造方法を提供することを課題とする。
本発明者らは上記課題を解決すべく、高Si鋼板の脆化を低減させる手段について鋭意検討した。その結果、熱処理後の冷却過程でDO3規則化クラスタ(以降、単に「クラスタ」と記述する場合がある)が生成され、それが熱処理後の鋼板の脆性に影響を与えていること、そのクラスタのサイズを100nm以下にした上で、さらに、CuやNiを添加した素材を用いることにより、Siの含有量を高めた場合の鋼板の脆化を抑制できることを見出した。
この知見を冷延焼鈍後に製品として使用される方向性電磁鋼板に応用することで部材加工性を改善することができること、及び、中間製品である熱延鋼板に応用することで、その後の冷間圧延時の圧延性を改善することができることを確認した。
さらにクラスタのサイズを調整した材料の磁気特性を検討するうち、クラスタの形成を抑制した材料は変形による磁気特性の劣化が小さくなることを知見し、本発明に到達した。
そのような検討の結果なされた本発明の要旨とするところは以下の通りである。
(1)組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼板中のDO3規則化クラスタのサイズが100nm以下であることを特徴とし、
ここで上記の数値限定範囲には、下限値及び上限値がその範囲に含まれるが、下限値に「超」と示す数値限定範囲には下限値が含まれず、上限値に「未満」と示す数値限定範囲には上限値が含まれない、方向性電磁鋼板。
(2)組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼スラブを、熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍して(1)に記載の方向性電磁鋼板を製造する際、前記冷間圧延後に実施する最終焼鈍の800℃超950℃以下の最高到達温度をT1℃とし、その冷却過程における、T1℃から800℃までの平均冷却速度を10℃/sec以下とし、800℃から300℃までの平均冷却速度を10℃/sec超で冷却することを特徴とする方向性電磁鋼板の製造方法。
(3)前記最終焼鈍の冷却過程において、300℃未満100℃以上の温度から80℃以上の温度の湯冷で冷却することを特徴とする(2)に記載の方向性電磁鋼板の製造方法。
(4)冷間圧延によって(1)に記載の方向性電磁鋼板を製造するための熱延板であって、組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜3.0%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼板中のDO3規則化クラスタのサイズが100nm以下であることを特徴とする方向性電磁鋼板用熱延板。
(5)組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼スラブを、熱間圧延し、熱延板焼鈍して(4)に記載の方向性電磁鋼板用熱延板を製造する際、前記熱延板焼鈍の800℃超950℃以下の最高到達温度をT2℃とし、その冷却過程における、T2℃から800℃までの平均冷却速度を10℃/sec以下とし、800℃から300℃までの平均冷却速度を10℃/sec超で冷却することを特徴とする方向性電磁鋼板用熱延板の製造方法。
(6)前記熱延板焼鈍の冷却過程において、300℃未満100℃以上の温度から80℃以上の温度の湯冷で冷却することを特徴とする(5)に記載の方向性電磁鋼板用熱延板の製造方法。
本発明によれば、高Si鋼の部材加工性および加工後磁気特性を向上させた方向性電磁鋼板を簡単な手段により提供することができるとともに、Si含有量の高い素材の冷間圧延における脆性破断を抑制して方向性電磁鋼板を得ることができるので、固有抵抗値が高く、鉄損の優れた方向性電磁鋼板をより安定して製造することができるようになる。
以下、本発明の実施形態について詳細に説明する。
鋼にSiを添加すると鋼の脆性が低下する。また、すべり変形に必要な臨界応力が上昇し、冷間加工時に可動転位が導入されず、双晶が発生する。双晶は脆性破断の起点となることが知られており、このため、Siを多量に含有した鋼は、冷間加工において脆性破断が生じやすくなる。
本発明者らは、Fe−Si系合金で、Si量を増加させ、Si量と合金の硬度との関係を調査した。その結果、Si量を増加させていくと、固溶体強化で説明可能なSi量の3分の2乗に比例するような硬度の上昇がみられ,硬度の上昇が鈍ってくるが、Si量が3%以上となると再び硬度が大きく上昇し始め、Si量が5%付近で規則相の出現による急激な硬度の上昇がみられた。
