《第1の実施形態》
以下、第1の実施形態について、図1〜図11(F)を用いて説明する。
図1には、第1の実施形態に係る液晶露光装置10の構成が概略的に示されている。液晶露光装置10は、液晶表示装置(フラットパネルディスプレイ)などに用いられる矩形(角型)のガラス基板P(以下、単に基板Pと称する)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。
液晶露光装置10は、照明系12、回路パターンなどが形成されたマスクMを保持するマスクステージ装置14、投影光学系16、装置本体18、表面(図1で+Z側を向いた面)にレジスト(感応剤)が塗布された基板Pを保持する基板ステージ装置20、及びこれらの制御系等を有している。以下、走査露光時に照明光ILに対してマスクMと基板Pとがそれぞれ相対走査される方向を、投影光学系16の光軸(本実施形態では照明系12の光軸と一致)と直交する所定平面(XY平面、図1では水平面)内のX軸方向とし、水平面内でX軸に直交する方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。また、X軸、Y軸、及びZ軸方向に関する位置をそれぞれX位置、Y位置、及びZ位置として説明を行う。
照明系12は、米国特許第5,729,331号明細書などに開示される照明系と同様に構成されている。照明系12は、図示しない光源(水銀ランプ)から射出された光を、それぞれ図示しない反射鏡、ダイクロイックミラー、シャッター、波長選択フィルタ、各種レンズなどを介して、露光用照明光(照明光)ILとしてマスクMに照射する。照明光ILとしては、i線(波長365nm)、g線(波長436nm)、およびh線(波長405nm)の少なくとも1つを含む光(本実施形態では、上記i線、g線、h線の合成光)が用いられる。照明系12は、Y軸方向に関して位置が異なる複数の照明領域にそれぞれ照明光ILを照射する複数の光学系を有し、この複数の光学系は後述の投影光学系16の複数の光学系と同数である。
マスクステージ装置14は、マスクMを、真空吸着により保持するマスクホルダ(スライダ、可動部材とも呼ぶ)40、マスクホルダ40を走査方向(X軸方向)に所定の長ストロークで駆動するとともに、Y軸方向、及びθz方向に適宜微少駆動するためのマスク駆動系91(図1では不図示。図6参照)、及びマスクホルダ40の少なくともXY平面内の位置情報(X軸及びY軸方向とθz方向を含む3自由度方向の位置情報で、θz方向は回転(ヨーイング)情報)。以下同じ)を計測するためのマスク位置計測系を含む。マスクホルダ40は、米国特許出願公開第2008/0030702号明細書に開示されるような、平面視矩形の開口部が形成された枠状部材から成る。マスクホルダ40は、装置本体18の一部である上架台部18aに固定された一対のマスクガイド42上に、エアベアリング(不図示)を介して載置されている。マスク駆動系91は、リニアモータ(不図示)を含む。以下では、マスクホルダ40を移動するものとして説明を行うが、マスクMの保持部を有するテーブルあるいはステージを移動するものとしても良い。すなわち、マスクを保持するマスクホルダを、マスクテーブル又はマスクステージとは別に必ずしも設ける必要はなく、マスクテーブル又はマスクステージ上にマスクを真空吸着等により保持しても良く、その場合には、マスクを保持するマスクテーブル又はマスクステージがXY平面内の3自由度方向に移動されることとなる。
マスク位置計測系は、一対のエンコーダヘッドユニット44(以下、単にヘッドユニット44と称する)と、ヘッドユニット44を介して計測ビームが照射される複数のエンコーダスケール46(図1では紙面奥行き方向に重なっている。図2(A)参照)との一方がマスクホルダ40に設けられ、エンコーダヘッド44と複数のエンコーダスケール46との他方がマスクホルダ40と対向するように設けられるマスクエンコーダシステム48を備える。本実施形態では、エンコーダヘッド44がエンコーダベース43を介して上架台部18aに設けられ、複数のエンコーダスケール46がそれぞれ一対のエンコーダヘッド44と対向するようにマスクホルダ40の下面側に設けられる。なお、上架台部18aではなく、例えば投影光学系16の上端側にエンコーダヘッド44を設けても良い。マスクエンコーダシステム48の構成については、後に詳しく説明する。
投影光学系16は、上架台部18aに支持され、マスクステージ装置14の下方に配置されている。投影光学系16は、米国特許第6,552,775号明細書などに開示される投影光学系と同様な構成の、いわゆるマルチレンズ投影光学系であり、両側テレセントリックな等倍系で正立正像を形成する複数(本実施形態では、11本。図2(A)参照)の光学系を備えている。
液晶露光装置10では、上架台部18aに支持され、照明系12からの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過した照明光により、投影光学系16を介してその照明領域内のマスクMの回路パターンの投影像(部分正立像)が、基板P上の照明領域に共役な照明光の照射領域(露光領域)に形成される。そして、照明領域(照明光IL)に対してマスクMが走査方向に相対移動するとともに、露光領域(照明光IL)に対して基板Pが走査方向に相対移動することで、基板P上の1つのショット領域の走査露光が行われ、そのショット領域にマスクMに形成されたパターンが転写される。
装置本体18(本体部、フレーム構造などとも呼ぶ)は、上記マスクステージ装置14、投影光学系16、及び基板ステージ装置20を支持しており、複数の防振装置19を介してクリーンルームの床11上に設置されている。装置本体18は、米国特許出願公開第2008/0030702号明細書に開示される装置本体と同様に構成されている。本実施形態では、上記投影光学系16を支持する上架台部18a(光学定盤などとも称される)、基板ステージ装置20が配置される下架台部18b、及び一対の中架台部18cを有している。
基板ステージ装置20は、走査露光において、基板Pを投影光学系16を介して投影される、マスクパターンの複数の部分像(照明光IL)に対して基板Pを高精度に位置決めするためのものであり、基板Pを6自由度方向(X軸、Y軸及びZ軸方向とθx、θy及びθz方向)に駆動する。基板ステージ装置20の構成は、特に限定されないが、米国特許出願公開第2008/129762号明細書、あるいは米国特許出願公開第2012/0057140号明細書などに開示されるような、ガントリタイプの2次元粗動ステージと、該2次元粗動ステージに対して微少駆動される微動ステージとを含む、いわゆる粗微動構成のステージ装置を用いることができる。この場合、粗動ステージによって基板Pが水平面内の3自由度方向に移動可能、かつ微動ステージによって基板Pが6自由度方向に微動可能となっている。
基板ステージ装置20は、基板ホルダ34を備えている。基板ホルダ34は、平面視矩形の板状部材から成り、その上面上に基板Pが載置される。なお、基板を保持する基板ホルダを、基板の保持部が設けられたテーブル又はステージ、ここでは微動ステージ32とは別に必ずしも設ける必要はなく、テーブル又はステージ上に基板を真空吸着等により保持しても良い。基板ホルダ34は、基板駆動系93(図1では不図示。図6参照)の一部を構成する複数のリニアモータ(ボイスコイルモータ)により、投影光学系16に対してX軸及び/又はY軸方向に所定の長ストロークで駆動されるとともに、6自由度方向に微少駆動される。以上説明した基板ステージ装置20の構成(ただし、計測系を除く)は、米国特許出願公開第2012/0057140号明細書に開示されている。
また、液晶露光装置10は、基板ホルダ34(すなわち、基板P)の6自由度方向の位置情報を計測するための基板位置計測系を有している。基板位置計測系は、図6に示されるように、基板PのZ軸、θx、θy方向(以下、Z・チルト方向と称する)の位置情報を計測するためのZ・チルト位置計測系98、及び基板PのXY平面内の3自由度方向の位置情報を求めるための基板エンコーダシステム50を含む。Z・チルト位置計測系98の構成は、特に限定されないが、米国特許出願公開第2010/0018950号明細書に開示されるような、基板ホルダ34を含む系に取り付けられた複数のセンサを用いて、装置本体18(下架台部18b)を基準として基板PのZ・チルト方向の位置情報を求める計測系を用いることができる。基板エンコーダシステム50の構成は、後述する。
次に、図2(A)及び図2(B)を用いてマスクエンコーダシステム48の構成について説明する。図2(A)に模式的に示されるように、マスクホルダ40におけるマスクM(より詳細には、マスクMを収容するための不図示の開口部)の+Y側、及び−Y側の領域には、それぞれ複数のエンコーダスケール46(格子部材、格子部、グリッド部材などとも呼ぶが、以下、単にスケール46と称する)が配置されている。なお、理解を容易にするために、図2(A)では、複数のスケール46が実線で図示され、マスクホルダ40の上面に配置されているように図示されているが、複数のスケール46は、実際には、図1に示されるように、複数のスケール46それぞれの下面のZ位置と、マスクMの下面(パターン面)のZ位置とが一致するように、マスクホルダ40の下面側に配置されている。
複数のスケール46はそれぞれ、反射型の2次元格子または配列方向(周期方向)が異なる(例えば直交する)2つの反射型の1次元格子が形成される格子領域(格子部)を有し、マスクホルダ40の下面側でY軸方向に関してマスクMの載置領域(前述の開口部を含む)の両側にそれぞれ、X軸方向に関して格子領域が互いに離れて配置されるように複数のスケール46が設けられる。なお、X軸及びY軸方向ともスケール46の全域に渡って格子を形成しても良いが、スケール46の端部で精度良く格子を形成するのが困難であるため、本実施形態ではスケール46において格子領域の周囲が余白部となるように格子を形成する。このため、X軸方向に関して隣接する一対のスケール46の間隔よりも格子領域の間隔の方が広くなっており、計測ビームが格子領域外に照射されている間は位置計測が不能な非計測期間(非計測区間とも呼ぶが、以下では非計測期間と総称する)となる。
本実施形態のマスクホルダ40において、マスクMの載置領域の+Y側、及び−Y側の領域には、それぞれスケール46がX軸方向に所定間隔で、3つ配置されている。すなわち、マスクホルダ40は、合計で、6つのスケール46を有している。複数のスケール46それぞれは、マスクMの+Y側と−Y側とで紙面上下対称に配置されている点を除き、実質的に同じものである。スケール46は、石英ガラスにより形成されたX軸方向に延びる平面視矩形の板状(帯状)の部材から成る。マスクホルダ40は、セラミックスにより形成され、複数のスケール46は、マスクホルダ40に固定されている。本実施形態では、X軸方向に関して互いに離れて配置される複数のスケール46の代わりに1つ(単一)のスケールをマスクホルダ用スケールとして用いても良い。この場合、格子領域も1つで良いが、複数の格子領域をX軸方向に離して1つのスケールに形成しても良い。
図2(B)に示されるように、スケール46の下面(本実施形態では、−Z側を向いた面)における、幅方向一側(図2(B)では、−Y側)の領域には、Xスケール47xが形成されている。また、スケール46の下面における、幅方向他側(図2(B)では、+Y側)の領域には、Yスケール47yが形成されている。Xスケール47xは、X軸方向に所定ピッチで形成された(X軸方向を周期方向とする)Y軸方向に延びる複数の格子線を有する反射型の回折格子(Xグレーティング)によって構成されている。同様に、Yスケール47yは、Y軸方向に所定ピッチで形成された(Y軸方向を周期方向とする)X軸方向に延びる複数の格子線を有する反射型の回折格子(Yグレーティング)によって構成されている。本実施形態のXスケール47x、及びYスケール47yにおいて、複数の格子線は、10nm以下の間隔で形成されている。なお、図2(A)及び図2(B)では、図示の便宜上、格子間の間隔(ピッチ)は、実際よりも格段に広く図示されている。その他の図も同様である。
また、図1に示されるように、上架台部18aの上面には、一対のエンコーダベース43が固定されている。一対のエンコーダベース43は、一方が+X側のマスクガイド42の−X側、他方が−X側のマスクガイド42の+X側(すなわち一対のマスクガイド42の間の領域)に配置されている。また、上記投影光学系16の一部が、一対のエンコーダベース43の間に配置されている。エンコーダベース43は、図2(A)に示されるように、X軸方向に延びる部材から成る。一対のエンコーダベース43それぞれの長手方向中央部には、エンコーダヘッドユニット44(以下、単にヘッドユニット44と称する)が固定されている。すなわち、ヘッドユニット44は、エンコーダベース43を介して装置本体18(図1参照)に固定されている。一対のヘッドユニット44は、マスクMの+Y側と−Y側とで紙面上下対称に配置されている点を除き、実質的に同じものであるので、以下、一方(−Y側)についてのみ説明する。
図2(B)に示されるように、ヘッドユニット44は、X軸方向に配置される複数のスケール46の少なくとも1つに照射される計測ビームの位置がX軸及びY軸方向の少なくとも一方に関して異なる複数のヘッドを有し、平面視矩形の板状部材から成るユニットベース45を有している。ユニットベース45には、X軸方向に関して隣接する一対のXスケール47x(格子領域)の間隔よりも広い間隔で計測ビームを照射し、互いに離間して配置された一対のXヘッド49x、及びX軸方向に関して隣接する一対のYスケール47y(格子領域)の間隔よりも広い間隔で計測ビームを照射し、互いに離間して配置された一対のYヘッド49yが固定されている。すなわち、マスクエンコーダシステム48は、Xヘッド49xを、Y軸方向に関してマスクホルダ40のマスクMの載置領域の両側にそれぞれ一対ずつ、計4つ有するとともに、Yヘッド49yを、Y軸方向に関してマスクMの載置領域の両側にそれぞれ一対ずつ、計4つ有している。なお、一対のXヘッド49x又は一対のYヘッド49yはそれぞれ、一対のXスケール49x又は一対のYスケール49yの間隔よりも広く離間して配置されている必要はなく、スケール間隔と同程度以下の間隔で配置されていても、あるいは互いに接触して配置されていても良く、要はX軸方向に関して一対の計測ビームがスケール間隔よりも広い間隔で配置されていれば良い。また、図2(B)では、一方のXヘッド49xと一方のYヘッド49yとが1つの筐体内に収容され、他方のXヘッド49xと他方のYヘッド49yとが別の1つの筐体内に収容されているが、上記一対のXヘッド49x、及び一対のYヘッド49yは、それぞれ独立して配置されていても良い。また、図2(B)では、理解を容易にするため、一対のXヘッド49xと一対のYヘッド49yとがスケール46の上方(+Z側)に配置されたように図示されているが、実際には、一対のXヘッド49xは、Xスケール47yの下方に、一対のYヘッド49yは、Yスケール47yの下方にそれぞれ配置されている(図1参照)。また、X位置が同じであるXヘッド49xとYヘッド49yとの間隔(Y軸方向の長さ)は、スケール49の幅(Y軸方向の長さ)よりも短く設定されている。
一対のXヘッド49x、及び一対のYヘッド49yは、振動などに起因して一対のXヘッド49x(計測ビーム)の少なくとも一方の位置(特に計測方向(X軸方向)の位置)あるいはヘッド(計測ビーム)間隔、及び一対のYヘッド49y(計測ビーム)の少なくとも一方の位置(特に計測方向(Y軸方向)の位置)あるいはヘッド(計測ビーム)間隔が変化しないように、ユニットベース45に対して固定されている。また、ユニットベース45自体も、一対のXヘッド49xの位置や間隔、及び一対のYヘッド49yの位置や間隔が、温度変化などに起因して変化しないように、熱膨張率がスケール46より低い(あるいはスケール46と同等の)材料で形成されている。
Xヘッド49x、及びYヘッド49yは、米国特許出願公開第2008/0094592号明細書に開示されるような、いわゆる回折干渉方式のエンコーダヘッドであり、対応するスケール(Xスケール47x、Yスケール47y)に計測ビームを照射し、そのスケールからのビームを受光することにより、マスクホルダ40(すなわち、マスクM。図2(A)参照)の変位量情報を主制御装置90(図6参照)に供給する。すなわち、マスクエンコーダシステム48では、4つのXヘッド49xと、該Xヘッド49xに対向するXスケール47x(マスクホルダ40のX位置によって異なる)とによって、マスクMのX軸方向の位置情報を求めるための、4つのXリニアエンコーダ92x(図2(B)では不図示。図6参照)が構成され、4つのYヘッド49yと、該Yヘッド49yに対向するYスケール47y(マスクホルダ40のX位置によって異なる)とによって、マスクMのY軸方向の位置情報を求めるための、4つのYリニアエンコーダ92y(図2(B)では不図示。図6参照)が構成される。本実施形態では、XY平面内の異なる2方向(本実施形態ではX軸及びY軸方向と一致)の一方を計測方向とするヘッドを用いているが、計測方向がX軸及びY軸方向の一方と異なるヘッドを用いても良い。例えば、XY平面内でX軸又はY軸方向に対して45度回転した方向を計測方向とするヘッドを用いても良い。また、XY平面内の異なる2方向の一方を計測方向とする1次元ヘッド(Xヘッド又はYヘッド)の代わりに、例えばX軸及びY軸方向の一方とZ軸方向との2方向を計測方向とする2次元ヘッド(XZヘッド又はYZヘッド)を用いても良い。この場合、上記3自由度方向(X軸及びY軸方向とθz方向)と異なる3自由度方向(Z軸方向とθx及びθy方向を含み、θx方向はローリング情報、θy方向はピッチング情報)に関するマスクホルダ40の位置情報も計測可能となる。
主制御装置90は、図6に示されるように、4つのXリニアエンコーダ92x、及び、4つのYリニアエンコーダ92yの出力に基づいてマスクホルダ40(図2(A)参照)のX軸方向、及びY軸方向の位置情報を、10nm以下の分解能で求める。また、主制御装置90は、4つのXリニアエンコーダ92x(あるいは、4つのYリニアエンコーダ92y)のうちの少なくとも2つの出力に基づいてマスクホルダ40のθz位置情報(回転量情報)を求める。主制御装置90は、上記マスクエンコーダシステム48の計測値から求められたマスクホルダ40のXY平面内の3自由度方向の位置情報に基づき、マスク駆動系91を用いてマスクホルダ40のXY平面内の位置を制御する。
