JP6818500B2 - Semiconductor devices and power converters - Google Patents

Semiconductor devices and power converters Download PDF

Info

Publication number
JP6818500B2
JP6818500B2 JP2016204804A JP2016204804A JP6818500B2 JP 6818500 B2 JP6818500 B2 JP 6818500B2 JP 2016204804 A JP2016204804 A JP 2016204804A JP 2016204804 A JP2016204804 A JP 2016204804A JP 6818500 B2 JP6818500 B2 JP 6818500B2
Authority
JP
Japan
Prior art keywords
wiring member
insulating substrate
semiconductor device
semiconductor element
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016204804A
Other languages
Japanese (ja)
Other versions
JP2018067611A (en
Inventor
翔平 小川
翔平 小川
藤野 純司
純司 藤野
功 大島
功 大島
石川 悟
悟 石川
拓巳 重本
拓巳 重本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016204804A priority Critical patent/JP6818500B2/en
Publication of JP2018067611A publication Critical patent/JP2018067611A/en
Application granted granted Critical
Publication of JP6818500B2 publication Critical patent/JP6818500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors

Description

この発明は、半導体素子上に板状の配線部材をはんだ付けした半導体装置、およびその半導体装置を備えた電力変換装置に関するものである。 The present invention relates to a semiconductor device in which a plate-shaped wiring member is soldered onto a semiconductor element, and a power conversion device including the semiconductor device.

半導体装置としてのパワーモジュールにおいて、半導体素子上配線をワイヤボンドから、板状の配線部材をはんだ付けした構造に変更することで、エネルギー密度を上げ、小型化することができる。半導体素子がはんだ付けされている基板と配線部材との距離がばらつくと、半導体素子上のはんだにフィレットが形成されないことがある。フィレットの形状は信頼性に影響するため、基板と配線部材の距離を安定させ、フィレットの形状を安定させる必要があった。 In a power module as a semiconductor device, the energy density can be increased and the size can be reduced by changing the wiring on the semiconductor element from a wire bond to a structure in which a plate-shaped wiring member is soldered. If the distance between the substrate to which the semiconductor element is soldered and the wiring member varies, fillets may not be formed in the solder on the semiconductor element. Since the shape of the fillet affects the reliability, it is necessary to stabilize the distance between the substrate and the wiring member to stabilize the shape of the fillet.

板状の配線部材を用いたものでは、特許文献1に記載されている構造とすることで、生産性が高く、高エネルギー密度化されたモジュールを提供でき、半導体素子上はんだが過剰に供給された場合でも安定してフィレットを形成でき、信頼性の高いモジュールが得られる。特許文献2では、バンプのある基板に対し、半導体素子を加圧しながら接合することで、はんだ厚を均一にしている。 In the case of using a plate-shaped wiring member, by adopting the structure described in Patent Document 1, it is possible to provide a module having high productivity and high energy density, and an excessive amount of solder on a semiconductor element is supplied. Even in this case, fillets can be formed stably, and a highly reliable module can be obtained. In Patent Document 2, the solder thickness is made uniform by joining the bumped substrate while pressurizing the semiconductor element.

特開2016−076670号公報Japanese Unexamined Patent Publication No. 2016-07670 特開2008−181908号公報Japanese Unexamined Patent Publication No. 2008-181908

特許文献1では、半導体素子上の配線が、板状の配線部材をはんだ付けした構造となっている。しかし、ケースと一体となっている配線部材と絶縁基板の距離にばらつきが生じた場合や、半導体素子上に供給されるはんだ量が過小な場合、半導体素子上のはんだのフィレットが形成されないことがある。はんだフィレットの有無は信頼性に影響するため、配線部材の高さを安定させ、フィレットの形状を安定させる必要があった。 In Patent Document 1, the wiring on the semiconductor element has a structure in which a plate-shaped wiring member is soldered. However, if the distance between the wiring member integrated with the case and the insulating substrate varies, or if the amount of solder supplied onto the semiconductor element is too small, the solder fillet on the semiconductor element may not be formed. is there. Since the presence or absence of the solder fillet affects the reliability, it is necessary to stabilize the height of the wiring member and stabilize the shape of the fillet.

特許文献2では、バンプのある基板に対し、半導体素子を加圧しながら接合することで、はんだ厚を均一にしている。しかし、バンプによって点で支えているため、半導体素子に割れを生じさせないために、加圧力を精密に制御する必要があった。 In Patent Document 2, the solder thickness is made uniform by joining the bumped substrate while pressurizing the semiconductor element. However, since it is supported by points by bumps, it is necessary to precisely control the pressing force so as not to cause cracks in the semiconductor element.

