JP6824797B2 - Manufacturing method of screen printing plate - Google Patents

Manufacturing method of screen printing plate Download PDF

Info

Publication number
JP6824797B2
JP6824797B2 JP2017060470A JP2017060470A JP6824797B2 JP 6824797 B2 JP6824797 B2 JP 6824797B2 JP 2017060470 A JP2017060470 A JP 2017060470A JP 2017060470 A JP2017060470 A JP 2017060470A JP 6824797 B2 JP6824797 B2 JP 6824797B2
Authority
JP
Japan
Prior art keywords
metal
insulator
convex portion
electrodeposited
printing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017060470A
Other languages
Japanese (ja)
Other versions
JP2018161808A (en
Inventor
章次 石原
章次 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2017060470A priority Critical patent/JP6824797B2/en
Publication of JP2018161808A publication Critical patent/JP2018161808A/en
Application granted granted Critical
Publication of JP6824797B2 publication Critical patent/JP6824797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、金属メッシュ部と金属マスク部とを一体に備えたスクリーン印刷版の製造方法に関する。 The present invention relates to a method for manufacturing a screen printing plate in which a metal mesh portion and a metal mask portion are integrally provided.

積層セラミックコンデンサや積層セラミックインダクタ等の電子部品における導体層の作製工程には、スクリーン印刷法による導体ペースト印刷が多用されている。しかしながら、小型化が進む電子部品にあっては外形および厚さが小さい導体層が要求されているため、従前のスクリーン印刷版(メッシュに乳剤で開口部を形成したスクリーン印刷版)ではこの要求を精度面で満足することが難しくなってきている。そのため、最近では、従前のスクリーン印刷版の代わりに、金属メッシュ部と金属マスク部とを一体に備えたスクリーン印刷版が導体層の作製工程で使用されている。 Conductor paste printing by a screen printing method is often used in the process of manufacturing a conductor layer in electronic components such as multilayer ceramic capacitors and multilayer ceramic inductors. However, since electronic components that are becoming smaller and smaller require a conductor layer having a small outer shape and thickness, conventional screen printing plates (screen printing plates in which openings are formed in a mesh with an emulsion) meet this requirement. It is becoming difficult to be satisfied with the accuracy. Therefore, recently, instead of the conventional screen printing plate, a screen printing plate having a metal mesh portion and a metal mask portion integrally used is used in the process of manufacturing the conductor layer.

金属メッシュ部と金属マスク部とを一体に備えたスクリーン印刷版に関し、後記特許文献1には、(a1)母型の表面にパターンレジスト膜を形成する工程、(a2)母型のパターンレジスト膜で覆われていない表面部分にパターンレジスト膜よりも厚さが小さい1次電着層を形成する工程、(a3)パターンレジスト膜を1次電着層と略均一な厚さになるまで研磨する工程、(a4)パターンレジスト膜と1次電着層の表面にメッシュスクリーンを密着する工程、(a5)メッシュスクリーンと1次電着層の表面に2次電着層を形成する工程、(a6)メッシュスクリーンを母型から剥離する工程、を備えるサスペンドメタルマスクの製造方法(以下、公知方法1と言う)が開示されている。 Regarding a screen printing plate in which a metal mesh portion and a metal mask portion are integrally provided, Patent Document 1 described later describes (a1) a step of forming a pattern resist film on the surface of a master mold, and (a2) a pattern resist film of a master mold. Step of forming a primary electrodeposition layer having a thickness smaller than that of the pattern resist film on the surface portion not covered with (a3) Polishing the pattern resist film until the thickness becomes substantially uniform with the primary electrodeposition layer. Steps, (a4) a step of adhering a mesh screen to the surface of the pattern resist film and the primary electrodeposition layer, (a5) a step of forming a secondary electrodeposition layer on the surface of the mesh screen and the primary electrodeposition layer, (a6). ) A method for manufacturing a suspended metal mask (hereinafter referred to as known method 1) including a step of peeling a mesh screen from a master mold is disclosed.

また、後記特許文献2には、(b1)母材の表面に印刷開口パターン形成用のレジストを形成する工程、(b2)母材のレジストで覆われていない表面部分にメッキ処理によってベースメタルを形成する工程、(b3)ベースメタルの表面に金属製メッシュを密着する工程、(b4)メッキ処理によってベースメタルと金属製メッシュとを接合する工程、(b5)接合されたベースメタルおよび金属製メッシュを母型から剥離する工程、(b6)ベースメタルの印刷用開口パターンからレジストを剥離する工程、を備える印刷用サスペンドメタルマスクの製造方法(以下、公知方法2と言う)が開示されている。 Further, in Patent Document 2 described later, (b1) a step of forming a resist for forming a print opening pattern on the surface of the base metal, and (b2) a base metal is plated on a surface portion of the surface portion of the base metal not covered with the resist. The step of forming, (b3) the step of adhering the metal mesh to the surface of the base metal, (b4) the step of joining the base metal and the metal mesh by plating, (b5) the step of joining the base metal and the metal mesh. A method for manufacturing a suspended metal mask for printing (hereinafter referred to as known method 2) including a step of peeling the metal from the master mold and (b6) a step of peeling the resist from the opening pattern for printing of the base metal is disclosed.

しかしながら、公知方法1は、前記工程(a5)において1次電着層の表面に形成される2次電着層がマスク部分となるため、開口部を有するマスク部分を得るには前記工程(1)〜(3)が必須となる。また、前記工程(a4)および(a5)においてメッシュスクリーンを1次電着層(マスクとして使用しない電着層)の表面に密着させる必要があるため、マスク部分の外面にメッシュスクリーンが部分的に露出し易く、この露出によってマスク部分の外面の平滑性が損なわれたり開口部の形が乱れたりする等の不具合を生じて印刷精度が低下する懸念がある。 However, in the known method 1, since the secondary electrodeposition layer formed on the surface of the primary electrodeposition layer in the step (a5) serves as the mask portion, the step (1) for obtaining the mask portion having an opening is obtained. ) To (3) are indispensable. Further, since it is necessary to bring the mesh screen into close contact with the surface of the primary electrodeposition layer (the electrodeposition layer not used as a mask) in the steps (a4) and (a5), the mesh screen is partially formed on the outer surface of the mask portion. It is easily exposed, and there is a concern that this exposure may cause problems such as impairing the smoothness of the outer surface of the mask portion and disturbing the shape of the opening, resulting in a decrease in printing accuracy.

また、公知方法2は、前記工程(b5)において接合されたベースメタルおよび金属製メッシュを母型から剥離するときにレジストも母型から剥離してしまうため、ベースメタルおよび金属製メッシュを母型から剥離した後にベースメタルの印刷用開口パターンからレジストを剥離する前記工程(b6)が必須となる。また、ベースメタルの印刷用開口パターンの内形が小さくなると、前記工程(b6)におけるベースメタルの印刷用開口パターンからのレジストの剥離が難しくなるため、剥離不良を生じて印刷用開口パターンにレジストが残存する懸念も生じる。 Further, in the known method 2, when the base metal and the metal mesh joined in the step (b5) are peeled from the master mold, the resist is also peeled from the master mold, so that the base metal and the metal mesh are peeled from the master mold. The step (b6) of peeling the resist from the printing opening pattern of the base metal after peeling from the base metal is indispensable. Further, when the inner shape of the printing opening pattern of the base metal becomes smaller, it becomes difficult to peel the resist from the printing opening pattern of the base metal in the step (b6), so that peeling failure occurs and the resist is applied to the printing opening pattern. There is also a concern that

特開2010−042567号公報JP-A-2010-042567 国際公開第2014/098118号International Publication No. 2014/098118

本発明が解決しようとする課題は、公知方法1および2が抱える懸念を極力解消できるスクリーン印刷版の製造方法、すなわち、印刷精度が高いスクリーン印刷版を簡易な方法で製造できるスクリーン印刷版の製造方法を提供することにある。 The problem to be solved by the present invention is a method for manufacturing a screen printing plate capable of eliminating the concerns of the publicly known methods 1 and 2 as much as possible, that is, manufacturing a screen printing plate capable of manufacturing a screen printing plate having high printing accuracy by a simple method. To provide a method.

