JP6820789B2 - Infrared sensor device - Google Patents

Infrared sensor device Download PDF

Info

Publication number
JP6820789B2
JP6820789B2 JP2017076509A JP2017076509A JP6820789B2 JP 6820789 B2 JP6820789 B2 JP 6820789B2 JP 2017076509 A JP2017076509 A JP 2017076509A JP 2017076509 A JP2017076509 A JP 2017076509A JP 6820789 B2 JP6820789 B2 JP 6820789B2
Authority
JP
Japan
Prior art keywords
detection unit
infrared detection
infrared
distance
amplification unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017076509A
Other languages
Japanese (ja)
Other versions
JP2018179628A (en
Inventor
菱沼 邦之
邦之 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2017076509A priority Critical patent/JP6820789B2/en
Publication of JP2018179628A publication Critical patent/JP2018179628A/en
Application granted granted Critical
Publication of JP6820789B2 publication Critical patent/JP6820789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、温度を検出する赤外線センサ装置に関し、特に、アレイ構造のサーモパイル素子などの温度検出素子と、増幅回路などの動作にともなって発熱する回路とが、同一の基板上に設けられた熱型の赤外線センサ装置に関する。 The present invention relates to an infrared sensor device that detects temperature, and in particular, a temperature detection element such as a thermopile element having an array structure and a circuit that generates heat due to an operation of an amplifier circuit or the like are provided on the same substrate. Regarding a type infrared sensor device.

従来から、この種の赤外線センサ装置として、種々の構成のものが知られているが、基板における温度分布をできるだけ均一にするために、基板表面の大部分を覆うように金属層を設けた赤外線センサが知られている(特許文献1)。そして、この赤外線センサにおける金属層は、前記基板上に設けた、吸収器エレメント(赤外線吸収膜)を備えた検出器チップ、周囲温度を測定するための温度基準要素、増幅器などのシリコン回路の下方に配置されている。また、前記金属層に高反射性皮膜を設ける構成が開示されている。さらに、前記検出器チップとして、行またはマトリクス状に、複数のエレメントを含む構成が開示されている。 Conventionally, various types of infrared sensor devices have been known as this type of infrared sensor device, but in order to make the temperature distribution on the substrate as uniform as possible, infrared rays provided with a metal layer so as to cover most of the substrate surface. A sensor is known (Patent Document 1). The metal layer in this infrared sensor is a detector chip provided on the substrate and provided with an absorber element (infrared absorbing film), a temperature reference element for measuring the ambient temperature, and a lower portion of a silicon circuit such as an amplifier. It is located in. Further, a configuration in which a highly reflective film is provided on the metal layer is disclosed. Further, as the detector chip, a configuration including a plurality of elements in a row or a matrix is disclosed.

特表2007−503586号公報Special Table 2007-503586

上述した従来の赤外線センサでは、基板における温度分布をできるだけ均一にするために設けた金属層は、シリコン回路と検出器チップの下方に配置されているので、増幅器の動作によりシリコン回路で発生した熱は、前記金属層を介して前記検出器チップに伝達される際、検出器チップの熱発生源に近いシリコン回路側をより高温化することになる。このため、上述した従来の赤外線センサは、前記検出器チップにおける温度分布が偏ってしまい、特にアレイ構造の場合には、熱発生源に近い素子と熱発生源から遠い素子とで熱の影響により出力に差が出てしまい、出力が安定しないので高精度な温度測定ができないという不都合があった。 In the above-mentioned conventional infrared sensor, since the metal layer provided to make the temperature distribution on the substrate as uniform as possible is arranged below the silicon circuit and the detector chip, the heat generated in the silicon circuit by the operation of the amplifier is generated. Is transmitted to the detector chip through the metal layer, the temperature of the silicon circuit side close to the heat generation source of the detector chip becomes higher. For this reason, in the above-mentioned conventional infrared sensor, the temperature distribution in the detector chip is biased, and especially in the case of an array structure, the element near the heat source and the element far from the heat source are affected by heat. There is a problem that the output is different and the output is not stable, so high-precision temperature measurement cannot be performed.