ここで、図2(A)に示されるように、マスクホルダ40には、上述したように、マスクMの+Y側、及び−Y側の領域それぞれにスケール46がX軸方向に所定間隔で、3つ配置されている。また、少なくとも基板Pの走査露光において、上記X軸方向に所定間隔で配置された3つのスケール46のうち、最も+X側のスケール46にヘッドユニット44(一対のXヘッド49x、一対のYヘッド49y(それぞれ図3(B)参照)の全て)が対向する位置と、最も−X側のスケール46にヘッドユニット44が対向する位置との間で、マスクホルダ40がX軸方向に駆動される。なお、マスクMの交換動作とプリアライメント動作との少なくとも一方において、X軸方向に関して照明光ILが照射される照明領域から離れるようにマスクホルダ40を移動し、ヘッドユニット44の少なくとも1つのヘッドがスケール46から外れる場合には、X軸方向に関してヘッドユニット44から離れて配置される少なくとも1つのヘッドを設け、交換動作やプリアライメント動作においてもマスクエンコーダシステム48によるマスクホルダ40の位置計測を継続可能としても良い。
そして、本実施形態のマスクステージ装置14では、図2(B)に示されるように、1つのヘッドユニット44が有する一対のXヘッド49x、及び一対のYヘッド49yそれぞれの間隔が、複数のスケール46のうち隣接する一対のスケール46の間隔よりも広く設定されている。これにより、マスクエンコーダシステム48では、一対のXヘッド49xのうち常に少なくとも一方がXスケール47xに対向するとともに、一対のYヘッド49yのうちの少なくとも一方が常にYスケール47yに対向する。従って、マスクエンコーダシステム48は、マスクホルダ40(図2(A)参照)の位置情報を途切れさせることなく主制御装置90(図6参照)に供給することができる。
具体的に説明すると、マスクホルダ40(図2(A)参照)が+X側に移動する場合、マスクエンコーダシステム48は、隣接する一対のXスケール47xのうちの+X側のXスケール47xに対して一対のヘッド49xの両方が対向する第1の状態(図2(B)に示される状態)、−X側のXヘッド49xが上記隣接する一対のXスケール47xの間の領域に対向し(いずれのXスケール47xにも対向せず)、+X側のXヘッド49xが上記+X側のXスケール47xに対向する第2の状態、−X側のXヘッド49xが−X側のXスケール47xに対向し、且つ+X側のXヘッド49xが+X側のXスケール47xに対向する第3の状態、−X側のXヘッド49xが−X側のスケール47xに対向し、+X側のXヘッド49xが一対のXスケール47xの間の領域に対向する(いずれのXスケール47xにも対向しない)第4の状態、及び−X側のXスケール47xに対して一対のヘッド49xの両方が対向する第5の状態、を上記順序で移行する。従って、常に少なくとも一方のXヘッド49xがXスケール47xに対向する。
主制御装置90(図6参照)は、上記第1、第3、及び第5の状態では、一対のXヘッド49xの出力の平均値に基づいてマスクホルダ40のX位置情報を求める。また、主制御装置90は、上記第2の状態では、+X側のXヘッド49xの出力のみに基づいてマスクホルダ40のX位置情報を求め、上記第4の状態では、−X側のXヘッド49xの出力のみに基づいてマスクホルダ40のX位置情報を求める。したがって、マスクエンコーダシステム48の計測値が途切れることがない。なお、第1、第3、第5の状態でも一対のXヘッド49xの一方の出力のみを用いてX位置情報を求めても良い。ただし、第2、第4の状態では、一対のヘッドユニット44の両方において一対のXヘッド49xの一方および一対のYヘッド49yの一方がスケール46から外れてマスクホルダ40のθz方向の位置情報(回転情報)を取得できなくなる。そこで、マスクMの載置領域に対して+Y側に配置される3つのスケール46と−Y側に配置される3つのスケール46とで、隣接する一対のスケール46の間隔(格子が形成されていない非格子領域)がX軸方向に関して重ならないように互いにずらして配置し、+Y側に配置される3つのスケール46と−Y側に配置される3つのスケール46との一方で、Xヘッド49xおよびYヘッド49yがスケール46から外れても、他方でXヘッド49xおよびYヘッド49yがスケール46から外れないようにすることが好ましい。または、X軸方向に関して一対のヘッドユニット44を、隣接する一対のスケール46の間隔(非格子領域の幅)よりも広い距離だけずらして配置しても良い。これにより、+Y側に配置される一対のXヘッド49xおよび−Y側に配置される一対のXヘッド49xの計4つのヘッドにおいて、X軸方向に関して計測ビームがスケール46の格子領域から外れる(計測不能な)非計測期間が重ならず、少なくとも走査露光においてマスクホルダ40のθz方向の位置情報を常時計測可能となる。なお、一対のヘッドユニット44の少なくとも一方において、一対のXヘッド49xおよび一対のYヘッド49yの少なくとも一方に対してX軸方向に関して離れて配置される少なくとも1つのヘッドを配置し、第2、第4の状態でもXヘッド49xおよびYヘッド49yの少なくとも一方で2つのヘッドがスケール46と対向するようにしても良い。
また、本実施形態のマスクエンコーダシステム48では、マスクエンコーダシステム48の計測値を途切れさせないようにするために、上記第1、第3、第5の状態、すなわち一対のヘッドの両方がスケールに対向し、該一対のヘッドのそれぞれから出力が供給される状態と、上記第2、第4の状態、すなわち一対のヘッドのうちの一方のみがスケールに対向し、該一方のヘッドのみから出力が供給される状態との間を移行する際に、ヘッドの出力の繋ぎ処理を行う。以下、図3(A)〜図3(E)を用いてヘッドの繋ぎ処理について説明する。なお、説明の簡略化のため、図3(A)〜図3(E)において、スケール46には、2次元格子(グレーティング)が形成されているものとする。また、各ヘッド49x、49yの出力は、理想値であるものとする。また、以下の説明では、隣接する一対のXヘッド49x(便宜上49x1、49x2とする)についての繋ぎ処理について説明するが、隣接する一対のYヘッド49y(便宜上49y1、49y2とする)においても、同様の繋ぎ処理が行われる。
図3(A)に示されるように、一対のXヘッド49x1、49x2それぞれが、隣接する一対のスケール46(便宜上461、462とする)のうち、+X側のスケール462を用いてマスクホルダ40(図2(A)参照)のX位置情報を求める場合、一対のXヘッド49x1、49x2は、双方がX座標情報を出力する。ここでは、一対のXヘッド49x1、49x2の出力は、同値となる。次いで、図3(B)に示されるように、マスクホルダ40が+X方向に移動すると、Xヘッド49x1が、スケール462の計測範囲外となるので、該計測範囲外となる前に、Xヘッド49x1の出力を無効扱いとする。従って、マスクホルダ40のX位置情報は、Xヘッド49x2の出力のみに基づいて求められる。
また、図3(C)に示されるように、マスクホルダ40(図2(A)参照)が更に+X方向に移動すると、Xヘッド49x1が−X側のスケール461に対向する。Xヘッド49x1は、スケール461を用いて計測動作可能な状態となった直後から、マスクホルダ40のX位置情報を出力するが、Xヘッド49x1の出力は、不定値(またはゼロ)からカウントを再開するのでマスクホルダ40のX位置情報の算出に用いることができない。従って、この状態で、一対のXヘッド49x1、49x2それぞれの出力の繋ぎ処理が必要となる。繋ぎ処理としては、具体的には、不定値(またはゼロ)とされたXヘッド49x1の出力を、Xヘッド49x2の出力を用いて(同値となるように)補正する処理を行う。該繋ぎ処理は、マスクホルダ40が更に+X方向に移動して、図3(D)に示されるように、Xヘッド49x2が、スケール462の計測範囲外となる前に完了する。
同様に、図3(D)に示されるように、Xヘッド49x2が、スケール462の計測範囲外となった場合には、該計測範囲外となる前に、Xヘッド49x2の出力を無効扱いとする。従って、マスクホルダ40(図2(A)参照)のX位置情報は、Xヘッド49x1のみの出力に基づいて求められる。そして、図3(E)に示されるように、更にマスクホルダ40が+X方向に移動して、一対のXヘッド49x1、49x2それぞれがスケール461を用いて計測動作を行うことが可能となった直後に、Xヘッド49x2に対して、Xヘッド49x1の出力を用いた繋ぎ処理を行う。以降は、一対のXヘッド49x1、49x2それぞれの出力に基づいて、マスクホルダ40のX位置情報が求められる。
以上説明した上記繋ぎ処理は、1つヘッドユニット44が有する、4つのヘッド(2つのXヘッド49x、2つのYヘッド49y)の互いの位置関係が既知であることが前提となっている。この各ヘッド間の位置関係は、上記4つのヘッドが共通のスケールに対向した状態でそのスケールを使用して求めること、あるいは、各ヘッド間に配置した計測装置(レーザ干渉計や距離センサ等)を使用して求めることが可能である。
なお、上述した繋ぎ処理は、Xヘッド49x1が無効(非アクティブ)な状態となった場合に、これと対となる1つのXヘッド49x2の出力に基づいて行われたが、これに限られず、より多く(3つや4つなど)のヘッドの出力に基づいて繋ぎ処理を行っても良い。また、より多くのヘッドの出力を用いて、それらの平均値で繋ぎ処理を行っても良い。以下、図10(A)〜図10(C)を用いて繋ぎ処理の変形例を具体的に説明する。なお、便宜上、図10(A)〜図10(C)では、4つのXヘッド49xに49x1〜49x4の符号を付し、4つのYヘッド49yに49y1〜49y4の符号を付して説明する。また、乗り継ぎ処理の対象となる隣接する一対のスケール46に461、462の符号を付して説明する。
マスクエンコーダシステム48では、複数のスケール46がX軸方向に離間して配置されているため、図10(A)に示される、8つのヘッド(Xヘッド49x1〜49x4、Yヘッド49y1〜49y4)が一方のスケール461に対向した状態から、マスクMが−X方向に移動すると、図10(B)に示されるように、一対のヘッドユニット44が有する、8つのヘッドのうち、X位置が同じである、4つのヘッド(Xヘッド49x2、49x4、Yヘッド49y2、49y4)が同時にスケール49から外れた状態(非アクティブな状態)が生ずる。上述したように、スケール49から外れた各ヘッドの出力は、不定値(あるいはゼロ)とする制御が行われる。
主制御装置90(図6参照)は、図10(C)に示される、上記非アクティブな(出力値が不定な)状態となった4つのヘッド(Xヘッド49x2、49x4、Yヘッド49y2、49y4)が、他方のスケール462に対向する前に該非アクティブなヘッドの出力値の復帰処理(他のヘッドを出力値を用いた繋ぎ処理)を行う。非アクティブな状態であるヘッド49y2の出力値を復帰させる場合には、アクティブな状態である、4つのヘッド(Xヘッド49x1、49x3、Yヘッド49y1、49y3)のうち、任意の3つ(例えば、Xヘッド49x1、Yヘッド49y1、49y3)の出力を用いて、該アクティブな3つのヘッドと、繋ぎ処理の対象である非アクティブなヘッド49y2の位置関係を求める。上述したように、これらのヘッド間の位置関係は既知であるものとする。ここで、マスクMの移動方向から、次に非アクティブな状態となる予定のヘッドが事前に予想できることから、上記繋ぎ処理のための演算は、繋ぎ処理の対象となる4つのヘッドが実際に非アクティブな状態となる前(図10(A)に示される状態)に行われる。また、同様に、次に非アクティブな状態となる予定のヘッドが事前に予想できることから、図10(C)に示される、一部のヘッドが非アクティブな状態となる直前の状態では、該非アクティブな状態となる予定のヘッド(図10(C)ではXヘッド49x1、49x3、Yヘッド49y1、49y3)の出力を用いずに、アクティブな状態が継続されるヘッド(図10(C)ではXヘッド49x2、49x4、Yヘッド49y2、49y4)の出力を用いてマスクMの位置情報の計測(マスクMの位置制御)が行われる。
主制御装置90(図6参照)は、上記アクティブな、3つのヘッドの出力値から、非アクティブなYヘッド49y2の位置情報(X、Y、θz各方向の位置情報)を求め、該位置情報に基づいてYヘッド49y2の出力値を演算(推定)し、これを再びアクティブな状態となったYヘッド49y2の出力値として用いる。図10(B)で非アクティブな状態となっている他のヘッド(Xヘッド49x2、49x4、Yヘッド49y4)の繋ぎ処理に関しても同様である。
次に、基板エンコーダシステム50の構成について説明する。図1に示されるように、基板エンコーダシステム50は、基板ステージ装置20に配置された複数のエンコーダスケール52(図1では紙面奥行き方向に重なっている。図4(A)参照)、上架台部18aの下面に固定された複数(本実施形態では、2つ)のエンコーダベース54、エンコーダベース54の下面に固定された複数のエンコーダスケール56、及び複数(本実施形態では、1つのエンコーダベース54につき、2つ)のエンコーダヘッドユニット60(以下、単にヘッドユニット60と称する)を備えている。なお、図1では、2つのエンコーダベース54は、紙面奥行き方向(X軸方向)に重なっているため、−X側のエンコーダベース54は、+X側のエンコーダベース54の紙面奥側に隠れている。同様に、−X側のエンコーダベース54に対応する、2つのヘッドユニット60は、+X側のエンコーダベース54に対応する、2つのヘッドユニット60の紙面奥側に隠れている。
図4(A)に模式的に示されるように、本実施形態の基板ステージ装置20において、基板P(基板載置領域)の+Y側、及び−Y側の領域には、それぞれエンコーダスケール52(以下、単にスケール52と称する)がX軸方向に所定間隔で、4つ配置されている。すなわち、基板ステージ装置20は、合計で、8つのスケール52を有している。複数のスケール52それぞれは、基板Pの+Y側と−Y側とで紙面上下対称に配置されている点を除き、実質的に同じものである。スケール52は、上記マスクエンコーダシステム48のスケール46(それぞれ図2(A)参照)と同様に、石英ガラスにより形成されたX軸方向に延びる平面視矩形の板状(帯状)の部材から成る。また、複数のスケール52はそれぞれ、反射型の2次元格子または配列方向(周期方向)が異なる(例えば直交する)2つの反射型の1次元格子が形成される格子領域(格子部)を有し、Y軸方向に関して基板載置領域の両側にそれぞれ、X軸方向に関して格子領域が互いに離れて配置されるように4つのスケール52が設けられる。
なお、本実施形態では、複数のスケール52が基板ホルダ34の上面に固定されている場合について説明するが、複数のスケール52の配置の位置は、これに限らず、基板ホルダ34の外側に該基板ホルダ34に対して所定の隙間を介した状態で、分離して(ただし、6自由度方向に関しては、基板ホルダ34と一体的に移動するように)配置されていても良い。なお、複数のスケール52は、基板ホルダ34を有し、少なくともZ軸方向とθxおよびθy方向に関して微動可能な基板テーブルの上面、あるいは基板テーブルを微動可能に支持する基板ステージの上面などに配置しても良い。
図4(B)に示されるように、スケール52の上面における、幅方向一側(図4(B)では、−Y側)の領域には、Xスケール53xが形成されている。また、スケール52の上面における、幅方向他側(図4(B)では、+Y側)の領域には、Yスケール53yが形成されている。Xスケール53x、及びYスケール53yの構成は、上記マスクエンコーダシステム48のスケール46(それぞれ図2(A)参照)に形成されたXスケール47x、及びYスケール47y(それぞれ図2(B)参照)と同じであるので説明を省略する。なお、本実施形態では、基板ホルダ34上に形成されているスケール52内において、Xスケール53xとYスケール53yとがX軸方向に同一長さで形成されているが、これらの長さを互いに異ならせるようにしても良い。また両者をX軸方向に相対的にずらして配置するようにしても良い。
図4(A)に戻り、2つのエンコーダベース54(及び対応する、2つのヘッドユニット60)は、X軸方向に離間して配置されている。2つのエンコーダベース54の構成は、配置が異なる点を除き、実質的に同一であるので、以下、一方のエンコーダベース54、及び該エンコーダベース54に対応する一対のヘッドユニット60の構成について説明する。
エンコーダベース54は、Y軸方向に延びる板状の部材から成り、図1に示されるように、上架台部18aの下面に固定されている。本実施形態において、図4(A)に示されるように、2つのエンコーダベース54のX位置は、投影光学系16のX位置と一部で重複しているが、エンコーダベース54と投影光学系16とは、機械的に分離して(非接触状態で)配置されている。なお、エンコーダベース54は、投影光学系16の+Y側と−Y側とで分離して配置されていても良い。
エンコーダベース54の下面には、複数のエンコーダスケール56(以下、単にスケール56と称する)が固定されている。本実施形態において、スケール56は、図4(A)に示されるように、投影光学系16よりも+Y側の領域に、2つ、投影光学系16よりも−Y側の領域に、2つ、それぞれY軸方向に離間して配置されている。すなわち、エンコーダベース54には、合計で、4つのスケール56が固定されている。複数のスケール56それぞれは、実質的に同じものである。スケール56は、Y軸方向に延びる平面視矩形の板状(帯状)の部材から成り、基板ステージ装置20に配置されたスケール52と同様に、石英ガラスにより形成されている。複数のスケール56はそれぞれ、反射型の2次元格子または配列方向(周期方向)が異なる(例えば直交する)2つの反射型の1次元格子が形成される格子領域(格子部)を有しており、本実施形態ではスケール46、52と同様、X軸方向を配列方向(周期方向)とする1次元格子が形成されるXスケールと、Y軸方向を配列方向(周期方向)とする1次元格子が形成されるYスケールを有し、Y軸方向に関して投影光学系16の両側にそれぞれ、Y軸方向に関して格子領域が互いに離れて2つのスケール56が設けられる。なお、理解を容易にするために、図4(A)では、複数のスケール56が実線で図示され、エンコーダベース54の上面に配置されているように図示されているが、複数のスケール56は、実際には、図1に示されるようにエンコーダベース54の下面側に配置されている。なお、本実施形態では投影光学系16の+Y側と−Y側にそれぞれ2つのスケール56を設けるものとしたが、2つではなく1つあるいは3つ以上のスケール56を設けても良い。また、本実施形態では格子面を下方に向けて(格子領域がXY平面と平行になるように)スケール56を設けるものとしたが、例えば格子領域がYZ平面と平行になるようにスケール56を設けても良い。