前記課題を解決するため、本発明に係るスクリーン印刷版の製造方法は、金属メッシュ部と、開口部を有する金属マスク部とを一体に備えたスクリーン印刷版の製造方法であって、金属基板の外面に前記開口部に対応する絶縁体凸部が一体形成された母型を作製する工程と、1回目の電気鋳造により、前記母型の前記金属基板の前記絶縁体凸部が存しない外面領域に、前記絶縁体凸部よりも厚さが小さい第1電着金属箔を形成する工程と、前記母型の前記絶縁体凸部の外面に金属メッシュを密着させた状態で、2回目の電気鋳造により、前記金属メッシュの表面に電着金属膜を形成するとともに、前記第1電着金属箔の外面に前記電着金属膜と連続し、かつ、前記第1電着金属箔と接合する第2電着金属箔を形成して、前記金属メッシュおよび前記電着金属膜から成る前記金属メッシュ部と前記第1電着金属箔および前記第2電着金属箔から成る前記金属マスク部との一体化物を作製する工程と、前記一体化物の前記電着金属膜を前記絶縁体凸部の外面から剥離するとともに、前記第1電着金属箔および前記第2電着金属箔を前記金属基板の前記絶縁体凸部が存しない外面領域から抜き出して、前記絶縁体凸部を前記金属基板の外面に残存させたまま前記一体化物を前記母型から離型する工程とを備える。 In order to solve the above problems, the method for manufacturing a screen printing plate according to the present invention is a method for manufacturing a screen printing plate in which a metal mesh portion and a metal mask portion having an opening are integrally provided, and is a method for manufacturing a screen printing plate of a metal substrate. By the step of producing a master mold in which the insulator convex portion corresponding to the opening is integrally formed on the outer surface and the first electric casting, the outer surface region of the metal substrate of the master mold in which the insulator convex portion does not exist. In the step of forming the first electrodeposited metal foil having a thickness smaller than the convex portion of the insulator, and the second electric charge in a state where the metal mesh is brought into close contact with the outer surface of the convex portion of the insulator of the master mold. By casting, an electrodeposited metal film is formed on the surface of the metal mesh, and the outer surface of the first electrodeposited metal foil is continuous with the electrodeposited metal film and joined with the first electrodeposited metal foil. 2 The electrodeposited metal foil is formed, and the metal mesh portion made of the metal mesh and the electrodeposited metal film is integrated with the metal mask portion made of the first electrodeposited metal foil and the second electrodeposited metal foil. In the step of producing the compound, the electrodeposited metal film of the integrated product is peeled off from the outer surface of the convex portion of the insulator, and the first electrodeposited metal foil and the second electrodeposited metal foil are separated from the metal substrate. The present invention includes a step of extracting from the outer surface region where the insulator convex portion does not exist, and removing the integrated product from the master mold while leaving the insulator convex portion on the outer surface of the metal substrate.

本発明に係るスクリーン印刷版の製造方法によれば、印刷精度が高いスクリーン印刷版を簡易な方法で的確に製造することができる。 According to the screen printing plate manufacturing method according to the present invention, a screen printing plate having high printing accuracy can be accurately manufactured by a simple method.

図1(A)および図1(B)は印刷版本体の作製工程の説明図である。1 (A) and 1 (B) are explanatory views of a manufacturing process of a printing plate main body. 図2(A)および図2(B)は母型の作製工程の説明図である。2 (A) and 2 (B) are explanatory views of a process of manufacturing a master mold. 図3は第1の電気鋳造工程の説明図である。FIG. 3 is an explanatory diagram of the first electroforming process. 図4(A)および図4(B)は第1の電気鋳造工程の説明図である。4 (A) and 4 (B) are explanatory views of the first electroforming process. 図5は印刷版本体の金属メッシュを母型の絶縁体凸部に密着させる工程の説明図である。FIG. 5 is an explanatory diagram of a process of bringing the metal mesh of the printing plate body into close contact with the insulator convex portion of the master mold. 図6は第2の電気鋳造工程の説明図である。FIG. 6 is an explanatory diagram of the second electroforming process. 図7(A)および図7(B)は第2の電気鋳造工程の説明図である。7 (A) and 7 (B) are explanatory views of the second electroforming process. 図8は離型工程の説明図である。FIG. 8 is an explanatory diagram of the mold release process. 図9は仕上げ工程の説明図である。FIG. 9 is an explanatory diagram of the finishing process.

以下、図1〜図9を用いて、本発明を適用したスクリーン印刷版の製造方法を工程順に説明する。ちなみに、この製造方法により製造されるスクリーン印刷版は、積層セラミックコンデンサや積層セラミックインダクタ等の電子部品における導体層の作製工程にて、スクリーン印刷法によって導体ペースト印刷を行う際に有用なものである。 Hereinafter, a method for manufacturing a screen printing plate to which the present invention is applied will be described in order of steps with reference to FIGS. 1 to 9. By the way, the screen printing plate manufactured by this manufacturing method is useful for performing conductor paste printing by the screen printing method in the process of manufacturing the conductor layer in electronic parts such as multilayer ceramic capacitors and multilayer ceramic inductors. ..

《印刷版本体10の作製工程:図1を参照》
図1(B)に示した印刷版本体10を作製するときには、図1(A)に示したように、外形が矩形状を成す金属メッシュ11を用意し、その外周部分に、外形が矩形枠状を成す補助メッシュ12の内周部分を固着する。図示を省略したが、金属メッシュ11と補助メッシュ12との固着には、高い接着強度が得られる接着剤、好ましくは紫外線硬化型接着剤やシアノアクリレート系接着剤等の接着剤が使用できる。
<< Manufacturing process of printing plate main body 10: See FIG. 1 >>
When manufacturing the printing plate main body 10 shown in FIG. 1 (B), as shown in FIG. 1 (A), a metal mesh 11 having a rectangular outer shape is prepared, and a frame having a rectangular outer shape is provided on the outer peripheral portion thereof. The inner peripheral portion of the auxiliary mesh 12 forming the shape is fixed. Although not shown, an adhesive capable of obtaining high adhesive strength, preferably an adhesive such as an ultraviolet curable adhesive or a cyanoacrylate adhesive, can be used for fixing the metal mesh 11 and the auxiliary mesh 12.