本発明は、この不都合を解消して、増幅回路の動作による発熱の影響を受けず、安定した出力を得ることができ、高精度な温度測定が可能な、アレイ構造の温度検出素子を有する赤外線センサ装置を提供することを目的とする。 The present invention eliminates this inconvenience, is not affected by heat generation due to the operation of the amplifier circuit, can obtain a stable output, and can measure the temperature with high accuracy. Infrared ray having an array-structured temperature detection element It is an object of the present invention to provide a sensor device.

前記目的を達成するために本発明の請求項1に係る赤外線センサ装置は、同一基板上に、アレイ構造の温度検出素子からなる赤外線検出部と、この赤外線検出部の出力を増幅する増幅部を備え、前記基板上に設けた金属膜を、前記増幅部の下方には存在する一方、前記赤外線検出部の下方には存在することなく、平面視で前記赤外線検出部を囲むように配置し、前記赤外線検出部から前記金属膜までの間隔を、前記赤外線検出部に前記増幅部からの熱が周囲から均一に伝わるように前記増幅部側の間隔が他の部分の間隔よりも広くなるよう設定したものである。 In order to achieve the above object, the infrared sensor device according to claim 1 of the present invention has an infrared detection unit composed of temperature detection elements having an array structure and an amplification unit that amplifies the output of the infrared detection unit on the same substrate. The metal film provided on the substrate is arranged so as to surround the infrared detection unit in a plan view without being present below the infrared detection unit while being present below the amplification unit. The distance from the infrared detection unit to the metal film is set so that the distance on the amplification unit side is wider than the distance on the other parts so that the heat from the amplification unit is uniformly transferred to the infrared detection unit from the surroundings. It was done.

同じく前記目的を達成するために本発明の請求項2に係る赤外線センサ装置は、同一基板上に、アレイ構造の温度検出素子からなる赤外線検出部と、この赤外線検出部の出力を増幅する増幅部を備え、前記基板内に埋設した金属膜を、前記増幅部の下方には存在する一方、前記赤外線検出部の下方には存在することなく、平面視で前記赤外線検出部を囲むように配置し、前記赤外線検出部から前記金属膜までの間隔を、前記赤外線検出部に前記増幅部からの熱が周囲から均一に伝わるように前記増幅部側の間隔が他の部分の間隔よりも広くなるよう設定したものである。 Similarly, in order to achieve the above object, the infrared sensor device according to claim 2 of the present invention has an infrared detection unit composed of temperature detection elements having an array structure and an amplification unit that amplifies the output of the infrared detection unit on the same substrate. The metal film embedded in the substrate is arranged so as to surround the infrared detection unit in a plan view without being present below the infrared detection unit while being present below the amplification unit. The distance from the infrared detection unit to the metal film is set so that the distance on the amplification unit side is wider than the distance between the other parts so that the heat from the amplification unit is uniformly transferred to the infrared detection unit from the surroundings. It is set.

本発明の各請求項に係る赤外線センサ装置によれば、増幅部で発生した熱は、赤外線検出部に対して、直接的にあるいは金属膜を介して間接的に伝わるが、増幅部側の温度検出素子と他の部分の温度検出素子との金属膜までの間隔を、増幅部側の間隔が他の部分の間隔よりも広くなるよう設定したので、アレイ構造の温度検出素子における温度分布はほぼ均一となり、アレイ構造の温度検出素子からなる赤外線検出部でも安定した出力が得られ、高精度な温度測定が可能になるという効果を奏する。 According to the infrared sensor device according to each claim of the present invention, the heat generated in the amplification unit is directly transmitted to the infrared detection unit or indirectly through the metal film, but the temperature on the amplification unit side. Since the distance between the detection element and the temperature detection element of the other part to the metal film is set so that the distance on the amplification part side is wider than the distance of the other part, the temperature distribution in the temperature detection element of the array structure is almost the same. It becomes uniform, and a stable output can be obtained even in an infrared detection unit composed of a temperature detection element having an array structure, which has the effect of enabling highly accurate temperature measurement.

