JP6832685B2 - Treatment method of nitrogen-containing wastewater - Google Patents

Treatment method of nitrogen-containing wastewater Download PDF

Info

Publication number
JP6832685B2
JP6832685B2 JP2016226111A JP2016226111A JP6832685B2 JP 6832685 B2 JP6832685 B2 JP 6832685B2 JP 2016226111 A JP2016226111 A JP 2016226111A JP 2016226111 A JP2016226111 A JP 2016226111A JP 6832685 B2 JP6832685 B2 JP 6832685B2
Authority
JP
Japan
Prior art keywords
tank
denitrification
carrier
nitrification
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016226111A
Other languages
Japanese (ja)
Other versions
JP2018083137A (en
Inventor
藤井 弘明
弘明 藤井
昭平 吉川
昭平 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2016226111A priority Critical patent/JP6832685B2/en
Publication of JP2018083137A publication Critical patent/JP2018083137A/en
Application granted granted Critical
Publication of JP6832685B2 publication Critical patent/JP6832685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水や工場などから排出される、窒素を含有する排水を浄化する排水処理方法に関する。 The present invention relates to a wastewater treatment method for purifying nitrogen-containing wastewater discharged from sewage or factories.

排水に含まれる窒素の除去方法として、好気条件下で排水中の有機体窒素・アンモニア性窒素を硝酸性窒素に酸化させ、次いで、無酸素条件下で硝酸性窒素を還元することによって窒素ガスとして大気中に放出する方法が知られている。 As a method for removing nitrogen contained in wastewater, nitrogen gas is obtained by oxidizing organic nitrogen / ammoniacal nitrogen in wastewater to nitrate nitrogen under aerobic conditions and then reducing nitrate nitrogen under anoxic conditions. The method of releasing into the atmosphere is known.

フローとしては、原水(下水や工場などから排出される排水)を被処理水として脱窒槽、硝化槽の順に導入し、硝化槽から流出する硝化処理水の一部を脱窒槽に返送・循環するものがある(以下、「硝化液循環フロー」と記載する)。また、硝化槽、脱窒槽の順に被処理水となる原水を導入し脱窒槽に有機物等の水素供与体を添加して処理し、再曝気槽で余剰の水素供与体を処理するものもある(以下、「硝化−脱窒−再曝気フロー」と記載する)。従来は活性汚泥を用いるものが主体であり、下水処理においては各槽内の活性汚泥濃度(MLSS)を2,000〜3,000mg/Lとして運転させるのが一般的である(非特許文献1)。 As a flow, raw water (wastewater discharged from sewage and factories) is introduced as treated water in the order of denitrification tank and nitrification tank, and a part of nitrification treated water flowing out of the nitrification tank is returned and circulated to the denitrification tank. Some (hereinafter referred to as "nitrification liquid circulation flow"). In some cases, raw water to be treated is introduced in the order of nitrification tank and denitrification tank, hydrogen donors such as organic substances are added to the denitrification tank for treatment, and excess hydrogen donor is treated in the reaeration tank (re-aeration tank). Hereinafter, it is described as "nitrification-denitrification-re-aeration flow"). Conventionally, activated sludge is mainly used, and in sewage treatment, it is common to operate the activated sludge concentration (MLSS) in each tank at 2,000 to 3,000 mg / L (Non-Patent Document 1). ).

原水中の窒素が硝酸性窒素の形で存在する場合には、無酸素条件下で、脱窒槽で硝酸性窒素を還元することによって窒素ガスとして大気中に放出する方法が行われている。また、活性汚泥と担体を併用して窒素を除去方法もある。たとえば特許文献1には一般的な濃度(MLSS:2,500mg/L)の活性汚泥と担体を槽に投入する方法が提案されている。 When nitrogen in raw water exists in the form of nitrate nitrogen, a method is used in which nitrate nitrogen is reduced in a denitrification tank and released into the atmosphere as nitrogen gas under anoxic conditions. There is also a method of removing nitrogen by using activated sludge and a carrier in combination. For example, Patent Document 1 proposes a method of charging activated sludge and a carrier at a general concentration (MLSS: 2,500 mg / L) into a tank.

一方、槽に活性汚泥を投入せずに、担体表面や内部に増殖した微生物によって排水を処理する方法もある。この方法によれば、高濃度の微生物保持によって、高い処理能力を有し、コンパクトな排水処理を提供することができるとされている(非特許文献2)。 On the other hand, there is also a method of treating wastewater by microorganisms grown on the surface or inside of the carrier without putting activated sludge into the tank. According to this method, it is said that by retaining a high concentration of microorganisms, it is possible to have a high treatment capacity and provide a compact wastewater treatment (Non-Patent Document 2).

しかしながら、非特許文献2に記載されたように、活性汚泥に担体を混合する方法では、従来の担体は単なる活性汚泥の助剤にすぎなかった。非特許文献2には、ポリビニルアルコールゲル担体を単独で用いる方法が提案されており、担体の能力を十分に引き出すことに成功したと、と記載されている。 However, as described in Non-Patent Document 2, in the method of mixing the carrier with the activated sludge, the conventional carrier is merely an auxiliary agent for the activated sludge. Non-Patent Document 2 proposes a method using a polyvinyl alcohol gel carrier alone, and states that it has succeeded in sufficiently drawing out the capacity of the carrier.

窒素除去工程における脱窒槽において、硝酸性窒素または亜硝酸性窒素を窒素ガスに還元させるためには、槽内の溶存酸素濃度(Dissolved oxygen:DO)が0.5mg/L未満で、液の酸化還元電位(Oxidation-reduction potential:ORP)が−0.1mV未満で運転する必要がある。さらに脱窒のために好適なDOは0.1mg/L未満で、ORPは−300mV〜−50mV程度と言われている。 In order to reduce nitrate nitrogen or nitrite nitrogen to nitrogen gas in the denitrification tank in the nitrogen removal step, the dissolved oxygen concentration (DO) in the tank is less than 0.5 mg / L, and the liquid is oxidized. It is necessary to operate with a reduction potential (ORP) of less than -0.1 mV. Further, it is said that the DO suitable for denitrification is less than 0.1 mg / L, and the ORP is about −300 mV to −50 mV.