本発明は、上記のような課題を解決するために成されたものであり、板状の配線部材を用いた場合に安定してフィレットが形成される半導体装置を提供することを目的としている。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device in which fillets are stably formed when a plate-shaped wiring member is used.

本発明は、絶縁基板と、この絶縁基板の周辺部に設けられた周壁とで構成されたケースと、周壁の内側の絶縁基板上に一面が接合された半導体素子と、周壁に一端が固定され、他端が、半導体素子の絶縁基板とは反対側の面に形成された上面電極にはんだで接合された板状の配線部材と、を備えた半導体装置において、配線部材は、配線部材の板面に垂直な断面において、線膨張係数が異なる少なくとも2種類の材料で形成され、はんだ付け時の加熱により絶縁基板側とは反対側に凸となるバイメタル領域を有するようにしたものである。
In the present invention, a case composed of an insulating substrate and a peripheral wall provided around the insulating substrate, a semiconductor element having one surface bonded on the insulating substrate inside the peripheral wall, and one end fixed to the peripheral wall. In a semiconductor device including a plate-shaped wiring member whose other end is soldered to a top electrode formed on a surface opposite to the insulating substrate of the semiconductor element, the wiring member is a plate of the wiring member. It is formed of at least two types of materials having different linear expansion coefficients in a cross section perpendicular to the surface, and has a bimetal region that becomes convex on the side opposite to the insulating substrate side due to heating during soldering .

本発明によれば、半導体素子に接合される配線部材がバイメタル構造となっているため、はんだ付け時の加熱により、配線部材が半導体素子に近づく方向に変形し、半導体素子と配線部材の間隔が小さくなるので、安定してフィレットを形成できる。 According to the present invention, since the wiring member joined to the semiconductor element has a bimetal structure, the wiring member is deformed in the direction approaching the semiconductor element due to heating during soldering, and the distance between the semiconductor element and the wiring member is increased. Since it becomes smaller, a fillet can be formed stably.

本発明の実施の形態1による半導体装置の構成を示す断面模式図である。It is sectional drawing which shows the structure of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置の構成を示す上面図である。It is a top view which shows the structure of the semiconductor device according to Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置の効果を説明するための断面模式図である。It is sectional drawing for demonstrating the effect of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置の効果を説明するためのはんだ付け部分の断面模式図である。It is sectional drawing of the soldering part for demonstrating the effect of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置の別の構成を示す断面模式図である。It is sectional drawing which shows another structure of the semiconductor device according to Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置のさらに別の構成を示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing still another configuration of the semiconductor device according to the first embodiment of the present invention. 本発明の実施の形態2による半導体装置の構成を示す断面模式図である。It is sectional drawing which shows the structure of the semiconductor device by Embodiment 2 of this invention. 本発明の実施の形態3による半導体装置の構成を示す断面模式図である。It is sectional drawing which shows the structure of the semiconductor device according to Embodiment 3 of this invention. 本発明の実施の形態3による半導体装置の構成を示す上面図である。It is a top view which shows the structure of the semiconductor device by Embodiment 3 of this invention. 本発明の実施の形態4による半導体装置の構成を示す断面模式図である。It is sectional drawing which shows the structure of the semiconductor device according to Embodiment 4 of this invention. 本発明の実施の形態4による半導体装置の構成を示す上面図である。It is a top view which shows the structure of the semiconductor device according to Embodiment 4 of this invention. 本発明の実施の形態5による電力変換装置を適用した電力変換システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power conversion system to which the power conversion apparatus according to Embodiment 5 of this invention is applied.

実施の形態1.
この発明の実施の形態1による半導体装置の構成について、図を参照しながら以下に説明する。なお、各図において、同一または相当する構成部分については同じ符号を付している。各図間の図示では、対応する各構成部のサイズや縮尺はそれぞれ独立しており、例えば構成の一部を変更した断面図の間で変更されていない同一構成部分の図示において、同一構成部分のサイズや縮尺が異なっている場合もある。また、半導体装置の構成は、実際にはさらに複数の部材を備えているが、説明を簡単にするため、説明に必要な部分のみを記載し、例えばゲート配線や封止樹脂など、他の部分については省略している。さらに実際の構成は、同一の部材を並列で接続する場合や、スイッチング素子とダイオードなどの整流素子を直列接続する場合があるが、これらも簡単のため省略している。
Embodiment 1.
The configuration of the semiconductor device according to the first embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or corresponding components are designated by the same reference numerals. In the illustration between the drawings, the size and scale of each corresponding component are independent. For example, in the illustration of the same component that has not been changed between the cross-sectional views in which a part of the configuration is changed, the same component The size and scale of the may be different. Further, although the configuration of the semiconductor device actually includes a plurality of members, only the parts necessary for the explanation are described for the sake of simplicity, and other parts such as the gate wiring and the sealing resin are described. Is omitted. Further, in the actual configuration, the same member may be connected in parallel, or the switching element and the rectifying element such as a diode may be connected in series, but these are also omitted for simplicity.