本発明の一実施形態を示す概略的な平面図。The schematic plan view which shows one Embodiment of this invention. 同じく図1のA−A線端面図。Similarly, the end view of the line AA of FIG. 同じくサーモパイル素子のアレイ配列構造を示す概略的な平面図。The schematic plan view which also shows the array arrangement structure of a thermopile element. 同じく一つのサーモパイル素子の構造を示す概略的な平面図。The schematic plan view which also shows the structure of one thermopile element. 本発明の他の実施形態を示す概略的な端面図。Schematic end view showing another embodiment of the present invention.

本発明における赤外線検出装置の一実施形態を図1〜図4に基づいて説明する。
図1及び図2に示すように、赤外線センサ装置は、シリコン基板1上に、温度検出素子たるサーモパイル素子3が、3行3列の行列状に配置されてなるアレイ構造の赤外線検出部2(図3参照)と、この赤外線検出部2の出力を増幅する増幅回路などからなる増幅部4を備えている。前記シリコン基板1は多層基板であり、前記赤外線検出部2と前記増幅部4は、各金属ワイヤ5で所定のランド6に電気的に接続され、図示していないスルーホールを介して所定の結線がなされている。
An embodiment of the infrared detection device in the present invention will be described with reference to FIGS. 1 to 4.
As shown in FIGS. 1 and 2, the infrared sensor device has an infrared detection unit 2 (infrared detection unit 2) having an array structure in which thermopile elements 3 which are temperature detection elements are arranged in a matrix of 3 rows and 3 columns on a silicon substrate 1. (See FIG. 3) and an amplifier unit 4 including an amplifier circuit that amplifies the output of the infrared ray detection unit 2. The silicon substrate 1 is a multilayer substrate, and the infrared detection unit 2 and the amplification unit 4 are electrically connected to a predetermined land 6 by each metal wire 5, and are connected to a predetermined connection through a through hole (not shown). Has been made.

図4に示すように、サーモパイル素子3は公知の構成であり、異なる導電材料からなる熱電対31が複数個直列に接続されてなり、その温接点部32は赤外線吸収膜用絶縁膜33に被覆されるとともに、赤外線吸収膜34の下方に位置している。また、冷接点部35は前記赤外線吸収膜34の下方に位置しないように前記赤外線吸収膜用絶縁膜33から外れた位置にある。また、図示していないが、前記赤外線吸収膜34、前記赤外線吸収膜用絶縁膜33及び前記熱電対31は、メンブレン上に形成され、メンブレンは空洞上に跨がって形成されている。同じく図示していないが、基準温度となる前記冷接点部35の温度を測定する温度検出素子が別途設けられている。 As shown in FIG. 4, the thermopile element 3 has a known configuration, and a plurality of thermocouples 31 made of different conductive materials are connected in series, and the warm contact portion 32 thereof is covered with an insulating film 33 for an infrared absorbing film. At the same time, it is located below the infrared absorbing film 34. Further, the cold contact portion 35 is located at a position separated from the infrared absorbing film insulating film 33 so as not to be located below the infrared absorbing film 34. Although not shown, the infrared absorbing film 34, the insulating film 33 for an infrared absorbing film, and the thermocouple 31 are formed on a membrane, and the membrane is formed so as to straddle the cavity. Similarly, although not shown, a temperature detecting element for measuring the temperature of the cold contact portion 35, which is the reference temperature, is separately provided.