また、原水に含まれる溶存酸素や、硝化工程で曝気由来の多量の溶存酸素によって、脱窒槽が上記の好適なDO,ORPの条件を保てなくなり、担体を投入しても、その効果を発揮できず、脱窒処理が悪化するという問題があった。硝化液循環フローの場合、脱窒処理の悪化によって、生物化学的酸素要求量(BOD)の除去が悪くなって、後段の硝化槽での処理も悪化するという問題もあった。 Further, due to the dissolved oxygen contained in the raw water and the large amount of dissolved oxygen derived from aeration in the nitrification process, the denitrification tank cannot maintain the above-mentioned suitable DO and ORP conditions, and even if a carrier is added, the effect is exhibited. There was a problem that it could not be done and the denitrification process deteriorated. In the case of the nitrification liquid circulation flow, there is also a problem that the removal of the biochemical oxygen demand (BOD) becomes worse due to the deterioration of the denitrification treatment, and the treatment in the subsequent nitrification tank also deteriorates.

特開平6−296991号公報Japanese Unexamined Patent Publication No. 6-296991

社団法人日本下水道協会、下水道施設計画・設計指針と解説(後編)2001年版、p.168Japan Sewerage Association, Sewerage Facility Planning / Design Guidelines and Explanations (Part 2) 2001 Edition, p.168 社団法人近畿化学協会、近畿化学工業界、2003年6月号、p.16Kinki Chemical Association, Kinki Chemical Industry, June 2003, p.16

本発明は上記課題を解決するためになされたものであり、窒素の除去能力に優れた排水の処理方法を提供する。 The present invention has been made to solve the above problems, and provides a wastewater treatment method having an excellent nitrogen removing ability.

上記課題は、担体に担持された脱窒菌と排水とを脱窒槽にて無酸素条件下で接触させる脱窒工程を有し、前記脱窒槽における窒素の容積負荷(N)(mg/L・d)及びMLSS(S)(mg/L)が下記式(1)を満たすように前記脱窒槽へ活性汚泥を投入することを特徴とする窒素含有排水の処理方法を提供することによって解決される。 The above object has a denitrification step in which denitrifying bacteria carried on a carrier and wastewater are brought into contact with each other in a denitrification tank under anoxic conditions, and the volume load (N) (mg / L · d) of nitrogen in the denitrification tank is provided. ) And MLSS (S) (mg / L) are solved by providing a method for treating nitrogen-containing wastewater, which comprises charging activated sludge into the denitrification tank so as to satisfy the following formula (1).

0.1(d−1)≦S/N≦2.0(d−1) (1) 0.1 (d -1 ) ≤ S / N ≤ 2.0 (d -1 ) (1)

このとき、前記担体がポリビニルアルコールゲル担体であることが好ましい。 At this time, it is preferable that the carrier is a polyvinyl alcohol gel carrier.

また、前記脱窒槽から排出された処理水を硝化槽に導入し、該硝化槽にて好気性条件下で硝化菌と接触させる硝化工程をさらに有することが好ましい。このとき、前記硝化槽から排出された処理水の一部を前記脱窒槽に循環する循環工程をさらに有することも好ましい(硝化液循環フロー)。 Further, it is preferable to further have a nitrification step of introducing the treated water discharged from the denitrification tank into the nitrification tank and bringing it into contact with the nitrifying bacteria under aerobic conditions in the nitrification tank. At this time, it is also preferable to further have a circulation step of circulating a part of the treated water discharged from the nitrification tank to the denitrification tank (nitrification liquid circulation flow).

また、を硝化槽にて好気性条件下で硝化菌と接触させる硝化工程をさらに有し、前記硝化槽から排出された処理水を前記脱窒槽に導入することが好ましい。このとき、脱窒槽に有機物等の水素供与体を添加して処理し、その後段に再曝気槽を設けて余剰の水素供与体を処理する工程を有することも好ましい(硝化−脱窒−再曝気フロー)。 Further, it is preferable to further have a nitrification step of bringing the water into contact with the nitrifying bacteria under aerobic conditions in the nitrification tank, and to introduce the treated water discharged from the nitrification tank into the denitrification tank. At this time, it is also preferable to have a step of adding a hydrogen donor such as an organic substance to the denitrification tank for treatment, and then providing a re-aeration tank to treat the excess hydrogen donor (nitrification-denitrification-re-aeration). flow).

本発明によれば、窒素の除去能力に優れた窒素含有排水の処理方法を提供することができる。 According to the present invention, it is possible to provide a method for treating nitrogen-containing wastewater having an excellent nitrogen removing ability.

硝化液循環フローの装置を示すブロック図である。It is a block diagram which shows the device of the nitrification liquid circulation flow. 硝化−脱窒−再曝気フローの装置を示すブロック図である。It is a block diagram which shows the device of nitrification-denitrification-re-aeration flow.

本発明は、下水や工場などから排出される、窒素を含有する排水を脱窒槽にて無酸素条件下で脱窒菌と接触させる排水処理方法に関する。ここで、本明細書における無酸素条件下とは、脱窒槽内の液に溶解している酸素濃度(Dissolved oxygen:DO)が0.5mg/L未満で、液の酸化還元電位(Oxidation-reduction potential:ORP)が−0.1mV未満であるものをいう。脱窒のために好適なDOは0.1mg/L未満で、ORPは−300mV〜−50mV程度と言われている。また、本明細書における原水とは、下水や各種工場などから発生する排水のことをいう。このような排水には砂やゴミなどの固形物が含まれていることがあるため、これらの固形物を除去したり、pHを適正化したり、重金属などの有害物質を除去するなどの前処理が施されることがある。処理装置へ流入させる前に、このような前処理が施された排水も原水という。一方、処理水とは、処理装置へ流入されて脱窒槽などで何らかの処理をされた液のことをいう。 The present invention relates to a wastewater treatment method in which nitrogen-containing wastewater discharged from sewage or a factory is brought into contact with denitrifying bacteria in a denitrification tank under anoxic conditions. Here, the anoxic condition in the present specification means that the oxygen concentration (Dissolved oxygen: DO) dissolved in the liquid in the denitrification tank is less than 0.5 mg / L, and the oxidation-reduction potential of the liquid (Oxidation-reduction). potential: ORP) is less than -0.1 mV. It is said that the DO suitable for denitrification is less than 0.1 mg / L, and the ORP is about −300 mV to −50 mV. In addition, the raw water in this specification means wastewater generated from sewage and various factories. Since such wastewater may contain solids such as sand and dust, pretreatment such as removing these solids, adjusting the pH, and removing harmful substances such as heavy metals May be applied. Wastewater that has undergone such pretreatment before flowing into the treatment equipment is also called raw water. On the other hand, treated water refers to a liquid that has flowed into a treatment device and has been treated in a denitrification tank or the like.