図4(C)に示されるように、スケール56の下面における、幅方向一側(図4(C)では、+X側)の領域には、Xスケール57xが形成されている。また、スケール56の下面における、幅方向他側(図4(C)では、−X側)の領域には、Yスケール57yが形成されている。Xスケール57x、及びYスケール57yの構成は、上記マスクエンコーダシステム48のスケール46(それぞれ図2(A)参照)に形成されたXスケール47x、及びYスケール47y(それぞれ図2(B)参照)と同じであるので説明を省略する。
図1に戻り、2つのヘッドユニット60は、エンコーダベース54の下方にY軸方向に離間して配置されている。2つのヘッドユニット60それぞれは、図1で紙面左右対称に配置されている点を除き実質的に同じものであるので、以下一方(−Y側)について説明する。ヘッドユニット60は、図4(B)及び図4(C)から分かるように、Yスライドテーブル62、一対のXヘッド64x、一対のYヘッド64y、一対のXヘッド66x、及び一対のYヘッド66yを備えている。なお、本実施形態の一対のヘッドユニット60は、90度回転している点を除き、マスクエンコーダシステム48の一対のヘッドユニット44と同一構成となっている。
Yスライドテーブル62は、平面視矩形の板状の部材から成り、エンコーダベース54の下方に、該エンコーダベース54に対して所定のクリアランスを介して配置されている。また、Yスライドテーブル62のZ位置は、基板ステージ装置20が有する基板ホルダ34(それぞれ図1参照)のZ・チルト位置に関わらず、該基板ホルダ34よりも+Z側となるように設定されている。
Yスライドテーブル62は、リニアモータなどのアクチュエータを含むヘッドユニット駆動系86(図6参照)によって、Y軸方向に長ストロークで駆動される。Yスライドテーブル62とエンコーダベース54との間には、Yスライドテーブル62をY軸方向に直進案内するための、機械的なリニアガイド装置が設けられている。また、Yスライドテーブル62は、上記リニアガイド装置の作用により、エンコーダベース54に対してX軸方向への相対移動が制限されている。
主制御装置90(図6参照)は、一方(+Y側)のヘッドユニット60を投影光学系16(図1参照)よりも+Y側に配置された、2つのスケール56の下方で、他方(−Y側)のヘッドユニット60を投影光学系16よりも−Y側に配置された、2つのスケール56の下方で、それぞれY軸方向に所定のストロークで適宜同期駆動する。ここで、基板ステージ装置20のY軸方向への移動に同期して一対のヘッドユニット60をそれぞれ移動しても良いが、本実施形態では、一対のヘッドユニット60でそれぞれ、Y軸方向に関して一対のXヘッド66xおよび一対のYヘッド66yの計測ビームが全てスケール52の格子領域から外れない(少なくとも1つの計測ビームの格子領域への照射が維持される)ように一対のヘッドユニット60を移動する。なお、Yスライドテーブル62を駆動するアクチュエータとしては、本実施形態では、リニアモータが用いられているが、これに限られず、ベルト駆動装置、送りネジ装置などの他の駆動装置であっても良い。なお、本実施形態では、Yスライドテーブル62は、装置本体18の上架台部18aの下面(図4参照)に設けるよう構成しているが、下架台部18bや中架台部18cに設けるようにしても良い。
Xヘッド64x、Yヘッド64y、Xヘッド66x、及びYヘッド66yそれぞれは、上述したマスクエンコーダシステム48が有するXヘッド49x、Yヘッド49y(それぞれ図2(B)参照)と同様の、いわゆる回折干渉方式のエンコーダヘッドであり、Yスライドテーブル62に固定されている。ここで、ヘッドユニット60において、一対のYヘッド64y、一対のXヘッド64x、一対のYヘッド66y、及び一対のXヘッド66xは、それぞれの相互間の距離が、振動などに起因して変化しないように、Yスライドテーブル62に対して固定されている。また、Yスライドテーブル62自体も、一対のYヘッド64y、一対のXヘッド64x、一対のYヘッド66y、及び一対のXヘッド66xそれぞれの相互間の距離が、温度変化に起因して変化しないように、熱膨張率がスケール52、56より低い(あるいはスケール52、56と同等の)材料で形成されている。また、Y位置が同じであるXヘッド64xとYヘッド64yとの間隔(X軸方向の長さ)は、スケール56の幅(X軸方向の長さ)よりも短く設定されている。同様に、X位置が同じであるXヘッド66xとYヘッド66yとの間隔(Y軸方向の長さ)は、スケール52の幅(Y軸方向の長さ)よりも短く設定されている。
図5に示されるように、一対のXヘッド64xそれぞれは、Xスケール57x上のY軸方向に互いに離間した2箇所(2点)に計測ビームを照射し、一対のYヘッド64yそれぞれは、Yスケール57y上のY軸方向に互いに離間した2箇所(2点)に計測ビームを照射する。基板エンコーダシステム50では、上記Xヘッド64x、及びYヘッド64yが対応するスケールからのビームを受光することにより、Yスライドテーブル62(図5では不図示。図4(B)及び図4(C)参照)の変位量情報を主制御装置90(図6参照)に供給する。
すなわち、基板エンコーダシステム50では、8つ(2×4)のXヘッド64xと、該Xヘッド64xに対向するXスケール57x(Yスライドテーブル62のY位置によって異なる)とによって、4つのYスライドテーブル62(すなわち、4つのヘッドユニット60(図1参照))それぞれのY軸方向の位置情報を求めるための、8つのXリニアエンコーダ96x(図5では不図示。図6参照)が構成され、8つ(2×4)のYヘッド64yと、該Yヘッド64yに対向するYスケール57y(Yスライドテーブル62のY位置によって異なる)とによって、4つのYスライドテーブル62それぞれのY軸方向の位置情報を求めるための、8つのYリニアエンコーダ96y(図5では不図示。図6参照)が構成される。
主制御装置90は、図6に示されるように、8つのXリニアエンコーダ96x、及び、8つのYリニアエンコーダ96yの出力に基づいて、4つのヘッドユニット60(図1参照)それぞれのX軸方向、及びY軸方向の位置情報を、10nm以下の分解能で求める。また、主制御装置90は、1つのヘッドユニット60に対応する、2つのXリニアエンコーダ96x(あるいは、2つのYリニアエンコーダ96y)の出力に基づいて該ヘッドユニット60のθz位置情報(回転量情報)を求める。主制御装置90は、4つのヘッドユニット60それぞれのXY平面内の位置情報に基づき、ヘッドユニット駆動系86(図6参照)を用いてヘッドユニット60のXY平面内の位置を制御する。
ここで、図4(A)に示されるように、エンコーダベース54には、上述したように、投影光学系16の+Y側、及び−Y側の領域それぞれにスケール56がY軸方向に所定間隔で、2つ配置されている。
そして、上記マスクエンコーダシステム48と同様に、基板エンコーダシステム50においても、ひとつのヘッドユニット60が有する一対のXヘッド64x、及び一対のYヘッド64yそれぞれの間隔は、図4(C)に示されるように、隣接するスケール56間の間隔よりも広く設定されている。これにより、基板エンコーダシステム50では、一対のXヘッド64xのうち常に少なくとも一方がXスケール57xに対向するとともに、一対のYヘッド64yのうちの少なくとも一方が常にYスケール57yに対向する。従って、基板エンコーダシステム50は、計測値を途切れさせることなくYスライドテーブル62(ヘッドユニット60)の位置情報を求めることができる。従って、ここでも、上述したマスクエンコーダシステム48におけるヘッド出力の繋ぎ処理と同様のヘッド出力の繋ぎ処理(図3(A)〜図3(E)参照、あるいは図10(A)〜図10(C)参照)が行われる。
主制御装置90は、図6に示されるように、8つのXリニアエンコーダ94x、及び、8つのYリニアエンコーダ94yの出力、並びに上記8つのXリニアエンコーダ96x、及び、8つのYリニアエンコーダ96yの出力(すなわち、4つのヘッドユニット60それぞれのXY平面内の位置情報)に基づいて基板ホルダ34(図1参照)の装置本体18(図1参照)に対するX軸方向、及びY軸方向の位置情報を、10nm以下の分解能で求める。また、主制御装置90は、8つのXリニアエンコーダ94x(あるいは、8つのYリニアエンコーダ94y)のうちの少なくとも2つの出力に基づいて基板ホルダ34のθz位置情報(回転量情報)を求める。主制御装置90は、上記基板エンコーダシステム50の計測値から求められた基板ホルダ34のXY平面内の位置情報に基づき、基板駆動系93を用いて基板ホルダ34のXY平面内の位置を制御する。
また、基板Pは、露光動作中にθz方向にも微小角度で回転駆動されるため、該基板Pのθz方向の位置情報を求めることを可能とするために、基板エンコーダシステム50では、合計で、16の下向きヘッド(8つのXヘッド66x、及び8つのYヘッド66y)のうち、少なくとも3つのヘッドが常にいずれかのスケールに対向するように、各ヘッドの間隔、及び各スケールの間隔が設定されている。これにより、露光動作中に常時基板ホルダ34の水平面内3自由度方向(X、Y、θz)の位置情報を求めることが可能な状態が保たれる。
また、図3(A)に示されるように、基板ホルダ34には、上述したように、基板Pの+Y側、及び−Y側の領域それぞれにスケール52がX軸方向に所定間隔で、4つ配置されている。
そして、上記マスクエンコーダシステム48と同様に、ひとつのヘッドユニット60が有する一対のXヘッド66x、及び一対のYヘッド66yそれぞれの間隔は、図4(B)に示されるように、隣接するスケール52間の間隔よりも広く設定されている。これにより、基板エンコーダシステム50では、一対のXヘッド66xのうち常に少なくとも一方がXスケール53xに対向するとともに、一対のYヘッド66yのうちの少なくとも一方が常にYスケール53yに対向する。従って、基板エンコーダシステム50は、計測値を途切れさせることなく基板ホルダ34(図4(A)参照)の位置情報を求めることができる。従って、ここでも、上述したマスクエンコーダシステム48におけるヘッド出力の繋ぎ処理と同様のヘッド出力の繋ぎ処理(図3(A)〜図3(E)参照、あるいは図10(A)〜図10(C)参照)が行われる。
なお。基板エンコーダシステム50の一対のヘッドユニット60のそれぞれが有する一対のYヘッド64y、一対のXヘッド64x、一対のYヘッド66y、及び一対のXヘッド66x、並びにこれらのヘッドからの計測ビームが照射されるスケール56、52について、前述したマスクエンコーダシステム48を構成するヘッド、スケールに関して説明した全ての説明(なお書き含む)の構成を同様に適用することができる。
なお、上述した繋ぎ処理の第1の変形例(図10(A)〜図10(C)参照)では、マスクM(あるいは基板P)の+Y側、及び−Y側に配置された一対のヘッドユニット44(あるいはヘッドユニット60)それぞれが有する、4つのヘッド(すなわち、合計で8つのヘッド)を用いて繋ぎ処理を行ったが、基板ホルダ34の位置情報を求めるための下向きヘッド(Xヘッド66x、Yヘッド66y)の繋ぎ処理に関しては、図11(A)〜図11(F)に示されるような繋ぎ処理を行うこともできる。以下、図11(A)〜図11(F)を用いて繋ぎ処理の第2の変形例を具体的に説明する。なお、便宜上、図11(A)〜図11(F)では、下向きの、4つのヘッドにXヘッド66x1、66x2、Yヘッド66y1、66y2の符号を付すとともに、上向きの、4つのヘッドにXヘッド64x1、64x2、Yヘッド64y1、64y2の符号を付して説明する。また、乗り継ぎ処理の対象となる隣接する一対のスケール52に521、522の符号を付して説明する。また、図11(B)、図11(D)、図11(F)は、それぞれ図11(A)、図11(C)、図11(E)に対応する図である。
本繋ぎ処理の第2の変形例でも、図11(A)に示されるように、ヘッドユニット60は、4つの下向きのエンコーダヘッド(Xヘッド66x1、66x2、Yヘッド66y1、66y2)を有しており、これら4つのヘッド間の位置関係は、既知であることが前提となっている。さらに、ヘッドユニット60は、図11(B)に示されるように、4つの上向きのエンコーダヘッド(Xヘッド64x1、64x2、Yヘッド64y1、64y2)を有しており、これら4つのヘッド間の位置関係も、既知であることが前提となっている。これらの各ヘッド間の位置関係は、上記上向きの4つのヘッド、あるいは下向きの4つのヘッドが、それぞれ対応するスケール(スケール52、又はスケール56)に対向した状態でそのスケールを使用して求めること、あるいは、各ヘッド間に配置した計測装置(レーザ干渉計等)を使用して求めることが可能である。ここで、本変形例の繋ぎ処理では、該繋ぎ処理中に、4つの上向きのヘッド(Xヘッド64x1、64x2、Yヘッド64y1、64y2)は、装置本体18(図1参照)に固定されたスケール56から外れないことが前提となる。さらに、スケール56(固定)と、基板ホルダ(図4(A)参照)上のスケール52(可動)とのグリッド誤差が既知であることも前提となる。
上述した第1の変形例(図10(A)〜図10(C)参照)では、一対のヘッドユニット44が有する、合計で8つのヘッドを用いて、該8つのヘッドのうちの非アクティブな状態となったヘッドの出力値を復帰させたのに対し、本第2の変形例は、1つのヘッドユニット60が有する、4つの下向きのヘッド(Xヘッド66x1、66x2、Yヘッド66y1、66y2)のうちの2つのヘッドが非アクティブな状態となった場合に、4つの上向きのヘッド(Xヘッド64x1、64x2、Yヘッド64y1、64y2)の出力を用いて、上記非アクティブな状態となったヘッドの出力値を復帰させる。
具体的に説明すると、基板エンコーダシステム50では、図11(A)に示されるように、スケール521、522がX軸方向に離間して配置されているため、4つのヘッド(Xヘッド66x1、66x2、Yヘッド66y1、66y2)が一方のスケール521に対向した状態から、基板Pが−X方向に移動すると、図11(C)に示されるように、ヘッドユニット60が有する、4つのヘッドのうち、X位置が同じである、2つのヘッド(Xヘッド49x2、Yヘッド49y2)が同時にスケール521、522から外れた状態(非アクティブな状態)が生ずる。上述したように、スケール521、522から外れた各ヘッドの出力は、不定値(あるいはゼロ)とする制御が行われる。また、上述したように、ヘッドユニット60は、基板PがX軸方向に移動する際、固定のスケール56に対して位置が変わらないように制御される(図11(B)、図11(D)、図11(F)参照)。
主制御装置90(図6参照)は、図11(E)に示される、上記非アクティブな(出力値が不定な)状態となった2つのヘッド(Xヘッド66x2、Yヘッド66y2)が、他方のスケール522に対向する前に、該非アクティブなヘッドの出力値の復帰処理(他のヘッドを出力値を用いた繋ぎ処理)を行う。非アクティブな状態であるヘッド66y2の出力値を復帰させる場合には、アクティブな状態である6つのヘッド(Xヘッド66x1、64x1、64x2、Yヘッド66y1、64y1、64y2)のうち、任意の3つ(例えば、Xヘッド66x1、Yヘッド66y1、64y1)の出力を用いて、該アクティブな3つのヘッドと、繋ぎ処理の対象である非アクティブなヘッド66y2との位置関係を求める。上述したように、これらのヘッド間の位置関係は既知であるものとする。また、上記繋ぎ処理に用いるアクティブな3ヘッドには、少なくとも1つのX軸方向を計測方向とするヘッド(上記の例では、Xヘッド66x1、Xヘッド64x1、64x2のいずれか)と、少なくとも1つのY軸方向を計測方向するヘッド(上記の例では、Yヘッド66y1、Yヘッド64y1、64y2のいずれか)とを含むものとする。
主制御装置90(図6参照)は、上記アクティブな3つのヘッドの出力値から、非アクティブなYヘッド66y2の位置情報(X、Y、θz各方向の位置情報)を求め、該位置情報に基づいてYヘッド66y2の出力値を演算(推定)し、これを再びアクティブな状態となったYヘッド66y2の出力値として用いる。図11(C)で非アクティブな状態となっているXヘッド66x2の繋ぎ処理に関しても同様である。
図6には、液晶露光装置10(図1参照)の制御系を中心的に構成し、構成各部を統括制御する主制御装置90の入出力関係を示すブロック図が示されている。主制御装置90は、ワークステーション(又はマイクロコンピュータ)等を含み、液晶露光装置10の構成各部を統括制御する。
上述のようにして構成された液晶露光装置10(図1参照)では、主制御装置90(図6参照)の管理の下、不図示のマスクローダによって、マスクステージ装置14上へのマスクMのロードが行われるとともに、不図示の基板ローダによって、基板ステージ装置20(基板ホルダ34)上への基板Pのロードが行われる。その後、主制御装置90により、不図示のアライメント検出系を用いてアライメント計測(基板Pの複数のアライメントマークの検出)が実行され、そのアライメント計測の終了後、基板P上に設定された複数のショット領域に逐次ステップ・アンド・スキャン方式の露光動作が行われる。なお、アライメント計測動作においても基板エンコーダシステム50によって基板ホルダ34の位置情報が計測される。
次に、露光動作時におけるマスクステージ装置14、及び基板ステージ装置20の動作の一例を、図7(A)〜図9(B)を用いて説明する。なお、以下の説明では、1枚の基板P上に4つのショット領域が設定された場合(いわゆる4面取りの場合)を説明するが、1枚の基板P上に設定されるショット領域の数、及び配置は、適宜変更可能である。