Si量が3%程度までの硬度の上昇は、Siの固溶強化によるものであり、規則相が現れるまでは、一定の上昇傾向が続くものと予想されたが、この程度の含有量領域でも硬度が異常に上昇する材料があることに気付いた。
そこで、このような硬度の異常上昇が生じる原因について調べた。硬度の上昇領域にあるFe−3.5%Si合金を溶融状態から急冷して種々の熱処理を施した材料を作成し、TEMで詳細に観察したところ、一部の材料では径が200nm程度のDO3規則化クラスタが観察された。
さらに鋼材の加工性との関連を調査すると、クラスタ形成が観察された材料では、硬度上昇ばかりでなく、鋼材の脆性も顕著に劣化していることが判明した。
従来は、DO3規則相がSi量の低い段階から出現することは報告されていないが、このようなクラスタの出現に起因して硬度の異常上昇が生じるばかりでなく、脆化の原因にもなっているものと推定し検討を進めた。
そこで、まずDO3規則化クラスタのサイズを小さくして脆化が改善するかについて検討した。
クラスタは相対的に不安定なものであり高温では消失すると考えられることから、熱処理の冷却過程を制御することでクラスタの生成を抑えることができるのではないかとの考えの下に実験を重ねた結果、生成するクラスタのサイズを100nm以下にすることにより脆化が抑えられること、及び、熱処理後の冷却条件を制御することで、クラスタが生成してもそのサイズを小さく抑制できることが見いだされた。
さらにこれら材料の変形挙動を調査する中で、変形後の磁気特性を比較したところ、クラスタのサイズが小さいものは変形による磁気特性の低下が小さいことがわかった。この理由は明確ではないが、クラスタは鋼材の変形において、転位のすべり系を限定する効果を有すると予想される。このため、鋼材の変形時、クラスタのサイズが大きい材料では変形が拘束され、双晶の発生を増大させる。一般的に電磁鋼板中に双晶が存在すると磁気特性が顕著に低下することが知られており、本発明は双晶の発生を回避する効果を有しているものと推察される。
また、添加元素による効果については、上記のような熱処理においては、CuやNiの添加によって、クラスタの形成および成長がさらに抑制されることが見いだされた。
そのようになされた本発明について、以下、詳細に説明する。
本発明の鋼板では、焼鈍後の鋼板中に存在するDO3規則化クラスタのサイズを100nm以下に規定する。好ましくは50nm以下、さらに好ましくは20nm以下である。クラスタのサイズは、小さいほど望ましいため下限は設定しない。
このクラスタのサイズは、TEMで観察されるクラスタの円相当の直径とする。
なお、本発明で規定するクラスタは原子レベルでの微妙な配列を感知する必要があり、TEM観察においては細心の注意を払い観察すべきものである。特に電子ビーム径をナノオーダーまで細く絞ることが必要となる場合が多い。
鋼板は、化学成分として、質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜3.0%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる。
上記の鋼板の化学成分は、結晶方位を{110}<001>方位に集積させたGoss集合組織に制御するために好ましい化学成分である。上記元素のうち、Si及びCが基本元素であり、Cu、Ni、酸可溶性Al、N、Mn、Cr、P、Sn、Sb、S、およびSeが選択元素である。上記の選択元素は、その目的に応じて含有させればよいので下限値を制限する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、本実施形態の効果は損なわれない。上記の鋼板は、上記の基本元素および選択元素の残部がFe及び不純物からなってもよい。なお、不純物とは、鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から不可避的に混入する元素を意味する。
本発明においては、特にCuとNiについては積極的に添加することが好ましい。後述のように特定の熱処理でクラスタの形成、溶解、成長、収縮を制御する場合、CuまたはNiを含有する鋼材では、制御の効果が顕著になる。この理由は不明であるが、Fe結晶格子中でクラスタの近傍で固溶するCuまたはNi原子の周囲に生ずるわずかな歪が、クラスタとFe結晶格子の間でのFeおよびSi原子の拡散に影響を及ぼし、クラスタの形成、成長を抑制し、溶解、収縮を促進する方向に作用しているものと考えられる。
