JP6829753B1 - 学習済モデル生成装置及びプログラム - Google Patents

学習済モデル生成装置及びプログラム Download PDF

Info

Publication number
JP6829753B1
JP6829753B1 JP2019207629A JP2019207629A JP6829753B1 JP 6829753 B1 JP6829753 B1 JP 6829753B1 JP 2019207629 A JP2019207629 A JP 2019207629A JP 2019207629 A JP2019207629 A JP 2019207629A JP 6829753 B1 JP6829753 B1 JP 6829753B1
Authority
JP
Japan
Prior art keywords
solar panel
data
learning
trained model
feature amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019207629A
Other languages
English (en)
Other versions
JP2021081891A (ja
Inventor
竜平 濱口
竜平 濱口
里保 伊東
里保 伊東
保成 森田
保成 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2019207629A priority Critical patent/JP6829753B1/ja
Application granted granted Critical
Publication of JP6829753B1 publication Critical patent/JP6829753B1/ja
Publication of JP2021081891A publication Critical patent/JP2021081891A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】より精度よくソーラーパネルを特定可能な学習済モデルを生成する学習済モデル生成装置及びプログラムを提供する。【解決手段】学習済モデル生成装置は、入力された上空からの撮影画像からソーラーパネルを検出して出力する学習済モデルを生成する生成手段を備える。生成手段は、ソーラーパネルに係る特徴及びソーラーパネル付構造物に係る特徴の学習を行う。【選択図】図2