図7(A)には、アライメント動作が完了した後のマスクステージ装置14が、図7(B)には、アライメント動作が完了した後の基板ステージ装置20(ただし基板ホルダ34以外の部材は不図示。以下、同じ)がそれぞれ示されている。露光処理は、一例として、図7(B)に示されるように、基板Pの−Y側かつ+X側に設定された第1ショット領域S1から行われる。マスクステージ装置14では、図7(A)に示されるように、照明系12からの照明光IL(それぞれ図1参照)が照射される照明領域(ただし、図7(A)に示される状態では、まだマスクMに対し照明光ILは照射されていない)よりもマスクMの+X側の端部が幾分−X側に位置するように、マスクエンコーダシステム48(図6参照)の出力に基づいてマスクMの位置決めがされる。
具体的には、照明領域に対してマスクMのパターン領域の+X側の端部が、所定の速度で走査露光するために必要な助走距離(すなわち、所定の速度に達するために必要な加速距離)だけ−X側に配置され、その位置においてマスクエンコーダシステム48によりマスクMの位置が計測できるようにスケール46が設けられている。主制御装置90(図6参照)も、少なくとも3つ(4つのヘッド49x、及び4つのヘッド49yのうちの3つ)のヘッドが、スケール46から外れない(計測可能範囲外とならない)範囲で、マスクホルダ40の位置制御を行う。
また、基板ステージ装置20では、図7(B)に示されるように、投影光学系16からの照明光IL(図1参照)が照射される露光領域(ただし、図7(B)に示される状態では、まだ基板Pに対し照明光ILは照射されていない)よりも第1ショット領域S1の+X側の端部が幾分−X側に位置するように、基板エンコーダシステム50(図6参照)の出力に基づいて基板Pの位置決めがされる。具体的には、露光領域に対して基板Pの第1ショット領域S1の+X側の端部が、所定の速度で走査露光するために必要な助走距離(すなわち、所定の速度に達するために必要な加速距離)だけ−X側に配置され、その位置において基板エンコーダシステム50により基板Pの位置が計測できるようにスケール52が設けられている。主制御装置90(図6参照)も、少なくとも3つ(8つのヘッド66x、及び8つのヘッド66yのうちの3つ)のヘッドが、スケール52から外れない(計測可能範囲外とならない)範囲で、基板ホルダ34の位置制御を行う。
なお、ショット領域の走査露光を終えてマスクMおよび基板Pをそれぞれ減速する側においても、同様に走査露光時の速度から所定の速度まで減速させるために必要な減速距離だけマスクMおよび基板Pをさらに移動させるまでマスクエンコーダシステム48、基板エンコーダシステム50によりそれぞれマスクM、基板Pの位置を計測可能なようにスケール46、52が設けられている。あるいは、加速中および減速中の少なくとも一方の動作中には、マスクエンコーダシステム48、基板エンコーダシステム50とは別の計測系によってマスクMおよび基板Pの位置をそれぞれ計測できるようにしても良い。
次いで、図8(A)に示されるように、マスクホルダ40が+X方向に駆動(加速、等速駆動、及び減速)されるとともに、該マスクホルダ40に同期して、図8(B)に示されるように、基板ホルダ34が+X方向に駆動(加速、等速駆動、及び減速)される。マスクホルダ40が駆動される際、主制御装置90(図6参照)は、マスクエンコーダシステム48(図6参照)の出力に基づいてマスクMの位置制御を行うとともに、基板エンコーダシステム50(図6参照)の出力に基づいて基板Pの位置制御を行う。基板ホルダ34がX軸方向に駆動される際、4つのヘッドユニット60は、静止状態とされる。マスクホルダ40、及び基板ホルダ34がX軸方向に等速駆動される間、基板Pには、マスクM及び投影光学系16を通過した照明光IL(それぞれ図1参照)が照射され、これによりマスクMが有するマスクパターンがショット領域S1に転写される。なお、基板ホルダ34は、スキャン露光動作時にY軸方向に微小ストロークで駆動されるので、該Y軸方向への微小移動によって各ヘッド66x、66yからの計測ビームが対応するスケール53x、53yから外れる可能性がある場合には、スキャン動作時にヘッドユニット60を基板ホルダ34に同期してY軸方向に微小ストロークで移動させても良い。
基板P上の第1ショット領域S1に対するマスクパターンの転写が完了すると、基板ステージ装置20では、図9(B)に示されるように、第1ショット領域S1の+Y側の設定された第2ショット領域S2への露光動作のために、基板ホルダ34が−Y方向に所定距離(基板Pの幅方向寸法のほぼ半分の距離)、基板エンコーダシステム50(図6参照)の出力に基づいて駆動(Yステップ)される。上記基板ホルダ34のYステップ動作時において、マスクホルダ40は、図9(A)に示されるように、マスクMの−X側の端部が照明領域(ただし、図9(A)に示される状態では、マスクMは照明されない)よりも幾分+X側に位置した状態で静止している。
ここで、図9(B)に示されるように、上記基板ホルダ34のYステップ動作時において、基板ステージ装置20では、4つのヘッドユニット60が、基板ホルダ34に同期してY軸方向に駆動される。すなわち、図6に示されるように、主制御装置90は、基板エンコーダシステム50のうち、Yリニアエンコーダ94yの出力に基づいて、基板ホルダ34を基板駆動系93を介して目標位置までY軸方向に駆動しつつ、Yリニアエンコーダ96yの出力に基づいて、4つのヘッドユニット60をヘッドユニット駆動系86を介してY軸方向に駆動する。この際、主制御装置90は、4つのヘッドユニット60と基板ホルダ34とを同期して(4つのヘッドユニット60が基板ホルダ34に追従するように)駆動する。また、主制御装置90は、複数のヘッド64x、64yのうちの少なくとも1つのヘッドが、スケール56から外れない(計測可能範囲外とならない)範囲で、Yスライドテーブル62の位置制御を行う。
従って、基板ホルダ34のY位置(基板ホルダ34の移動中も含む)に関わらず、Xヘッド66x、Yヘッド66y(それぞれ図5参照)から照射される計測ビームそれぞれが、Xスケール53x、Yスケール53y(それぞれ図5参照)から外れることがない。換言すると、基板ホルダ34をY軸方向に移動中(Yステップ動作中)にXヘッド66x、Yヘッド66yから照射される計測ビームそれぞれがXスケール53x、Yスケール53yから外れない程度、すなわちXヘッド66x、Yヘッド66yからの計測ビームによる計測が途切れない(計測を継続できる)程度に、4つのヘッドユニット60と基板ホルダ34とを同期してY軸方向へ移動させれば良い。
このとき、基板ホルダ34がステップ方向(Y軸方向)に動く前に、Yスライドテーブル62(Xヘッド64x、66x、Yヘッド64y、66y)を基板ホルダ34に先立ってステップ方向に動かし始めても良い。これにより、各ヘッドの加速度を抑制することができ、さらに移動中の各ヘッドの傾き(進行方向に対して前のめりとなること)を抑制することができる。また、これに替えて、Yスライドテーブル62を基板ホルダ34よりも、遅れてステップ方向に動かし始めても良い。
以下、不図示であるが、基板ホルダ34のYステップ動作が完了すると、マスクエンコーダシステム48(図6参照)の出力に基づいてマスクホルダ40が−X方向に駆動されるとともに、該マスクホルダ40に同期して、基板エンコーダシステム50(図6参照)の出力に基づいて基板ホルダ34が−X方向に駆動される。これにより、第2ショット領域S2にマスクパターンが転写される。この際も、4つのヘッドユニット60は、静止状態とされる。以下、上記マスクホルダ40のスキャン動作、基板ホルダ34のYステップ動作、及び基板ホルダ34のスキャン動作を適宜繰り返すことによって、基板P上の複数のショット領域に対して、マスクパターンが順次転写される。上記露光動作時において、一対のヘッドユニット60は、スケール56との対向状態が維持されるように、基板ホルダ34が+Y方向、及び−Y方向にステップする度に、該基板ホルダ34と同方向に、同距離だけ駆動される。
ここで、上述したように、上記基板ホルダ34のYステップ動作時において、基板ステージ装置20では、4つのYスライダ76が、基板ホルダ34に同期してY軸方向に駆動される。すなわち、主制御装置90(図6参照)は、エンコーダシステムの出力に基づいて、基板ホルダ34を目標位置までY軸方向に駆動しつつ、Yスライダ位置計測系80(図4参照。ここではエンコーダシステム)の出力に基づいて、Yスライダ76をY軸方向に駆動する。この際、主制御装置90は、Yスライダ76と基板ホルダ34とを同期して(Yスライダ76が基板ホルダ34に追従するように)駆動する。また、主制御装置90は、複数のヘッド384x、384yのうちの少なくとも1つのヘッドが、スケール板340から外れない(計測可能範囲外とならない)範囲で、Yスライダ76の位置制御を行う。
従って、基板ホルダ34のY位置(基板ホルダ34の移動中も含む)に関わらず、Xヘッド384x、Yヘッド384y(それぞれ図13参照)から照射される計測ビームそれぞれが、Xスケール342x、Yスケール342y(それぞれ図13参照)から外れることがない。換言すると、基板ホルダ34をY軸方向に移動中(Yステップ動作中)にXヘッド384x、Yヘッド384yから照射される計測ビームそれぞれがXスケール342x、Yスケール342yから外れない程度、すなわちXヘッド384x、Yヘッド384yからの計測ビームによる計測が途切れない(計測を継続できる)程度に、例えば2つのYスライダ76と基板ホルダ34とをY軸方向へ移動させれば良い。すなわち、一対のヘッドユニット60と基板ホルダ34とのY軸方向への移動は、同期、追従移動でなくても良い。
このとき、基板ホルダ34がステップ方向(Y軸方向)に動く前に、Yスライダ76(Xヘッド384x、386x、Yヘッド384y、386y)を基板ホルダ34に先立ってステップ方向に動かし始めても良い。これにより、各ヘッドの加速度を抑制することができ、さらに移動中の各ヘッドの傾き(進行方向に対して前のめりとなること)を抑制することができる。また、これに替えて、Yスライダ76を基板ホルダ34よりも、遅れてステップ方向に動かし始めても良い。
また、基板ホルダ34のYステップ動作が完了すると、マスクステージ位置計測系54(図4参照)の出力に基づいてマスクM(図1参照)が−X方向に駆動されるとともに、該マスクMに同期して、基板ステージ水平面内位置計測系(図4参照。ここではエンコーダシステム)の出力に基づいて基板ホルダ34が−X方向に駆動されることにより、基板P上のショット領域にマスクパターンが転写される。この際、例えば2つのYスライダ76は、静止状態とされる。液晶露光装置10では、上記マスクMのスキャン動作、基板ホルダ34のYステップ動作、及び基板ホルダ34のスキャン動作を適宜繰り返すことによって、基板P上の複数のショット領域に対して、マスクパターンが順次転写される。上記露光動作時において、例えば2つのYスライダ76は、ターゲット338(スケール板340)との対向状態が維持されるように、基板ホルダ34が+Y方向、及び−Y方向にステップする度に、該基板ホルダ34と同方向に、同距離だけ駆動される。
ここで、上述したように、Yスケール53yは、X軸方向に延びる複数の格子線を有している。また、図20に示されるように、Yヘッド66yからYスケール53y上に照射される計測ビームの照射点66y(便宜上、Yヘッドと同じ符号を付して説明する)は、Y軸方向を長軸方向とする楕円状となっている。Yリニアエンコーダ94y(図6参照)では、Yヘッド66yとYスケール53yとがY軸方向に相対移動して計測ビームが格子線を跨ぐと、上記照射点からの±1次回折光の位相変化に基づいて、Yヘッド66yからの出力が変化する。
これに対し、主制御装置90(図6参照)は、上記スキャン露光動作中において、基板ホルダ34をスキャン方向(X軸方向)に駆動する際に、ヘッドユニット60(図4(B)参照)が有するYヘッド66yが、Yスケール53yを形成する複数の格子線を跨がないように、すなわち、Yヘッド66yからの出力が変化しない(変化がゼロである)ように、ヘッドユニット60のステップ方向の位置(Y位置)を制御する。
具体的には、Yスケール53yを構成する格子線間のピッチよりも高い分解能を有するセンサによってYヘッド66yのY位置を計測し、該Yヘッド66yからの計測ビームの照射点が格子線を跨ぎそう(Yヘッド66yの出力が変化しそう)になる直前で、Yヘッド66yのY位置をヘッドユニット駆動系86(図6参照)を介して制御する。なお、これに限らず、例えばYヘッド66yからの計測ビームが格子線を跨ぐことにより、Yヘッド66yの出力が変化した場合に、これに応じて、該Yヘッド66yを駆動制御することにより、実質的にYヘッド66yからの出力が変化しないようにしても良い。この場合、Yヘッド66yのY位置を計測するセンサが不要である。
以上説明したように、本実施形態に係る液晶露光装置10によれば、マスクMのXY平面内の位置情報を求めるためのマスクエンコーダシステム48、及び基板PのXY平面内の位置情報を求めるための基板エンコーダシステム50(それぞれ図1参照)それぞれは、対応するスケールに対して照射される計測ビームの光路長が短いので、従来の干渉計システムに比べて空気揺らぎの影響を低減できる。従って、マスクM、及び基板Pの位置決め精度が向上する。また、空気揺らぎの影響が小さいので、従来の干渉計システムを用いる場合に必須となる部分空調設備を省略でき、コストダウンが可能となる。
さらに、干渉計システムを用いる場合には、大きくて重いバーミラーをマスクステージ装置14、及び基板ステージ装置20に備える必要があったが、本実施形態に係るマスクエンコーダシステム48、及び基板エンコーダシステム50では、上記バーミラーが不要となるので、マスクホルダ40を含む系(例えば、マスクステージ装置)、及び基板ホルダ34を含む系(例えば、基板ステージ装置)それぞれが小型・軽量化するとともに重量バランスが良くなり、これによりマスクM、基板Pの位置制御性が向上する。また、干渉計システムを用いる場合に比べ、調整箇所が少なくて済むので、マスクステージ装置14、及び基板ステージ装置20のコストダウンし、さらにメンテナンス性も向上する。また、組み立て時の調整も容易(あるいは不要)となる。
また、本実施形態に係る基板エンコーダシステム50では、Y軸方向への基板Pの移動(例えばステップ動作)において、4つのヘッドユニット60をY軸方向に駆動することにより、基板PのY位置情報を求める構成であるため、基板ステージ装置20側にY軸方向に延びるスケールを配置する、またはX軸方向に延びるスケールの幅をY軸方向に広げる必要(あるいは装置本体18側にY軸方向に複数のヘッドを配列する必要)がない。従って、基板位置計測系の構成をシンプルにすることができ、コストダウンが可能となる。
また、本実施形態に係るマスクエンコーダシステム48では、隣接する一対のエンコーダヘッド(Xヘッド49x、Yヘッド49y)の出力をマスクホルダ40のX位置に応じて適宜切り換えながら該マスクホルダ40のXY平面内の位置情報を求める構成であるので、複数のスケール46をX軸方向に所定間隔で(互いに離間して)配置しても、マスクホルダ40の位置情報を途切れることなく求めることができる。従って、マスクホルダ40の移動ストロークと同等の長さ(本実施形態のスケール46の約3倍の長さ)のスケールを用意する必要がなく、コストダウンが可能であり、特に本実施形態のような大型のマスクMを用いる液晶露光装置10に好適である。本実施形態に係る基板エンコーダシステム50も同様に、複数のスケール52がX軸方向に、複数のスケール56がY軸方向に、それぞれ所定間隔で配置されるので、基板Pの移動ストロークと同等の長さのスケールを用意する必要がなく、大型の基板Pを用いる液晶露光装置10に好適である。
なお、上記第1の実施形態では、4つヘッドユニット60が、それぞれ基板ホルダ34の位置を計測するための4つのヘッド(各一対のXヘッド66x及びYヘッド66y)を有し、合計で16の基板ホルダ位置計測用のヘッドが設けられた場合について説明したが、基板ホルダ位置計測用のヘッドの数は、16より少なくても良い。以下では、このような実施形態について説明する。
《第2の実施形態》
次に、第2の実施形態について図14〜図17(C)に基づいて説明する。本第2の実施形態に係る液晶露光装置の構成は、基板エンコーダシステム50の一部の構成を除き、前述の第1の実施形態と同じなので、以下、相違点についてのみ説明し、第1の実施形態と同じ構成及び機能を有する要素については、第1の実施形態と同じ符号を付してその説明を省略する。
図14には、本第2の実施形態に係る基板ホルダ34及び基板エンコーダシステム50の一対のヘッドユニット60が、投影光学系16とともに平面図にて示されている。図14では、説明をわかり易くするため、エンコーダベース54等の図示が省略されている。また、図14では、ヘッドユニット60(Yスライドテーブル62)が点線で図示されるとともに、Yスライドテーブル62の上面に設けられたXヘッド64x、Yヘッド64yの図示も省略されている。ここで、上記第1の実施形態における基板エンコーダシステム50は、一対のエンコーダベース54を有するとともに、該一対のエンコーダベース54それぞれに対応して、ヘッドユニット60を、合計で4つ有していたが(図4(A)など参照)、本第2の実施形態に係る基板エンコーダシステム50では、エンコーダベース54(図14では不図示)は、1つのみ設けられ、ヘッドユニット60は、投影光学系16の+Y側、及び−Y側に、それぞれ1つずつ配置されている。
本第2の実施形態に係る液晶露光装置では、図14に示されるように、基板ホルダ34の基板載置領域を挟む+Y側、及び−Y側の領域に、それぞれエンコーダスケール152(以下、単にスケール152と称する)がX軸方向に関して格子領域が互いに離れて配置されるようにX軸方向に所定間隔で、5つ配置されている。基板載置領域の+Y側に配置された5つのスケール152と、−Y側の領域に配置された5つのスケール152では、隣接するスケール152(格子領域)間の間隔は、同じであるが、その配置位置が、+Y側の5つのスケール152に対して、−Y側の5つのスケール152が全体的に、所定距離D(隣接するスケール152(格子領域)の間隔より幾分大きな距離)+X側にずれて配置されている。これは、基板ホルダ34の位置情報を計測する後述する2つのXヘッド66x及び2つのYヘッド66yの合計4つのヘッドのうちの2つ以上がいずれのスケールにも対向しない(すなわち、4つのヘッドで計測ビームがスケールから外れる非計測期間が重ならない)状態が発生しないようにするためである。