また、電磁鋼板では二次再結晶時に純化焼鈍を経ることが一般的である。純化焼鈍においてはインヒビター形成元素の系外への排出が起きる。特にN、Sについては濃度の低下が顕著で、50ppm以下になる。通常の純化焼鈍条件であれば、9ppm以下、さらには6ppm以下、純化焼鈍を十分に行えば、一般的な分析では検出できない程度(1ppm以下)にまで達する。
上記鋼板の化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼板の化学成分は、ICP−AES(Inductively Coupled Plasma−Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、皮膜除去後の鋼板の中央の位置から35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより特定できる。なお、CおよびSは燃焼−赤外線吸収法を用い、Nは不活性ガス融解−熱伝導度法を用いて測定すればよい。
なお、方向性電磁鋼板のグラス皮膜および絶縁皮膜は、例えば、次の方法によって除去することができる。グラス皮膜または絶縁皮膜を有する方向性電磁鋼板を、NaOH:10質量%+H2O:90質量%の水酸化ナトリウム水溶液に、80℃で15分間、浸漬する。次いで、H2SO4:10質量%+H2O:90質量%の硫酸水溶液に、80℃で3分間、浸漬する。その後、HNO3:10質量%+H2O:90質量%の硝酸水溶液によって、常温で1分間弱、浸漬して洗浄する。最後に、温風のブロアーで1分間弱、乾燥させる。
注意を要するのは、本発明で規定する鋼板の組成は、通常の方向性電磁鋼板の表面に形成される皮膜(グラス皮膜、絶縁被膜)を除去した鋼板の組成(後述の「母鋼板」の組成)であることである。
本発明は、上記の組成を有し、DO3規則化クラスタのサイズを規制した組織の鋼板とするが、その組織を、冷延および最終焼鈍後の鋼板で実現することにより、鉄心等の部材に加工する際の部材加工性を向上させた方向性電磁鋼板を得ることができる。また、こうした組織を熱延後の熱延板の段階で実現することにより、冷間圧延における脆性破断を抑制できる方向性電磁鋼板用熱延板を得ることができる。
次に、そのような方向性電磁鋼板および方向性電磁鋼板用熱延板の製造方法について説明する。ただし、本発明は本実施形態に開示の構成のみに限定されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。ただ、下限値に「超」と示す数値限定範囲には下限値が含まれず、上限値に「未満」と示す数値限定範囲には上限値が含まれない。
まず、全体的な工程を説明したうえでDO3規則化クラスタのサイズを制御する熱処理について説明する。
方向性電磁鋼板は、冷間圧延処理と焼鈍処理との組み合わせによって、結晶粒の磁化容易軸と鋼板面内の特定方向とが一致するように結晶方位が制御された鋼板(母鋼板)と、母鋼板の表面に形成されたグラス皮膜と、グラス皮膜の表面に形成された絶縁皮膜とを備えている。
グラス皮膜は、例えば、フォルステライト(Mg2SiO4)、スピネル(MgAl24)、または、コーディエライト(Mg2Al4Si516)などの複合酸化物によって構成されている。
絶縁皮膜は、例えば、コロイダルシリカ及びリン酸塩を含有し、電気的絶縁性だけでなく、張力、耐食性及び耐熱性等を鋼板に与える役割を担っている。
次に、本実施形態に係る方向性電磁鋼板および方向性電磁鋼板用熱延板の製造方法について説明する。
最初の鋳造工程では、質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜3.0%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる化学成分を有する溶鋼が連続鋳造機に供給されて、スラブが連続的に製出される。
続いて、熱間圧延工程では、鋳造工程から得られたスラブが所定の温度(例えば1100〜1400℃)に加熱された後、そのスラブに対して熱間圧延が実施される。これにより、例えば、1.8〜3.5mmの厚さを有する熱延鋼板が得られる。
続いて、熱延板焼鈍工程では、熱間圧延工程から得られた熱延鋼板に対して、所定の温度条件(例えば800〜1200℃で30秒〜10分間加熱する条件)の下で焼鈍処理が実施される。この際の冷却条件が本発明の方向性電磁鋼板用熱延板にとって重要である。詳細は後述する。