脱窒槽において、担体に担持された微生物により排水を処理する方法では、当該脱窒槽に活性汚泥を返送せずに担体に担持された微生物のみで処理する方が、担体への微生物増殖が進み効率よい処理ができるはずである。しかしながら、脱窒に必要な条件が整わなければ担体に棲息する微生物も働かず良好な処理ができない。一方で担体を一般的な濃度の活性汚泥と混合してしまうと、担体に微生物が増殖せず、活性汚泥のみの運転とほぼ同じ状態になり効率よい排水処理ができない。 In the method of treating wastewater with microorganisms carried on a carrier in a denitrification tank, it is more efficient to treat the wastewater only with the microorganisms carried on the carrier without returning the activated sludge to the denitrification tank. You should be able to do a good job. However, if the conditions necessary for denitrification are not met, the microorganisms that live on the carrier do not work and good treatment cannot be performed. On the other hand, if the carrier is mixed with activated sludge of a general concentration, microorganisms do not grow on the carrier, and the state becomes almost the same as the operation of only activated sludge, and efficient wastewater treatment cannot be performed.

本発明者らは、鋭意検討を重ねた結果、担体に担持された脱窒菌と排水とを脱窒槽にて無酸素条件下で接触させる脱窒工程を有する排水処理方法において、上記脱窒槽における窒素の容積負荷(N)(mg/L・d)及びMLSS(Mixed Liquor Suspended Solids:活性汚泥浮遊物質)(S)(mg/L)が特定の関係を満たすように上記脱窒槽へ活性汚泥を投入することによって上記課題を解決できることを見出した。 As a result of diligent studies, the present inventors have found that in a wastewater treatment method having a denitrification step in which denitrifying bacteria carried on a carrier and wastewater are brought into contact with each other under anoxic conditions in a denitrification tank, nitrogen in the denitrification tank Activated sludge is charged into the denitrification tank so that the volume loading (N) (mg / L · d) and MLSS (Mixed Liquor Suspended Solids) (S) (mg / L) satisfy a specific relationship. It was found that the above problems can be solved by doing so.

本発明の処理方法においては、脱窒槽における窒素の容積負荷(N)(mg/L・d)及びMLSS(S)(mg/L)が下記式(1)を満たすように上記脱窒槽へ活性汚泥を投入することが重要である。ここで、脱窒槽へ投入する活性汚泥としては、別のフローで発生した活性汚泥を用いることもできるが、同じフローで発生した活性汚泥を用いることが好ましい。このとき、活性汚泥槽や沈殿槽の汚泥を返送することができる。 In the treatment method of the present invention, the nitrogen volumetric load (N) (mg / L · d) and MLSS (S) (mg / L) in the denitrification tank are activated in the denitrification tank so as to satisfy the following formula (1). It is important to add sludge. Here, as the activated sludge to be charged into the denitrification tank, activated sludge generated in another flow can be used, but it is preferable to use activated sludge generated in the same flow. At this time, the sludge from the activated sludge tank or the settling tank can be returned.

0.1(d−1)≦S/N≦2.0(d−1) (1) 0.1 (d -1 ) ≤ S / N ≤ 2.0 (d -1 ) (1)

上記式(1)において、S/Nの値が0.1未満の場合、脱窒に必要な条件が整わず担体に棲息する微生物も働かず良好な処理ができない。S/Nの値は0.15以上であることが好ましい。一方、S/Nの値が2.0を超えると、担体に微生物が増殖せず、活性汚泥のみの運転とほぼ同じ状態になり効率よい排水処理ができない。S/Nの値は、1.7以下であることが好ましい。 In the above formula (1), when the S / N value is less than 0.1, the conditions necessary for denitrification are not met, the microorganisms living on the carrier do not work, and good treatment cannot be performed. The S / N value is preferably 0.15 or more. On the other hand, when the S / N value exceeds 2.0, microorganisms do not grow on the carrier, and the state becomes almost the same as the operation of only activated sludge, and efficient wastewater treatment cannot be performed. The S / N value is preferably 1.7 or less.

本発明において、処理の対象となる原水は、微生物が分解可能な排水であればその成分や濃度は特に限定されない。窒素含有排水としては、食品工場等の製造排水、化学工場等の有機性排水、一般下水等が挙げられる。 In the present invention, the raw water to be treated is not particularly limited in its component and concentration as long as it is wastewater that can be decomposed by microorganisms. Examples of nitrogen-containing wastewater include production wastewater from food factories, organic wastewater from chemical factories, and general sewage.

本発明の処理方法において、処理装置の管の閉塞が起こりにくく、微生物との接触効率に優れている観点から、担体がポリビニルアルコールゲル担体であることが好ましい。ポリビニルアルコールゲル担体は、多数の水酸基を有しているために親水性が高く、生体との親和性も高いことから微生物担体として好適である。 In the treatment method of the present invention, the carrier is preferably a polyvinyl alcohol gel carrier from the viewpoint that the tube of the treatment device is less likely to be clogged and the contact efficiency with microorganisms is excellent. Since the polyvinyl alcohol gel carrier has a large number of hydroxyl groups, it is highly hydrophilic and has a high affinity with living organisms, and is therefore suitable as a microbial carrier.

また、ポリビニルアルコールゲル担体は、スポンジなどの発泡体と異なり、外力が加わり変形したとしても容易には水分が放出されず微生物の棲息に適した環境を提供することができる。 Further, unlike a foam such as a sponge, the polyvinyl alcohol gel carrier does not easily release water even if it is deformed by an external force, and can provide an environment suitable for the habitat of microorganisms.

担体の球相当径は、1〜10mmであることが好ましい。球相当径が1mm未満の場合、槽から流出してしまうおそれがある。球相当径は、2mm以上であることがより好ましい。一方、球相当径が10mmを超えると、担体の表面から内部まで距離があるため、バクテリアが内部に棲息できない、代謝物が担体外へ排出されにくいという問題が発生することがある。また、担体を流動させて使用する場合、担体の球相当径が大きすぎると流動性が低くなるため、排水との接触効率が低下し、排水処理の効率が低下する場合がある。かかる観点から、球相当径は、6mm以下であることがより好ましい。 The equivalent sphere diameter of the carrier is preferably 1 to 10 mm. If the equivalent diameter of the sphere is less than 1 mm, it may flow out of the tank. The equivalent diameter of the sphere is more preferably 2 mm or more. On the other hand, if the equivalent diameter of the sphere exceeds 10 mm, there may be a problem that bacteria cannot live inside and metabolites are difficult to be excreted outside the carrier because there is a distance from the surface of the carrier to the inside. Further, when the carrier is used in a fluidized state, if the equivalent diameter of the sphere of the carrier is too large, the fluidity is lowered, so that the contact efficiency with the wastewater is lowered and the efficiency of the wastewater treatment may be lowered. From this point of view, the equivalent diameter of the sphere is more preferably 6 mm or less.