各スケール152は、石英ガラスにより形成されたX軸方向に延びる平面視矩形の板状(帯状)の部材から成る。各スケール152の上面には、X軸方向及びY軸方向を周期方向とする所定ピッチ(1μm)の反射型の2次元回折格子(2次元グレーティング)RGが形成されている。以下では、前述の格子領域を単に2次元グレーティングRGとも呼ぶ。なお、図14では、図示の便宜上、2次元グレーティングRGの格子線間の間隔(ピッチ)は、実際よりも格段に広く図示されている。以下で説明するその他の図においても同様である。以下では、基板ホルダ34の+Y側の領域に配置された5つのスケール152を、第1格子群と称し、基板ホルダ34の−Y側の領域に配置された5つのスケール152を、第2格子群と称するものとする。
+Y側に位置する一方のヘッドユニット60のYスライドテーブル62の下面(−Z側の面)には、スケール152にそれぞれ対向する状態で、Xヘッド66xとYヘッド66yがX軸方向に所定間隔(隣接するスケール152相互の間隔より大きな距離)離れて固定されている。同様に、−Y側に位置する他方のヘッドユニット60のYスライドテーブル62の下面(−Z側の面)には、スケール152にそれぞれ対向する状態で、Yヘッド66yとXヘッド66xがX軸方向に所定間隔離れて固定されている。すなわち、第1格子群と対向するXヘッド66xおよびYヘッド66yと、第2格子群と対向するXヘッド66xおよびYヘッド66yはそれぞれ、隣接するスケール152の格子領域の間隔よりも広い間隔で計測ビームをスケール152に照射する。以下では、説明の便宜上、一方のヘッドユニット60が有するXヘッド66x、Yヘッド66yを、それぞれヘッド66a、ヘッド66bと呼び、他方のヘッドユニット60が有するYヘッド66y、Xヘッド66xを、それぞれヘッド66c、ヘッド66dとも呼ぶものとする。
この場合、ヘッド66aとヘッド66cが、同一のX位置(Y軸方向と平行な同一直線上)に配置され、ヘッド66bとヘッド66dが、ヘッド66aとヘッド66cのX位置と異なる、同一のX位置(Y軸方向と平行な同一直線上)に配置されている。ヘッド66a、66dとそれぞれ対向する2次元グレーティングRGとによって、一対のXリニアエンコーダが構成され、ヘッド66b、66cとそれぞれ対向する2次元グレーティングRGとによって、一対のYリニアエンコーダが構成されている。
本第2の実施形態に係る液晶露光装置では、ヘッドユニット60の残りの部分を含み、その他の部分の構成は、主制御装置90の基板エンコーダシステムを用いた基板ホルダ34の駆動制御(位置制御)を除き、前述した第1の実施形態に係る液晶露光装置10と同様になっている。
本第2の実施形態に係る液晶露光装置では、図15(A)に示される、基板ホルダ34の+X端部に一対のヘッドユニット60が対向する第1位置と、図15(B)に示される、基板ホルダ34の−X端部に一対のヘッドユニット60が対向する第2位置との間で、基板ホルダ34がX軸方向に移動する範囲内で、一対のヘッドユニット60のヘッド60a〜60d、すなわち一対のXリニアエンコーダ及び一対のYリニアエンコーダによる基板ホルダ34の位置計測が可能である。図15(A)は、ヘッド66bのみがいずれのスケール152にも対向していない状態を示し、図15(B)は、ヘッド66cのみがいずれのスケール152にも対向していない状態を示している。
図15(A)に示される第1位置と図15(B)に示される第2位置との間で基板ホルダ34がX軸方向に移動する過程で、一対のヘッドユニット60とスケール152との位置関係は、図16(A)〜図16(D)にそれぞれ示される第1の状態〜第4の状態と、4つのヘッド66a〜66dの全てが、いずれかのスケール152の2次元グレーティングRGに対向する(すなわち、4つのヘッド66a〜66dの全てで計測ビームが2次元グレーティングRGに照射される)第5の状態との5つの状態の間で遷移する。以下では、スケールの2次元グレーティングRGに対向する、あるいは計測ビームがスケール152の2次元グレーティングRGに照射されると言う代わりに、単にヘッドがスケールに対向すると表現する。
ここでは、説明の便宜上、6つのスケール152を取り上げ、各スケールにそれぞれ識別のための記号a〜fを付して、スケール152a~152fと表記する(図16(A)参照)
図16(A)の第1の状態は、ヘッド66aがスケール152bに対向し、且つヘッド66c、66dがスケール152eに対向し、ヘッド66bのみが、いずれのスケールにも対向しない状態を示し、図16(B)の第2状態は、図16(A)の状態から基板ホルダ34が+X方向に所定距離移動してヘッド66a、66bがスケール152bに対向し、且つヘッド66dがスケール152eに対向し、ヘッド66cのみがいずれのスケールにも対向しなくなった状態を示す。図16(A)の状態から図16(B)の状態に遷移する過程で、ヘッド66a、66bがスケール152bに対向し、且つヘッド66c,66dが、スケール152eに対向する第5の状態を経由する。
図16(C)の第3の状態は、図16(B)の状態から基板ホルダ34が+X方向に所定距離移動してヘッド66aのみがいずれのスケールにも対向しなくなった状態を示す。図16(B)の状態から図16(C)の状態に遷移する過程で、ヘッド66a、66bがスケール152bに対向し、且つヘッド66cがスケール152dに対向し、且つヘッド66dがスケール152eに対向する第5の状態を経由する。
図16(D)の第4の状態は、図16(C)の状態から基板ホルダ34が+X方向に所定距離移動してヘッド66dのみがいずれのスケールにも対向しなくなった状態を示す。図16(C)の状態から図16(D)の状態に遷移する過程で、ヘッド66aがスケール152aに対向し、且つヘッド66bがスケール152bに対向し、且つヘッド66cがスケール152dに対向し、且つヘッド66dがスケール152eに対向する第5の状態を経由する。
図16(D)の状態から、基板ホルダ34が所定距離+X方向に移動すると、ヘッド66aがスケール152aに対向し、且つヘッド66bがスケール152bに対向し、且つヘッド66c、66dがスケール152dに対向する第5の状態を経由した後、ヘッド66aがスケール152aに対向し、且つヘッド66c、66dがスケール152dに対向し、ヘッド66bのみが、いずれのスケールにも対向しない第1の状態となる。
以上は、基板ホルダ34の±Y側にそれぞれ5つ配置されたスケール152のうちの各3つのスケール152と、一対のヘッドユニット60との間の状態(位置関係)の遷移についての説明であるが、10のスケール152と一対のヘッドユニット60との間でも、基板ホルダ34の±Y側にそれぞれ配置された5つのスケールのうちの隣接する各3つのスケール152について見れば、一対のヘッドユニット60との位置関係は、上述と同様の順序で遷移する。
このように、本第2の実施形態では、基板ホルダ34がX軸方向に移動されても、2つのXヘッド66x、すなわちヘッド66a、66dと2つのYヘッド66y、すなわちヘッド66b、66cとの合計4つのうちの少なくとも3つが、常にいずれかのスケール152(2次元グレーティングRG)に対向する。さらに、基板ホルダ34がY軸方向に移動されても、4つのヘッドともY軸方向に関して計測ビームがスケール152(2次元グレーティングRG)から外れないように一対のYスライドテーブル62がY軸方向に駆動されるため、4つのヘッドの少なくとも3つが常にいずれかのスケール152に対向する。したがって、主制御装置90は、常時、ヘッド66a〜66dのうちの3つを用いて、基板ホルダ34のX軸方向、Y軸方向及びθz方向の位置情報を管理することが可能である。以下、この点についてさらに説明する。
Xヘッド66x、Yヘッド66yの計測値を、それぞれCX、CYとすると、計測値CX,CYは、それぞれ、次式(1a)、(1b)で表すことができる。
CX= (pi−X)cosθz+(qi−Y)sinθz ……(1a)
CY=−(pi−X)sinθz+(qi−Y)cosθz ……(1b)
ここで、X、Y、θzは、それぞれ基板ホルダ34のX軸方向、Y軸方向及びθz方向の位置を示す。また、pi、qiは、ヘッド66a~66dそれぞれのX位置座標、Y位置座標値である。本実施形態では、ヘッド66a、66b、66c、66dそれぞれのX位置座標、Y位置座標値(pi、qi)(i=1、2、3、4)は、前述の4つのXリニアエンコーダ96xと、4つのYリニアエンコーダ96yの出力から算出される一対のヘッドユニット60(図1参照)それぞれのX軸方向、及びY軸方向の位置情報(Yスライドテーブル62の中心のX軸方向、及びY軸方向の位置)から、各ヘッドのYスライドテーブル62の中心に対する既知の位置関係に基づいて簡単に算出することができる。
したがって、基板ホルダ34と一対のヘッドユニット60とが図15(A)に示されるような位置関係にあり、このとき基板ホルダ34のXY平面内の3自由度方向の位置が(X、Y、θz)であるものとすると、3つのヘッド66a、66c、66dの計測値は、理論上、次の式(2a)〜(2c)(アフィン変換の関係とも呼ぶ)で表すことができる。
C1= (p1−X)cosθz+(q1−Y)sinθz ……(2a)
C3=−(p3−X)sinθz+(q3−Y)cosθz ……(2b)
C4= (p4−X)cosθz+(q4−Y)sinθz ……(2c)
基板ホルダ34が座標原点(X,Y、θz)=(0,0,0)にある基準状態では、連立方程式(2a)〜(2c)より、C1=p1,C3=q3,C4=p4となる。基準状態は、投影光学系16による投影領域の中心に、基板ホルダ34中心(基板Pの中心にほぼ一致)が一致し、θz回転がゼロの状態である。したがって、基準状態では、ヘッド66bによる基板ホルダ34のY位置の計測も可能となっており、ヘッド66bによる計測値C2は、式(1b)に従い、C2=q2となる。
従って、基準状態において、3つのヘッド66a、66c、66dの計測値を、それぞれp1,q3,p4と初期設定すれば、以降基板ホルダ34の変位(X,Y,θz)に対して、3つのヘッド66a、66c、66dは、式(2a)〜(2c)で与えられる理論値を提示することになる。
なお、基準状態において、ヘッド66a、66c、66dのいずれか1つ、ヘッド66cに代えて、ヘッド66bの計測値C2を、q2に初期設定しても良い。
この場合には、以降基板ホルダ34の変位(X,Y,θz)に対して、3つのヘッド66a、66b、66dは、式(2a)、(2c)、(2d)で与えられる理論値を提示することになる。
C1= (p1−X)cosθz+(q1−Y)sinθz ……(2a)
C4= (p4−X)cosθz+(q4−Y)sinθz ……(2c)
C2=−(p2−X)sinθz+(q2−Y)cosθz ……(2d)
連立方程式(2a)〜(2c)及び連立方程式(2a)、(2c)、(2d)では、変数が3つ(X,Y,θz)に対して3つの式が与えられている。従って、逆に、連立方程式(2a)〜(2c)における従属変数C1,C3,C4、あるいは連立方程式(2a)、(2c)、(2d)における従属変数C1,C4,C2が与えられれば、変数X,Y,θzを求めることができる。ここで、近似sinθz≒θzを適用すると、あるいはより高次の近似を適用しても、容易に方程式を解くことができる。従って、ヘッド66a、66c、66d(又はヘッド66a、66b、66d)の計測値C1,C3,C4(又はC1,C2,C4)よりウエハステージWSTの位置(X,Y,θz)を算出することができる。
次に、本第2の実施形態に係る液晶露光装置で行われる、基板ホルダ34の位置情報を計測する、基板エンコーダシステムのヘッドの切り換え時における繋ぎ処理、すなわち計測値の初期設定について、主制御装置90の動作を中心として説明する。
本第2の実施形態では、前述の如く、基板ホルダ34の有効ストローク範囲では常に3つのエンコーダ(Xヘッド及びYヘッド)が基板ホルダ34の位置情報を計測しており、エンコーダ(Xヘッド又はYヘッド)の切り換え処理を行う際には、図17(B)に示されるように、4つのヘッド66a〜66dのそれぞれが、いずれかのスケール52に対向し、基板ホルダ34の位置を計測可能な状態(前述の第5の状態)となる。図17(B)は、図17(A)に示されるように、ヘッド66a、66b及び66dで基板ホルダ34の位置を計測していた状態から、基板ホルダ34が+X方向に移動して、図17(C)に示されるように、ヘッド66b、66c、66dで基板ホルダ34の位置を計測する状態に遷移する途中で出現する第5の状態の一例を示す。すなわち、図17(B)は、基板ホルダ34の位置情報の計測に用いられる3つのヘッドが、ヘッド66a、66b、66dからヘッド66b、66c、66dに切り換えられている最中の状態を示す。
基板ホルダ34のXY平面内の位置制御(位置情報の計測)に用いられるヘッド(エンコーダ)の切り換え処理(繋ぎ処理)を行おうとする瞬間において、図17(B)に示されるように、ヘッド66a、66b、66c及び66dが、それぞれスケール152b、152b、152d、152eに対向している。図17(A)から図17(C)を一見すると、図17(B)においてヘッド66aからヘッド66cに切り換えようとしているように見えるが、ヘッド66aとヘッド66cとでは、計測方向が異なることからも明らかなように、繋ぎを行おうとするタイミングにおいてヘッド66aの計測値(カウント値)をそのままヘッド66cの計測値の初期値として与えても何の意味もない。
そこで、本実施形態では、主制御装置90が、3つのヘッド66a、66b及び66dを用いる基板ホルダ34の位置情報の計測(及び位置制御)から、3つのヘッド66b、66c、66dを用いる基板ホルダ34の位置情報の計測(及び位置制御)に切り換えるようになっている。すなわち、この方式は通常のエンコーダの繋ぎ処理の概念とは異なり、あるヘッドから別のヘッドに繋ぐというのではなく、3つのヘッド(エンコーダ)の組み合わせから別の3つのヘッド(エンコーダ)の組み合わせにつなぐものである。
主制御装置90は、まず、ヘッド66a、66d及び66bの計測値C1,C4,C2に基づいて、連立方程式(2a)、(2c)、(2d)を解き、基板ホルダのXY平面内の位置情報(X,Y,θz)を算出する。
次に、主制御装置90は、次式(3)のアフィン変換の式に、上で算出したX,θzを代入して、ヘッド66cの計測値の初期値(ヘッド66cが計測すべき値)を求める。
C3=−(p3−X)sinθz+(q3−Y)cosθz ……(3)
上式(3)において、p3,q3は、ヘッド66cの計測点のX座標値、Y座標値である。本実施形態では、前述した通り、座標値(p3、q3)は、4つのXリニアエンコーダ96xと、4つのYリニアエンコーダ96yの出力から算出される一対のヘッドユニット60それぞれのYスライドテーブル62の中心のX軸方向、及びY軸方向の位置から、ヘッド66cのYスライドテーブル62の中心に対する既知の位置関係に基づいて算出された値が用いられる。
上記初期値C3をヘッド66cの初期値として与えることで、基板ホルダ34の3自由度方向の位置(X,Y,θz)を維持したまま、矛盾なく繋ぎが完了することになる。それ以降は、切り換え後に使用するヘッド66b、66c、66dの計測値C2,C3,C4を用いて、次の連立方程式(2b)〜(2d)を解いて、ウエハステージWSTの位置座標(X,Y,θz)を算出する。
C3=−(p3−X)sinθz+(q3−Y)cosθz ……(2b)
C4= (p4−X)cosθz+(q4−Y)sinθz ……(2c)
C2=−(p2−X)sinθz+(q2−Y)cosθz ……(2d)
なお、上では、3つのヘッドから、この3つのヘッドと異なる別のヘッドを1つ含む異なる3つのヘッドへの切り換えについて説明したが、これは切り換え前の3つのヘッドの計測値から求まる基板ホルダ34の位置(X、Y、θz)を用いて、切り換え後に用いられる別のヘッドで計測すべき値を、アフィン変換の原理に基づいて、算出し、その算出した値を、切り換え後に用いられる別のヘッドの初期値として設定しているため、このように説明した。しかしながら、切り換え後に用いられる別のヘッドで計測すべき値の算出等の手順には触れず、切り換え及び繋ぎ処理の直接の対象である2つのヘッドにのみ注目すれば、切り換え前に使用している3つのヘッドのうちの1つのヘッドを別の1つのヘッドに切り換えているとも言える。いずれにしても、ヘッドの切り換えは、切り換え前に基板ホルダの位置情報の計測及び位置制御に用いられているヘッドと、切り換え後に用いられるヘッドとが、ともに、いずれかのスケール152に同時に対向している状態で行われる。
なお、上の説明は、ヘッド66a〜66dの切り換えの一例であるが、いずれの3つのヘッドから別の3つのヘッドへの切り換え、あるいはいずれのヘッドから別のヘッドへの切り換えにおいても、上記の説明と同様の手順でヘッドの切り換えが行われる。
以上説明した本第2の実施形態に係る液晶露光装置は、前述した第1の実施形態と同等の作用効果を奏する。これに加え、本第2の実施形態に係る液晶露光装置によると、基板ホルダ34の駆動中に、基板エンコーダシステム50のXヘッド66x(Xリニアエンコーダ)とYヘッド66y(Yリニアエンコーダ)とを少なくとも各1つ含む3つのヘッド(エンコーダ)によりXY平面内における基板ホルダ34の位置情報(θz回転を含む)が計測される。そして、主制御装置90により、XY平面内における基板ホルダ34の位置が切り換えの前後で維持されるように、XY平面内における基板ホルダ34の位置情報の計測に用いるヘッド(エンコーダ)が、切り換え前に基板ホルダ34の位置計測及び位置制御に用いられていた3つのヘッド(エンコーダ)のうちのいずれかのヘッド(エンコーダ)から別のヘッド(エンコーダ)に切り換えられる。このため、基板ホルダ34の位置の制御に用いるエンコーダの切り換えが行われているにもかかわらず、切り換えの前後で基板ホルダ34のXY平面内の位置が維持され、正確な繋ぎが可能になる。したがって、複数のヘッド(エンコーダ)間でヘッドの切り換え及び繋ぎ(計測値の繋ぎ処理)を行いながら、所定の経路に沿って正確に基板ホルダ34(基板P)をXY平面に沿って移動させることが可能になる。