Description

この発明は、学習済モデル生成装置及びプログラムに関する。
上空から俯瞰撮影された画像データから家屋やソーラーパネルなどの構造物を抽出して、構造物のエリアや面積を特定し、家屋図を生成したり、各種評価などを行ったりする技術がある。特許文献1には、建物の特定精度を向上させるために、畳み込みニューラルネットワーク(CNN)を用いた建物抽出用学習モデルにおいて、プーリングを用いずに複数段の拡張畳み込み層を有する学習済モデルを利用する技術について開示されている。
特開2019−28657号公報
しかしながら、画像データから学習済モデルを用いて地上のソーラーパネルを抽出、特定する場合、ソーラーパネルが建築物といった他の構造物に付設されていると、当該他の構造物との区別がつきにくく、精度よくソーラーパネルを検出することができないという課題がある。
この発明の目的は、より精度よくソーラーパネルを特定可能な学習済モデルを生成する学習済モデル生成装置及びプログラムを提供することにある。
上記目的を達成するため、本開示は、
入力された上空からの撮影画像からソーラーパネルを検出して出力する学習済モデルを生成する生成手段を備え、
前記生成手段は、ソーラーパネルに係る特徴及びソーラーパネルの設置構造物に係る特徴の学習を行う
ことを特徴とする学習済モデル生成装置である。
本開示によれば、生成された学習済モデルにより、より精度よくソーラーパネルを特定することができるという効果がある。
処理装置の機能構成を示すブロック図である。 ソーラーパネル位置データについて説明する図である。 ソーラーパネル検出に係る機械学習モデルの学習処理の流れを示す図である。 第2教師データがない場合の学習の流れを説明する図である。 ソーラーパネル検出モデル学習処理の制御手順を示すフローチャートである。 学習済モデルを用いたソーラーパネルの検出処理の制御手順を示すフローチャートである。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態の学習済モデル生成装置である処理装置1の機能構成を示すブロック図である。
処理装置1は、通常のコンピュータ(PC)であってよい。処理装置1は、制御部11と、記憶部12と、入出力インターフェイス13(I/F)と、操作受付部14と、表示部15などを備える。
制御部11は、各種演算処理を行うプロセッサであり、例えば、CPU(Central Processing Unit)などを備える。CPUは、記憶部12からプログラムなどを読み込んで実行することで各種制御処理を行う。
記憶部12は、各種データを記憶するメモリである。メモリには、RAMと不揮発性メモリとが含まれる。RAMは、CPUに作業用のメモリ空間を提供し、一時データを記憶する。不揮発性メモリは、プログラム、設定データ及びソーラーパネルの検出結果のデータなどを記憶保持する。不揮発性メモリにはフラッシュメモリが含まれ、あるいは、これに代えて又は加えてHDD(Hard Disk Drive)などが含まれてもよい。また、初期制御プログラムなどは、ROM(Read Only Memory)に格納されていてもよい。プログラムには、後述のソーラーパネル検出処理に係るソーラーパネル学習モデル123の機械学習に係るプログラム121(学習済モデルの生成プログラム)、構造物検出用の構造物検出学習済モデル122、及び学習前のソーラーパネル学習モデル123が含まれる。
構造物検出学習済モデル122は、撮影画像データ203から構造物の部分とその外と(内外)を判別する機械学習済モデルである。構造物検出学習済モデル122は、撮影画像における各画素(各単位領域)が構造物の部分であるか否かをそれぞれ示す2値データを出力する。なお、構造物は、家屋や倉庫などの建築物が最低限特定されるものであってよく、これらに加えて塀、門、モニュメントや各種土木建造物などが特定可能であってもよい。
ソーラーパネル学習モデル123は、撮影画像データ203からソーラーパネルを判別するための機械学習済モデルを生成する前のアルゴリズム(構造)設定がなされた元データである。
入出力インターフェイス13は、周辺機器と接続するための接続端子131及び外部機器との間で信号の送受信を行うための通信部132などを備える。周辺機器としては、大型の補助記憶装置、例えば、データベース装置21、並びにCDROM、DVD及びBlu−ray(登録商標)などの可搬型記憶媒体(光学ディスク)を読み取る光学読取装置22などが挙げられる。また、可搬型記憶媒体に磁気テープが含まれ、この磁気テープを読み取る読取装置が周辺機器に含まれてもよい。接続端子には、USB(Universal Serial Bus)など各種規格に応じたものが含まれてよい。あるいは、LAN(Local Area Network)などのネットワーク回線を介して通信部が外部から取得するものであってもよい。データベース装置21及び/又は可搬型記憶媒体に記憶されたデータには、ソーラーパネル位置範囲データ201、ソーラーパネル位置データ202、及び撮影画像データ203などが含まれる。
撮影画像データ203は、上空から俯瞰して(見下ろして)撮影された航空写真及び衛星写真などの光学撮影画像のデータである。これらのデータは、オルソ補正がなされた画像(オルソ画像)であってもよい。撮影画像データ203には、ソーラーパネル学習モデル123の学習に用いられる撮影画像データが含まれる。学習用の撮影画像データは、例えば、1〜数軒(棟)程度の建物が含まれる範囲のものである。光学撮影は、主に可視光によって行われるが、赤外線などの可視光外が含まれていても/であってもよい。
ソーラーパネル位置範囲データ201は、撮影画像におけるソーラーパネルの位置及びその範囲を示すデータであり、ソーラーパネル学習モデル123の教師データとして用いられる。ソーラーパネルの形状は、例えば、担当者が学習用の撮影画像を目視で判定して輪郭を入力操作することなどにより決定される。ソーラーパネル位置範囲データ201は、上記学習用の撮影画像データの一部に対応したものである。