担体の表面から内部に連通する孔の孔径は、自由にコントロールできるが、バクテリアのみが担体内部に棲息できるものが好ましい。担体の孔径は、0.1μm以上であることが好ましい。孔径が0.1μm未満の場合、バクテリアが内部に進入できないなどの問題が発生するおそれがある。孔径は、0.5μm以上であることがより好ましい。一方、孔径は、100μm以下であることが好ましい。孔径が100μmを超える場合、バクテリア以外の大きな生物が侵入し効率が低下する場合がある。孔径は、50μm以下であることがより好ましい。 The pore size of the pores communicating from the surface of the carrier to the inside can be freely controlled, but it is preferable that only bacteria can live inside the carrier. The pore size of the carrier is preferably 0.1 μm or more. If the pore size is less than 0.1 μm, problems such as the inability of bacteria to enter the inside may occur. The pore diameter is more preferably 0.5 μm or more. On the other hand, the pore diameter is preferably 100 μm or less. If the pore size exceeds 100 μm, large organisms other than bacteria may invade and the efficiency may decrease. The pore diameter is more preferably 50 μm or less.

担体の形状は、限定されるものではなく、立方体、直方体、円柱状、球状、マカロニ状など任意の形状をとることができる。担体の流動性や排水との接触効率を考えると球状が好ましい。 The shape of the carrier is not limited, and can be any shape such as a cube, a rectangular parallelepiped, a columnar shape, a spherical shape, and a macaroni shape. Spherical is preferable in consideration of the fluidity of the carrier and the contact efficiency with waste water.

担体の比重は水よりわずかに大きく、反応槽から流失しない程度に、当該反応槽の中で揺動させることができる比重であることが好ましい。そのため、担体の比重は、1.001以上であることが好ましく、1.005以上であることがより好ましい。一方、比重は、1.2以下であることが好ましく、1.1以下であることがより好ましい。 The specific gravity of the carrier is slightly larger than that of water, and it is preferable that the carrier has a specific gravity that allows it to swing in the reaction vessel so as not to be washed away from the reaction vessel. Therefore, the specific gravity of the carrier is preferably 1.001 or more, and more preferably 1.005 or more. On the other hand, the specific gravity is preferably 1.2 or less, and more preferably 1.1 or less.

本発明におけるポリビニルアルコールゲル担体は、微生物の保持量を増大させることができると共に、繰り返し使用における耐久性を確保することができる観点から、アセタール化されたポリビニルアルコールゲル担体であることがより好ましい。 The polyvinyl alcohol gel carrier in the present invention is more preferably an acetalized polyvinyl alcohol gel carrier from the viewpoint of being able to increase the retention amount of microorganisms and ensuring durability in repeated use.

アセタール化されたポリビニルアルコールゲル担体は、既存の方法で得ることができるが、微生物の保持に適した構造となる点で、ポリビニルアルコール(PVA)と水溶性高分子多糖類とが溶解した水溶液とを、多価金属イオンを含む水溶液中に滴下することによって球状に成形し、次いでアルデヒドを用いてアセタール化処理する方法が好ましい。中でも、グルタルアルデヒドなどのジアルデヒドを用いてアセタール化処理されたポリビニルアルコールゲル担体が好ましい。 The acetalized polyvinyl alcohol gel carrier can be obtained by an existing method, but it is an aqueous solution in which polyvinyl alcohol (PVA) and a water-soluble polymer polysaccharide are dissolved in that the structure is suitable for retaining microorganisms. Is formed into a spherical shape by dropping it into an aqueous solution containing polyvalent metal ions, and then acetalized with an aldehyde. Of these, a polyvinyl alcohol gel carrier that has been acetalized with a dialdehyde such as glutaraldehyde is preferable.

本発明において、脱窒槽に投入される担体の量は特に限定されないが、通常、脱窒槽の槽容量に対して5〜50容量%であることが好ましく、5〜40容量%であることがより好ましく、10〜30容量%であることがさらに好ましい。また、脱窒槽においては、担体と排水の接触効率を高めるために担体を流動させることもできる。担体を流動させる方法としては、特に制限はないが、機械撹拌やガスを散気する方法などが挙げられる。 In the present invention, the amount of the carrier charged into the denitrification tank is not particularly limited, but is usually preferably 5 to 50% by volume, more preferably 5 to 40% by volume, based on the tank capacity of the denitrification tank. It is preferably 10 to 30% by volume, more preferably 10 to 30% by volume. Further, in the denitrification tank, the carrier can be flowed in order to improve the contact efficiency between the carrier and the wastewater. The method for flowing the carrier is not particularly limited, and examples thereof include a method of mechanical stirring and a method of aerating gas.

また、本発明においては、窒素の除去率をより高める観点から、硝化槽に担体を投入することもできる。このときの担体の投入量は上記した量とすることができる。また、担体と排水の接触効率を高めるために担体を流動させることもできる。 Further, in the present invention, the carrier can be charged into the nitrification tank from the viewpoint of further increasing the removal rate of nitrogen. The amount of the carrier added at this time can be the above-mentioned amount. In addition, the carrier can be flowed in order to improve the contact efficiency between the carrier and the waste water.

本発明において使用する菌は、排水処理に通常用いられる菌であれば使用することができる。菌の採取方法としては、目的とする排水処理をしている反応器から種汚泥として採取するのが望ましいが、下水汚泥や産業排水の汚泥などを種汚泥として用い、必要な菌が増殖するのを待つ方法でもよい。 The bacteria used in the present invention can be any bacteria normally used for wastewater treatment. As a method of collecting bacteria, it is desirable to collect it as seed sludge from a reactor that is treating the target wastewater, but sewage sludge and industrial wastewater sludge are used as seed sludge, and the necessary bacteria grow. You can also wait for.