図1は本発明の実施の形態1による半導体装置としてのパワーモジュールの断面模式図、図2は上面図であり、図1は図2のA−A位置での断面を示す。絶縁基板1(例えば100mm×100mm、厚さ、Al:0.3mm、AlN:0.6mm、Al:0.3mm、Niめっき5um)に、半導体素子2(例えばIGBT:Insulated Gate Bipolar Transistor、例えば大きさ:15mm×15mm×厚さ100um、Si製)が半導体素子下はんだ3(例えばSn−0.75Cu、厚さ0.15mm)によりはんだ付けされている。 FIG. 1 is a schematic cross-sectional view of a power module as a semiconductor device according to the first embodiment of the present invention, FIG. 2 is a top view, and FIG. 1 shows a cross section at the AA position of FIG. Insulated substrate 1 (for example, 100 mm × 100 mm, thickness, Al: 0.3 mm, AlN: 0.6 mm, Al: 0.3 mm, Ni plating 5 um) and semiconductor element 2 (for example, IGBT: Integrated Gate Solder Transistor, for example, large size). S: 15 mm × 15 mm × thickness 100 um, made of Si) is soldered with the semiconductor element lower solder 3 (for example, Sn−0.75Cu, thickness 0.15 mm).

絶縁基板1と半導体素子2の間には、半導体素子下はんだ3の厚さを安定させるためにワイヤバンプ4(例えばAlワイヤ、φ100um)が形成されている。半導体素子2の、絶縁基板1と接合された下面と反対側の上面には、上面電極2aが設けられている。上面電極2aの表面には、半導体素子上はんだ5(例えばSn−0.75Cu、厚さ0.4mm)との接合を良好にするため、Niからなる金属膜が形成されている。 A wire bump 4 (for example, Al wire, φ100 um) is formed between the insulating substrate 1 and the semiconductor element 2 in order to stabilize the thickness of the solder 3 under the semiconductor element. An upper surface electrode 2a is provided on the upper surface of the semiconductor element 2 opposite to the lower surface bonded to the insulating substrate 1. On the surface of the top electrode 2a, a metal film made of Ni is formed in order to improve the bonding with the solder 5 (for example, Sn-0.75Cu, thickness 0.4 mm) on the semiconductor element.

周壁6(例えばPPS(ポリフェニレンサルアルファイド))が、絶縁基板1の周辺に、半導体素子2の外周を囲むように設けられている。本実施の形態1では、周壁6は絶縁基板1上に搭載されており、半導体素子2をはんだ付けしている絶縁基板1の面を底面とするケースを形成している。周壁6には配線部材7(例えばCu、厚さ1mm)が固定されている。配線部材7は例えばプレス加工により成形された板状の部材であり、一端部が周壁6に固定されている。配線部材7を周壁6に固定するため、インサートモールドにより形成されている。配線部材7の片側の先端部は、周壁6の上面部から露出して設けられ、外部と接続する接続端子(図示せず)として用いられる。また、配線部材7は外部端子と反対側の端部7dと半導体素子2の上面電極2aとが半導体素子上はんだ5により接合しており、半導体素子2と電気的に接続されている。絶縁基板1と周壁6により形成されたケース内に、封止樹脂8(例えばエポキシ樹脂)が充填されており、封止樹脂8が半導体素子2や配線部材7などを覆っている。 A peripheral wall 6 (for example, PPS (polyphenylene sulfide alfaid)) is provided around the insulating substrate 1 so as to surround the outer periphery of the semiconductor element 2. In the first embodiment, the peripheral wall 6 is mounted on the insulating substrate 1 and forms a case in which the surface of the insulating substrate 1 to which the semiconductor element 2 is soldered is the bottom surface. A wiring member 7 (for example, Cu, thickness 1 mm) is fixed to the peripheral wall 6. The wiring member 7 is, for example, a plate-shaped member formed by press working, and one end thereof is fixed to the peripheral wall 6. In order to fix the wiring member 7 to the peripheral wall 6, it is formed by an insert mold. The tip of one side of the wiring member 7 is provided so as to be exposed from the upper surface of the peripheral wall 6, and is used as a connection terminal (not shown) for connecting to the outside. Further, in the wiring member 7, the end portion 7d on the opposite side to the external terminal and the upper surface electrode 2a of the semiconductor element 2 are joined by solder 5 on the semiconductor element, and are electrically connected to the semiconductor element 2. The case formed by the insulating substrate 1 and the peripheral wall 6 is filled with a sealing resin 8 (for example, an epoxy resin), and the sealing resin 8 covers the semiconductor element 2 and the wiring member 7.