また、本第2の実施形態に係る液晶露光装置によると、基板の露光中、主制御装置90により、基板ホルダ34の位置情報の計測結果と該位置情報の計測に用いられた3つのヘッドのXY平面内における位置情報((X,Y)座標値)とに基づいて、XY平面内で基板ホルダ34が駆動される。この場合、主制御装置90は、アフィン変換の関係を利用してXY平面内における基板ホルダ34の位置情報を算出しながらXY平面内で基板ホルダ34を駆動する。これにより、複数のYヘッド66y又は複数のXヘッド66xをそれぞれ有するエンコーダシステムを用いて基板ホルダ34の移動中に制御に用いるヘッド(エンコーダ)を切り換えながら、基板ホルダ34(基板P)の移動を精度良く制御することが可能になる。
なお、上記第2実施形態において、隣接する一対のスケールの1つから外れて計測ビームが他方のスケールに乗り換えるヘッド(上記別のヘッドに相当)を用いて基板ホルダの移動を制御するための補正情報(前述した別のヘッドの初期値)を、少なくとも1つのスケール152と対向する3つのヘッドで計測される位置情報に基づいて取得するものとしたが、この補正情報は、別のヘッドの計測ビームが他方のスケールに乗り換えた後で、少なくとも1つのスケール152と対向する3つのヘッドの1つが2次元グレーティングRGから外れる前までに取得すれば良い。また、少なくとも1つのスケール152と対向する3つのヘッドを、上記別のヘッドを含む異なる3つのヘッドに切り換えて基板ホルダの位置計測あるいは位置制御を行う場合、その切換は、上記補正情報が取得された後で、少なくとも1つのスケール152と対向する3つのヘッドの1つが2次元グレーティングRGから外れる前までに行えば良い。なお、補正情報の取得と切換とを実質的に同時に行っても良い。
なお、上記第2の実施形態では、X軸方向(第1方向)に関して、第1格子群の2次元グレーティングRGがない領域(非格子領域)が第2格子群の2次元グレーティングRGがない領域非格子領域)と重ならないように、言い換えれば、計測ビームが2次元グレーティングRGから外れる非計測期間が4つのヘッドで重ならないように、第1格子群、第2格子群の各5つのスケール152が基板ホルダ34上に配置されている。この場合、+Y側のヘッドユニット60が有するヘッド66a、66bは、X軸方向に関して第1格子群の2次元グレーティングRGのない領域の幅よりも広い間隔で配置され、−Y側のヘッドユニット60が有するヘッド66c、66dは、X軸方向に関して第2格子群の2次元グレーティングRGのない領域の幅よりも広い間隔で配置されている。しかしながら、複数の2次元格子を含む格子部とこれに対向可能な複数のヘッドとの組み合わせがこれに限定されるものではない。要は、X軸方向への移動体の移動中、2次元グレーティングRGから計測ビームが外れる(計測不能な)非計測期間が4つのヘッド66a、66b、66c、66dで重ならないように、ヘッド66a、66bの間隔及びヘッド66c、66dの間隔、位置、第1、第2格子群の格子部の位置や長さ又は格子部の間隔やその位置を設定すれば良い。例えば、第1格子群と第2格子群とで、X軸方向に関して非格子領域の位置および幅が同一であっても、第1格子群の少なくとも1つのスケール152(2次元グレーティングRG)と対向する2つのヘッドと、第2格子群の少なくとも1つのスケール152(2次元グレーティングRG)と対向する2つのヘッドを、X軸方向に関して非格子領域の幅よりも広い距離だけずらして配置しても良い。この場合、第1格子群と対向する2つのヘッドのうち+X側に配置されるヘッドと、第2格子群と対向する2つのヘッドのうち−X側に配置されるヘッドとの間隔を、非格子領域の幅よりも広い間隔としても良いし、第1格子群と対向する2つのヘッドと、第2格子群と対向する2つのヘッドを、X軸方向に関して交互に配置し、かつ隣接する一対のヘッドの間隔を非格子領域の幅よりも広く設定しても良い。
また、上記第2の実施形態では、基板ホルダ34の+Y側の領域に第1格子群が配置され、かつ基板ホルダ34の−Y側の領域に第2格子群が配置される場合について説明したが、第1格子群及び第2格子群の一方、第1格子群に代えて、X軸方向に延びる2次元格子が形成された単一のスケール部材を用いても良い。この場合において、その単一のスケール部材には、1つのヘッドが常時対向することとしても良い。この場合には、第2格子群に対向して3つのヘッドを設け、該3つのヘッドのX軸方向の間隔(計測ビームの照射位置間の間隔)を、隣接するスケール152上の2次元グレーティングRG間の間隔より広くすることで、基板ホルダ34のX軸方向の位置によらず、第2格子群に対向する3つのヘッドのうちの少なくとも2つが第2格子群の少なくとも1つの2次元グレーティングRGに対向可能な構成としても良い。あるいは、基板ホルダ34のX軸方向の位置によらず、上記の単一のスケール部材に常時少なくとも2つのヘッドが対向可能な構成を採用し、併せて第2格子群の少なくとも1つの2次元グレーティングRGに少なくとも1つのヘッドが対向可能な構成としても良い。この場合には、その少なくとも2つのヘッドは、それぞれ、X軸方向への基板ホルダ34の移動中、計測ビームが複数のスケール152(2次元グレーティングRG)の1つから外れるととともに、1つのスケール152(2次元グレーティングRG)に隣接する別のスケール152(2次元グレーティングRG)に乗り換えることになる。しかしながら、少なくとも2つのヘッドのX軸方向の間隔を、隣接するスケール152の2次元グレーティングRGの間隔より広くすることで、少なくとも2つのヘッドで非計測期間が重ならない、すなわち常に少なくとも1つのヘッドで計測ビームがスケール152に照射される。これらの構成では常に少なくとも3つのヘッドが少なくとも1つのスケール152と対向して3自由度方向の位置情報を計測可能である。
なお、第1格子群と第2格子群とで、スケールの数、隣接するスケールの間隔などが異なっても良い。この場合、第1格子群と対向する少なくとも2つのヘッドと第2格子群と対向する少なくとも2つのヘッドで、ヘッド(計測ビーム)の間隔、位置などが異なっても良い。
なお、上記第2の実施形態では、ヘッド66a〜66dのX軸方向及びY軸方向の位置は、4つのXリニアエンコーダ96xと、4つのYリニアエンコーダ96yの出力から算出される一対のヘッドユニット60それぞれのYスライドテーブル62の中心のX軸方向、及びY軸方向の位置から、各ヘッドのYスライドテーブル62の中心に対する既知の位置関係に基づいて算出されるものとした。すなわち、ヘッド66a〜66dのX軸方向及びY軸方向の位置の計測に、エンコーダシステムが用いられるものとした。しかしながら、これに限らず、ヘッド66a〜66d(一対のヘッドユニット60)は、Y軸方向にのみ移動可能であるから、ヘッド66a〜66dのY軸方向の位置情報のみをエンコーダシステム等を用いて計測しても良い。すなわち、上記第2の実施形態では、4つのXリニアエンコーダ96xは、必ずしも設けなくても良い。この場合、ヘッド66a〜66dについて、前述の式(2a)〜(2d)等の適用に際して、p1〜p4(X位置)として設計値(固定値)が用いられ、q1〜q4(Y位置)は、4つのYリニアエンコーダ96yの出力から算出される値が用いられる。なお、アフィン変換の関係を利用しない場合、ヘッド66b、66cにより基板ホルダ34のY軸方向に関する位置情報を計測するに際して、4つのYリニアエンコーダ96yの計測情報が用いられ、ヘッド66a、66dにより基板ホルダ34のX軸方向に関する位置情報を計測する際には、4つのYリニアエンコーダ96yの計測情報を用いなくても良い。
なお、上記第2の実施形態では、単一の2次元グレーティングRG(格子領域)がそれぞれ形成された複数のスケール152を用いることとしたが、これに限らず、2つ以上の格子領域が、X軸方向に離れて形成されたスケール152を、第1格子群又は第2格子群の少なくとも一方に含んでいても良い。
なお、上記第2の実施形態では、常に3つのヘッドにより基板ホルダ34の位置(X、Y、θz)を計測、制御するため、同一構成の各5つのスケール152を含む第1格子群と第2格子群とで、X軸方向に関して所定距離ずらして配置する場合について説明したが、これに限らず、第1格子群と第2格子群とで、X軸方向に関してずらすことなく(互いにほぼ完全に対向してスケール152の列を配置し)、一方のヘッドユニット60と他方のヘッドユニット60とで、基板ホルダ34の位置計測用のヘッド(ヘッド66x、66y)の配置をX軸方向に関して異ならせても良い。この場合にも、常に3つのヘッドにより基板ホルダ34の位置(X、Y、θz)を計測、制御することが可能になる。
なお、上記第2の実施形態では、ヘッド66a、66bとヘッド66c、66dとの合計4つのヘッドを用いる場合について説明したが、これに限らず、5つ以上のヘッドを用いることとしても良い。すなわち、第1格子群、第2格子群にそれぞれ対向する各2つのヘッドの少なくとも一方に、少なくとも1つの冗長ヘッドを加えても良い。この構成について以下の第3の実施形態で説明する。
《第3の実施形態》
次に、第3の実施形態について図18に基づいて説明する。本第3の実施形態に係る液晶露光装置の構成は、基板エンコーダシステム50の一部の構成を除き、前述の第1及び第2の実施形態と同じなので、以下、相違点についてのみ説明し、第1及び第2の実施形態と同じ構成及び機能を有する要素については、第1及び第2の実施形態と同じ符号を付してその説明を省略する。
図18には、本第3の実施形態に係る基板ホルダ34及び基板エンコーダシステム50の一対のヘッドユニット60が、投影光学系16とともに平面図にて示されている。図18では、説明をわかり易くするため、エンコーダベース54等の図示が省略されている。また、図18では、ヘッドユニット60(Yスライドテーブル62)が点線で図示されるとともに、Yスライドテーブル62の上面に設けられたXヘッド64x、Yヘッド64yの図示も省略されている。
本第3の実施形態に係る液晶露光装置では、図18に示されるように、基板ホルダ34の基板載置領域を挟んで+Y側、及び−Y側の領域に、それぞれスケール152がX軸方向に所定間隔で、5つ配置されている。基板載置領域の+Y側に配置された5つのスケール152と、−Y側の領域に配置された5つのスケール152では、隣接するスケール152間の間隔は、同じであり、かつ基板載置領域の+Y側、及び−Y側の各5つのスケール152同士は、互いに対向して同一のX位置に配置されている。したがって、隣接するスケール152間の隙間の位置が、ほぼ同一のY軸方向の所定線幅の直線上に位置している。
+Y側に位置する一方のヘッドユニット60のYスライドテーブル62の下面(−Z側の面)には、スケール152にそれぞれ対向する状態で、Yヘッド66y、Xヘッド66x及びYヘッド66yの合計3つのヘッドが−X側から順にX軸方向に所定間隔(隣接するスケール152相互の間隔より大きな距離)離れて固定されている。−Y側に位置する他方のヘッドユニット60のYスライドテーブル62の下面(−Z側の面)には、スケール152にそれぞれ対向する状態で、Yヘッド66yとXヘッド66xがX軸方向に所定間隔離れて固定されている。以下では、説明の便宜上、一方のヘッドユニット60が有する3つのヘッドを、−X側から順にそれぞれヘッド66e、ヘッド66a、ヘッド66bと呼び、他方のヘッドユニット60が有するYヘッド66y、Xヘッド66xを、それぞれヘッド66c、ヘッド66dとも呼ぶものとする。
この場合、ヘッド66aとヘッド66cが、同一のX位置(同一のY軸方向の直線上)に配置され、ヘッド66bとヘッド66dが、同一のX位置(同一のY軸方向の直線上)に配置されている。ヘッド66a、66dとそれぞれ対向する2次元グレーティングRGとによって、一対のXリニアエンコーダが構成され、ヘッド66b、66c、66eとそれぞれ対向する2次元グレーティングRGとによって、3つのYリニアエンコーダが構成されている。
本第3の実施形態に係る液晶露光装置では、その他の部分の構成は、前述の第2の実施形態に係る液晶露光装置と同様になっている。
本第3の実施形態では、+Y側と−Y側のスケール152の列の配置を、X軸方向に関してずらしていないにも拘らず、一対のヘッドユニット60が基板ホルダ34に同期してY軸方向に移動している(又は一対のヘッドユニット60とスケール152の列とが対向する位置で基板ホルダ34のY位置が維持されている)限り、ヘッド66a〜66eのうちの3つが、基板ホルダ34のX位置によらず、常にスケール152(2次元グレーティングRG)に対向する。
以上説明した本第3の実施形態に係る液晶露光装置は、前述した第2の実施形態に係る液晶露光装置と同様の作用効果を奏する。
なお、上記第3の実施形態は、基板ホルダ34の位置情報計測用の複数のヘッドは、ヘッドの切り換えに必要な4つのヘッド、ヘッド66e、66b、66c、66dに加え、その4つのヘッドのうちの1つのヘッド66cと非計測期間が一部重なる1つのヘッド66aを含んでいるとも捉えることができる。そして、本第3の実施形態では、基板ホルダ34の位置情報(X、Y、θz)の計測において、4つのヘッド66e、66b、66c、66dと、1つのヘッド66cと、を含む5つのヘッドのうち、計測ビームが複数の格子領域(2次元グレーティングRG)の少なくとも1つに照射される少なくとも3つのヘッドの計測情報が用いられる。
《第4の実施形態》
次に、第4の実施形態について図19に基づいて説明する。本第4の実施形態に係る液晶露光装置の構成は、図19に示されるように、基板ホルダ34の基板載置領域の+Y側と−Y側にそれぞれ配置されたスケール152の列が、第3の実施形態と同様に対向配置され、且つ−Y側に位置する一方のヘッドユニット60が、前述の第1の実施形態と同様に各2つのXヘッド66x、Yヘッド66yを有している点が、前述の第2の実施形態に係る液晶露光装置の構成と相違するが、その他の部分の構成は第2の実施形態に係る液晶露光装置と同様になっている。
一方のヘッドユニット60のYスライドテーブル62の下面(−Z側の面)には、Yヘッド66y(ヘッド66c)の−Y側に隣接してXヘッド66x(以下、適宜、ヘッド66eと呼ぶ)が設けられるとともに、Xヘッド66x(ヘッド66d)の−Y側に隣接してYヘッド66y(以下、適宜、ヘッド66fと呼ぶ)が設けられている。
本実施形態に係る液晶露光装置では、一対のヘッドユニット60がY軸方向に移動している状態(又は一対のヘッドユニット60とスケール152の列とが対向する位置で基板ホルダ34のY位置が維持されている状態)において、基板ホルダ34のX軸方向の移動に伴い、3つのヘッド66a、66c、66e(第1グループのヘッドと称する)及び3つのヘッド66b,66d、66f(第2グループのヘッドと称する)の一方が、いずれのスケールにも対向しなくなる場合があるが、そのときには、必ず第1グループのヘッドと第2グループのヘッドとの他方が、スケール152(2次元グレーティングRG)に対向する。すなわち、本第4の実施形態に係る液晶露光装置では、+Y側と−Y側のスケール152の列の配置を、X軸方向に関してずらしていないにも拘らず、基板ホルダ34のX軸方向への移動において、一対のヘッドユニット60がY軸方向に移動している(又は一対のヘッドユニット60とスケール152の列とが対向する位置で基板ホルダ34のY位置が維持されている)限り、第1グループのヘッドと第2グループのヘッドの少なくとも一方に含まれる3つのヘッドによって、基板ホルダ34のX位置によらず、基板ホルダ34の位置(X、Y、θz)の計測が可能になっている。
ここで、第1グループのヘッド(ヘッド66a、66c、66e)がいずれのスケールにも対向しなくなって計測不能となった後に、再度、スケール152に対向した場合に、それらのヘッド66a、66c、66eを復帰させる(計測を再開させる)場合について考える。この場合、第1グループのヘッド(ヘッド66a、66c、66e)による計測が再開される前の時点では、第2グループのヘッド(ヘッド66b,66d、66f)によって、基板ホルダ34の位置(X、Y、θz)の計測、制御が続行されている。そこで、主制御装置90は、図19に示されるように、一対のヘッドユニット60が、+Y側、−Y側にそれぞれ配置された隣接する2つのスケール152を跨ぎ、第1グループのヘッドと第2グループのヘッドとが、隣接する2つのスケール152の一方と他方に対向した時点で、前述した第2実施形態で詳述した手法により、第2グループのヘッド(ヘッド66b,66d、66f)の計測値に基づき、基板ホルダの位置(X、Y、θz)を算出し、この算出した基板ホルダの位置(X、Y、θz)を、前述したアフィン変換の式に代入することで、第1のグループのヘッド(ヘッド66a、66c、66e)の初期値を同時に算出して設定する。これにより、簡単に、第1グループのヘッドを復帰させて、これらのヘッドによる基板ホルダ34の位置の計測、制御を再開させることができる。
以上説明した本第4の実施形態に係る液晶露光装置によると、前述した第2の実施形態に係る液晶露光装置と同様の作用効果を奏する。
《第4の実施形態の変形例》
この変形例は、第4の実施形態に係る液晶露光装置において、+Y側に位置する他方のヘッドユニット60として、一方のヘッドユニット60と同じ構成(又は紙面上下方向に関して対称な構成)のヘッドユニットが用いられる場合である。
この場合、上述と同様に、同一のY軸方向の直線状に配置された各4つのヘッドが属する第1グループのヘッドと、第2グループのヘッドとに8つのヘッドをグループ分けする。
第1グループのヘッドがいずれのスケールにも対向しなくなって計測不能となった後に、再度、スケール152に対向した場合に、第1グループのヘッドを復帰させ、それらのヘッドによる計測を再開させる場合について考える。