ソーラーパネル位置データ202は、学習用の撮影画像データに含まれる各構造物のうち、屋上や壁面などにソーラーパネルが設けられている構造物を識別するデータである。ここでは、各構造物の範囲内の任意の点が指定されることで、当該構造物のどこかにソーラーパネルが設けられていることが示される。
図2は、ソーラーパネル位置データ202について説明する図である。
図2(a)に示すように、学習用の撮影画像データ203に建物H1〜H5(構造物)が写っており、このうち建物H1にソーラーパネルP1、P2が設けられ、また、建物H2にソーラーパネルP3が設けられている。建物H3〜H5には、ソーラーパネルが設けられていない。
図2(b)に示すように、ソーラーパネル位置データ202は、ソーラーパネルP1〜P3の位置を点L1〜L3で示している。点L1〜L3は、ソーラーパネルP1〜P3の範囲内のいずれか任意の点を示していればよい。
図2(c)に示すように、建物H1〜H5の範囲が建物範囲AH1〜AH5として示されている構造物範囲のデータと、ソーラーパネル位置データ202とを位置合わせし、点L1〜L3が内部に含まれる建物範囲AH1、AH2を検出されることで、図2(d)のように、ソーラーパネルP1〜P3が設けられた建物H1、H2の範囲が特定される。ここでの構造物範囲のデータは、建物の位置及びその範囲を示すデータである。
操作受付部14は、例えば、キーボードやマウスなどの入力デバイスを備え、ユーザなど外部からの入力操作を受け付ける。入力デバイスには、タッチパネル(タッチセンサ)などが含まれていてもよい。
表示部15は、制御部11の制御により表示画面にメニュー、ステータス及び処理結果などの表示を行わせる。表示画面は、特には限られないが、例えば、液晶表示画面である。操作受付部14がタッチパネルを有する場合には、表示画面は、当該タッチパネル(タッチセンサ)と重ねて設けられる。
次に、ソーラーパネルの検出について説明する。
本実施形態の処理装置1では、入力された上空からの撮影画像からソーラーパネルを検出して出力するモデルを機械学習させて学習済モデルを生成し、当該学習済モデルを用いてソーラーパネルを検出する。このとき、機械学習時に種々のソーラーパネルを単純に学習させただけでは、建物などの他の構造物(設置構造物)に付設されているソーラーパネルの検出精度が、地上などに単独で配置されたソーラーパネルと比較して低下する。そこで、処理装置1では、設置構造物のソーラーパネルについては、異なる方法で学習が行われる。
図3は、本実施形態のソーラーパネル検出に係る機械学習モデルの学習処理の流れを示す図である。
上述のように、この機械学習モデルでは、学習用の撮影画像データ203が入力データであり、撮影画像データ203に対応するソーラーパネル位置範囲データ201は、第2教師データとして定められる。また、撮影画像203に対応するソーラーパネル位置データ202は、第1教師データの生成に用いられるデータである。
ここでは、撮影画像データ203は、構造物検出学習済モデル122に入力されて、構造物範囲が特定される(PR1)。特定された構造物範囲のデータ(構造物データ)が示す構造物の位置及び形状(範囲)と、ソーラーパネル位置データ202(ポイントデータ)が示すソーラーパネル内の位置とを重ね合わせて、ソーラーパネル(上記ポイント)を内部に含む構造物範囲内をソーラーパネル付構造物範囲として特定する(PR2;教師データ生成手段)。このソーラーパネル付構造物範囲のデータは、第1教師データとして定められる。また、PR1で特定された構造物範囲のデータは、第3教師データとして定められる。
一方で、撮影画像データ203は、ソーラーパネル学習モデル123に入力されて、CNN(畳み込みニューラルネットワーク)などにより多次元の全体特徴量(共通特徴量)を算出する(PR3;算出手段)。全体特徴量は、ここでは、構造物の特徴、ソーラーパネルに係る特徴及びソーラーパネル付構造物(設置構造物)に係る特徴をそれぞれ含む共通のパラメータである。すなわち、全体特徴量が示す特徴は、ソーラーパネル、建物などの構造物、及びソーラーパネルを有する構造物の共通のものであり、これら3つの間で互いに関係がある特徴と、各々他とは関係のない特徴とが混在する。CNNの段数や全体特徴量の次元数は、適宜定められてよい。算出された全体特徴量は、更に第2〜第4のCNNに入力されて、第2のCNNでは、構造物特徴量が算出され(PR4)、第3のCNNでは、ソーラーパネル特徴量(個別特徴量)が算出され(PR5)、第4のCNNでは、ソーラーパネル付構造物特徴量が算出される(PR6)。第2〜第4のCNNの段数や次元数は各々別個に定められてよい。これらPR4〜PR6で得られた3つの特徴量は、上記全体特徴量から対応するソーラーパネル、ソーラーパネル付構造物及び構造物の特徴のみを抽出したものであり、他の影響(すなわちノイズとなる成分)が低減される。
構造物特徴量の画素ごとに、各次元の値を重み付け結合(全結合)して、各画素が構造物である確率の分布を算出(構造物の範囲を推定)する(PR7)。また、ソーラーパネル特徴量を画素ごとに全結合して、各画素が各々ソーラーパネルである確率を算出(ソーラーパネルの範囲を推定)する(PR8)。また、ソーラーパネル付構造物特徴量を画素ごとに全結合して、各画素がソーラーパネル付構造物である確率を算出(設置構造物の範囲を推定)する(PR9)。
PR5及びPR8の処理が、本実施形態の推定手段を構成する。PR6及びPR9の処理は、本実施形態の設置構造物推定手段を構成する。
すなわち、本実施形態の処理装置1では、ソーラーパネルの検出に係る機械学習モデルの学習(生成手段としての動作)において、出力対象となるソーラーパネルの特徴の学習だけではなく、ソーラーパネルが設けられる構造物(設置構造物)の特徴の学習を併せて行うことで、他の構造物に設けられたソーラーパネルについてもより精度よく検出することが可能となる。