配線部材7は、半導体素子2と周壁6との間の一部で、配線部材7の主部を構成する主金属7aと線膨張係数が異なる金属7bとが圧接されて構成されており、線膨張係数が異なる金属7bが圧接された部分はバイメタル領域7cとなっている。 The wiring member 7 is a part between the semiconductor element 2 and the peripheral wall 6, and is formed by pressure-welding the main metal 7a constituting the main part of the wiring member 7 and the metal 7b having a different coefficient of linear expansion. The portion where the metals 7b having different expansion coefficients are pressure-welded is the bimetal region 7c.

配線部材7の主部を構成している主金属7aは例えばCuで、線膨張係数が異なる金属7bは、主金属7aよりも線膨張係数が小さい金属であって、例えばインバー(線膨張係数:1.2×10-6/K)である。バイメタル領域7cは2種類の金属を圧延接合することで形成される。インバーは鋳造により形成されたものを用いる。このバイメタル領域7cは絶縁基板1に近い面に線膨張係数が小さい金属が配置されていることになる。配線部材7の主部を構成する主金属7aと線膨張係数が小さい金属7bの厚さの比は1:1が好ましいが、厚さが異なっていても良い。 The main metal 7a constituting the main part of the wiring member 7 is, for example, Cu, and the metal 7b having a different coefficient of linear expansion is a metal having a coefficient of linear expansion smaller than that of the main metal 7a, for example, Invar (coefficient of linear expansion:: 1.2 × 10 -6 / K). The bimetal region 7c is formed by rolling and joining two types of metals. Invar is formed by casting. In the bimetal region 7c, a metal having a small coefficient of linear expansion is arranged on a surface close to the insulating substrate 1. The ratio of the thickness of the main metal 7a constituting the main portion of the wiring member 7 to the metal 7b having a small coefficient of linear expansion is preferably 1: 1, but the thicknesses may be different.

半導体素子上はんだ5を溶融し、半導体素子2と配線部材7をはんだ付けする時に加熱すると、配線部材7も加熱される。本実施の形態のように配線部材7にバイメタル領域7cを形成することで、配線部材7の主部を構成する主金属7aと線膨張係数が小さい金属7bの線膨張係数差で、配線部材7は絶縁基板1と反対方向に凸となるように変形する。配線部材7の一端部は周壁6に固定されているため、半導体素子2と接合する側の端子が絶縁基板1に近づく方向に変形することになる。そのため、図3(a)のように配線部材7が製造ばらつきにより上向きになっていても、加熱中は図3(b)のように配線部材7が半導体素子上はんだ5に近づくので、はんだ付け後は図1に示すように、正常にはんだ付けができる。半導体素子上はんだ5は図4(b)の模式図に示すようなフィレットが形成されていない信頼性上の懸念がある接合部とならず、図4(a)のはんだ付け部分の断面模式図に示すような形状のフィレットを安定的に形成することができる。図4(b)のようにフィレットが形成されていないはんだ接合部より、図4(a)のようにフィレットが形成されている方が、信頼性が高いことが知られていることから、本構造により信頼性の高いパワーモジュールが得られることとなる。 When the solder 5 on the semiconductor element is melted and heated when the semiconductor element 2 and the wiring member 7 are soldered, the wiring member 7 is also heated. By forming the bimetal region 7c in the wiring member 7 as in the present embodiment, the difference in the coefficient of linear expansion between the main metal 7a constituting the main part of the wiring member 7 and the metal 7b having a small coefficient of linear expansion makes the wiring member 7 Is deformed so as to be convex in the direction opposite to that of the insulating substrate 1. Since one end of the wiring member 7 is fixed to the peripheral wall 6, the terminal on the side to be joined to the semiconductor element 2 is deformed in the direction closer to the insulating substrate 1. Therefore, even if the wiring member 7 is turned upward due to manufacturing variation as shown in FIG. 3A, the wiring member 7 approaches the solder 5 on the semiconductor element during heating as shown in FIG. 3B, so that soldering is performed. After that, as shown in FIG. 1, soldering can be performed normally. The solder 5 on the semiconductor element does not form a joint portion in which a fillet is not formed as shown in the schematic diagram of FIG. 4B, and there is a concern about reliability, and a schematic cross-sectional view of the soldered portion of FIG. 4A. A fillet having a shape as shown in the above can be stably formed. Since it is known that the fillet is formed as shown in FIG. 4 (a) is more reliable than the solder joint where the fillet is not formed as shown in FIG. 4 (b). The structure makes it possible to obtain a highly reliable power module.