続いて、冷間圧延工程では、熱延板焼鈍工程にて焼鈍処理が実施された熱延鋼板の表面に酸洗処理が実施された後、熱延鋼板に対して冷間圧延が実施される。これにより、例えば、0.15〜0.35mmの厚さを有する冷延鋼板が得られる。
続いて、脱炭焼鈍工程では、冷間圧延工程から得られた冷延鋼板に対して、所定の温度条件(例えば700〜900℃で1〜3分間加熱する条件)の下で熱処理(すなわち、脱炭焼鈍処理)が実施される。このような脱炭焼鈍処理が実施されると、脱炭焼鈍後の冷延鋼板において、炭素が所定量以下(例えば40ppm以下、好ましくは25ppm以下)に低減され、一次再結晶組織が形成される。また、脱炭焼鈍工程では、脱炭焼鈍後、冷延鋼板の表面に、シリカ(SiO2)を主成分として含有する酸化物層が形成される。
ここで、スラブ加熱温度が1280℃以上の製造方法においては、窒化は必要としないが、スラブ加熱温度を1280℃以下とする製造方法においては、通常、鋼板の窒素量を酸可溶性Alの質量分率[Al]に対して2/3程度以上となるように、例えば、アンモニアを含む水素窒素雰囲気中で、700℃〜850℃の温度域で焼鈍し、鋼板を窒化させるなどし、二次再結晶発現に必要な窒素量の調整を冷延後から二次再結晶発現前までに行う。
続いて、焼鈍分離剤塗布工程では、マグネシア(MgO)を主成分として含有する焼鈍分離剤が、冷延鋼板の表面(酸化物層の表面)に塗布される。続いて、仕上焼鈍工程では、焼鈍分離剤が塗布された冷延鋼板に対して、所定の温度条件(例えば1100〜1300℃で20〜24時間加熱する条件)の下で熱処理(すなわち、仕上焼鈍処理)が実施される。このような仕上焼鈍処理が実施されると、二次再結晶が冷延鋼板に生じるとともに、例えば水素によって、二次再結晶している冷延鋼板が純化される。その結果、上述の鋼板の化学組成を有し、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された鋼板が得られる。
また、上記のような仕上焼鈍処理が実施されると、シリカを主成分として含有する酸化物層が、マグネシアを主成分として含有する焼鈍分離剤と反応して、鋼板の表面にフォルステライト(Mg2SiO4)等の複合酸化物を含むグラス皮膜が形成される。
最後の絶縁皮膜成形工程では、例えばコロイダルシリカ及びリン酸塩を含有する絶縁コーティング液が、グラス皮膜の上から塗布される。その後、所定の温度条件(例えば840〜920℃)の下で焼鈍が実施されることにより、最終的に、母鋼板の表面にグラス皮膜及び絶縁皮膜とを備える方向性電磁鋼板が得られる。
上記のように製造された方向性電磁鋼板の鋼板は、化学成分として、質量分率で、Si:2.0%〜7.0%、C:0%超〜0.085%、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜3.0%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる。
本発明では、熱延板焼鈍や冷延後に実施する最終の焼鈍の際に、鋼板中に生成するDO3規則化クラスタのサイズが100nm以下となるような熱処理(この熱処理を「クラスタ抑制熱処理」と記載する場合がある。)を施す。
クラスタ抑制熱処理は、大きく3つの温度領域に分けて制御する。
一つは800℃以上の温度領域、もう一つは800℃〜300℃の温度領域、さらに一つは300℃未満の温度領域である。
まず800℃以上の温度領域での特徴を説明する。
この温度領域はクラスタが形成しにくい温度領域であり、この温度領域では粗大なクラスタはむしろ分解、縮小していく。分解を促進するためには高温で保持することが好ましいが、950℃を超えると鋼材の組成によっては少なからざる量のγ相が形成し、これへのSi濃化が起きると、その後のγ→α変態においてα相内でのクラスタ形成の回避が困難となる。このためα→γ変態が起きる組成を有する鋼材の950℃超への到達は避けることが好ましいが、磁気特性など一般的に方向性電磁鋼板に求められている特性を得るために、製造工程で950℃超の温度への到達を完全に回避することは困難である。950℃超への到達を前提とした場合に、脆化を引き起こすクラスタの形成を回避するには950℃超に到達した後の950℃以下800℃超の温度域での適切な保持が重要となる。本発明では800℃超950℃以下の最高到達温度をT℃とし、その冷却過程における、T℃から800℃までの平均冷却速度を10℃/sec以下とする。この温度領域を緩冷却として適切な時間を保持することで、クラスタの形成回避に有効に作用する。好ましくは8℃/sec以下、さらに好ましくは6℃/sec以下である。この温度領域でのクラスタの溶解および縮小への影響は高温域ほど大きいため、この温度領域のうちの高温範囲をより緩やかに冷却することは有効である。