PR7で得られた構造物の確率分布と構造物範囲のデータ(第3教師データ)とが比較されて、損失関数が求められる。損失関数は、畳み込みのフィルタに係る各係数や全結合に係る重み付け係数などの各パラメータ(係数)にフィードバックされ、当該パラメータが更新されることにより学習がなされる。PR8で得られたソーラーパネルの確率分布と第2教師データであるソーラーパネル位置範囲データ201とが比較されて、損失関数が求められる。損失関数は、上記各パラメータにフィードバックされ、当該パラメータが更新されることにより学習がなされる。また、PR9で得られたソーラーパネル付構造物である確率データが第1教師データと比較されて(に基づいて)、損失関数が求められる。損失関数は、上記各パラメータにフィードバックされて、当該パラメータが更新されることにより学習がなされる(PR10;反映手段)。フィードバックは、誤差逆伝播法など周知の方法でなされればよい。
本実施形態の処理装置1では、ソーラーパネルを含む複数の撮影画像データ203(複数のソーラーパネル)の一部のみに対し、ソーラーパネル位置範囲データ201が用意される。すなわち、ソーラーパネル位置範囲データ201がない場合の教師データは、ソーラーパネル位置データ202から生成される第1教師データと、撮影画像データ203から生成される第3教師データのみとなる。
図4は、第2教師データがない場合の学習の流れを説明する図である。
上述のように、ソーラーパネル位置範囲データ201のソーラーパネル学習モデル123への入力がない場合には、比較の対象となるソーラーパネル特徴量と確率算出に係るPR8の処理は、PR10の処理につなげられない。なお、先にソーラーパネル位置範囲データ201の入力有無が判定されて、判定結果に応じてPR8の処理自体が省略されてもよい。この場合には、PR9の処理で求められたソーラーパネル付構造物の確率分布と、PR2の処理に基づいて入力されたソーラーパネル付構造物の第1教師データとの比較に基づく損失関数の算出及びフィードバック処理、並びにPR7の処理で求められた構造物の確率分布と、PR1の処理に基づいて入力された構造物の第3教師データとの比較に基づく損失関数の算出及びフィードバック処理がなされればよい。
上述のように、一部の学習用の撮影画像データ203に対して第2教師データであるソーラーパネル位置範囲データ201がない場合でも、ソーラーパネルを有する構造物の判別が改良される。一般的に、構造物内にソーラーパネルがあるか否かのみを特定する手間は、当該ソーラーパネルの輪郭を特定する手間よりもはるかに少なくてよいので、ソーラーパネル学習モデルの学習に用いられる学習データを準備する手間を大きく低減させることができる。
ソーラーパネル位置範囲データ201がある学習とない学習との順序は、ランダムで適宜混在して並べられるとよい。一方ずつに偏って並ぶと、学習にバイアスがかかりやすい。
なお、構造物が有するソーラーパネルではない場合には、上記実施形態で示した方法での学習ができないので、通常通りソーラーパネルの範囲データを教師データとして、撮影画像データからソーラーパネルの特徴量を算出し、教師データとの間のずれに応じた損失関数に基づいてフィードバックさせることで学習が行われる。
図5は、本実施形態のソーラーパネル検出モデル学習処理の制御部11による制御手順を示すフローチャートである。この処理は、制御部11の生成手段としての動作の実施形態であり、例えば、操作受付部14により受け付けられた開始命令に応じて開始される。
ソーラーパネル検出モデル学習処理が開始されると、制御部11は、学習用の撮影画像データ203を取得する(ステップS101)。学習用の撮影画像データ203には、ソーラーパネルが含まれている画像データと含まれていない画像データとが複数枚ずつ含まれる。制御部11は、取得した撮影画像データ203の画像データを1つ選択して構造物検出学習済モデル122に入力させて、構造物確率分布を取得する(ステップS102;上記PR1の処理に対応)。
制御部11は、取得された構造物確率分布データを第3教師データとして設定する(ステップS103)。制御部11は、構造物確率分布データの構造物確率分布と、ソーラーパネル位置データ202のソーラーパネル位置とを重ねて、ソーラーパネルを有する構造物及びその形状を特定する(ステップS104;上記PR2の処理(教師データ生成手段)に対応)。
制御部11は、当該構造物の形状データを第1教師データとして設定する(ステップS105)。制御部11は、同構造物が有するソーラーパネルに係るソーラーパネル位置範囲データ201を第2教師データとして設定する(ステップS106)。なお、選択されている撮影画像データに対応するソーラーパネル位置範囲データ201がない場合には、制御部11は、ステップS106の処理を省略するか、又は第2教師データがない旨の設定を行う。
制御部11は、選択されている撮影画像データ203をソーラーパネル学習モデル123に入力し、第1のCNNにより全体特徴量を算出する(ステップS107;上記PR3の処理(算出手段)に対応)。制御部11は、得られた全体特徴量を第2〜第4のCNNに入力して、それぞれ、ソーラーパネルの特徴量SP、ソーラーパネルを有する構造物の特徴量SB、及び構造物の特徴量Bを算出する(ステップS108;上記PR4〜PR6の各処理に対応)。
制御部11は、特徴量SPを画素ごとに全結合して、撮影画像の各画素位置がソーラーパネルである確率の分布を算出する。制御部11は、特徴量SBを画素ごとに全結合して、撮影画像の各画素位置がソーラーパネル付構造物である確率の分布を算出する。制御部11は、特徴量Bを画素ごとに全結合して、撮影画像の各画素位置が構造物である確率の分布を算出する(ステップS109;上記PR7〜PR9の各処理に対応)。
制御部11は、得られた構造物確率分布と第3教師データとを比較して、損失関数を算出する。制御部11は、この損失関数をソーラーパネル学習モデル123における畳み込みのフィルタに係る各係数や全結合に係る重み付け係数などの各パラメータにフィードバックさせて当該パラメータを更新する(ステップS110)。制御部11は、得られたソーラーパネル付構造物確率分布と第1教師データとを比較して、損失関数を算出する。制御部11は、この損失関数をソーラーパネル学習モデル123の上記各パラメータへフィードバックさせて当該パラメータを更新する(ステップS111)。