また、図1に示す配線部材7は、全体としての線膨張係数が、主金属7aであるCuの線膨張係数よりも小さくなる。このため、線膨張係数が16.8×10-6/Kと大きいCuのみで構成されている配線部材に比べ、図1に示す配線部材7では、線膨張係数が4.6×10-6/Kである絶縁基板1および線膨張係数が2.4×10-6/Kである半導体素子2との線膨張係数差が小さくなる。したがって、半導体素子下はんだ3や半導体素子上はんだ5に生じる応力が小さくなり、熱応力によるはんだの劣化の抑制につながり、信頼性が向上する。 Further, in the wiring member 7 shown in FIG. 1, the coefficient of linear expansion as a whole is smaller than the coefficient of linear expansion of Cu, which is the main metal 7a. Therefore, the coefficient of linear expansion of the wiring member 7 shown in FIG. 1 is 4.6 × 10 -6 , as compared with the wiring member composed of only Cu having a coefficient of linear expansion of 16.8 × 10 -6 / K. The difference in linear expansion coefficient between the insulating substrate 1 which is / K and the semiconductor element 2 whose linear expansion coefficient is 2.4 × 10 -6 / K becomes small. Therefore, the stress generated in the semiconductor element lower solder 3 and the semiconductor element upper solder 5 is reduced, which leads to suppression of deterioration of the solder due to thermal stress and improvement in reliability.

配線部材7の主金属7aを構成するCuは酸化しやすく、酸化膜があると封止樹脂8との密着性が阻害されるため、絶縁性が損なわれることが懸念されるが、Cuよりも酸化し
にくいAlやNiなどの金属で表面を被覆したり、配線部材7の主部を構成する主金属7aをAlやNiにすることで、このような懸念が解消される。
Cu, which constitutes the main metal 7a of the wiring member 7, is easily oxidized, and if there is an oxide film, the adhesion to the sealing resin 8 is hindered, so that the insulating property may be impaired. Such concerns can be resolved by coating the surface with a metal such as Al or Ni that is difficult to oxidize, or by changing the main metal 7a constituting the main portion of the wiring member 7 to Al or Ni.

絶縁基板1はAl−AlN−Alという構造のものを用いたが、絶縁性を確保できるものであれば、AlNの代わりにAl23やSi34などを用いてもよく、金属部分はAlの代わりにCuなどを用いてもよい。大きさや厚さも例示したものに限らない。半導体素子2をはんだ付けする面にはんだ付け性を確保するために金属膜としてNiを5um配置しているが、はんだ付けできれば、金属膜はAuやTiなどでもよく、厚さもこれに限るものではない。 The insulating substrate 1 has a structure of Al-AlN-Al, but Al 2 O 3 or Si 3 N 4 may be used instead of Al N as long as the insulating property can be ensured. May use Cu or the like instead of Al. The size and thickness are not limited to those illustrated. Ni is arranged as a metal film on the surface to which the semiconductor element 2 is to be soldered in order to ensure solderability. However, if soldering is possible, the metal film may be Au or Ti, and the thickness is not limited to this. Absent.

半導体素子2はIGBTとしたが、IC(Integrated Circuit)やサイリスタ、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)でもよい。SBD(Schottky
Barrier Diode)やSBJ(Junction Barrier Schottky)などのダイオードでもよく、パワーモジュール以外の半導体パッケージに適用してもよい。また、大きさや厚さは、上記の例に示した寸法に限るものではない。上面電極2aは、半導体素子2に1箇所に設けられてもよいし、2箇所以上設けられてもよい。上面電極2aにはNiからなる金属膜が形成されているとしたが、半導体素子上はんだ5との接合性がよくなるのであれば、AuやTiなどでもよい。
Although the semiconductor element 2 is an IGBT, it may be an IC (Integrated Circuit), a thyristor, or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). SBD (Schottky)
It may be a diode such as Barrier Diode) or SBJ (Junction Barrier Schottky), and may be applied to a semiconductor package other than a power module. Further, the size and thickness are not limited to the dimensions shown in the above example. The top electrode 2a may be provided at one location on the semiconductor element 2, or may be provided at two or more locations. Although it is assumed that a metal film made of Ni is formed on the top electrode 2a, Au or Ti may be used as long as the bondability with the solder 5 on the semiconductor element is improved.