なお、上記説明では800℃超950℃以下の最高到達温度をT℃として説明しているが、本発明の請求項の規定では、冷延後の最終焼鈍におけるものをT1℃、熱延板焼鈍におけるものをT2℃として規定する。
次に800℃〜300℃の温度領域について説明する。
この温度領域はクラスタの形成、成長が促進する温度領域である。このため、脆化を引き起こすクラスタの形成を回避するにはこの温度領域を速やかに通過させることが必要となる。本発明では800℃から300℃までの平均冷却速度を10℃/sec超とする。この温度領域を急速冷却とすることで、クラスタの形成および成長の抑制に有効に作用する。好ましくは20℃/sec超、さらに好ましくは30℃/sec超である。この温度領域でのクラスタの形成および成長への影響は高温域ほど大きいため、この温度領域のうちの高温範囲をより急速に冷却することは有効である。
次に300℃未満の温度領域について説明する。
クラスタの形成、成長は基本的にはSiおよびFe原子の拡散によるものであるため、SiやFe原子の拡散が非常に小さくなるこの温度領域は、通常の状況では殆ど考慮する必要のない温度領域である。しかし、この温度領域の冷却において、過度な急速冷却を行って鋼板に熱歪が入ると、クラスタが検知できる程度に存在する場合には顕著な脆化が生ずることがある。この原因は不明であるが、クラスタ近傍での歪(転位)発生が脆化割れの感受性を非常に高めるものであるのか、または歪による転位近傍では原子拡散速度が上昇するなどのため、わずかな拡散で優先的にクラスタが形成、成長してしまい、これが脆化割れの感受性を高めてしまうことなどが考えられる。これを回避するには、この温度領域を十分に緩冷却すれば良いことは言うまでもないが、これは一方で生産性低下の原因にもなる。生産性を上げるために、このような低温領域を水冷することが考えられるが、これは上記の熱歪の観点から本発明鋼においては好ましいことではない。生産性低下を避けつつ、上記の歪とクラスタの相互作用による脆性低下を回避するには、300℃未満100℃以上の温度から、80℃以上の湯冷で鋼板を冷却すると良い。厳密にはこの温度領域の冷却速度を規定することも可能ではあるが、本発明では工業的にも簡便である湯冷の条件を規定する。
このような熱処理を施すことによりDO3規則化クラスタのサイズを100nmに抑えることで、鋼板の顕著な脆化が抑えられ、鋼板の冷間加工性および変形後の磁気特性が向上する。
このクラスタ抑制熱処理は、方向性電磁鋼板の製造過程において、例えば次の(a)〜(c)の態様で適用することで、それぞれに応じた工業的なメリットを得ることができる。
(a)冷間圧延後に実施する最終焼鈍でのみクラスタ抑制熱処理を施す。
(b)熱延板焼鈍でのみクラスタ抑制熱処理を施す。
(c)鋼板製造工程の1回以上の焼鈍でクラスタ抑制熱処理を施す。
(a)の場合には、素材を熱間圧延し、必要に応じて熱延板焼鈍し、冷間圧延して冷延板とし、その冷延板に焼鈍を実施して最終製品を得る際の最終焼鈍時にクラスタ抑制熱処理を施す。これによってトランスコア用部材をスリットする、トランスコア用部材を曲げ加工するなどの部材加工性を向上させ、さらに加工による磁気特性の劣化を抑えた方向性電磁鋼板を得ることができる。
この最終焼鈍は、前述の絶縁皮膜の形成熱処理が一例として挙げられる。または、クラスタの形態を制御する目的で、例えば絶縁被膜形成後に焼鈍を追加しても良い。
(b)の場合には、熱間圧延後の熱延板焼鈍の冷却過程をクラスタ抑制熱処理相当に制御すれば良い。もちろん熱延板焼鈍後に、クラスタの形態を制御する目的で、例えば絶縁被膜形成後に焼鈍を追加しても良い。
これによって、その後に実施する冷間圧延の圧延性が向上し、冷間圧延温度を特に高めの温度としなくても脆性破断を抑制して冷間圧延することができる。もちろん、熱延板焼鈍でのクラスタ抑制熱処理を適用した上で、高めの冷間圧延温度を適用すれば、冷間圧延性がさらに向上することは言うまでもない。