金属メッシュ11は、ステンレスやタングステン等の金属線を格子状に編み込んで構成されており、多数の孔を有している。ちなみに、金属メッシュ11の厚さt2(図7(A)を参照)は好ましくは15〜30μmであり、オープニングは好ましくは20〜35μmである。 The metal mesh 11 is formed by weaving metal wires such as stainless steel and tungsten in a grid pattern, and has a large number of holes. By the way, the thickness t2 of the metal mesh 11 (see FIG. 7A) is preferably 15 to 30 μm, and the opening is preferably 20 to 35 μm.

なお、図7(A)に示した金属メッシュ11はカレンダー加工が施されたものであるため、厚さ方向両面の金属線が交差する箇所に平面が形成されている。このカレンダー加工は、金属メッシュ11の厚さt2を小さくすることを主たる目的とした工法であるが、金属メッシュ11に線径が小さな金属線が用いられていてその厚さt2が前記数値範囲内にある場合にはカレンダー加工は必ずしも必要なものではない。 Since the metal mesh 11 shown in FIG. 7A has been subjected to calendar processing, a flat surface is formed at a portion where the metal wires on both sides in the thickness direction intersect. This calendar processing is a construction method whose main purpose is to reduce the thickness t2 of the metal mesh 11, but a metal wire having a small wire diameter is used for the metal mesh 11, and the thickness t2 is within the above numerical range. Calendar processing is not always necessary in the case of.

補助メッシュ12は、ポリエステルやポリアリレート等の合成樹脂線を格子状に編み込んで構成されており、多数の孔を有している。この補助メッシュ12は金属メッシュ11に張力を付与する役目を果たすものであるため、その厚さに特段の制限はない。 The auxiliary mesh 12 is formed by weaving synthetic resin wires such as polyester and polyarylate in a grid pattern, and has a large number of holes. Since the auxiliary mesh 12 serves to apply tension to the metal mesh 11, there is no particular limitation on its thickness.

そして、図1(B)に示したように、外形が矩形枠状を成す版枠13を用意し、その下面に、図1(A)に示した補助メッシュ12の外周部分を外方に引っ張りながら固着する。図示を省略したが、補助メッシュ12と版枠13との固着には、高い接着強度が得られる接着剤、好ましくは紫外線硬化型接着剤やシアノアクリレート系接着剤等の接着剤が使用できる。 Then, as shown in FIG. 1 (B), a plate frame 13 having a rectangular outer shape is prepared, and the outer peripheral portion of the auxiliary mesh 12 shown in FIG. 1 (A) is pulled outward on the lower surface thereof. While sticking. Although not shown, an adhesive capable of obtaining high adhesive strength, preferably an adhesive such as an ultraviolet curable adhesive or a cyanoacrylate adhesive, can be used for fixing the auxiliary mesh 12 to the plate frame 13.

版枠13は、ステンレスやアルミニウム合金等の金属から成る。この版枠13は、金属メッシュ11および補助メッシュ12を支持する役目を果たすものであり、前記張力によって変形しない剛性を有していれば、その断面形状および断面積に特段の制限はない。 The plate frame 13 is made of a metal such as stainless steel or an aluminum alloy. The plate frame 13 serves to support the metal mesh 11 and the auxiliary mesh 12, and as long as it has rigidity that does not deform due to the tension, there are no particular restrictions on its cross-sectional shape and cross-sectional area.

なお、図1には、印刷版本体10として補助メッシュ12を有するものを示したが、補助メッシュ12は必ずしも必要なものではなく、サイズが大きな金属メッシュ11を用意して、その外周部分を版枠13に直接固着してもよい。 Although FIG. 1 shows a printing plate main body 10 having an auxiliary mesh 12, the auxiliary mesh 12 is not always necessary, and a metal mesh 11 having a large size is prepared and the outer peripheral portion thereof is used as a plate. It may be fixed directly to the frame 13.

《母型20の作製工程:図2を参照》
図2(B)に示した母型20を作製するときには、図2(A)に示したように、外形が矩形状を成す金属基板21を用意し、その外面21aに研磨処理と洗浄処理を施す。研磨処理には電解研磨やバフ研磨を好ましく使用でき、洗浄処理にはアルカリ脱脂洗浄や電解洗浄を好ましく使用できる。
<< Manufacturing process of mother mold 20: See Fig. 2 >>
When producing the master mold 20 shown in FIG. 2 (B), as shown in FIG. 2 (A), a metal substrate 21 having a rectangular outer shape is prepared, and the outer surface 21a is subjected to polishing and cleaning treatments. Give. Electrolytic polishing and buffing can be preferably used for the polishing treatment, and alkaline degreasing cleaning and electrolytic cleaning can be preferably used for the cleaning treatment.

金属基板21は、ステンレス等の金属から成る。この金属基板21の外面21aの外形は、図1(B)に示した金属メッシュ11の露出部分の外形よりも僅かに小さい。この金属基板21は母型20の主体となるものであり、後記密着によって変形しない剛性を有していれば、その厚さに特段の制限はない。 The metal substrate 21 is made of a metal such as stainless steel. The outer shape of the outer surface 21a of the metal substrate 21 is slightly smaller than the outer shape of the exposed portion of the metal mesh 11 shown in FIG. 1 (B). The metal substrate 21 is the main body of the master mold 20, and there is no particular limitation on the thickness thereof as long as it has rigidity that does not deform due to close contact.

そして、図2(B)に示したように、金属基板21の外面21aに、後記金属マスク部31の開口部31a(図8を参照)に対応する絶縁体凸部22を一体的に形成する。後記金属マスク部31が多数の開口部31aを有する場合には、これら開口部31aと同数および同配列の絶縁体凸部22を金属基板21の外面21aに形成する。 Then, as shown in FIG. 2B, the insulator convex portion 22 corresponding to the opening portion 31a (see FIG. 8) of the metal mask portion 31 described later is integrally formed on the outer surface 21a of the metal substrate 21. .. Later, when the metal mask portion 31 has a large number of openings 31a, the same number and arrangement of the same number of insulator convex portions 22 as these openings 31a are formed on the outer surface 21a of the metal substrate 21.

絶縁体凸部22は、絶縁体材料、好ましくは酸化アルミニウムや二酸化ケイ素や窒化アルミニウム等の絶縁性セラミック材料から成る。勿論、絶縁体材料には、絶縁性セラミック材料の他、シリコンカーバイトやダイヤモンドライクカーボン等の絶縁性を有する材料も使用可能である。ちなみに、絶縁体凸部22の厚さ(符号省略)は好ましくは0.3〜4μmであり、この厚さは、後記第1電着金属箔EF1aの厚さt1a(図4(B)および図7(B)を参照)と後記第2電着金属箔EF1bの厚さt1b(図7(B)を参照)との和に相当する。また、絶縁体凸部22を図2(B)の上から見たときの外形は、後記金属マスク部31の開口部31aを図8の下から見たときの外形に対応している。例えば、開口部31aを図8の下から見たときの外形が矩形状の場合には、絶縁体凸部22を図2(B)の上から見たときの外形はこれに対応した矩形状である。勿論、絶縁体凸部22を図2(B)の上から見たときの外形には、矩形以外の種々の形状が採用できることは言うまでもない。 The insulator convex portion 22 is made of an insulator material, preferably an insulating ceramic material such as aluminum oxide, silicon dioxide, or aluminum nitride. Of course, as the insulator material, in addition to the insulating ceramic material, a material having an insulating property such as silicon carbide or diamond-like carbon can also be used. Incidentally, the thickness (reference numeral omitted) of the insulator convex portion 22 is preferably 0.3 to 4 μm, and this thickness is the thickness t1a of the first electrodeposited metal leaf EF1a described later (FIGS. 4 (B) and FIG. 7 (B)) corresponds to the sum of the thickness t1b (see FIG. 7B) of the second electrodeposited metal leaf EF1b described later. Further, the outer shape of the insulator convex portion 22 when viewed from above in FIG. 2B corresponds to the outer shape when the opening 31a of the metal mask portion 31 described later is viewed from below in FIG. For example, when the outer shape of the opening 31a when viewed from the bottom of FIG. 8 is rectangular, the outer shape of the insulator convex portion 22 when viewed from above of FIG. 2B has a corresponding rectangular shape. Is. Of course, it goes without saying that various shapes other than the rectangle can be adopted as the outer shape of the insulator convex portion 22 when viewed from above in FIG. 2 (B).