制御部11は、第2教師データが設定されているか否かを判別する(ステップS112)。設定されていると判別された場合には(ステップS112で“YES”)、制御部11は、得られたソーラーパネル確率分布と第2教師データとを比較して、損失関数を算出し、ソーラーパネル学習モデル123の上記各パラメータへフィードバックさせる(ステップS113)。それから、制御部11の処理は、ステップS114へ移行する。第2教師データが設定されていないと判別された場合には(ステップS112で“NO”)、制御部11の処理は、ステップS114へ移行する。ステップS110〜S113の各処理は、上記のPR10の処理(反映手段)に対応する。
ステップS114の処理へ移行すると、制御部11は、全ての学習用の撮影画像データが選択、取得されたか否かを判別する(ステップS114)。取得されていない学習用の撮影画像データがあると判別された場合には(ステップS114で“NO”)、制御部11の処理は、ステップS101に戻る。全ての学習用の撮影画像データが取得されたと判別された場合には(ステップS114で“YES”)、制御部11は、学習させていたソーラーパネル学習モデル123を学習済モデルとして確定し(ステップS115)、ソーラーパネル検出モデル学習処理を終了する。
図6は、学習済モデルを用いたソーラーパネルの検出処理の制御部11による制御手順を示すフローチャートである。このソーラーパネル検出処理は、操作受付部14への所定の入力操作などに応じて開始される。
制御部11は、ソーラーパネルの検出対象の撮影画像データを取得する(ステップS201)。制御部11は、学習済モデルにソーラーパネル検出対象の撮影画像データを入力し、CNNにより全体特徴量を算出する(ステップS202)。
制御部11は、全体特徴量を第3のCNNに入力して、ソーラーパネルの特徴量SPを算出する(ステップS203)。制御部11は、ソーラーパネルの特徴量SPを画素ごとに全結合してソーラーパネルの確率分布を算出する(ステップS204)。制御部11は、確率分布を適宜な基準で2値化することにより、ソーラーパネルの有無及び範囲を特定する。制御部11は、特定されたソーラーパネルの範囲を検出結果として出力する(ステップS205)。そして、制御部11は、ソーラーパネル検出処理を終了する。
すなわち、このソーラーパネル検出処理では、上記学習時にパラメータの更新がなされた構造物の特徴量Bの算出及びソーラーパネル付構造物の特徴量SBの算出は行われない。ソーラーパネルの検出は、通常の学習及び上記の学習の組合せにより、構造物が有する場合にも、従来通り構造物とは別個の場合でも、精度よく可能となる。
以上のように、本実施形態の処理装置1は、制御部11を備える。制御部11は、生成手段として、入力された上空からの撮影画像からソーラーパネルを検出して出力する学習済モデルを生成する。制御部11は、生成手段として、ソーラーパネルに係る特徴及びソーラーパネルの設置構造物に係る特徴の学習を行う。
このように、ソーラーパネルの検出に係る学習済モデルの生成、すなわち機械学習において、単にソーラーパネルの教師データに基づく学習を行うだけでなく、ソーラーパネルを有する建築物などの構造物の学習を行わせる。そして、この学習により得られた学習済モデルを利用することで、他の構造物に設けられたソーラーパネルをより精度よく検出することができる。都市部を中心に、屋上に設けられるソーラーパネルが数多く存在するので、これらをより正確に検出することが可能になる。
また、制御部11は、算出手段として、撮影画像から、ソーラーパネルに係る特徴と、設置構造物に係る特徴とを含む全体特徴量を算出し、反映手段として、全体特徴量に基づいて設置構造物を検出し、当該検出の結果と、設置構造物に係る第1教師データ(ソーラーパネル付構造物範囲データ)とに基づいて学習を行う。
すなわち、CNNにより求められる特徴量は、ソーラーパネルの特徴だけではなくソーラーパネル付構造物の特徴を含み、予め得られたソーラーパネル付き構造物範囲データを教師データとして各パラメータ(特徴)を学習させていくので、ソーラーパネルが他の構造物に設けられている場合に、当該構造物をソーラーパネルが設けられていない構造物とより正確に識別可能になる。
また、制御部11は、推定手段として、全体特徴量からソーラーパネル特徴量を算出し、このソーラーパネル特徴量に基づいてソーラーパネルの位置範囲を推定する。そして、制御部11は、反映手段として、複数のソーラーパネルのうち一部に係る教師データであるソーラーパネル位置範囲データ201と推定手段として推定したソーラーパネルの位置範囲とに基づいて学習を行わせる。
このように、ソーラーパネル付構造物に係る学習を行うことで、ソーラーパネル自体に係る学習を一部省略しても、従来よりも高い精度で他の構造物に設けられたソーラーパネルの特定を行うことができる。ソーラーパネル付構造物の特定は、ソーラーパネルの位置範囲、すなわち輪郭を特定するよりもはるかに容易な処理で可能なので、より容易に学習データ及び対応する教師データを増大させることができ、これにより検出精度を向上させることができる。
また、全体特徴量から更にソーラーパネル付き構造物特徴量と、ソーラーパネル特徴量とを各々算出して区分することで、各特徴量における他のパラメータの影響の多寡に伴うノイズを低減させることができる。
また、制御部11は、教師データ生成手段として、構造物の位置及び形状を示す構造物データから、ソーラーパネルを示すポイントデータが示す位置を内部に含む構造物を特定して当該構造物に係る教師データを第1教師データとして生成する。すなわち、ソーラーパネルの位置を示すデータとして、撮影画像上のソーラーパネル上に順次点を打ってゆき、ソーラーパネル位置データ202を準備さえすれば、従来技術に基づいて容易に取得可能な構造物の位置範囲データと対応付けることで簡便にソーラーパネル付構造物範囲のデータが得られるので、教師データの準備の手間を容易に軽減させつつ、精度よく他の構造物に設けられたソーラーパネルを検出可能な学習済モデルを得ることができる。