この場合、第1グループのヘッドによる計測が再開される前の時点では、第2グループのヘッドのうちの3つのヘッドによって、基板ホルダ34の位置(X、Y、θz)の計測、制御が続行されている。そこで、主制御装置90は、前述と同様、一対のヘッドユニット60が、+Y側、−Y側にそれぞれ配置された隣接する2つのスケール152を跨ぎ、第1グループのヘッドと第2グループのヘッドとが、隣接する2つのスケール152の一方と他方に対向した時点で、第1グループのヘッドそれぞれの計測値の初期値を算出するが、この場合は、第1グループの4つのヘッドの全ての初期値を同時に算出することはできない。その理由は、計測に復帰させるヘッドが3つ(XヘッドとYヘッドとを合わせた数)であれば、前述と同様の手順でそれら3つのヘッドの計測値の初期値を設定した場合に、それらの初期値を前述の計測値C1、C2、C3等として、前述の連立方程式を解くことで、基板ホルダの位置(X、Y、θ)が一意に定まるので、特に問題はない。しかし、基板ホルダの位置(X、Y、θ)を一意に定めることのできる、4つのヘッドの計測値を用いる、アフィン変換の関係を利用した連立方程式を観念できないからである。
そこで、本変形例では、復帰させる第1グループを、別のヘッドをそれぞれ含む3つヘッドが属する、2つのグループにグループ分けし、グループ毎に前述と同様の手法で、3つのヘッドについて、初期値を同時に算出して設定する。初期値の設定後は、いずれかのグループの3つのヘッドの計測値を、基板ホルダ34の位置制御に用いれば良い。位置制御に用いない方のグループのヘッドによる基板ホルダ34の位置計測を、基板ホルダ34の位置制御と並行して実行しても良い。なお、復帰させる第1のグループの各ヘッドの初期値を、前述の手法により、順次個別に算出することも可能である。
なお、以上説明した第1〜第4実施形態の構成は、適宜変更が可能である。上記第1実施形態のマスクエンコーダシステム48、基板エンコーダシステム50において、エンコーダヘッド、及びスケールの配置は逆であっても良い。すなわち、マスクホルダ40の位置情報を求めるためのXリニアエンコーダ92x、Yリニアエンコーダ92yは、マスクホルダ40にエンコーダヘッドが取り付けられ、エンコーダベース43にスケールが取り付けられる構成であっても良い。また、基板ホルダ34の位置情報を求めるためのXリニアエンコーダ94x、Yリニアエンコーダ94yは、基板ホルダ34にエンコーダヘッドが取り付けられ、Yスライドテーブル62にスケールが取り付けられても良い。その場合、基板ホルダ34に取り付けられるエンコーダヘッドは、X軸方向に沿って複数配置され、相互に切り換え動作可能に構成されると良い。また、基板ホルダ34に設けられるエンコーダヘッドを可動にし、かつそのエンコーダヘッドの位置情報を計測するセンサを設け、エンコーダベース43にスケールを設けても良い。この場合、エンコーダベース43に設けられるスケールは、固定となる。同様に、Yスライドテーブル62の位置情報を求めるためのXリニアエンコーダ96x、Yリニアエンコーダ96yは、Yスライドテーブル62にスケールが取り付けられ、エンコーダベース54(装置本体18)にエンコーダヘッドが取り付けられても良い。その場合、エンコーダベース54に取り付けられるエンコーダヘッドは、Y軸方向に沿って複数配置され、相互に切り換え動作可能に構成されると良い。基板ホルダ34、及びエンコーダベース54にエンコーダヘッドが固定される場合、Yスライドテーブル62に固定されるスケールを共通化しても良い。
また、基板エンコーダシステム50において、基板ステージ装置20側にX軸方向に延びるスケール52が複数固定され、装置本体18(エンコーダベース54)側にY軸方向に延びるスケール56が複数固定される場合について説明したが、これに限られず、基板ステージ装置20側にY軸方向に延びるスケール、装置本体18側にX軸方向に延びるスケールがそれぞれ複数固定されても良い。この場合、ヘッドユニット60は、基板Pの露光動作などにおける基板ホルダ34の移動中にX軸方向に駆動される。
また、マスクエンコーダシステム48では、3つのスケール46がX軸方向に離間して配置され、基板エンコーダシステム50では、2つのスケール52がY軸方向、5つのスケール56がX軸方向にそれぞれ離間して配置される場合を説明したが、スケールの数は、これに限られず、マスクM、基板Pの大きさ、あるいは移動ストロークに応じて適宜変更が可能である。また、必ずしも複数のスケールが離間して配置されていなくても良く、より長いひとつのスケール(上記実施形態の場合では、スケール46の約3倍の長さのスケール、スケール52の約2倍の長さのスケール、スケール56の約4倍、あるいは5倍の長さのスケール)を用いても良い。また、基板ホルダ34上で、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)において、1つのスケール(X軸計測用のパターン)のX軸方向の長さを、1ショット領域の長さ(基板ホルダ上の基板をX軸方向に移動させながらスキャン露光を行う際に、デバイスパターンが照射されて基板上に形成される長さ)分だけ連続して測定できるような長さにしても良い。このようにすれば、1ショット領域のスキャン露光中に、複数スケールに対するヘッドの乗継制御を行わずに済むため、スキャン露光中の基板P(基板ホルダ)の位置計測(位置制御)を容易にできる。また、長さの異なる複数のスケールを用いても良いし、X軸方向又はY軸方向に並んで配置された複数の格子領域をそれぞれの格子部に含むのであれば、格子部を構成するスケールの数は、特に問わない。
また基板ホルダ34上において、X軸方向に複数のスケールが、所定間隔の隙間を介しながら連なって配置されたスケール群(スケール列)を、複数列、互いにY軸方向に離れた異なる位置(例えば投影光学系16に対して一方の側(+Y側)の位置と、他方(−Y側)の位置)に配置する場合に、この複数のスケール群(複数のスケール列)を、基板上におけるショットの配置(ショットマップ)に基づいて使い分け出来るように構成しても良い。たとえば、複数のスケール列の全体としての長さを、スケール列間で互いに異ならせておけば、異なるショットマップに対応でき、4面取りの場合と6面取りの場合など、基板上に形成するショット領域の数の変化にも対応できる。また、投影光学系16の一側に配置されるスケールと、他側に配置されるスケールとで、互いに長さを異ならせても良い。このように配置すると共に、各スケール列の隙間の位置をX軸方向において互いに異なる位置にすれば、複数のスケール列にそれぞれ対応するヘッドが同時に計測範囲外になることがないので、繋ぎ処理において不定値とされるセンサの数を減らすことができ、繋ぎ処理を高精度に行うことができる。
また、上記第1の実施形態では、スケール46、52、56それぞれの表面にXスケールとYスケールとが独立に形成された場合を説明したが、これに限られず、前述の第2なし第4の実施形態と同様に、2次元グレーティングが形成されたスケールを用いても良い。この場合、エンコーダヘッドもXY2次元ヘッドを用いることができる。また、回折干渉方式のエンコーダシステムを用いる場合について説明したが、これに限られず、いわゆるピックアップ方式、磁気方式などの他のエンコーダも用いることができ、米国特許第6,639,686号明細書などに開示されるいわゆるスキャンエンコーダなども用いることができる。また、Yスライドテーブル62の位置情報は、エンコーダシステム以外の計測システム(光干渉計システム)により求められても良い。
なお、上記第2〜第4の実施形態及びその変形例(以下、第4の実施形態と略記する)では、ヘッドを少なくとも4つ設ける場合について説明したが、かかる場合、第1方向に関して並んで配置された複数の格子領域を格子部に含むのであれば、格子部を構成するスケール152の数は、特に問わない。その複数の格子領域は、基板ホルダ34の基板Pを挟むY軸方向の一側及び他側の両方に配置する必要はなく、一方にのみ配置されていても良い。基板Pの露光動作中、基板ホルダ34の位置(X、Y、θz)を継続して制御するためには、以下の条件を満足する。
すなわち、少なくとも4つのヘッドのうち1つのヘッドで計測ビームが複数の格子領域(前述の2次元グレーティングRG)から外れている間、残りの少なくとも3つのヘッドは計測ビームが複数の格子領域の少なくとも1つに照射されるとともに、X軸方向(第1方向)への基板ホルダ34の移動によって、上述の少なくとも4つのヘッドの中で計測ビームが複数の格子領域から外れる上記1つのヘッドが切り換わる。この場合において、少なくとも4つのヘッドは、X軸方向(第1方向)に関して互いに計測ビームの位置(照射位置)が異なる2つのヘッドと、Y軸方向(第2方向)に関して前記2つのヘッドの少なくとも一方と計測ビームの位置が異なるととともに、X軸方向に関して互いに計測ビームの位置(照射位置)が異なる2つのヘッドと、を含み、前記2つのヘッドは、X軸方向に関して、複数の格子領域のうち隣接する一対の格子領域の間隔よりも広い間隔で計測ビームを照射する。
なお、X軸方向に並んだ格子領域(2次元グレーティングRG)の列を、Y軸方向に関して3列以上配置しても良い。上記第4の実施形態では、−Y側の5つのスケール152に代えて、その5つのスケール152のそれぞれをY軸方向に2等分したような面積をそれぞれ有する10個の格子領域(2次元グレーティングRG)から成る、Y軸方向に隣接した2つの格子領域(2次元グレーティングRG)の列を設け、一方の列の2次元グレーティングRGにヘッド66e、66fが対向可能、且つ他方の列の2次元グレーティングRGにヘッド66c、66dが対向可能となるような構成を採用しても良い。また、上記第4の実施形態の変形例では、+Y側の5つのスケール152についても、上述と同様の10個の格子領域から成る、Y軸方向に隣接した2つの格子領域(2次元グレーティングRG)の列を設け、一方の列の2次元グレーティングRGに一対のヘッドが対向可能、且つ他方の列の2次元グレーティングRGに残りの一対のヘッドが対向可能となるような構成を採用しても良い。
なお、上記第2〜第4の実施形態では、X軸方向(第1方向)への基板ホルダ34の移動において、少なくとも4つのヘッド相互間で、いずれの2つのヘッドについてみても、計測ビームがいずれの2次元グレーティングRGにも照射されない(格子領域から外れる)、すなわちヘッドでの計測が不能となる(非計測区間)が重ならないように、スケール及びヘッドの少なくとも一方の位置あるいは間隔、あるいは位置及び間隔などを設定することが重要である。例えば、基板ホルダ34上の、所定間隔の隙間を介しながら複数のスケールがX軸方向に連なって配置されたスケール群(スケール列)において、複数のスケール間の距離(換言すれば隙間の長さ)と、1つのスケールの長さと、そのスケール列に対して相対移動する2つのヘッド(1つのヘッドユニット60内部において互いに対向配置されているヘッド、例えば図5に示す2つのヘッド66x)とは、「1つのスケール長さ > 対向配置されているヘッド間の距離 > スケール間の距離」の関係を満たすように配置されている。この関係は、基板ホルダ34上に設けられたスケールとそれに対応するヘッドユニット60だけでなく、エンコーダベース54に設けられているスケール56とそれに対応するヘッドユニット60との間においても満たされている。また、上記各実施形態(例えば図5参照)では、一対のXヘッド66xと一対のYヘッド66yが、一つずつペアを組むようにX軸方向において並んで配置されているが(Xヘッド66xとYヘッド66yとがX軸方向において同じ位置に配置されているが)、これらをX軸方向に相対的にずらして配置するようにしても良い。また基板ホルダ34上の、所定間隔の隙間を介しながら複数のスケールがX軸方向に連なって配置されたスケール群(スケール列)において、上記実施形態では各スケールの長さが同一の長さのものを連ねて配置しているが、互いに長さの異なるスケールを連ねて配置するようにしても良い。例えば、基板ホルダ34上のスケール列において、X軸方向における両端部寄りにそれぞれ配置されるスケール(スケール列において、各端部に配置されるスケール)のX軸方向の長さよりも、中央部に配置されるスケールの方を物理的に長くしても良い。
なお、上記第2ないし第4の実施形態において、基板ホルダ34の位置情報を計測する各Xヘッド66xに代えて、X軸方向及びZ軸方向を計測方向とするエンコーダヘッド(XZヘッド)を用いるとともに、各Yヘッド66yに代えて、Y軸方向及びZ軸方向を計測方向とするエンコーダヘッド(YZヘッド)を用いても良い。これらのヘッドとしては、米国特許第7,561,280号明細書に開示される変位計測センサヘッドと同様の構成のセンサヘッドを用いることができる。かかる場合には、主制御装置90は、前述のヘッドの切り換え及び繋ぎ処理に際して、切り換え前に基板ホルダ34の位置制御に用いられる3つのヘッドの計測値を用いて、所定の演算を行うことで、XY平面内の3自由度方向(X、Y、θz)に関する基板ホルダ34の位置の計測結果の連続性を保証するための繋ぎ処理に加えて、前述と同様の手法により、残りの3自由度方向(Z、θx、θy)に関する基板ホルダ34の位置の計測結果の連続性を保証するための繋ぎ処理をも行っても良い。代表的に第2の実施形態を例にとって具体的に説明すると、主制御装置90は、4つのヘッド66a、66b、66c、66dのうち、計測ビームが1つの2次元グレーティングRG(格子領域)から外れて別の2次元グレーティングRG(格子領域)に乗り換える1つのヘッドを用いて残りの3自由度方向(Z、θx、θy)に関する基板ホルダ34の移動を制御するための補正情報を、残りの3つのヘッドによるZ軸方向(第3方向)の計測情報、あるいはその残りの3つのヘッドを用いて計測される残りの3自由度方向(Z、θx、θy)に関する前記移動体の位置情報に基づいて取得することとすれば良い。
なお、上記第2ないし第4の実施形態において、計測ビームが1つのスケールから外れて別のスケールに乗り換える別のヘッドの初期値を設定するものとしたが、これに限らず、別のヘッドの計測値の補正情報など、別のヘッドを用いて基板ホルダの移動を制御するための補正情報を取得しても良い。別のヘッドを用いて基板ホルダの移動を制御するための補正情報には、初期値は勿論含まれるが、これに限らず、その別のヘッドが計測を再開できるための情報であれば良く、計測再開後に計測すべき値からのオフセット値などでも良い。
また、上記第1〜第4実施形態において、マスクエンコーダシステム48の各Xヘッドに代えて、前述したXZヘッドを用いるとともに、各Yヘッドに代えて、前述のYZヘッドを用いても良い。あるいは、上記第1〜第4実施形態において、マスクエンコーダシステム48を、基板エンコーダシステム50の基板ホルダ34の位置計測用のエンコーダと同様に、複数のヘッドがY軸方向に関してスケール46に対して相対移動可能な構成しても良い。また、スケール46に代えて、前述したスケール152と同様の2次元グレーティングRGが形成されたスケールを用いても良い。
同様に、上記第1〜第4実施形態において、各Xヘッド64xに代えて、前述のXZヘッドを用いるとともに、各Yヘッド64yに代えて、前述のYZヘッドを用いても良い。かかる場合において、また、スケール56に代えて、前述したスケール152と同様の2次元グレーティングRGが形成されたスケールを用いても良い。かかる場合、一対のXZヘッドと一対のYZヘッドと、これらが対向可能なエンコーダシステムでは、複数のヘッド66x、66yの回転(θz)と傾斜(θx及びθyの少なくとも一方)との少なくとも一方に関する位置情報を計測することとしても良い。
なお、スケール46,52,56,152などでは表面に格子が形成される(表面が格子面である)ものとしたが、例えば格子を覆うカバー部材(ガラス又は薄膜など)を設け、格子面をスケールの内部としても良い。
なお、これまでの説明では、マスクエンコーダシステム、基板エンコーダシステムがそれぞれ備える各ヘッドのXY平面内における計測方向が、X軸方向又はY軸方向である場合について説明したが、これに限らず、上記第2〜第4の実施形態の場合、2次元グレーティングRGに代えて、XY平面内で、X軸方向及びY軸方向に交差し、かつ互いに直交する2方向(便宜上、α方向、β方向と呼ぶ)を周期方向とする2次元格子を用いても良く、これに対応して前述の各ヘッドとして、α方向(及びZ軸方向)又はβ方向(及びZ軸方向)をそれぞれの計測方向とするヘッドを用いることとしても良い。また、前述の第1の実施形態では、各Xスケール、Yスケールに代えて、α方向、β方向を周期方向とする1次元格子を用いるとともに、これに対応して前述の各ヘッドとして、α方向(及びZ軸方向)又はβ方向(及びZ軸方向)をそれぞれの計測方向とするヘッドを用いることとしても良い。
なお、上記第2〜第4の実施形態において、第1格子群を前述のXスケールの列で構成し、第2格子群を前述のYスケールの列で構成し、これに対応して、Xスケールの列に対向可能に複数のXヘッド(又はXZヘッド)を所定の間隔(隣接するXスケール間の間隔より大きな間隔)で配置するとともに、Yスケールの列に対向可能に複数のYヘッド(又はYZヘッド)を所定の間隔(隣接するYスケール間の間隔より大きな間隔)で配置することとしても良い。
なお、上記第1〜第4の実施形態において、X軸方向又はY軸方向に並んで配置される各スケールとして、長さの異なる複数のスケールを用いても勿論良い。この場合において、周期方向が同じ、あるいは直交するスケールの列を2列以上、並んで設ける場合には、スケール間のスペースが、お互いに重ならないように設定可能な長さのスケールを選択することとしても良い。すなわち、一列のスケール列を構成するスケール間のスペースの配置間隔は、等間隔でなくても良い。