ここで、絶縁性セラミック材料から成る多数の絶縁体凸部22を金属基板21の外面21aに一体的に形成する方法を紹介する。 Here, a method of integrally forming a large number of insulating convex portions 22 made of an insulating ceramic material on the outer surface 21a of the metal substrate 21 will be introduced.

〈第1の方法〉まず、金属基板21の外面21aに、市販のネガ型のフォトレジストシートを貼り付けるか、あるいは、市販のポジ型またはネガ型のフォトレジスト剤を塗工した後、フォトリソグラフィ法によって不必要部分を排除して、多数の絶縁体凸部22に対応した多数の凹部を有するレジストパターンを形成する。続いて、真空蒸着やイオンプレーティングやスパッタリング等の物理気相成長法(PVD法)、あるいは、プラズマCVDや熱CVDや光CVD等の化学気相成長法(CVD法)によって、レジストパターンの多数の凹部内に絶縁性セラミック材料を所望の厚さまで堆積させる。続いて、レジストパターンを金属基板21の外面21aから剥離し取り除いて、多数の絶縁体凸部22のみを金属基板21の外面21aに残存させる。 <First Method> First, a commercially available negative photoresist sheet is attached to the outer surface 21a of the metal substrate 21, or a commercially available positive or negative photoresist agent is applied, and then photolithography is performed. By the method, unnecessary portions are eliminated to form a resist pattern having a large number of concave portions corresponding to a large number of insulating convex portions 22. Subsequently, a large number of resist patterns are formed by a physical vapor deposition method (PVD method) such as vacuum deposition, ion plating, or sputtering, or a chemical vapor deposition method (CVD method) such as plasma CVD, thermal CVD, or optical CVD. Insulating ceramic material is deposited to the desired thickness in the recesses of the. Subsequently, the resist pattern is peeled off from the outer surface 21a of the metal substrate 21 and removed, leaving only a large number of insulator convex portions 22 on the outer surface 21a of the metal substrate 21.

〈第2の方法〉まず、金属基板21の外面21aに、予め用意したマスクシートを貼り付ける。このマスクシートは、多数の絶縁体凸部22に対応した多数の孔を有する。続いて、第1の方法と同様に、物理気相成長法(PVD法)、あるいは、化学気相成長法(CVD法)によって、マスクシートの多数の孔内に絶縁性セラミック材料を所望の厚さまで堆積させる。続いて、マスクシートを金属基板21の外面21aから剥離し取り除いて、多数の絶縁体凸部22のみを金属基板21の外面21aに残存させる。 <Second Method> First, a mask sheet prepared in advance is attached to the outer surface 21a of the metal substrate 21. This mask sheet has a large number of holes corresponding to a large number of insulator protrusions 22. Subsequently, as in the first method, an insulating ceramic material is formed in a large number of holes in the mask sheet by a physical vapor deposition method (PVD method) or a chemical vapor deposition method (CVD method) to obtain a desired thickness. Accumulate until now. Subsequently, the mask sheet is peeled off from the outer surface 21a of the metal substrate 21 and removed, leaving only a large number of insulator convex portions 22 on the outer surface 21a of the metal substrate 21.

《第1の電気鋳造工程:図3および図4を参照》
先に説明した母型20を、図3に示したように、浴液とアノードが収容された浴槽(図示省略)内に入れ、母型20の金属基板21をカソードとして第1の電気鋳造を行う。
<< First electroforming process: see FIGS. 3 and 4 >>
As shown in FIG. 3, the master mold 20 described above is placed in a bathtub (not shown) containing a bath liquid and an anode, and the first electroplating is performed using the metal substrate 21 of the master mold 20 as a cathode. Do.

第1の電気鋳造を行うときの浴液には、ワット浴やスルファミン酸ニッケル浴やスルファミン酸塩化ニッケル浴等が好ましく使用できる。また、アノードには、ニッケル片またはニッケル粒を入れたチタン製の網状バックや、ニッケル片またはニッケル粒とチタン製の通電ロッドとを入れたポリプロピレン製の網状バック等が好ましく使用できる。さらに、第1の電気鋳造を行うときの電解条件は、ワット浴とスルファミン酸ニッケル浴の場合は、好ましくは、浴温が40〜60℃、アノードおよびカソードの電流密度が1〜4A/dm、電解時間が0.6〜20分である。また、スルファミン酸塩化ニッケル浴の場合は、好ましくは、浴温が25〜70℃、アノードおよびカソードの電流密度が1〜5A/dm、電解時間が0.5〜20分である。 As the bath liquid for performing the first electroforming, a watt bath, a nickel sulfamate bath, a nickel sulfamate bath, or the like can be preferably used. Further, as the anode, a titanium mesh bag containing nickel pieces or nickel grains, a polypropylene mesh bag containing nickel pieces or nickel grains and a titanium energizing rod, or the like can be preferably used. Further, the electrolytic conditions for performing the first electroforming are preferably a bath temperature of 40 to 60 ° C. and an anode and cathode current densities of 1 to 4 A / dm 2 in the case of a watt bath and a nickel sulfamate bath. , The electrolysis time is 0.6 to 20 minutes. In the case of a sulfamate nickel bath, the bath temperature is preferably 25 to 70 ° C., the current densities of the anode and cathode are 1 to 5 A / dm 2 , and the electrolysis time is 0.5 to 20 minutes.