半導体素子下はんだ3および半導体素子上はんだ5はSn−0.75Cuとしたが、これに限るものではない。また、半導体素子下はんだ3と半導体素子上はんだ5は同じ種類である必要はなく、異なるはんだの組み合わせでもよい。半導体素子下はんだ3、半導体素子上はんだ5とも厚さは上記に示した例の限りではない。絶縁基板1と半導体素子2の接合は、半導体素子下はんだ3によるはんだ付けに限らず、Ag粒子を用いた焼結接合や、導電性ペーストを用いた接着でもよい。ワイヤバンプ4は、Alワイヤとしたが、Cuなどでもよい。また、線径ははんだ厚より小さければ、100umに限るものではない。また、ワイヤバンプ4はなくてもよい。周壁6はPPSを用いるとしたが、PBT(ポリブチレンテレフタレート)などでもよい。配線部材7の主部はCu製としたが、Alなど別の部材でもよい。表面にNiやAuなどの金属膜を配置してもよく、板厚は1mmに限るものではない。 The semiconductor element lower solder 3 and the semiconductor element upper solder 5 are Sn-0.75Cu, but the present invention is not limited to this. Further, the semiconductor element lower solder 3 and the semiconductor element upper solder 5 do not have to be of the same type, and may be a combination of different solders. The thickness of both the semiconductor element lower solder 3 and the semiconductor element upper solder 5 is not limited to the example shown above. The bonding between the insulating substrate 1 and the semiconductor element 2 is not limited to soldering with the solder under the semiconductor element 3, but may be sintered bonding using Ag particles or bonding using a conductive paste. The wire bump 4 is an Al wire, but may be Cu or the like. Further, the wire diameter is not limited to 100 um as long as it is smaller than the solder thickness. Further, the wire bump 4 may not be provided. Although PPS is used for the peripheral wall 6, PBT (polybutylene terephthalate) or the like may also be used. The main part of the wiring member 7 is made of Cu, but another member such as Al may be used. A metal film such as Ni or Au may be arranged on the surface, and the plate thickness is not limited to 1 mm.

配線部材7の主金属7aと線膨張係数の小さい金属7bの組み合わせは、線膨張係数差で配線部材7の先端が半導体素子2に近づく方向に変形するのであれば、Cuとインバーや、Cuとコバール、CuとFe、CuとWなどがよい。また、Cuの酸化による封止樹脂8との剥離を抑制するために、主金属7aをAlやNiとしてもよい。また、バイメタル領域7cはインバーを圧接して形成するとしたが、ろう付けなどで接合されたものでもよい。 If the combination of the main metal 7a of the wiring member 7 and the metal 7b having a small coefficient of linear expansion deforms in the direction in which the tip of the wiring member 7 approaches the semiconductor element 2 due to the difference in the coefficient of linear expansion, Cu and Invar or Cu Kovar, Cu and Fe, Cu and W, etc. are preferable. Further, the main metal 7a may be Al or Ni in order to suppress peeling from the sealing resin 8 due to oxidation of Cu. Further, although the bimetal region 7c is formed by pressure-welding the Invar, it may be joined by brazing or the like.

図5に示すように、配線部材7を、配線部材7の主金属7aの外部に線膨張係数の小さい金属7bを接合する構成とし、バイメタル領域7cの厚さが他の部分の厚さと異なっていてもよい。このような形状とすることで配線部材7の主金属7aを配線部材として形成後、線膨張係数の小さい金属7bを主金属7aにろう付けなどで付けるだけでよくなる。また、配線部材7全体をバイメタル領域7cとし、半導体素子2とはんだ付けする領域と外部端子のみはんだ付けできるようにNiやAu、Tiをめっきなどの方法で成膜してもよい。 As shown in FIG. 5, the wiring member 7 is configured by joining a metal 7b having a small coefficient of linear expansion to the outside of the main metal 7a of the wiring member 7, and the thickness of the bimetal region 7c is different from the thickness of other portions. You may. With such a shape, after forming the main metal 7a of the wiring member 7 as the wiring member, it is sufficient to attach the metal 7b having a small coefficient of linear expansion to the main metal 7a by brazing or the like. Further, the entire wiring member 7 may be a bimetal region 7c, and Ni, Au, and Ti may be deposited by a method such as plating so that only the region to be soldered to the semiconductor element 2 and the external terminal can be soldered.

さらに、図6に示すように樹脂など主金属7aよりも線膨張係数の大きい部材7eを主金属7aの上面、すなわち絶縁基板1から遠い側に接合して配線部材7を構成しても同様の効果が得られる。線膨張係数の大きい部材はインサートモールドで周壁6と同時に形成
しても、周壁6を形成した後から二液性のエポキシ樹脂を塗布するなどとしてもよい。
Further, as shown in FIG. 6, the same applies even if the member 7e having a coefficient of linear expansion larger than that of the main metal 7a such as resin is joined to the upper surface of the main metal 7a, that is, to the side far from the insulating substrate 1 to form the wiring member 7. The effect is obtained. A member having a large coefficient of linear expansion may be formed at the same time as the peripheral wall 6 by an insert mold, or a two-component epoxy resin may be applied after the peripheral wall 6 is formed.