なお、上記第1〜第4実施形態において、可動ヘッド用エンコーダは、少なくとも可動ヘッドの移動方向(上記実施形態ではY軸方向)の位置情報を計測すれば良いが、移動方向と異なる少なくとも1つの方向(X、Z、θx、θy、θzの少なくとも1つ)の位置情報も計測して良い。例えば、計測方向がX軸方向のヘッド(Xヘッド)のX軸方向の位置情報も計測し、このX情報とXヘッドの計測情報とでX軸方向の位置情報を求めても良い。ただし、計測方向がY軸方向のヘッド(Yヘッド)では、計測方向と直交するX軸方向の位置情報を用いなくても良い。同様に、Xヘッドでは、計測方向と直交するY軸方向の位置情報を用いなくても良い。要は、ヘッドの計測方向と異なる少なくとも1つの方向の位置情報を計測し、この計測情報とヘッドの計測情報とで計測方向に関する基板ホルダ34の位置情報を求めても良い。また、例えばX軸方向に関して位置が異なる2本の計測ビームを使って可動ヘッドのθz方向の位置情報(回転情報)を計測し、この回転情報を用いてX、Yヘッドの計測情報とでX軸、Y軸方向の位置情報を求めても良い。この場合、XヘッドとYヘッドとの一方を2つ、他方を1つ、計測方向が同じ2つのヘッドが計測方向と直交する方向に関して同一位置とならないように配置することで、X、Y、θz方向の位置情報を計測可能となる。もう1つのヘッドは、2つのヘッドと異なる位置に計測ビームを照射すると良い。さらに、可動ヘッド用エンコーダのヘッドがXZ又はYZヘッドであれば、例えばXZヘッドとYZヘッドの一方を2つ、他方を1つ、同一直線上とならないように配置することで、Z情報だけでなくθx及びθy方向の位置情報(傾斜情報)も計測できる。θx及びθy方向の位置情報の少なくとも一方と、X、Yヘッドの計測情報とでX軸、Y軸方向の位置情報を求めても良い。同様に、XZ又はYZヘッドでも、Z軸方向と異なる方向に関する可動ヘッドの位置情報を計測し、この計測情報とヘッド計測情報とでZ軸方向の位置情報を求めても良い。なお、可動ヘッドの位置情報を計測するエンコーダのスケールが単一のスケール(格子領域)であれば、XYθzもZθxθyも3つのヘッドで計測できるが、複数のスケール(格子領域)が離れて配置される場合は、X、Yヘッドを2つずつ、あるいはXZ、YZヘッドを2つずつ配置し、4つのヘッドで非計測期間が重ならないようにX軸方向の間隔を設定すれば良い。この説明は、格子領域がXY平面と平行に配置されるスケールを前提としたが、格子領域がYZ平面と平行に配置されるスケールでも同様に適用できる。
また、上記第1〜第4実施形態において、可動ヘッドの位置情報を計測する計測装置としてエンコーダを用いるものとしたが、エンコーダ以外、例えば干渉計、レーザ距離計、超音波距離計などを用いても良い。この場合、例えば可動ヘッド(又はその保持部)に反射面を設け、Y軸方向と平行に計測ビームを反射面に照射すれば良い。特に可動ヘッドがY軸方向のみに移動される場合は反射面を大きくする必要がなく、空気揺らぎを低減するための干渉計ビームの光路の局所的な空調も容易となる。
また、上記第1〜第4実施形態において、基板ホルダのスケールに計測ビームを照射する可動ヘッドを、Y軸方向に関して投影系の両側に1つずつ設けるものとしたが、複数ずつ可動ヘッドを設けても良い。例えば、Y軸方向に関して複数の可動ヘッドで計測期間が一部重なるように隣接する可動ヘッド(計測ビーム)を配置すれば、基板ホルダがY軸方向に移動しても、複数の可動ヘッドによって位置計測を継続できる。この場合、複数の可動ヘッドで繋ぎ処理が必要となる。そこで、投影系の±Y側の一方のみに配置され、少なくとも1つのスケールに計測ビームが照射される複数のヘッドの計測情報を用いて、計測ビームがスケールに入る別のヘッドに関する補正情報を取得しても良いし、±Y側の一方だけでなく他側に配置される少なくとも1つのヘッドの計測情報を用いても良い。要は、±Y側にそれぞれ配置される複数のヘッドのうち、スケールに計測ビームが照射されている少なくとも3つのヘッドの計測情報を用いれば良い。
また、上記第1〜第4実施形態の基板エンコーダシステム50において、走査露光において基板Pが移動される走査方向(X軸方向)に関して複数のスケール(格子領域)を互いに離して配置するとともに、複数のヘッドを基板Pのステップ方向(Y軸方向)に移動可能としたが、これとは逆に、ステップ方向(Y軸方向)に関して複数のスケールを互いに離して配置するとともに、複数のヘッドを走査方向(X軸方向)に移動可能としても良い。
また、上記第1〜第4実施形態において、マスクエンコーダシステム48および基板エンコーダシステム50のヘッドは、光源からのビームをスケールに照射する光学系の全てを有している必要はなく、光学系の一部、例えば射出部のみを有するものとしても良い。
また、上記第2〜第4実施形態において、一対のヘッドユニット60のヘッドは図17の配置(Xヘッド及びYヘッドが±Y側にそれぞれ配置されかつ±Y側の一方と他方とでX軸方向に関してX、Yヘッドの配置が逆)に限られるものではなく、例えばXヘッド及びYヘッドが±Y側にそれぞれ配置され、かつ±Y側の一方と他方とでX軸方向に関してX、Yヘッドの配置が同一でも良い。ただし、2つのYヘッドのX位置が同一であると、2つのXヘッドの一方で計測が切れると、θz情報が計測できなくなるため、2つのYヘッドのX位置を異ならせることが好ましい。
また、上記第1〜第4の実施形態において、エンコーダシステムのヘッドから計測ビームが照射されるスケール(スケール部材、格子部)を、投影光学系16側に設ける場合、投影光学系16を支持する装置本体18(フレーム部材)の一部に限らず、投影光学系16の鏡筒部分に設けても良い。
また、図12(A)及び図12(B)に示されるように、ヘッドユニット60が有する一対のエンコーダヘッド(すなわち一対のXヘッド64x、一対のXヘッド66x、一対のYヘッド64y、及び一対のYヘッド66yそれぞれ)の相互間の距離をセンサ164、166で計測し、該計測値を用いて基板エンコーダシステム50の出力を補正しても良い。センサ164、166の種類は、特に限定されないが、レーザ干渉計などを用いることができる。基板エンコーダシステム50では、上述したように、一対のエンコーダヘッドの出力の繋ぎ処理を行うが、この繋ぎ処理において、一対のエンコーダヘッド間の間隔が既知、且つ不変であることが前提条件となる。このため、各ヘッドが取り付けられるYスライドテーブル62としては、熱膨張などの影響が少ない材料により形成されているが、本変形例のように、エンコーダヘッド間の間隔を計測することによって、仮にYスライドテーブル62が変形(一対のエンコーダヘッド間の間隔が変化)しても、高精度で基板Pの位置情報を求めることができる。同様に、マスクエンコーダシステム48においても、一対のエンコーダヘッド(すなわち一対のXヘッド49x、及び一対のYヘッド49y)間の距離を計測し、該計測値を用いてマスクエンコーダシステム48の出力を補正しても良い。また、ヘッドユニット60が有する全て(本実施形態では、合計で8つ)のヘッド(下向きの一対のヘッド66x、66y、上向きの一対のヘッド64x、64y)それぞれの相対的な位置関係を計測し、計測値を補正しても良い。
また、上述したように、ヘッドユニット60が有する一対のエンコーダヘッド(すなわち一対のXヘッド64x、一対のXヘッド66x、一対のYヘッド64y、及び一対のYヘッド66yそれぞれ)の相互間の距離を適宜(基板交換毎に)計測するキャリブレーション動作を行ってもよい。また、上記ヘッド間の間隔の測定を行うキャリブレーションポイントとは別に、マスクエンコーダシステム48、基板エンコーダシステム50それぞれの出力の原点位置決めを行うためのキャリブレーションポイントを設けても良い。該原点位置決めを行うための位置決めマークは、複数のスケール46、52の延長線上(外側)に配置しても良いし、隣接する一対のスケール46、52間に配置しても良いし、あるいは、スケール46、52内に形成しても良い。
また、各エンコーダヘッド64x、64y、66x、66yが取り付けられたYスライドテーブル62の水平面に対する傾き(θx、θy方向の傾斜)量を求め、該傾き量(すなわち、各ヘッド64x、64y、66x、66yの光軸の倒れ量)に応じて基板エンコーダシステム50の出力を補正しても良い。計測系としては、図13(A)に示されるように、複数のZセンサ64zをYスライドテーブル62に取り付け、エンコーダベース54(あるいは上架台部18a)を基準としてYスライドテーブル62の傾き量を求める計測系を用いることができる。Zセンサ64zは、レーザ干渉計でも、TOFセンサでも、距離が測定できるセンサでも良い。また、図13(B)に示されるように、2軸のレーザ干渉計264を設けて、Yスライドテーブル62の傾き量(θx、θy方向の傾斜量)及び回転量(θz方向の回転量)を求めても良い。また、各ヘッド64x、64y、66x、66yの傾き量を、ジャイロセンサ等を用いて個別に計測しても良い。
また、複数のスケール56を有するエンコーダベース54は、上架台部18a(光学定盤)の下面に直接取り付けられる構成であったが、これに限られず、所定のベース部材を上架台部18aの下面に対して離間した状態で吊り下げ配置し、該ベース部材にエンコーダベース54を取り付けても良い。
また、基板ステージ装置20は、少なくとも基板Pを水平面に沿って長ストロークで駆動できれば良く、場合によっては6自由度方向の微少位置決めができなくても良い。このような2次元ステージ装置に対しても上記各実施形態に係る基板エンコーダシステムを好適に適用できる。
また、上記第1の実施形態におけるヘッドの繋ぎ処理は、ヘッドの出力(計測情報)自体を用いて行ったが、これに限られず、ヘッドの出力に基づいて求められる計測対象物(マスクステージ40、ヘッドユニット60、基板ホルダ34)の位置情報を用いて行っても良い。
また、上記実施形態では、Y軸方向に関してマスクMの一側と他側に、それぞれ複数のスケール46が設けられることにより、2つのスケール列が形成されたが、これに限られず、スケール列は、一列(Y軸方向に関してマスクMの一側にのみスケール46が設けられる構成)であっても良い。この場合、ヘッドユニット44は、1つのみ設けられていれば良いが、該1つのヘッドユニット44が有する複数のヘッドは、一部のヘッドからの計測ビームがスケールから外れても、常に他の少なくともの3つのヘッドがスケールと対向するように、数、及び配置を設定すると良い。また、上記少なくとも3つのヘッドには、計測方向が異なるヘッドが含まれるように(2つ(又は1つ)のXヘッドと、1つ(又は2つ)のYヘッドとが、常にスケールと対向するように)各ヘッドを配置すると良い。基板ホルダ34に関しても同様に、スケール列は、1列でも良い。この場合、1つのスケール列に対応して、ヘッドユニット60は、1つのみ設けられていれば良い。具体的には、図18において、基板Pの+Y側にのみ、X軸方向に所定間隔で、5つのスケール152が配置されるとともに、該スケール152の上方に配置された1つのヘッドユニット60に全てのヘッド66a〜66eがスケール152に対向可能なように固定されるような構成であっても良い。
また、上記実施形態のマスクステージ装置14は、X軸方向にのみ長ストロークで移動する構成であったが、これに限られず、X軸方向と併せてY軸方向にも所定の長ストロークで移動可能に構成されても良い。この場合、ヘッド49x、49yからの計測ビームが対応するスケール47x、47yから外れないように、基板位置計測用のヘッドユニット60(図4(A)など参照)と同様に、ヘッドユニット44(図2(B)参照)を、マスクホルダ40と同期してY軸方向に移動可能に構成すると良い。この場合、ヘッドユニット44のXY平面内の位置情報は、ヘッドユニット60の位置計測系と同様の構成(スケール間でのヘッドの繋ぎ処理を含む)のエンコーダシステムによって計測すると良い。
また、上記実施形態において、基板ホルダ34にはX軸方向に延びるスケール52が固定され、エンコーダベース54にはY軸方向に延びるスケール56がそれぞれ固定されたが、これらの方向は逆であっても良い。具体的に一例をあげると、基板ホルダ34にY軸方向に延びるスケールが固定され、スキャン動作時には、ヘッドユニット60が基板ホルダ34に同期してX軸方向に長ストロークで移動するように構成されても良い。この場合、基板ホルダ34のYステップ動作時には、ヘッドユニット60は、静止状態とされる。
また、上記実施形態において、基板ホルダ34上にスケール52を設けるように構成しているが、スケールを露光処理で基板Pに直接形成するようにしても良い。たとえばショット領域間のスクライブライン上に形成するようにしても良い。このようにすれば、基板上に形成されたスケールを計測し、その位置計測結果に基づいて、基板上の各ショット領域ごとの非線形成分誤差を求めることができ、またその誤差に基づいて露光の際の重ね精度を向上させることもできる。
また、上記実施形態において、ヘッドユニット60が基板ホルダ34に同期して移動する、と説明する場面があるが、これはヘッドユニット60が、基板ホルダ34に対する相対的な位置関係を概ね維持した状態で移動することを意味し、ヘッドユニット60、基板ホルダ34の両者間の位置関係、移動方向、及び移動速度が厳密に一致した状態で移動する場合に限定されるものではない。
また、各実施形態に係る基板エンコーダシステム50は、基板ステージ装置20が基板ローダとの基板交換位置まで移動する間の位置情報を取得するために、基板ステージ装置20又は別のステージ装置に基板交換用のスケールを設け、下向きのヘッド(Xヘッド66xなど)を使って基板ステージ装置20の位置情報を取得しても良い。また、上向きのヘッド(Xヘッド64xなど)を使って、エンコーダベース54に設けられる基板交換用のスケールを計測して、基板ステージ装置20の位置情報を取得しても良い。あるいは、基板ステージ装置20又は別のステージ装置に基板交換用のヘッドを設け、スケール56や基板交換用のスケールを計測することによって基板ステージ装置20の位置情報を取得しても良い。なお、基板交換用のヘッドは、基板ステージ装置20又は別のステージ装置に対して可動に設けられても良いし、固定されていても良い。
また、各実施形態に係るマスクエンコーダシステム48は、マスクステージ装置14がマスクローダとのマスク交換位置まで移動する間の位置情報を取得するために、マスクステージ装置14又は別のステージ装置にマスク交換用のスケールを設け、ヘッドユニット44を使ってマスクステージ装置14の位置情報を取得しても良い。
なお、上記第1〜第4実施形態において、Z・チルト位置計測系98及び基板エンコーダシステム50によって基板位置計測系を構成するものとしたが、例えばX、Yヘッドの代わりにXZ、YZヘッドを用いることで、基板エンコーダシステム50のみで基板位置計測系を構成しても良い。
また、上記第1〜第4実施形態において、基板エンコーダシステム50の一対のヘッドユニット60とは別に、X軸方向に関してヘッドユニット60から離れて配置される少なくとも1つのヘッドを設けても良い。例えば、X軸方向に関して投影光学系16から離れて配置され、基板Pのアライメントマークを検出するマーク検出系(アライメント系)に対して±Y側にそれぞれヘッドユニット60と同じ可動のヘッドユニットを設け、基板マークの検出動作においてマーク検出系の±Y側に配置される一対のヘッドユニットを用いて基板ホルダ34の位置情報を計測しても良い。この場合、マーク検出動作において、一対のヘッドユニット60で全ての計測ビームがスケール152から外れても、基板エンコーダシステム50(別の一対のヘッドユニット)による基板ホルダ34の位置情報の計測が継続可能となり、マーク検出系の位置など、露光装置の設計の自由度を高められる。なお、Z軸方向に関する基板Pの位置情報を計測する基板位置計測系をマーク検出系に近傍に配置することで、基板のZ位置の検出動作においても基板エンコーダシステム50による基板ホルダ34の位置情報の計測が可能となる。または、基板位置計測系を投影光学系16の近傍に配置し、基板のZ位置の検出動作において一対のヘッドユニット60で基板ホルダ34の位置情報を計測しても良い。また、本実施形態では、投影光学系16から離れて設定される基板交換位置に基板ホルダ34が配置されると、一対のヘッドユニット60の全てのヘッドで計測ビームがスケール152から外れる。そこで、基板交換位置に配置される基板ホルダ34の複数のスケール152の少なくとも1つと対向する少なくとも1つのヘッドを設け、基板交換動作においても基板エンコーダシステム50による基板ホルダ34の位置情報の計測を可能としても良い。ここで、基板ホルダ34が基板交換位置に到達する前、言い換えれば、基板交換位置に配置される少なくとも1つのヘッドがスケール152に対向する前に、一対のヘッドユニット60の全てのヘッドで計測ビームがスケール152から外れる場合は、基板ホルダ34の移動経路の途中に少なくとも1つのヘッドを追加で配置し、基板エンコーダシステム50による基板ホルダ34の位置情報の計測を継続可能としても良い。なお、一対のヘッドユニット60とは別に設けられる少なくとも1つのヘッドを用いる場合、一対のヘッドユニット60の計測情報を用いて前述のつなぎ処理を行っても良い。また、上述した基板交換位置に配置される基板ホルダ34の複数のスケール152の少なくとも1つと対向する少なくとも1つのヘッドは、位置が固定(固定式)であっても良いし、上記各実施形態と同様に、計測ビームがスケールから外れないように移動可能に設けられても(可動式であっても)良い。
また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、エルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。
また、投影光学系16が複数本の光学系を備えたマルチレンズ方式の投影光学系である場合について説明したが、投影光学系の本数はこれに限らず、1本以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、オフナー型の大型ミラーを用いた投影光学系などであっても良い。また、投影光学系16としては、拡大系、又は縮小系であっても良い。
また、露光装置の用途としては角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、有機EL(Electro-Luminescence)パネル製造用の露光装置、半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも適用できる。
また、露光対象となる物体はガラスプレートに限られず、ウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、フィルム状(可撓性を有するシート状の部材)のものも含まれる。なお、本実施形態の露光装置は、一辺の長さ、又は対角長が500mm以上の基板が露光対象物である場合に特に有効である。
液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
なお、上記実施形態で引用した露光装置などに関する全ての米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。