第1の電気鋳造の開始段階では、図4(A)に示したように、金属基板21の絶縁体凸部22が存しない外面領域21a1には、絶縁体凸部22の厚さに相当する凹み(符号省略)がある。第1の電気鋳造の終了段階では、図4(B)に示したように、金属基板21の絶縁体凸部22が存しない外面領域21a1に、第1電着金属箔EF1aが形成される。図4(B)から分かるように、第1の電気鋳造で形成される第1電着金属箔EF1aの厚さt1aは、絶縁体凸部22の厚さよりも小さい。第1電着金属箔EF1aの厚さt1aを絶縁体凸部22の厚さよりも小さくする理由は、後記第2電着金属箔EF1bを形成するための隙間GA(図7(A)を参照)を金属メッシュ11と第1電着金属箔EF1aの外面(符号省略)との間に確保することにある。また、後記第2の電気鋳造により後記第2電着金属箔EF1bを支障なく形成するには、この隙間GAをなるべく小さく設定すること、すなわち、後記第2電着金属箔EF1bの厚さt1b(図7(B)を参照)を第1電着金属箔EF1aの厚さt1aよりも小さくなるように設定することが好ましい。 At the start stage of the first electroplating, as shown in FIG. 4A, the outer surface region 21a1 of the metal substrate 21 in which the insulator convex portion 22 does not exist corresponds to the thickness of the insulator convex portion 22. There is a dent (sign omitted). At the final stage of the first electroplating, as shown in FIG. 4B, the first electrodeposited metal foil EF1a is formed in the outer surface region 21a1 where the insulator convex portion 22 of the metal substrate 21 does not exist. As can be seen from FIG. 4B, the thickness t1a of the first electrodeposited metal foil EF1a formed by the first electrocasting is smaller than the thickness of the insulator convex portion 22. The reason why the thickness t1a of the first electrodeposited metal leaf EF1a is made smaller than the thickness of the insulator convex portion 22 is the gap GA for forming the second electrodeposited metal leaf EF1b described later (see FIG. 7A). Is to be secured between the metal mesh 11 and the outer surface (reference numeral omitted) of the first electrodeposited metal foil EF1a. Further, in order to form the second electrodeposition metal leaf EF1b described later without any trouble by the second electroplating described later, the gap GA should be set as small as possible, that is, the thickness t1b of the second electrodeposited metal leaf EF1b described later ( (See FIG. 7B) is preferably set to be smaller than the thickness t1a of the first electrodeposited metal leaf EF1a.

《印刷版本体10の金属メッシュ11を母型20の絶縁体凸部22に密着させる工程:図5を参照》
先に説明した印刷版本体10と母型20を用意し、図5に示したように、母型20の絶縁体凸部22の外面22aに印刷版本体10の金属メッシュ11を相対的に押し付けて、絶縁体凸部22の外面22aに金属メッシュ11を密着させる。絶縁体凸部22の数が多い場合、押し付け力が小さいと十分な密着が得られず、逆に押し付け力が強すぎると金属メッシュ11が変形して部分的に隙間を生じる虞があるため、試行を繰り返して最適な押し付け力を定めることが好ましい。絶縁体凸部22の外面22aに金属メッシュ11を密着させた後は、金属基板21の外面21aとは反対側の外面から版枠13に向けて掛け渡した図示省略のテープ等の保持具によって、前記密着状態を保持する。
<< Step of bringing the metal mesh 11 of the printing plate body 10 into close contact with the insulator convex portion 22 of the master mold 20: see FIG. 5 >>
The printing plate main body 10 and the master mold 20 described above are prepared, and as shown in FIG. 5, the metal mesh 11 of the printing plate main body 10 is relatively pressed against the outer surface 22a of the insulator convex portion 22 of the master mold 20. The metal mesh 11 is brought into close contact with the outer surface 22a of the insulator convex portion 22. When the number of the insulator convex portions 22 is large, sufficient adhesion cannot be obtained if the pressing force is small, and conversely, if the pressing force is too strong, the metal mesh 11 may be deformed to partially create a gap. It is preferable to repeat the trial to determine the optimum pressing force. After the metal mesh 11 is brought into close contact with the outer surface 22a of the insulator convex portion 22, a holder such as a tape (not shown) hung from the outer surface opposite to the outer surface 21a of the metal substrate 21 toward the plate frame 13 is used. , The close contact state is maintained.

《第2の電気鋳造工程:図6および図7を参照》
先に説明した印刷版本体10と母型20との密着物(符号省略)を、図6に示したように、浴液とアノードが収容された浴槽(図示省略)内に入れ、母型20の金属基板21をカソードとして第2の電気鋳造を行う。
<< Second electroforming process: see FIGS. 6 and 7 >>
As shown in FIG. 6, the contact object (reference numeral omitted) between the printing plate main body 10 and the master mold 20 described above is placed in a bathtub (not shown) containing the bath liquid and the anode, and the master mold 20 is placed. The second electroforming is performed using the metal substrate 21 of the above as a cathode.

第2の電気鋳造を行うときの浴液には、ワット浴やスルファミン酸ニッケル浴やスルファミン酸塩化ニッケル浴等が好ましく使用できる。また、アノードには、ニッケル片またはニッケル粒を入れたチタン製の網状バックや、ニッケル片またはニッケル粒とチタン製の通電ロッドとを入れたポリプロピレン製の網状バック等が好ましく使用できる。さらに、第2の電気鋳造を行うときの電解条件は、ワット浴とスルファミン酸ニッケル浴の場合は、好ましくは、浴温が40〜60℃、アノードおよびカソードの電流密度が0.3〜0.5A/dm、電解時間が5〜30分である。また、スルファミン酸塩化ニッケル浴の場合は、好ましくは、浴温が25〜70℃、アノードおよびカソードの電流密度が0.3〜0.5A/dm、電解時間が5〜30分である。 As the bath liquid for performing the second electroforming, a watt bath, a nickel sulfamate bath, a nickel sulfamate bath, or the like can be preferably used. Further, as the anode, a titanium mesh bag containing nickel pieces or nickel grains, a polypropylene mesh bag containing nickel pieces or nickel grains and a titanium energizing rod, or the like can be preferably used. Further, the electrolytic conditions for performing the second electroforming are preferably a bath temperature of 40 to 60 ° C. and an anode and cathode current densities of 0.3 to 0. In the case of a watt bath and a nickel sulfamate bath. 5A / dm 2 , electrolysis time is 5 to 30 minutes. In the case of a sulfamate nickel bath, the bath temperature is preferably 25 to 70 ° C., the current densities of the anode and cathode are 0.3 to 0.5 A / dm 2 , and the electrolysis time is 5 to 30 minutes.