以上のように、実施の形態1による半導体装置では、配線部材7を線膨張係数の異なる少なくとも2種の材料で形成することにより、加熱によって絶縁基板側とは反対側に凸となるように歪むバイメタル領域7bを設けたので、配線部材7を半導体素子2にはんだ付けする際、フィレットを安定的に形成でき、信頼性の高い接合が可能となる。 As described above, in the semiconductor device according to the first embodiment, by forming the wiring member 7 with at least two kinds of materials having different linear expansion coefficients, the wiring member 7 is distorted so as to be convex on the side opposite to the insulating substrate side by heating. Since the bimetal region 7b is provided, when the wiring member 7 is soldered to the semiconductor element 2, fillets can be stably formed, and highly reliable bonding is possible.

実施の形態2.
図7は本発明の実施の形態2による半導体装置の断面模式図である。配線部材7が、主金属7aとしてのCuと、Cuよりも線膨張係数の小さい金属7bとしてのインバーにより、Cu−インバー−Cuのクラッド材で構成されている。ここで、主金属7aとしてのCuは、半導体素子2と接合する面側(絶縁基板1側)のCuの厚さに対し、半導体素子2と接合しない面側(絶縁基板1から遠い側)のCuの厚さが厚くなっている。クラッド材は各種の金属を圧延接合することで形成される。インバーは鋳造により形成されたものを用いる。その他の構成は実施の形態1と同様である。
Embodiment 2.
FIG. 7 is a schematic cross-sectional view of the semiconductor device according to the second embodiment of the present invention. The wiring member 7 is made of a Cu-invar-Cu clad material by Cu as a main metal 7a and Invar as a metal 7b having a coefficient of linear expansion smaller than that of Cu. Here, Cu as the main metal 7a is on the surface side (far side from the insulating substrate 1) not bonded to the semiconductor element 2 with respect to the thickness of Cu on the surface side (insulating substrate 1 side) bonded to the semiconductor element 2. The thickness of Cu is increasing. The clad material is formed by rolling and joining various metals. Invar is formed by casting. Other configurations are the same as those in the first embodiment.

半導体素子上はんだ5を溶融し、半導体素子2と配線部材7をはんだ付けする時に生じる熱により、配線部材7も加熱される。配線部材7はインバー7bを挟んで主金属7aとしての上下のCuの厚さが異なるため、線膨張係数の差により、配線部材7は絶縁基板1と反対方向に凸となるように変形する。配線部材7の一端部は周壁6に固定されているため、半導体素子2と接合する側の端部が絶縁基板1に近づく方向に変形することになる。そのため、半導体素子上はんだ5は図4(b)に示すようなフィレットが形成されていない信頼性上の懸念がある接合部とならず、図4(a)に示すような形状のフィレットを安定的に形成することができ、信頼性の高いパワーモジュールが得られる。 The wiring member 7 is also heated by the heat generated when the solder 5 on the semiconductor element is melted and the semiconductor element 2 and the wiring member 7 are soldered. Since the wiring member 7 has different thicknesses of upper and lower Cu as the main metal 7a with the Invar 7b interposed therebetween, the wiring member 7 is deformed so as to be convex in the direction opposite to that of the insulating substrate 1 due to the difference in the coefficient of linear expansion. Since one end of the wiring member 7 is fixed to the peripheral wall 6, the end of the wiring member 7 on the side to be joined to the semiconductor element 2 is deformed in the direction closer to the insulating substrate 1. Therefore, the solder 5 on the semiconductor element does not form a joint where the fillet is not formed as shown in FIG. 4B, and there is a concern about reliability, and the fillet having the shape shown in FIG. 4A is stable. A highly reliable power module can be obtained.

また、バイメタル領域が形成されておらず線膨張係数の大きいCuのみで配線部材が構成されている場合に比べ、本実施の形態2による配線部材は、配線部材7全体として、線膨張係数の小さい絶縁基板1や半導体素子2との線膨張係数差が小さくなるので、半導体素子下はんだ3や半導体素子上はんだ5に生じる応力が小さくなり、信頼性が向上する。 Further, as compared with the case where the bimetal region is not formed and the wiring member is composed only of Cu having a large linear expansion coefficient, the wiring member according to the second embodiment has a small linear expansion coefficient as a whole of the wiring member 7. Since the difference in linear expansion coefficient from the insulating substrate 1 and the semiconductor element 2 becomes small, the stress generated in the solder under the semiconductor element 3 and the solder 5 on the semiconductor element 5 becomes small, and the reliability is improved.