本発明の処理方法において、排水に含まれる窒素の除去率をより高める観点から、脱窒工程の前又は後に硝化工程をさらに有することが好ましい。 In the treatment method of the present invention, it is preferable to further have a nitrification step before or after the denitrification step from the viewpoint of further increasing the removal rate of nitrogen contained in wastewater.

まず、脱窒工程の後に硝化工程をさらに有する態様(方法A)について説明する。この場合、脱窒槽から排出された処理水を硝化槽に導入し、該硝化槽にて好気性条件下で硝化菌と接触させることが好ましい。 First, an embodiment (method A) in which a nitrification step is further provided after the denitrification step will be described. In this case, it is preferable to introduce the treated water discharged from the denitrification tank into the nitrifying tank and bring it into contact with the nitrifying bacteria under aerobic conditions in the nitrifying tank.

図1は方法Aで用いられる装置の一例を示したブロック図である。図1に示す装置は、脱窒槽とその後段の硝化槽とを備えている。図1の装置を用いた処理方法では、原水を、まず脱窒槽へ導入し、当該脱窒槽から排出された処理水を硝化槽に導入し、当該硝化槽にて好気性条件下で硝化菌と接触させる。このとき、後段の硝化槽で硝化された液を、前段の脱窒槽において、原水中の水素供与体を用いて脱窒するという観点から、硝化槽から排出された処理水の一部を脱窒槽に循環する循環工程をさらに有することが好ましい(図1の硝化液循環)。そして、硝化槽から排出された処理水は、活性汚泥槽に導入された後に、沈殿槽へ導入される。 FIG. 1 is a block diagram showing an example of the apparatus used in the method A. The apparatus shown in FIG. 1 includes a denitrification tank and a subsequent nitrification tank. In the treatment method using the apparatus of FIG. 1, the raw water is first introduced into the denitrification tank, the treated water discharged from the denitrification tank is introduced into the nitrification tank, and the nitrifying bacteria are formed in the nitrification tank under aerobic conditions. Make contact. At this time, from the viewpoint of denitrifying the liquid nitrified in the nitrification tank in the latter stage using the hydrogen donor in the raw water in the denitrification tank in the previous stage, a part of the treated water discharged from the nitrification tank is denitrified. It is preferable to further have a circulation step of circulating in (the nitrification liquid circulation of FIG. 1). Then, the treated water discharged from the nitrification tank is introduced into the activated sludge tank and then into the settling tank.

図1の装置においては、脱窒槽における窒素の容積負荷(N)(mg/L・d)及びMLSS(S)(mg/L)が上記式(1)を満たすように沈殿槽から脱窒槽へ活性汚泥を投入する(図1の汚泥返送(A))。また、沈殿槽から活性汚泥槽へ活性汚泥を投入してもかまわないし(図1の汚泥返送(B))、沈殿槽の汚泥増加分は余剰汚泥として引き抜いてもかまわない。 In the apparatus of FIG. 1, from the settling tank to the denitrification tank so that the volumetric load (N) (mg / L · d) and MLSS (S) (mg / L) of nitrogen in the denitrification tank satisfy the above formula (1). Activated sludge is added (sludge return (A) in FIG. 1). Further, the activated sludge may be put into the activated sludge tank from the settling tank (sludge return (B) in FIG. 1), and the increased sludge in the settling tank may be withdrawn as excess sludge.

次に、脱窒工程の前に硝化工程をさらに有する態様(方法B)について説明する。この場合、排水を硝化槽にて好気性条件下で硝化菌と接触させ、当該硝化槽から排出された処理水を脱窒槽に導入することが好ましい。 Next, an embodiment (method B) in which a nitrification step is further provided before the denitrification step will be described. In this case, it is preferable to bring the wastewater into contact with the nitrifying bacteria in the nitrifying tank under aerobic conditions and introduce the treated water discharged from the nitrifying tank into the denitrification tank.

図2は方法Bで用いられる装置の一例を示したブロック図である。図2に示す装置は、硝化槽とその後段の脱窒槽とを備えている。図2の装置を用いた処理方法では、原水を、まず硝化槽へ導入し、当該硝化槽にて好気性条件下で硝化菌と接触させてから、脱窒槽へ導入する。脱窒槽にはメタノールなどの水素供与体を投入することが好ましい。そして、脱窒槽から排出された処理水は、再曝気槽に導入された後に、沈殿槽へ導入される。 FIG. 2 is a block diagram showing an example of the apparatus used in the method B. The apparatus shown in FIG. 2 includes a nitrification tank and a denitrification tank in the subsequent stage. In the treatment method using the apparatus of FIG. 2, raw water is first introduced into a nitrifying tank, brought into contact with nitrifying bacteria under aerobic conditions in the nitrifying tank, and then introduced into a denitrification tank. It is preferable to put a hydrogen donor such as methanol into the denitrification tank. Then, the treated water discharged from the denitrification tank is introduced into the re-aeration tank and then into the settling tank.

図2の装置においては、脱窒槽における窒素の容積負荷(N)(mg/L・d)及びMLSS(S)(mg/L)が上記式(1)を満たすように沈殿槽から脱窒槽へ活性汚泥を投入する(図2の汚泥返送(C))。また、沈殿槽から再曝気槽へ活性汚泥を投入してもかまわないし(図2の汚泥返送(D))、沈殿槽の汚泥増加分は余剰汚泥として引き抜いてもかまわない。 In the apparatus of FIG. 2, from the settling tank to the denitrification tank so that the volumetric load (N) (mg / L · d) and MLSS (S) (mg / L) of nitrogen in the denitrification tank satisfy the above formula (1). Activated sludge is added (sludge return (C) in FIG. 2). In addition, activated sludge may be charged from the settling tank to the reaeration tank (sludge return (D) in FIG. 2), and the increased sludge in the settling tank may be withdrawn as excess sludge.

原水中に水素供与体が多く含まれている場合には、その水素供与体を利用して脱窒できるので方法Aが好ましい。原水中に水素供与体が含まれていない、あるいは、水素供与体が少なく脱窒に効率よく利用できない場合には方法Bが好ましい。 When a large amount of hydrogen donor is contained in the raw water, the method A is preferable because the hydrogen donor can be used for denitrification. Method B is preferable when the raw water does not contain a hydrogen donor, or when the amount of hydrogen donor is too small to be efficiently used for denitrification.