第2の電気鋳造の開始段階では、図7(A)に示したように、絶縁体凸部22の外面22aに金属メッシュ11の下面が密着し、第1電着金属箔EF1aの外面と金属メッシュ11の下面との間には{絶縁体凸部22の厚さ−第1電着金属箔EF1aの厚さt1a}に相当する隙間GAがある。第1電着金属箔EF1aよりも絶縁体凸部22の方が厚さの精度が高くバラツキも小さいので、これにより後記金属マスク部31の厚さt1の精度が高くなる。第2の電気鋳造の終了段階では、図7(B)に示したように、金属メッシュ11の表面に電着金属膜EF2が形成されるとともに、隙間GAを利用して、第1電着金属箔EF1aの外面に、電着金属膜EF2と連続し、かつ、第1電着金属箔EF1aと接合する第2電着金属箔EF1bが形成される。ちなみに、ここで形成される電着金属膜EF2の厚さ(符号省略)は好ましくは0.3〜2μmであり、第1電着金属箔EF1aと接合した第2電着金属箔EF1bの厚さt1bは{絶縁体凸部22の厚さ−第1電着金属箔EF1aの厚さt1a}に相当する。すなわち、第2の電気鋳造工程では、金属メッシュ11および電着金属膜EF2から成る金属メッシュ部32と、電着金属膜EF2と連続した第2電着金属箔EF1bおよびこの第2電着金属箔EF1bが接合した第1金属電着箔EF1aから成る厚さt1(厚さt1a+厚さt1b)の金属マスク部31と、の一体化物30が作製される。また、先に説明したように第2電着金属箔EF1bの厚さt1bを第1電着金属箔EF1aの厚さt1aよりも小さくなるように設定しておけば、第2の電気鋳造工程において第2電着金属箔EF1bを支障なく、例えば空隙を生じることなく形成して、第1電着金属箔EF1aとの接合を良好に行える。なお、図7(B)には第1電着金属箔EF1aと第2電着金属箔EF1bとの間に破線を描いているが、この破線は両者の境界ならびに両者の厚さを示す便宜的なものである。 At the start stage of the second electroforming, as shown in FIG. 7A, the lower surface of the metal mesh 11 is in close contact with the outer surface 22a of the insulator convex portion 22, and the outer surface of the first electrodeposited metal foil EF1a and the metal There is a gap GA corresponding to {thickness of the insulator convex portion 22-thickness t1a of the first electrodeposited metal foil EF1a} with the lower surface of the mesh 11. Since the thickness accuracy of the insulator convex portion 22 is higher and the variation is smaller than that of the first electrodeposited metal foil EF1a, the accuracy of the thickness t1 of the metal mask portion 31 described later is higher. At the final stage of the second electroforming, as shown in FIG. 7B, the electrodeposited metal film EF2 is formed on the surface of the metal mesh 11, and the first electrodeposited metal is utilized by utilizing the gap GA. On the outer surface of the foil EF1a, a second electrodeposited metal foil EF1b that is continuous with the electrodeposited metal film EF2 and is joined to the first electrodeposited metal foil EF1a is formed. Incidentally, the thickness of the electrodeposited metal film EF2 formed here (reference numeral omitted) is preferably 0.3 to 2 μm, and the thickness of the second electrodeposited metal foil EF1b bonded to the first electrodeposited metal foil EF1a. t1b corresponds to {thickness of the insulator convex portion 22-thickness t1a of the first electrodeposited metal foil EF1a}. That is, in the second electrocasting step, the metal mesh portion 32 composed of the metal mesh 11 and the electrodeposited metal film EF2, the second electrodeposited metal foil EF1b continuous with the electrodeposited metal film EF2, and the second electrodeposited metal foil. An integrated product 30 is produced with a metal mask portion 31 having a thickness of t1 (thickness t1a + thickness t1b) made of the first metal electrodeposition foil EF1a to which the EF1b is bonded. Further, as described above, if the thickness t1b of the second electrodeposited metal leaf EF1b is set to be smaller than the thickness t1a of the first electrodeposited metal leaf EF1a, in the second electroforming step. The second electrodeposited metal leaf EF1b can be formed without any trouble, for example, without forming a gap, and can be satisfactorily bonded to the first electrodeposited metal leaf EF1a. In FIG. 7B, a broken line is drawn between the first electrodeposited metal leaf EF1a and the second electrodeposited metal leaf EF1b, and this broken line is for convenience showing the boundary between the two and the thickness of both. It is a thing.

《離型工程:図8を参照》
図7(B)に示した一体化物30を作製した後は、印刷版本体10と母型20との密着物を浴槽から取り出し、保持具を外して密着状態の保持を解除する。そして、図8に示したように、一体化物30の電着金属膜EF2を絶縁体凸部22の外面22aから剥離するとともに、第1電着金属箔EF1aおよび第2電着金属箔EF1bを金属基板21の絶縁体凸部22が存しない外面領域21a1から抜き出して、一体化物30を母型20から離型する。
<< Mold release process: see Fig. 8 >>
After producing the integrated product 30 shown in FIG. 7 (B), the material in close contact between the printing plate main body 10 and the mother mold 20 is taken out from the bathtub, and the holder is removed to release the holding of the product in the close contact state. Then, as shown in FIG. 8, the electrodeposited metal film EF2 of the integrated body 30 is peeled off from the outer surface 22a of the insulator convex portion 22, and the first electrodeposited metal foil EF1a and the second electrodeposited metal foil EF1b are made of metal. The integrated body 30 is separated from the master mold 20 by extracting it from the outer surface region 21a1 where the insulator convex portion 22 of the substrate 21 does not exist.

この離型により、第1電着金属箔EF1aおよび第2電着金属箔EF1bから成る金属マスク部31に、絶縁体凸部22の厚さおよび外形に略合致した深さおよび内形を有する開口部31aが形成される。また、金属基板21の外面21aに対する絶縁体凸部22の結合力は、金属基板21の外面21aにフォトレジスト製凸部を形成した場合の結合力より遙かに高いため、一体化物30を母型20から離型するときに絶縁体凸部22が金属基板21の外面21aから取れてしまうことはない。 Due to this release, an opening having a depth and an inner shape substantially matching the thickness and outer shape of the insulator convex portion 22 in the metal mask portion 31 composed of the first electrodeposited metal foil EF1a and the second electrodeposited metal foil EF1b. Part 31a is formed. Further, since the bonding force of the insulator convex portion 22 to the outer surface 21a of the metal substrate 21 is much higher than the bonding force when the photoresist convex portion is formed on the outer surface 21a of the metal substrate 21, the integrated body 30 is used as a mother. When the mold is released from the mold 20, the insulator convex portion 22 does not come off from the outer surface 21a of the metal substrate 21.

《仕上げ工程:図9を参照》
図8に示した離型が完了した後は、図9に示した金属メッシュ部32の外周部分、すなわち、スクリーン印刷に使用されない部分を乳剤部(図示省略)で覆うとともに、図9に示した補助メッシュ12の上面に例えば銀フィルム等の補強フィルム(図示省略)を貼り付けて補強を行う。
<< Finishing process: see Fig. 9 >>
After the mold release shown in FIG. 8 is completed, the outer peripheral portion of the metal mesh portion 32 shown in FIG. 9, that is, the portion not used for screen printing is covered with an emulsion portion (not shown) and shown in FIG. A reinforcing film (not shown) such as a silver film is attached to the upper surface of the auxiliary mesh 12 for reinforcement.

前述の製造方法では、(1)金属基板21の外面21aに、金属マスク部31の開口部31aに対応する絶縁体凸部22が一体形成された母型20を作製し、(2)1回目の電気鋳造により、金属基板21の絶縁体凸部22が存しない外面領域21a1に絶縁体凸部よりも厚さが小さい第1電着金属箔EF1aを形成し、(3)母型20の絶縁体凸部22の外面22aに金属メッシュ11を密着させた状態で、2回目の電気鋳造により、金属メッシュ11の表面に電着金属膜EF2を形成するとともに、第1電着金属箔EF1aの外面に電着金属膜EF2と連続し、かつ、第1電着金属箔EF1aと接合する第2電着金属箔EF1bを形成して、金属メッシュ11および電着金属膜EF2から成る金属メッシュ部32と第1電着金属箔EF1aおよび第2電着金属箔EF1bから成る金属マスク部31との一体化物30を作製し、(4)一体化物30の電着金属膜EF2を絶縁体凸部22の外面22aから剥離するとともに、第1電着金属箔EF1aおよび第2電着金属箔EF1bを金属基板21の絶縁体凸部22が存しない外面領域21a1から抜き出して、絶縁体凸部22を金属基板21の外面21aに残存させたまま一体化物30を母型20から離型している。 In the above-mentioned manufacturing method, (1) a master mold 20 in which an insulator convex portion 22 corresponding to the opening 31a of the metal mask portion 31 is integrally formed on the outer surface 21a of the metal substrate 21 is manufactured, and (2) the first time. A first electrodeposited metal foil EF1a having a thickness smaller than that of the insulator convex portion was formed in the outer surface region 21a1 where the insulator convex portion 22 of the metal substrate 21 did not exist, and (3) insulation of the master mold 20 was performed. With the metal mesh 11 in close contact with the outer surface 22a of the body convex portion 22, the electrodeposited metal film EF2 is formed on the surface of the metal mesh 11 by the second electric casting, and the outer surface of the first electrodeposited metal foil EF1a is formed. A second electrodeposited metal foil EF1b continuous with the electrodeposited metal film EF2 and joined to the first electrodeposited metal foil EF1a is formed, and the metal mesh portion 32 composed of the metal mesh 11 and the electrodeposited metal film EF2 is formed. An integral body 30 with the metal mask portion 31 composed of the first electrodeposited metal foil EF1a and the second electrodeposited metal foil EF1b is produced, and (4) the electrodeposited metal film EF2 of the integrated body 30 is attached to the outer surface of the insulator convex portion 22. While peeling from 22a, the first electrodeposited metal foil EF1a and the second electrodeposited metal foil EF1b are extracted from the outer surface region 21a1 where the insulator convex portion 22 of the metal substrate 21 does not exist, and the insulator convex portion 22 is removed from the metal substrate 21. The integrated body 30 is separated from the master mold 20 while remaining on the outer surface 21a of the above.