図1及び図2に示すように、シリコン基板1上には熱伝導性の金属膜7が設けられ、この金属膜7は、増幅部4の下方には存在する一方、赤外線検出部2の下方には存在することなく平面視で前記赤外線検出部2を囲むように配置されている。そして、前記赤外線検出部2から前記金属膜7までの間隔を、前記増幅部4側の間隔Xが他の部分の間隔Y1,Y2,Y3よりも広くなるよう設定している。各間隔Y1,Y2,Y3は、互いに異なった間隔でもよいが、等間隔が望ましい。これらの間隔X,Y1,Y2,Y3は、赤外線検出部2に増幅部4からの熱が周囲から均一に伝わるように、金属膜7や基板1の材質などの諸条件に応じて適宜決定される。 As shown in FIGS. 1 and 2, a thermally conductive metal film 7 is provided on the silicon substrate 1, and the metal film 7 exists below the amplification unit 4 while below the infrared detection unit 2. Is arranged so as to surround the infrared detection unit 2 in a plan view without being present in. Then, the distance from the infrared detection unit 2 to the metal film 7 is set so that the distance X on the amplification unit 4 side is wider than the distances Y 1 , Y 2 , and Y 3 of the other parts. The intervals Y 1 , Y 2 , and Y 3 may be different from each other, but equal intervals are desirable. These intervals X, Y 1 , Y 2 , and Y 3 are set according to various conditions such as the material of the metal film 7 and the substrate 1 so that the heat from the amplification unit 4 is uniformly transferred to the infrared detection unit 2 from the surroundings. It will be decided as appropriate.

本実施形態は以上のように構成したので、増幅部4の動作にともなって発生した熱は、赤外線検出部2の各サーモパイル素子3に増幅部4から直接的に伝わるとともに、増幅部4の下方に配置された金属膜7を介して間接的に伝わる。この際、各サーモパイル素子3の金属膜7との間隔は、増幅部4側の間隔Xが他の部分の間隔Y1,Y2,Y3よりも広いので、各サーモパイル素子3は増幅部4で発生した熱の影響をほぼ均一に受けることになる。したがって、各サーモパイル素子3の動作における出力の偏りは生じず、安定したほぼ均一の出力が得られ、高精度な温度測定が可能になる。 Since the present embodiment is configured as described above, the heat generated by the operation of the amplification unit 4 is directly transmitted from the amplification unit 4 to each thermopile element 3 of the infrared detection unit 2, and is below the amplification unit 4. It is indirectly transmitted through the metal film 7 arranged in. At this time, as for the distance between each thermopile element 3 and the metal film 7, the distance X on the amplification unit 4 side is wider than the distance Y 1 , Y 2 , Y 3 of the other parts, so that each thermopile element 3 is the amplification unit 4. It will be affected almost uniformly by the heat generated in. Therefore, the output is not biased in the operation of each thermopile element 3, a stable and substantially uniform output can be obtained, and high-precision temperature measurement becomes possible.

続いて、図5に基づき、本発明の他の実施形態を説明する。本実施形態が上述の第1の実施形態と相違するのは、金属膜17がシリコン基板11中に、シリコン基板11の表面とほぼ平行に埋設されていることだけであり、他の構成は第1の実施形態と同一である。このため、同一の構成については、対応する構成要素に第1の実施形態と同一の符号を付するに止め、その説明は省略する。本実施形態における金属膜17は、シリコン基板11中に埋設されているが、平面視における赤外線検出素子2と金属膜17の位置関係は、第1の実施形態と同一である(図1参照)。 Subsequently, another embodiment of the present invention will be described with reference to FIG. This embodiment differs from the first embodiment described above only in that the metal film 17 is embedded in the silicon substrate 11 substantially parallel to the surface of the silicon substrate 11, and the other configurations are the first. It is the same as the embodiment of 1. Therefore, for the same configuration, the corresponding components are only given the same reference numerals as those in the first embodiment, and the description thereof will be omitted. Although the metal film 17 in the present embodiment is embedded in the silicon substrate 11, the positional relationship between the infrared detection element 2 and the metal film 17 in a plan view is the same as that in the first embodiment (see FIG. 1). ..