以下、実施例により、本発明を詳細に説明するが本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(反応槽に充填する担体)
脱窒槽と硝化槽に投入した担体は、グルタルアルデヒドでアセタール化したポリビニルアルコールゲル担体であり、球相当径が4.0mm、比重は1.025、含水率は93質量%である。
(Carrier to be filled in the reaction tank)
The carriers charged into the denitrification tank and the nitrification tank are polyvinyl alcohol gel carriers acetalized with glutaraldehyde, having a sphere-equivalent diameter of 4.0 mm, a specific gravity of 1.025, and a water content of 93% by mass.

実施例1
図1に示す硝化液循環フロー(脱窒槽容量:250L、硝化槽容量:500L、活性汚泥槽:150L)の装置を用いて排水処理試験を実施した。脱窒槽と硝化槽には上述したアセタール化ポリビニルアルコールゲル担体を槽容量の10%充填した。原水(BOD:450mg/L、総窒素(T−N):150mg/L)を、流量1000L/dで連続的に脱窒槽へ流入させた。硝化液の循環量は3000L/dとした。
Example 1
A wastewater treatment test was carried out using the device of the nitrification liquid circulation flow (denitrification tank capacity: 250 L, nitrification tank capacity: 500 L, activated sludge tank: 150 L) shown in FIG. The denitrification tank and the nitrification tank were filled with the above-mentioned acetalized polyvinyl alcohol gel carrier at 10% of the tank capacity. Raw water (BOD: 450 mg / L, total nitrogen (TN): 150 mg / L) was continuously flowed into the denitrification tank at a flow rate of 1000 L / d. The circulation amount of the nitrifying solution was 3000 L / d.

脱窒槽の窒素容積負荷(N)が600mg/L・d及びMLSS(S)が500mg/L(S/N=0.83d-1)となるように、沈殿槽から脱窒槽へ活性汚泥を返送(矢印A)した。また、活性汚泥槽のMLSSが2500mg/Lとなるように、沈殿槽から活性汚泥槽へも活性汚泥を返送(矢印B)した。このとき、沈殿槽の汚泥増加分は余剰汚泥として引き抜いた。なお、活性汚泥槽には担体は投入されていない。 Activated sludge is returned from the settling tank to the denitrification tank so that the nitrogen volume load (N) of the denitrification tank is 600 mg / L · d and the MLSS (S) is 500 mg / L (S / N = 0.83d- 1). (Arrow A). In addition, the activated sludge was returned from the settling tank to the activated sludge tank so that the MLSS of the activated sludge tank was 2500 mg / L (arrow B). At this time, the increased sludge in the settling tank was extracted as excess sludge. No carrier was put into the activated sludge tank.

この条件で運転すると、脱窒槽のDOは0.1mg/L未満であり、ORPは−120mVとなり、脱窒に対して良好な条件となっていた。また、脱窒槽の担体1リットルあたりに存在するバクテリア量は5.8×1012個であり、担体に十分なバクテリアが棲息していた。その結果、処理水のBODは15mg/L、T−Nは5mg/Lで安定し、余剰汚泥は1か月で1.3kg(乾燥重量)と非常に少なかった。 When operated under these conditions, the DO of the denitrification tank was less than 0.1 mg / L and the ORP was −120 mV, which were good conditions for denitrification. The amount of bacteria present per liter of the carrier in the denitrification tank was 5.8 × 10 12 , and sufficient bacteria inhabited the carrier. As a result, the BOD of the treated water was stable at 15 mg / L and the TN was 5 mg / L, and the excess sludge was very small at 1.3 kg (dry weight) in one month.

比較例1
図1に示す装置において、脱窒槽の窒素容積負荷(N)が600mg/L・d及びMLSS(S)が2000mg/L(S/N=3.3d-1)となるように沈殿槽から脱窒槽へ活性汚泥を返送した以外は、実施例1と同じ条件で排水処理を実施した。
Comparative Example 1
In the apparatus shown in FIG. 1, the nitrogen volume load (N) of the denitrification tank is 600 mg / L · d and the MLSS (S) is 2000 mg / L (S / N = 3.3d- 1). Wastewater treatment was carried out under the same conditions as in Example 1 except that the activated sludge was returned to the nitrogen tank.

この条件で運転すると、脱窒槽のDOは0.1mg/L未満であり、ORPは−150mVであり、脱窒に対して良好な条件となっていた。しかし脱窒槽の担体1リットルあたりに存在するバクテリア量は3.1×10個であり、担体に十分なバクテリアが増殖していなかった。その結果、処理水のBODは20mg/L、T−Nは105mg/Lであり、BODは処理されていたが、脱窒はできていなかった。余剰汚泥は1か月で6.1kg(乾燥重量)であり、通常の活性汚泥並であった。 When operated under these conditions, the DO of the denitrification tank was less than 0.1 mg / L and the ORP was −150 mV, which were good conditions for denitrification. But bacteria amount present in the carrier per liter of the denitrification tank is 3.1 × 10 8 pieces, sufficient bacteria did not proliferate to the carrier. As a result, the BOD of the treated water was 20 mg / L and the TN was 105 mg / L. Although the BOD was treated, denitrification was not possible. The excess sludge weighed 6.1 kg (dry weight) in one month, which was comparable to that of normal activated sludge.

比較例2
図1に示す装置において、沈殿槽から脱窒槽への汚泥返送をしなかった以外は実施例1と同じ条件で排水処理を実施した。脱窒槽の窒素容積負荷(N)は600mg/L・dとした。その結果、MLSS(S)は36mg/Lとなった(S/N=0.06d-1)。
Comparative Example 2
In the apparatus shown in FIG. 1, wastewater treatment was carried out under the same conditions as in Example 1 except that sludge was not returned from the settling tank to the denitrification tank. The nitrogen volume load (N) of the denitrification tank was 600 mg / L · d. As a result, MLSS (S) was 36 mg / L (S / N = 0.06d- 1 ).

この条件で運転すると、脱窒槽の担体1リットルあたりに存在するバクテリア量は1.1×1012個であり、担体に十分なバクテリアが増殖していた。しかしながら、脱窒槽のDOは1.5mg/L、ORPは+115mg/Lであり、脱窒に対して良好な条件とならなかった。その結果、処理水のBODは18mg/L、T−Nは123mg/Lであり、BODは処理されていたが、脱窒はできていなかった。余剰汚泥は1か月で1.5kg(乾燥重量)であり、非常に少なかった。 When operated under these conditions, the amount of bacteria present per liter of the carrier in the denitrification tank was 1.1 × 10 12 , and sufficient bacteria were grown on the carrier. However, the DO of the denitrification tank was 1.5 mg / L and the ORP was +115 mg / L, which were not good conditions for denitrification. As a result, the BOD of the treated water was 18 mg / L and the TN was 123 mg / L. Although the BOD was treated, denitrification was not possible. The excess sludge was 1.5 kg (dry weight) in one month, which was very small.