すなわち、金属基板21の外面21aに絶縁体凸部22が一体形成された母型20を用いることによって、金属メッシュ11および電着金属膜EF2から成る金属メッシュ部32と、第1電着金属箔EF1aおよび第2電着金属箔EF1bから成る金属マスク部31とを一体に備えたスクリーン印刷版を簡易な方法で、かつ、的確に製造することができる。 That is, by using the master mold 20 in which the insulator convex portion 22 is integrally formed on the outer surface 21a of the metal substrate 21, the metal mesh portion 32 composed of the metal mesh 11 and the electrodeposited metal film EF2 and the first electrodeposited metal foil A screen printing plate integrally provided with a metal mask portion 31 made of EF1a and a second electrodeposited metal foil EF1b can be accurately manufactured by a simple method.

また、金属メッシュ部32と金属マスク部31との一体化物30を母型20から離型しても、絶縁体凸部22が金属基板21の外面21aから取れてしまうことがないため、母型20を繰り返し使用して同一形態のスクリーン印刷版を製造することができる。つまり、この点においても、スクリーン印刷版を製造が簡易化される。 Further, even if the integrated body 30 of the metal mesh portion 32 and the metal mask portion 31 is separated from the master mold 20, the insulator convex portion 22 does not come off from the outer surface 21a of the metal substrate 21, so that the master mold 20 can be repeatedly used to produce a screen-printed plate of the same form. That is, also in this respect, the production of the screen printing plate is simplified.

さらに、母型20の絶縁体凸部22の厚さに応じた厚さの金属マスク部31(第1電着金属箔EF1aおよび第2電着金属箔EF1b)を確実に作製できるため、金属マスク部31の外面に金属メッシュ11が露出することを防止して、同外面の平滑性を確保できるとともに、形が極めて綺麗な開口部31aを形成することができ、これにより印刷精度が極めて高いスクリーン印刷を実現することができる。 Further, since the metal mask portion 31 (first electrodeposited metal foil EF1a and second electrodeposited metal foil EF1b) having a thickness corresponding to the thickness of the insulator convex portion 22 of the master mold 20 can be reliably produced, the metal mask The metal mesh 11 can be prevented from being exposed on the outer surface of the portion 31, the smoothness of the outer surface can be ensured, and the opening 31a having an extremely beautiful shape can be formed, whereby the screen with extremely high printing accuracy. Printing can be realized.

さらに、金属マスク部31(第1電着金属箔EF1aおよび第2電着金属箔EF1b)の厚さt1を、母型20の絶縁体凸部22の厚さによって調整できるため、金属マスク部31の厚さt1の管理が極めて容易であるとともに、所望厚さの金属マスク部31を精度良く作製することができる。 Further, since the thickness t1 of the metal mask portion 31 (first electrodeposited metal foil EF1a and second electrodeposited metal foil EF1b) can be adjusted by the thickness of the insulator convex portion 22 of the master mold 20, the metal mask portion 31 It is extremely easy to control the thickness t1 of the metal mask portion 31, and the metal mask portion 31 having a desired thickness can be manufactured with high accuracy.

さらに、金属マスク部31の開口部31aの深さおよび内形を、母型20の絶縁体凸部22の厚さおよび外形によって調整できるため、金属マスク部31の開口部31aの深さおよび内形の管理が極めて容易であるとともに、所望深さおよび内形の開口部31aを金属マスク部31に精度良く形成することができる。 Further, since the depth and inner shape of the opening 31a of the metal mask portion 31 can be adjusted by the thickness and outer shape of the insulator convex portion 22 of the master mold 20, the depth and inner shape of the opening 31a of the metal mask portion 31 can be adjusted. The shape can be controlled extremely easily, and the desired depth and the inner-shaped opening 31a can be accurately formed in the metal mask portion 31.

さらに、金属マスク部31を構成する第1電着金属箔EF1aおよび第2電着金属箔EF1bのうち、第2電着金属箔EF1bの厚さt1bを第1電着金属箔EF1aの厚さt1aよりも小さくなるように設定しておけば、第2の電気鋳造工程において第2電着金属箔EF1bを支障なく形成して、第1電着金属箔EF1aとの接合を良好に行うことができる。 Further, among the first electrodeposited metal foil EF1a and the second electrodeposited metal foil EF1b constituting the metal mask portion 31, the thickness t1b of the second electrodeposited metal foil EF1b is changed to the thickness t1a of the first electrodeposited metal foil EF1a. If it is set to be smaller than, the second electrodeposited metal leaf EF1b can be formed without any trouble in the second electrocasting step, and the bonding with the first electrodeposited metal leaf EF1a can be performed satisfactorily. ..

10…印刷版本体、11…金属メッシュ、12…補助メッシュ、13…版枠、20…母型、21…金属基板、21a…金属基板の外面、21a1…金属基板の絶縁体凸部が存しない外面領域、22…絶縁体凸部、22a…絶縁体凸部の外面、30…金属メッシュ部と金属マスク部との一体化物、31…金属マスク部、31a…開口部、EF1a…第1電着金属箔、EF1b…第2電着金属箔、32…金属メッシュ部、EF2…電着金属膜。 10 ... Printing plate body, 11 ... Metal mesh, 12 ... Auxiliary mesh, 13 ... Plate frame, 20 ... Mother mold, 21 ... Metal substrate, 21a ... Outer surface of metal substrate, 21a1 ... Insulator convex part of metal substrate does not exist Outer surface region, 22 ... Insulator convex portion, 22a ... Outer surface of insulator convex portion, 30 ... Metal mesh portion and metal mask portion integrated, 31 ... Metal mask portion, 31a ... Opening, EF1a ... First electrodeposition Metal foil, EF1b ... second electrodeposited metal foil, 32 ... metal mesh portion, EF2 ... electrodeposited metal film.