なお、この場合では、冷延後の仕上焼鈍においては、クラスタ抑制熱処理を実施せずに、高温保定後は空冷などの一般的な条件で冷却されるが、冷延前に行われたクラスタのサイズの抑制の効果は、冷延後も引き続いて好ましい影響を保持して維持され、上記の(a)と同様に、部材加工性に関する改善効果が発揮される。ただしこの場合には、仕上焼鈍にクラスタ抑制熱処理したものよりも、部材加工性の改善効果は小さくなる。
これは、微小サイズに制御されたクラスタの少なからざる割合はその後の焼鈍の高温保定中に構造が壊れてしまい、その後の焼鈍の冷却過程で構造が再構築されるためであると考えられる。冷間圧延途中で中間焼鈍を実施した場合にも、熱延板焼鈍で形成されたクラスタの特徴は消失し、最終製品での発明効果の残存は小さくなる傾向がある。
(c)の場合には、製造工程において、少なくとも前記温度領域に到達する1回以上の焼鈍工程においてクラスタ抑制相当の熱処理を施す。上記の(a)、(b)は処理が1回の場合の典型的な事例である。1回の場合は(a)、(b)のような最終熱処理または熱延板焼鈍のタイミングである必要はない。例えば、一般的な方向性電磁鋼板の仕上焼鈍は精緻な二次再結晶を実現するため箱焼鈍で実施されるため、本発明に相当するクラスタ抑制熱処理の範囲内とすることが困難である。このような場合は、仕上焼鈍後に追加で本発明に相当するクラスタ抑制熱処理を連続焼鈍で実施することで解消される。また長い工程の脆化による問題が懸念される複数回の要所の直前で、本発明に相当するクラスタ抑制熱処理を実施することで、製造工程から最終部材加工までの鋼材取り扱いのすべての過程において、本発明の脆化抑制効果を十分に得ることができる。
以上のように、本発明では、優れた磁気特性が得られるように鋼の成分調整を行ったうえで、クラスタのサイズを規制した組織の鋼板とするが、以下に、そのような本発明の態様を実施例により具体的に説明する。これらの実施例は、本発明の効果を確認するための一例であり、本発明を限定するものではない。
表1に示す組成(残部Feおよび不可避的不純物)からなるスラブを用い、鋼A〜鋼Eまではスラブ加熱温度を1350℃で鋼F〜鋼Jはスラブ加熱温度を1150℃で熱間圧延して2.6mm厚の熱延板を作製し、熱延板焼鈍なしで、あるいは熱延板焼鈍を施し、酸洗後、0.30mm厚まで冷間圧延、脱炭焼鈍し、スラブ加熱温度が1150℃のものは窒化焼鈍を付加した上で、仕上焼鈍後、絶縁被膜を形成して、表2に記載の組成を有する方向性電磁鋼板を得る。本発明で規定しない条件は、一般的な方向性電磁鋼板の製造に準ずるものとし、磁気特性等は、一般的な方向性電磁鋼板に相当する鋼板となる。
Figure 0006836318
Figure 0006836318
DO3規則化クラスタのサイズは、冷延直前の熱延板と最終鋼板から得た各サンプルの1μm×1μmの観察領域10箇所について、ナノビーム回折法を用いて測定し、それらの平均サイズで評価する。
冷間圧延性は、2mmから0.35mmまでの冷間圧延の際に鋼板のエッジに発生した脆性起因のクラック数で評価する。
部材加工性は、最終鋼板を30枚重ねて、10mmφのドリルで穴をあけ、穴内側の鋼板断面での亀裂発生数で評価する。これは実用的にはトランスの積鉄心を固定するための穴開け工程での不具合発生を想定したものである。
変形後の磁気特性は、最終鋼板で巻鉄心を作成し、この鉄心の鉄心作成後の鉄損値を素材鉄損で除した値として定義されるビルディングファクターと呼ばれる指標(BF)の値で評価する。これは実用的にはトランスの巻鉄心の曲げ加工部の変形による鉄心特性の低下を想定したものである。
熱延鋼板の結果を表3に、最終鋼板の結果を表4示す。表4の最終鋼板は、表3の熱延鋼板から製造されるものであり、表4には素材の熱延No.と熱延鋼板としての評価も示している。なお、最終鋼板No.F10は6.5%Si鋼であり、熱延鋼板を素材とするものでなく、低Si素材を冷延後に侵珪して製造したものであるため、他の一般的な方向性電磁鋼板とは磁気特性などは少々異なる鋼板になるが、最終製品での発明効果を示すために評価を同じ表に記載している。
なお、クラスタサイズを制御するための最終焼鈍について、「工程A」は、仕上焼鈍後の絶縁被膜を形成する際の熱処理の冷却工程で実施する工程、「工程B」は、絶縁皮膜を形成する熱処理を完了した絶縁皮膜付きの鋼板をクラスタサイズを制御する目的の追加の熱処理で実施する工程である。
表1〜4より、本発明の効果が確認できる。
Figure 0006836318
Figure 0006836318