また、本実施形態のプログラム121は、コンピュータである処理装置1を、入力された上空からの撮影画像からソーラーパネルを検出して出力する学習済モデルを生成する生成手段として機能させ、生成手段は、ソーラーパネルに係る特徴及びソーラーパネルの設置構造物に係る特徴の学習を行う。
このようなプログラムにより、通常のコンピュータでソフトウェア的に、より精度よくソーラーパネルを検出可能な学習済モデルを容易に得ることが可能になる。
なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施の形態では、ソーラーパネル位置範囲データ201は、学習対象のソーラーパネルの一部に対してのみ用意されるものとして説明したが、全てのソーラーパネルに対して用意されてもよい。
また、上記実施の形態では、構造物の特徴量B及び構造物である確率も併せて算出するものとして説明したが、これらは省略されてもよい。
また、上記実施の形態では、全体特徴量から構造物、ソーラーパネルの特徴量SP及びソーラーパネル付構造物の特徴量SBを算出しなおしてから、各々の範囲を算出するものとして説明したが、全体特徴量から直接これらの範囲の一部又は全部が算出されてもよい。
また、上記実施の形態では、撮影画像データ203を構造物検出学習済モデル122に入力して構造物範囲を特定したが、予め別途家屋図などの構造物範囲が特定されたデータが生成保持されている場合には、PR1、ステップS102の処理を省略して、このデータを直接第3教師データとして利用してよい。
また、上記実施の形態では、構造物検出学習済モデル122により構造物であるか否かを各画素について出力するものとして説明したが、構造物の輪郭を出力する学習済モデルであってもよい。この場合には、ソーラーパネル位置データ202が示す点(ポイントデータ)がどの輪郭内にあるかを判別する処理が行われて、ソーラーパネルが設けられた構造物が特定されればよい。
また、上記実施の形態では、ソーラーパネルが設けられる構造物を一括して取り扱ったが、構造物の種別、例えば、一軒家、集合住宅、倉庫や工場などに応じて各々別個にソーラーパネル付構造物の特徴量SBが算出されてもよい。この場合、例えば、構造物範囲を特定する家屋図などに構造物の種別の情報が付加されていれば、この付加情報を利用して種別ごとの分類を行ってもよい。
また、上記実施の形態では、全体特徴量及び個別の各特徴量の算出にCNNを利用することとして説明したが、これに限られない。適切な他のアルゴリズムを用いてもよい。また、全体特徴量の算出と、個別の各特徴量の算出とは、互いに異なるアルゴリズムが利用されていてもよい。
また、上記実施の形態では、処理装置1がソーラーパネル検出用の機械学習モデルの学習と、学習済モデルの利用とを両方行うものとして説明したが、同一のコンピュータで両方とも行われる必要はない。生成された学習済モデルは、他のコンピュータなどにコピーされて利用されてもよい。
また、上記実施の形態では、1つの学習済モデルにより、構造物に設けられたソーラーパネルと独立したソーラーパネルとをまとめて検出可能としたが、これに限られない。構造物に設けられたソーラーパネルの検出に特化した学習済モデルと、従来のソーラーパネル検出に係る学習済モデルとを併用し、ソーラーパネルの位置範囲に対応して構造物が存在しているか否かに基づいて、どちらの学習済モデルの結果を優先するかを定めてもよい。また、構造物、特に建築物に設けられたソーラーパネルのみを抽出したい場合などにも、構造物に設けられたソーラーパネルの検出に特化した学習済モデルが用いられてもよい。これらの場合、上記実施形態のようにソーラーパネルの検出を行うだけでなく、ソーラーパネル付構造物の検出を併せて行ってもよい。
また、上記実施の形態では、プログラム121により制御部11が実行するソーラーパネル検出モデル学習処理により、ソーラーパネル学習モデル123内の処理であるステップS107〜S113の処理も実行制御されたが、これらの処理がソーラーパネル学習モデル123内で自律的に行われる場合には、制御部11は、撮影画像データ及び各教師データをソーラーパネル学習モデル123に入力して、プログラム121外で当該ソーラーパネル学習モデル123の学習動作を行い、各処理の終了後にプログラム121の実行制御に戻ってステップS114の処理を行ってもよい。すなわち、制御部11による各処理の制御は、別個の2つのプログラムが並行してやり取りされながら行われてもよい。また、制御部11は、単一のCPUを有しているものに限られない。複数のCPUが各処理を分担して行ってもよい。分担は、プログラム121の処理とソーラーパネル学習モデル123の処理とで完全に独立していてもよいし、負荷などに応じて動的にいずれかに割り当てられてもよい。
また、上記実施の形態では、プログラム121が不揮発性メモリ又はHDDなどの記憶部12に記憶されるものとして説明したが、これに限られない。プログラム121は、CDROM、DVD、又はBlu−rayなどの光学ディスクといった可搬型記憶媒体に記憶されてよい。また、本発明に係るプログラムのデータを通信回線を介して提供する媒体として、キャリアウェーブ(搬送波)も本発明に適用される。
その他、上記実施の形態で示した構成、制御内容及びその手順などは、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
1 処理装置
11 制御部
12 記憶部
121 プログラム
122 構造物検出学習済モデル
123 ソーラーパネル学習モデル
13 入出力インターフェイス
131 接続端子
132 通信部
14 操作受付部
15 表示部
21 データベース装置
22 光学読取装置
201 ソーラーパネル位置範囲データ
202 ソーラーパネル位置データ
203 撮影画像データ