したがって、本実施形態においても、増幅部4の動作にともなって発生した熱は、赤外線検出部2の各サーモパイル素子3(図3参照)に増幅部4から直接的に伝わるとともに、増幅部4の下方に配置された金属膜17を介して間接的に伝わる。この際、各サーモパイル素子3の金属膜17との間隔は、増幅部4側の間隔Xが他の部分の間隔Y1,Y2,Y3よりも広い(図1参照)ので、各サーモパイル素子3は増幅部4で発生した熱の影響をほぼ均一に受けることになる。これによって、各サーモパイル素子3の動作における出力の偏りは生じず、安定したほぼ均一の出力が得られ、高精度な温度測定が可能になる。 Therefore, also in this embodiment, the heat generated by the operation of the amplification unit 4 is directly transferred from the amplification unit 4 to each thermopile element 3 (see FIG. 3) of the infrared detection unit 2, and the amplification unit 4 It is indirectly transmitted through the metal film 17 arranged below. At this time, as for the distance between each thermopile element 3 and the metal film 17, the distance X on the amplification unit 4 side is wider than the distances Y 1 , Y 2 , and Y 3 of the other parts (see FIG. 1). 3 is affected by the heat generated in the amplification unit 4 almost uniformly. As a result, the output is not biased in the operation of each thermopile element 3, a stable and substantially uniform output can be obtained, and high-precision temperature measurement becomes possible.

なお、本発明は上述した各実施形態に限定されるものではなく、例えば、金属膜17のシリコン基板11中への埋設状態は、シリコン基板11の表面とほぼ平行状態に限られるものではない。また、赤外線センサ装置は熱型であればよく、赤外線検出部2はサーモパイル素子3で構成されるほか、例えば、焦電センサ素子で構成されてもよい。 The present invention is not limited to the above-described embodiments, and for example, the state in which the metal film 17 is embedded in the silicon substrate 11 is not limited to a state substantially parallel to the surface of the silicon substrate 11. Further, the infrared sensor device may be of a thermal type, and the infrared detection unit 2 may be composed of a thermopile element 3 or, for example, a pyroelectric sensor element.

1,11 シリコン基板
2 赤外線検出部
3 サーモパイル素子
4 増幅部
5 金属ワイヤ
6 ランド
7,17 金属膜
31 熱電対
32 温接点部
33 赤外線吸収膜用絶縁膜
34 赤外線吸収膜
35 冷接点部
1,11 Silicon substrate 2 Infrared detection part 3 Thermopile element 4 Amplification part 5 Metal wire 6 Land 7,17 Metal film 31 Thermocouple 32 Warm contact part 33 Infrared absorption film insulating film 34 Infrared absorption film 35 Cold contact part

Claims (2)

同一基板上に、アレイ構造の温度検出素子からなる赤外線検出部と、この赤外線検出部の出力を増幅する増幅部を備え、前記基板上に設けた金属膜を、前記増幅部の下方には存在する一方、前記赤外線検出部の下方には存在することなく平面視で前記赤外線検出部を囲むように配置し、前記赤外線検出部から前記金属膜までの間隔を、前記赤外線検出部に前記増幅部からの熱が周囲から均一に伝わるように前記増幅部側の間隔が他の部分の間隔よりも広くなるよう設定したことを特徴とする赤外線センサ装置。 An infrared detection unit composed of temperature detection elements having an array structure and an amplification unit that amplifies the output of the infrared detection unit are provided on the same substrate, and a metal film provided on the substrate is present below the amplification unit. On the other hand, the infrared detection unit is arranged so as to surround the infrared detection unit in a plan view without being present below the infrared detection unit, and the distance from the infrared detection unit to the metal film is set in the infrared detection unit by the amplification unit. An infrared sensor device characterized in that the distance on the amplification unit side is set to be wider than the distance between other parts so that the heat from the infrared rays is uniformly transferred from the surroundings . 同一基板上に、アレイ構造の温度検出素子からなる赤外線検出部と、この赤外線検出部の出力を増幅する増幅部を備え、前記基板内に埋設した金属膜を、前記増幅部の下方には存在する一方、前記赤外線検出部の下方には存在することなく平面視で前記赤外線検出部を囲むように配置し、前記赤外線検出部から前記金属膜までの間隔を、前記赤外線検出部に前記増幅部からの熱が周囲から均一に伝わるように前記増幅部側の間隔が他の部分の間隔よりも広くなるよう設定したことを特徴とする赤外線センサ装置。 An infrared detection unit composed of temperature detection elements having an array structure and an amplification unit that amplifies the output of the infrared detection unit are provided on the same substrate, and a metal film embedded in the substrate is present below the amplification unit. On the other hand, the infrared detection unit is arranged so as to surround the infrared detection unit in a plan view without being present below the infrared detection unit, and the distance from the infrared detection unit to the metal film is set in the infrared detection unit by the amplification unit. An infrared sensor device characterized in that the distance on the amplification unit side is set to be wider than the distance between other parts so that the heat from the infrared rays is uniformly transferred from the surroundings .
JP2017076509A 2017-04-07 2017-04-07 Infrared sensor device Active JP6820789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076509A JP6820789B2 (en) 2017-04-07 2017-04-07 Infrared sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076509A JP6820789B2 (en) 2017-04-07 2017-04-07 Infrared sensor device