Claims (6)

  1. 組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼板中のDO3規則化クラスタのサイズが100nm以下であることを特徴とし、
    ここで上記の数値限定範囲には、下限値及び上限値がその範囲に含まれるが、下限値に「超」と示す数値限定範囲には下限値が含まれず、上限値に「未満」と示す数値限定範囲には上限値が含まれない、方向性電磁鋼板。
  2. 組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼スラブを、熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍して請求項1に記載の方向性電磁鋼板を製造する際、前記冷間圧延後に実施する最終焼鈍の800℃超950℃以下の最高到達温度をT1℃とし、その冷却過程における、T1℃から800℃までの平均冷却速度を10℃/sec以下とし、800℃から300℃までの平均冷却速度を10℃/sec超で冷却することを特徴とする方向性電磁鋼板の製造方法。
  3. 前記最終焼鈍の冷却過程において、300℃未満100℃以上の温度から80℃以上の温度の湯冷で冷却することを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。
  4. 冷間圧延によって請求項1に記載の方向性電磁鋼板を製造するための熱延板であって、
    組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜3.0%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼板中のDO3規則化クラスタのサイズが100nm以下であることを特徴とする方向性電磁鋼板用熱延板。
  5. 組成が質量分率で、Si:3.0%〜7.0%、C:0%超〜0.085%を含み、選択元素として、Cu:0%〜1.0%、Ni:0%〜1.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる鋼スラブを、熱間圧延し、熱延板焼鈍して請求項4に記載の方向性電磁鋼板用熱延板を製造する際、前記熱延板焼鈍の800℃超950℃以下の最高到達温度をT2℃とし、その冷却過程における、T2℃から800℃までの平均冷却速度を10℃/sec以下とし、800℃から300℃までの平均冷却速度を10℃/sec超で冷却することを特徴とする方向性電磁鋼板用熱延板の製造方法。
  6. 前記熱延板焼鈍の冷却過程において、300℃未満100℃以上の温度から80℃以上の温度の湯冷で冷却することを特徴とする請求項5に記載の方向性電磁鋼板用熱延板の製造方法。
JP2015229824A 2015-11-25 2015-11-25 方向性電磁鋼板とその製造方法及び方向性電磁鋼板用熱延板とその製造方法 Active JP6836318B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229824A JP6836318B2 (ja) 2015-11-25 2015-11-25 方向性電磁鋼板とその製造方法及び方向性電磁鋼板用熱延板とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229824A JP6836318B2 (ja) 2015-11-25 2015-11-25 方向性電磁鋼板とその製造方法及び方向性電磁鋼板用熱延板とその製造方法