実施例2
図2に示す硝化−脱窒−再曝気フロー(硝化槽容量:500L、脱窒槽容量:250L、再曝気槽:150L)の装置を用いて排水処理試験を実施した。脱窒槽と硝化槽には上述したアセタール化ポリビニルアルコールゲル担体を槽容量の10%充填した。
Example 2
A wastewater treatment test was carried out using the device of the nitrification-denitrification-re-aeration flow (nitrification tank capacity: 500 L, denitrification tank capacity: 250 L, re-aeration tank: 150 L) shown in FIG. The denitrification tank and the nitrification tank were filled with the above-mentioned acetalized polyvinyl alcohol gel carrier at 10% of the tank capacity.

原水(BOD:15mg/L、総窒素(T−N):800mg/L)を、流量250L/dで硝化槽に連続的に流入させた。このとき、脱窒槽には水素供与体としてメタノールを600g/dで投入した。 Raw water (BOD: 15 mg / L, total nitrogen (TN): 800 mg / L) was continuously flowed into the nitrification tank at a flow rate of 250 L / d. At this time, methanol was charged into the denitrification tank at 600 g / d as a hydrogen donor.

脱窒槽の窒素容積負荷(N)が800mg/L・d及びMLSS(S)が800mg/L(S/N=1.0d-1)となるように沈殿槽から脱窒槽へ活性汚泥を返送(矢印C)した。また、再曝気槽には担体を投入せず、MLSSが2500mg/Lとなるように沈殿槽から汚泥返送した(図2の矢印D)。沈殿槽の汚泥増加分は余剰汚泥として引き抜いた。 Activated sludge is returned from the settling tank to the denitrification tank so that the nitrogen volume load (N) of the denitrification tank is 800 mg / L · d and the MLSS (S) is 800 mg / L (S / N = 1.0d- 1). Arrow C). Further, the carrier was not charged into the re-aeration tank, and the sludge was returned from the settling tank so that the MLSS was 2500 mg / L (arrow D in FIG. 2). The increased sludge in the settling tank was extracted as excess sludge.

この条件で運転すると、脱窒槽のDOは0.1mg/L未満であり、ORPは−145mVであり、脱窒に対して良好な条件となっていた。また、脱窒槽の担体1リットルあたりに存在するバクテリア量は9.2×1012個であり、担体に十分なバクテリアが棲息していた。その結果、処理水のBODは19mg/L、T−Nは4mg/Lで安定し、余剰汚泥は1か月で0.9kg(乾燥重量)と非常に少なかった。 When operated under these conditions, the DO of the denitrification tank was less than 0.1 mg / L and the ORP was -145 mV, which were good conditions for denitrification. In addition, the amount of bacteria present per liter of the carrier in the denitrification tank was 9.2 × 10 12 , and sufficient bacteria inhabited the carrier. As a result, the BOD of the treated water was stable at 19 mg / L, the TN was stable at 4 mg / L, and the excess sludge was very small at 0.9 kg (dry weight) in one month.

比較例3
図2に示す装置において、脱窒槽の窒素容積負荷(N)が800mg/L・d及びMLSS(S)が2400mg/L(S/N=3.0d-1)となるように沈殿槽から脱窒槽へ活性汚泥を返送した以外は、実施例2と同じ条件で排水処理を実施した。
Comparative Example 3
In the apparatus shown in FIG. 2, the nitrogen volume load (N) of the denitrification tank is 800 mg / L · d and the MLSS (S) is 2400 mg / L (S / N = 3.0 d- 1). Wastewater treatment was carried out under the same conditions as in Example 2 except that the activated sludge was returned to the nitrogen tank.

この条件で運転すると、脱窒槽のDOは0.1mg/L未満であり、ORPは−155mVであり、脱窒に対して良好な条件となっていた。しかし脱窒槽の担体1リットルあたりに存在するバクテリア量は1.2×10個であり、担体に十分なバクテリアが増殖していなかった。その結果、処理水のBODは20mg/L、T−Nは346mg/Lであり、BODは処理されていたが、脱窒はできていなかった。余剰汚泥は1か月で6.8kg(乾燥重量)であり、通常の活性汚泥並であった。 When operated under these conditions, the DO of the denitrification tank was less than 0.1 mg / L and the ORP was -155 mV, which were good conditions for denitrification. But bacteria amount present in the carrier per liter of the denitrification tank is 1.2 × 10 8 pieces, sufficient bacteria did not proliferate to the carrier. As a result, the BOD of the treated water was 20 mg / L and the TN was 346 mg / L. Although the BOD was treated, denitrification was not possible. The excess sludge weighed 6.8 kg (dry weight) in one month, which was comparable to that of normal activated sludge.

比較例4
図2に示す装置において、沈殿槽から脱窒槽への汚泥返送をしなかった以外は実施例2と同じ条件で排水処理を実施した。脱窒槽の窒素容積負荷(N)は800mg/L・dとした。その結果、MLSS(S)は40mg/Lとなった(S/N=0.05d-1)。
Comparative Example 4
In the apparatus shown in FIG. 2, wastewater treatment was carried out under the same conditions as in Example 2 except that sludge was not returned from the settling tank to the denitrification tank. The nitrogen volume load (N) of the denitrification tank was set to 800 mg / L · d. As a result, MLSS (S) was 40 mg / L (S / N = 0.05d- 1 ).

この条件で運転すると、脱窒槽の担体1リットルあたりに存在するバクテリア量は2.3×1012個であり、担体に十分なバクテリアが増殖していたが、脱窒槽のDOは1.2mg/L、ORPは+85mVであり、脱窒に対して良好な条件とならなかった。その結果、処理水のBODは21mg/L、T−Nは376mg/Lであり、BODは処理されていたが、脱窒はできていなかった。余剰汚泥は1か月で5.5kg(乾燥重量)であった。 When operated under these conditions, the amount of bacteria present per liter of the carrier in the denitrification tank was 2.3 × 10 12 , and sufficient bacteria were growing on the carrier, but the DO of the denitrification tank was 1.2 mg / L and ORP were +85 mV, which were not good conditions for denitrification. As a result, the BOD of the treated water was 21 mg / L and the TN was 376 mg / L. Although the BOD was treated, denitrification was not possible. The excess sludge was 5.5 kg (dry weight) in one month.