Publications (2)

Publication Number Publication Date
JP2018179628A JP2018179628A (en) 2018-11-15
JP6820789B2 true JP6820789B2 (en) 2021-01-27

Family

ID=64275377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076509A Active JP6820789B2 (en) 2017-04-07 2017-04-07 Infrared sensor device

Country Status (1)

Country Link
JP (1) JP6820789B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455153U (en) * 1990-09-13 1992-05-12
JPH0953980A (en) * 1995-08-18 1997-02-25 Nikon Corp Thermal infrared sensor
JP3655232B2 (en) * 2001-11-15 2005-06-02 株式会社東芝 Infrared sensor
DE10321640B4 (en) * 2003-05-13 2016-12-22 Heimann Sensor Gmbh Infrared sensor with improved radiation efficiency
JP5540406B2 (en) * 2007-03-21 2014-07-02 セイコーNpc株式会社 Infrared sensor device
JP2009079946A (en) * 2007-09-26 2009-04-16 Seiko Npc Corp Thermopile type infrared sensor
JP5645245B2 (en) * 2010-02-23 2014-12-24 パナソニックIpマネジメント株式会社 Infrared sensor module
US8981383B1 (en) * 2012-03-05 2015-03-17 Aurrion, Inc. Efficient substrate heat transfer layer for photonic devices
JP2016151523A (en) * 2015-02-18 2016-08-22 浜松ホトニクス株式会社 Infrared detection device

Also Published As

Publication number Publication date
JP2018179628A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
TWI621837B (en) Method and system for measuring heat flux
JP6349713B2 (en) Internal temperature sensor
JP3743394B2 (en) Infrared sensor and electronic device using the same
US7288765B2 (en) Device for detecting infrared radiation with bolometric detectors
JP2004317152A5 (en)
US20130306851A1 (en) Detection and correction of a loss of calibration of microbolometer thermal imaging radiometers
JP2008145133A (en) Radiation thermometer
JP6398807B2 (en) Temperature difference measuring device
US20070227575A1 (en) Thermopile element and infrared sensor by using the same
JP4828534B2 (en) Sensor element
WO2015137075A1 (en) Internal temperature measurement method and internal temperature measurement device
JP2013541704A (en) Shared membrane thermocouple array array
JP6398806B2 (en) Sensor package
JP5564681B2 (en) Infrared sensor
JP6820789B2 (en) Infrared sensor device
JP5540406B2 (en) Infrared sensor device
JP3620370B2 (en) Radiation temperature detector
JP2002156283A (en) Thermopile-type infrared sensor
KR101578374B1 (en) Thermopile sensor module
JP3855458B2 (en) Radiation temperature detector
JP4400156B2 (en) Laser output monitor
JP2005147768A (en) Infrared detector
WO2023180812A1 (en) Correction for non-radiation heat-flows in infrared temperature sensor
JPH0539467Y2 (en)
WO2016020993A1 (en) Infrared sensor and signal detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210105

R150 Certificate of patent or registration of utility model

Ref document number: 6820789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250