Claims (5)

  1. 入力された上空からの撮影画像からソーラーパネルを検出して出力する学習済モデルを生成する生成手段を備え、
    前記生成手段は、ソーラーパネルに係る特徴及びソーラーパネルの設置構造物に係る特徴の学習を行う
    ことを特徴とする学習済モデル生成装置。
  2. 前記生成手段は、
    前記撮影画像から、前記ソーラーパネルに係る特徴と、前記設置構造物に係る特徴とを含む共通特徴量を算出する算出手段と、
    前記共通特徴量に基づいて前記設置構造物を検出し、当該検出の結果と、前記設置構造物に係る第1教師データとに基づいて前記学習を行う反映手段と、
    を有することを特徴とする請求項1記載の学習済モデル生成装置。
  3. 前記生成手段は、前記共通特徴量から前記ソーラーパネルに係る個別特徴量を算出し、当該個別特徴量に基づいて前記ソーラーパネルの位置範囲を推定する推定手段を備え、
    前記反映手段は、複数の前記ソーラーパネルのうち一部に係る第2教師データと前記推定手段が推定した前記ソーラーパネルの位置範囲とに基づいて前記学習を行わせる
    ことを特徴とする請求項2記載の学習済モデル生成装置。
  4. 構造物の位置及び形状を示す構造物データから、ソーラーパネルを示すポイントデータが示す位置を内部に含む前記構造物を特定して前記第1教師データを生成する教師データ生成手段を備えることを特徴とする請求項3記載の学習済モデル生成装置。
  5. コンピュータを、
    入力された上空からの撮影画像からソーラーパネルを検出して出力する学習済モデルを生成する生成手段として機能させ、
    前記生成手段は、ソーラーパネルに係る特徴及びソーラーパネルの設置構造物に係る特徴の学習を行う
    ことを特徴とするプログラム。
JP2019207629A 2019-11-18 2019-11-18 学習済モデル生成装置及びプログラム Active JP6829753B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019207629A JP6829753B1 (ja) 2019-11-18 2019-11-18 学習済モデル生成装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019207629A JP6829753B1 (ja) 2019-11-18 2019-11-18 学習済モデル生成装置及びプログラム