Claims (7)

金属メッシュ部と、開口部を有する金属マスク部とを一体に備えたスクリーン印刷版の製造方法であって、
金属基板の外面に前記開口部に対応する絶縁体凸部が一体形成された母型を作製する工程と、
1回目の電気鋳造により、前記母型の前記金属基板の前記絶縁体凸部が存しない外面領域に、前記絶縁体凸部よりも厚さが小さい第1電着金属箔を形成する工程と、
前記母型の前記絶縁体凸部の外面に金属メッシュを密着させた状態で、2回目の電気鋳造により、前記金属メッシュの表面に電着金属膜を形成するとともに、前記第1電着金属箔の外面に前記電着金属膜と連続し、かつ、前記第1電着金属箔と接合する第2電着金属箔を形成して、前記金属メッシュおよび前記電着金属膜から成る前記金属メッシュ部と前記第1電着金属箔および前記第2電着金属箔から成る前記金属マスク部との一体化物を作製する工程と、
前記一体化物の前記電着金属膜を前記絶縁体凸部の外面から剥離するとともに、前記第1電着金属箔および前記第2電着金属箔を前記金属基板の前記絶縁体凸部が存しない外面領域から抜き出して、前記絶縁体凸部を前記金属基板の外面に残存させたまま前記一体化物を前記母型から離型する工程とを備える、
スクリーン印刷版の製造方法。
A method for manufacturing a screen printing plate in which a metal mesh portion and a metal mask portion having an opening are integrally provided.
A step of producing a master mold in which an insulator convex portion corresponding to the opening is integrally formed on the outer surface of the metal substrate, and
A step of forming a first electrodeposited metal foil having a thickness smaller than that of the insulator convex portion in an outer surface region of the metal substrate of the master mold where the insulator convex portion does not exist by the first electroforming.
With the metal mesh in close contact with the outer surface of the insulator convex portion of the master mold, an electrodeposited metal film is formed on the surface of the metal mesh by the second electric casting, and the first electrodeposited metal foil is formed. A second electrodeposited metal foil that is continuous with the electrodeposited metal film and is joined to the first electrodeposited metal foil is formed on the outer surface of the metal mesh, and the metal mesh portion composed of the metal mesh and the electrodeposited metal film. And the step of producing an integral product of the first electrodeposition metal foil and the metal mask portion made of the second electrodeposition metal foil.
The electrodeposited metal film of the integrated material is peeled off from the outer surface of the insulator convex portion, and the first electrodeposited metal foil and the second electrodeposited metal foil are absent from the insulator convex portion of the metal substrate. A step of removing the integrated product from the master mold while extracting the insulator from the outer surface region and leaving the convex portion of the insulator on the outer surface of the metal substrate is provided.
How to make a screen printing plate.
前記第1電着金属箔および前記第2電着金属箔から成る前記金属マスク部の厚さを、前記絶縁体凸部の厚さによって調整する、
請求項1に記載のスクリーン印刷版の製造方法。
The thickness of the metal mask portion made of the first electrodeposited metal foil and the second electrodeposited metal foil is adjusted by the thickness of the convex portion of the insulator.
The method for manufacturing a screen printing plate according to claim 1.
前記金属マスク部の前記開口部の深さおよび内形を、前記絶縁体凸部の厚さおよび外形によって調整する、
請求項1または2に記載のスクリーン印刷版の製造方法。
The depth and inner shape of the opening of the metal mask portion are adjusted by the thickness and outer shape of the convex portion of the insulator.
The method for manufacturing a screen printing plate according to claim 1 or 2.
前記第2電着金属箔の厚さを、前記第1電着金属箔の厚さよりも小さく設定する、
請求項1〜3のいずれか1項に記載のスクリーン印刷版の製造方法。
The thickness of the second electrodeposited metal leaf is set smaller than the thickness of the first electrodeposited metal foil.
The method for manufacturing a screen printing plate according to any one of claims 1 to 3.
前記絶縁体凸部を、絶縁体材料を用いて物理気相成長法によって形成する、
請求項1〜4のいずれか1項に記載のスクリーン印刷版の製造方法。
The insulator convex portion is formed by a physical vapor deposition method using an insulator material.
The method for manufacturing a screen printing plate according to any one of claims 1 to 4.
前記絶縁体凸部を、絶縁体材料を用いて化学気相成長法によって形成する、
請求項1〜4のいずれか1項に記載のスクリーン印刷版の製造方法。
The insulator convex portion is formed by a chemical vapor deposition method using an insulator material.
The method for manufacturing a screen printing plate according to any one of claims 1 to 4.
前記絶縁体材料として絶縁性セラミック材料を用いる、
請求項5または6に記載のスクリーン印刷版の製造方法。
An insulating ceramic material is used as the insulator material.
The method for manufacturing a screen printing plate according to claim 5 or 6.
JP2017060470A 2017-03-27 2017-03-27 Manufacturing method of screen printing plate Active JP6824797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060470A JP6824797B2 (en) 2017-03-27 2017-03-27 Manufacturing method of screen printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060470A JP6824797B2 (en) 2017-03-27 2017-03-27 Manufacturing method of screen printing plate

Publications (2)

Publication Number Publication Date
JP2018161808A JP2018161808A (en) 2018-10-18
JP6824797B2 true JP6824797B2 (en) 2021-02-03

Family

ID=63859933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060470A Active JP6824797B2 (en) 2017-03-27 2017-03-27 Manufacturing method of screen printing plate

Country Status (1)

Country Link
JP (1) JP6824797B2 (en)

Also Published As

Publication number Publication date
JP2018161808A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP4744790B2 (en) Deposition mask, deposition mask frame assembly, and manufacturing method thereof
JP2007070709A (en) Electroforming die, method for producing electroforming die, and method for producing electroformed component
JP6918541B2 (en) Manufacturing method of screen printing plate
KR101792667B1 (en) Manufacturing method of fine metal mask
JP6824797B2 (en) Manufacturing method of screen printing plate
JP2010042567A (en) Method of manufacturing suspend metal mask, and suspend metal mask
JP6918542B2 (en) Manufacturing method of screen printing plate
JP4836522B2 (en) Electroforming mold, electroforming mold manufacturing method, and electroformed component manufacturing method
JP4650113B2 (en) Laminated structure, donor substrate, and manufacturing method of laminated structure
JP2021096245A (en) Method of manufacturing timepiece component and component produced using the same
KR20150095867A (en) Suspended metal mask for printing and manufacturing method therefor
JP2003239094A (en) Fine-electroforming die, and method for manufacturing the same
JPH09279366A (en) Production of fine structural parts
JP2019206088A (en) Mask for alignment of ball and manufacturing method therefor
JP6622835B2 (en) Wiring substrate manufacturing method
JP2010042569A (en) Method of manufacturing suspend metal mask, and suspend metal mask
JPH06346271A (en) Nickel laminate and its production
JP2018059191A (en) Cathode drum for producing metallic foil and production method of metallic foil
JP6725997B2 (en) Manufacturing method of suspended metal mask
JPH08273998A (en) Method of manufacturing high contrast x-ray mask
JP2003247093A (en) Member for display, member sheet for display and method of manufacturing the same
TW527285B (en) Method for manufacturing nozzle plate
JP2005120395A5 (en)
JP2022090307A (en) Screen printing plate and manufacturing method thereof
JP2016120595A (en) Printing suspend metal mask and production method of the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210113

R150 Certificate of patent or registration of utility model

Ref document number: 6824797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250