上記の実施例からも明らかなとおり、本発明の窒素含有排水の処理方法によれば担体の微生物増殖効果を保ったまま、脱窒条件を整えることができ、工業排水処理や下水処理において、良好な処理ができ工業的価値が高い。 As is clear from the above examples, according to the method for treating nitrogen-containing wastewater of the present invention, denitrification conditions can be adjusted while maintaining the microbial growth effect of the carrier, which is good for industrial wastewater treatment and sewage treatment. It can be processed and has high industrial value.

Claims (2)

担体に担持された脱窒菌と排水とを脱窒槽にて無酸素条件下で接触させる脱窒工程と、
前記脱窒槽から排出された処理水を硝化槽に導入し、該硝化槽にて好気性条件下で硝化菌と接触させる硝化工程と、
前記硝化槽から排出された処理水の一部を前記脱窒槽に循環する循環工程とを有し、
前記担体がポリビニルアルコールゲル担体であり、かつ
前記脱窒槽における窒素の容積負荷(N)(mg/L・d)及びMLSS(S)(mg/L)が下記式(1)を満たすように前記脱窒槽へ活性汚泥を投入することを特徴とする窒素含有排水の処理方法。
0.15(d−1)≦S/N≦1.7(d−1) (1)
A denitrification step of contacting with oxygen-free conditions and drainage and supported denitrification bacteria in the denitrification tank to the carrier,
A nitrification step of introducing the treated water discharged from the denitrification tank into a nitrification tank and bringing it into contact with nitrifying bacteria under aerobic conditions in the nitrification tank.
It has a circulation step of circulating a part of the treated water discharged from the nitrification tank to the denitrification tank.
The carrier is a polyvinyl alcohol gel carrier, and the volumetric load (N) (mg / L · d) and MLSS (S) (mg / L) of nitrogen in the denitrification tank satisfy the following formula (1). A method for treating nitrogen-containing wastewater, which comprises putting activated sludge into a denitrification tank.
0.15 (d -1 ) ≤ S / N ≤ 1.7 (d -1 ) (1)
排水を硝化槽にて好気性条件下で硝化菌と接触させる硝化工程と、
脱窒槽に水素供与体を添加する工程と、
前記硝化槽から排出された処理水を前記脱窒槽に導入し、担体に担持された脱窒菌と排水とを前記脱窒槽にて無酸素条件下で接触させる脱窒工程を有し、
前記担体がポリビニルアルコールゲル担体であり、かつ
前記脱窒槽における窒素の容積負荷(N)(mg/L・d)及びMLSS(S)(mg/L)が下記式(1)を満たすように前記脱窒槽へ活性汚泥を投入することを特徴とする窒素含有排水の処理方法。
0.15(d−1)≦S/N≦1.7(d−1) (1)
A nitrification process in which wastewater is brought into contact with nitrifying bacteria under aerobic conditions in a nitrification tank,
The process of adding a hydrogen donor to the denitrification tank and
The treated water discharged from the nitrification tank is introduced into the denitrification tank, and a drainage and denitrifying bacteria on a support and a denitrification step of contacting with oxygen-free conditions in the denitrification tank,
The carrier is a polyvinyl alcohol gel carrier, and the volumetric load (N) (mg / L · d) and MLSS (S) (mg / L) of nitrogen in the denitrification tank satisfy the following formula (1). A method for treating nitrogen-containing wastewater, which comprises putting activated sludge into a denitrification tank.
0.15 (d -1 ) ≤ S / N ≤ 1.7 (d -1 ) (1)
JP2016226111A 2016-11-21 2016-11-21 Treatment method of nitrogen-containing wastewater Active JP6832685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016226111A JP6832685B2 (en) 2016-11-21 2016-11-21 Treatment method of nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016226111A JP6832685B2 (en) 2016-11-21 2016-11-21 Treatment method of nitrogen-containing wastewater

Publications (2)

Publication Number Publication Date
JP2018083137A JP2018083137A (en) 2018-05-31
JP6832685B2 true JP6832685B2 (en) 2021-02-24

Family

ID=62237932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016226111A Active JP6832685B2 (en) 2016-11-21 2016-11-21 Treatment method of nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP6832685B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136902B2 (en) * 1994-05-30 2001-02-19 日本鋼管株式会社 Wastewater treatment method
JP2001198595A (en) * 2000-01-19 2001-07-24 Nippon Steel Corp Method for treating sewage
WO2006009125A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP2010207657A (en) * 2009-03-06 2010-09-24 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and wastewater treatment method
JP5355314B2 (en) * 2009-09-09 2013-11-27 オルガノ株式会社 Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus

Also Published As

Publication number Publication date
JP2018083137A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
Leyva-Díaz et al. Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal
JP4284700B2 (en) Nitrogen removal method and apparatus
TWI449675B (en) System and method for treating waste water containing ammonia
JP5098183B2 (en) Waste water treatment method and apparatus
JP6532314B2 (en) Biological nitrogen removal method and apparatus for treating nitrogen containing wastewater
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP4817057B2 (en) Batch treatment of nitrogen-containing water
JP6832685B2 (en) Treatment method of nitrogen-containing wastewater
JP2000218290A (en) Sewage treatment and sewage treating device
JP2004305816A (en) Nitrification method and apparatus, and waste water treatment equipment
JPH07313992A (en) Treatment of sewage
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
JPH09299988A (en) Nitrificating and denitrificating method and device therefor
JP6461408B1 (en) Water treatment method and water treatment apparatus
WO2016067970A1 (en) Carrier for inclusive immobilization and wastewater treatment device using same
JP2007237144A (en) Nitrogen containing water treatment process and arrangement
JP6811360B2 (en) Water treatment method
JP2023023108A (en) Wastewater treatment method, wastewater treatment apparatus, and carrier for wastewater treatment
JP3858271B2 (en) Wastewater treatment method and apparatus
JP5558866B2 (en) Water treatment apparatus and water treatment method
WO2019198803A1 (en) Wastewater treatment method
JPS59199098A (en) Treatment of organic filthy water
JP7268860B2 (en) Culture method, culture device, wastewater treatment method and wastewater treatment device
WO2021182603A1 (en) Wastewater treatment method
JPS62225296A (en) Biological nitrification and denitrification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150