Publications (2)

Publication Number Publication Date
JP6829753B1 true JP6829753B1 (ja) 2021-02-10
JP2021081891A JP2021081891A (ja) 2021-05-27

Family

ID=74529687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207629A Active JP6829753B1 (ja) 2019-11-18 2019-11-18 学習済モデル生成装置及びプログラム

Country Status (1)

Country Link
JP (1) JP6829753B1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058044A1 (en) * 2016-09-23 2018-03-29 Aon Benfield Inc. Platform, systems, and methods for identifying property characteristics and property feature maintenance through aerial imagery analysis
JP6362750B1 (ja) * 2017-09-13 2018-07-25 株式会社エネルギア・コミュニケーションズ 異常箇所検出システム
JP2019196980A (ja) * 2018-05-09 2019-11-14 株式会社センシンロボティクス 検査システム

Also Published As

Publication number Publication date
JP2021081891A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US11422261B2 (en) Robot relocalization method and apparatus and robot using the same
US11551134B2 (en) Information processing apparatus, information processing method, and storage medium
CN112793564B (zh) 一种基于全景鸟瞰图和深度学习的自主泊车辅助系统
JP6808787B1 (ja) 建物変化識別装置及びプログラム
US20230394808A1 (en) Image processing system, image processing method, and program storage medium
TWI438719B (zh) 檢測用資訊登錄裝置、電子機器、檢測用資訊登錄裝置的控制方法、電子機器的控制方法、檢測用資訊登錄裝置控制程式、電子機器的控制程式
JP2020030786A (ja) 建築物レンダリング及びビルディングインフォメーションモデリングデータの機械学習システム
US20220284609A1 (en) Image analysis
US9202135B2 (en) Image processing device, image processing method, control program, and recording medium
JP7085812B2 (ja) 画像処理装置およびその制御方法
CN113012054B (zh) 基于抠图的样本增强方法和训练方法及其系统和电子设备
JP2014182516A (ja) 樹種識別装置及び樹種識別方法
CN113537070B (zh) 一种检测方法、装置、电子设备及存储介质
KR102568996B1 (ko) 감시카메라 설정 방법과 감시카메라 관리 방법 및 시스템
CN110910445A (zh) 一种物件尺寸检测方法、装置、检测设备及存储介质
CN110705338A (zh) 车辆检测方法、装置及监控设备
CN113282215A (zh) 一种rpa系统中基于目标检测技术的ui元素拾取方法和系统
US8552862B2 (en) System and method for detecting multi-level intrusion events and computer program product thereof
CN117115784A (zh) 目标数据融合的车辆检测方法及检测装置
JP6829753B1 (ja) 学習済モデル生成装置及びプログラム
CN112013820B (zh) 一种面向无人机机载平台部署的实时目标检测方法及装置
CN103310222A (zh) 图像处理器及图像处理方法
US11836960B2 (en) Object detection device, object detection method, and program
Kostoeva et al. Indoor 3D interactive asset detection using a smartphone
CN113052907A (zh) 一种动态环境移动机器人的定位方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210122

R150 Certificate of patent or registration of utility model

Ref document number: 6829753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250