Publications (2)

Publication Number Publication Date
JP2017095771A JP2017095771A (ja) 2017-06-01
JP6836318B2 true JP6836318B2 (ja) 2021-02-24

Family

ID=58816897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229824A Active JP6836318B2 (ja) 2015-11-25 2015-11-25 方向性電磁鋼板とその製造方法及び方向性電磁鋼板用熱延板とその製造方法

Country Status (1)

Country Link
JP (1) JP6836318B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012319B1 (ko) 2017-12-26 2019-08-20 주식회사 포스코 방향성 전기강판 및 그 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998676B2 (ja) * 1997-01-27 2000-01-11 日本鋼管株式会社 Si拡散浸透処理法により製造される加工性の優れた高珪素鋼板
JP5712652B2 (ja) * 2011-02-08 2015-05-07 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5760506B2 (ja) * 2011-02-25 2015-08-12 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101449093B1 (ko) * 2011-12-20 2014-10-13 주식회사 포스코 생산성 및 자기적 성질이 우수한 고규소 강판 및 그 제조방법.
WO2013175733A1 (ja) * 2012-05-24 2013-11-28 Jfeスチール株式会社 方向性電磁鋼板の製造方法
BR112013015997B1 (pt) * 2012-07-20 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Método de fabricação de chapa de aço elétrica de grão orientado

Also Published As

Publication number Publication date
JP2017095771A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
EP3575431B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5423909B1 (ja) 方向性電磁鋼板の製造方法
US10026534B2 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
US9953752B2 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP5446377B2 (ja) 方向性電磁鋼板およびその製造方法
JP6350398B2 (ja) 方向性電磁鋼板およびその製造方法
KR101322505B1 (ko) 방향성 전자기 강판의 제조 방법
KR101389248B1 (ko) 방향성 전자기 강판의 제조 방법
JP6132103B2 (ja) 方向性電磁鋼板の製造方法
EP2940158B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR102517647B1 (ko) 방향성 전자 강판의 제조 방법 및 방향성 전자 강판
JP5206017B2 (ja) 高珪素鋼板の製造方法
JP6836318B2 (ja) 方向性電磁鋼板とその製造方法及び方向性電磁鋼板用熱延板とその製造方法
JP5920387B2 (ja) 方向性電磁鋼板の製造方法
JP6034002B2 (ja) 高Si含有の方向性電磁鋼板の冷間圧延方法
JP7036194B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板
JP6292146B2 (ja) 方向性電磁鋼板の製造方法
JP6292147B2 (ja) 方向性電磁鋼板の製造方法
JP5904151B2 (ja) 方向性電磁鋼板の製造方法
JP2016047966A (ja) 高Si含有の方向性電磁鋼板の冷間圧延方法
JP2005307268A (ja) 無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191223

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200106

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200117

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201020

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201222

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210202

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210205

R151 Written notification of patent or utility model registration

Ref document number: 6836318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151