さらに、半導体素子2とはんだ付けされる領域や外部端子も表面処理をすることなく、はんだ付けすることが可能なため、一枚のCu−インバー−Cuのクラッド材を板金加工することで、配線部材7を形成でき、生産性が高いパワーモジュールが得られる。 Further, since the region to be soldered to the semiconductor element 2 and the external terminal can be soldered without surface treatment, wiring can be performed by processing a single Cu-inver-Cu clad material with sheet metal processing. A power module capable of forming the member 7 and having high productivity can be obtained.

配線部材7をCu−インバー−Cuのクラッド材としたが、上下の線膨張係数の差により一方向に変形する構成であれば、主金属7aとしてのCuはAlなど、線膨張係数の大きな金属でもよく、線膨張係数が小さい金属7bは、インバーの代わりにコバールやFeなどの線膨張係数の小さい金属を用いてもよい。 The wiring member 7 is a Cu-invar-Cu clad material, but if the configuration is such that it deforms in one direction due to the difference in the coefficient of linear expansion above and below, Cu as the main metal 7a is a metal with a large coefficient of linear expansion such as Al. However, as the metal 7b having a small coefficient of linear expansion, a metal having a small coefficient of linear expansion such as Kovar or Fe may be used instead of Invar.

実施の形態3.
図8は本発明の実施の形態3による半導体装置の断面模式図、図9は上面図である。半導体素子2と周壁6の間の位置に、絶縁基板1と配線部材7との距離を規制するスペーサー9(PPS製)が配置されている。絶縁基板1と配線部材7との距離を規制するスペーサー9は、周壁6と配線部材7を形成するインサートモールドのとき、合わせて形成することで、生産性を確保できる。その他の構成は実施の形態1と同様である。
Embodiment 3.
FIG. 8 is a schematic cross-sectional view of the semiconductor device according to the third embodiment of the present invention, and FIG. 9 is a top view. A spacer 9 (manufactured by PPS) that regulates the distance between the insulating substrate 1 and the wiring member 7 is arranged at a position between the semiconductor element 2 and the peripheral wall 6. Productivity can be ensured by forming the spacer 9 that regulates the distance between the insulating substrate 1 and the wiring member 7 together with the insert mold that forms the peripheral wall 6 and the wiring member 7. Other configurations are the same as those in the first embodiment.

絶縁基板1と配線部材7の距離を規制するスペーサー9を設けることで、配線部材7と絶縁基板1との距離が、はんだ付け時に線膨張係数差による変形により、スペーサー9により規制される距離よりも接近することを防ぐことができる。このため、半導体素子2と配線部材7のはんだ付け部が狙い値を超えて近接したことで余剰となったはんだが半導体
素子2の上面電極2a以外に漏れることを防ぎつつ、安定的に半導体素子上はんだ5にフィレットを形成でき、信頼性の高いパワーモジュールが得られる。
By providing the spacer 9 that regulates the distance between the insulating substrate 1 and the wiring member 7, the distance between the wiring member 7 and the insulating substrate 1 is greater than the distance regulated by the spacer 9 due to deformation due to the difference in linear expansion coefficient during soldering. Can also be prevented from approaching. Therefore, the semiconductor element 2 and the soldered portion of the wiring member 7 are brought close to each other beyond the target value, so that excess solder is prevented from leaking to other than the upper surface electrode 2a of the semiconductor element 2, and the semiconductor element is stably generated. A fillet can be formed on the upper solder 5, and a highly reliable power module can be obtained.

さらに、配線部材7を構成するCuは、酸化しやすく、酸化膜があると封止樹脂8との密着性が阻害されるため、絶縁性が損なわれることが懸念されるが、Cuよりも酸化しにくいAlやNiなどの金属で表面を被覆したり、配線部材7の主部を構成する主金属7aをAlやNiにすることで、このような懸念が解消される。 Further, Cu constituting the wiring member 7 is easily oxidized, and if there is an oxide film, the adhesion with the sealing resin 8 is hindered, so that there is a concern that the insulating property is impaired, but it is more oxidized than Cu. Such concerns can be resolved by covering the surface with a metal such as Al or Ni, which is difficult to handle, or by changing the main metal 7a constituting the main portion of the wiring member 7 to Al or Ni.

スペーサー9はインサートモールドで、周壁6と合わせて形成するとしたが、独立した部材でもよい。また、絶縁基板1または配線部材7にシリコーン系の接着剤などで固定してもよい。絶縁性を確保できる構造となっていれば、配線部材7の板金加工の際に突起部を設け、絶縁基板1に接触させるようにしてもよい。スペーサー9は半導体素子上はんだ5の厚さを制限するために配置するので、絶縁性を確保できるのであれば、半導体素子2上に配置されていてもよい。 The spacer 9 is an insert mold and is formed together with the peripheral wall 6, but may be an independent member. Further, it may be fixed to the insulating substrate 1 or the wiring member 7 with a silicone-based adhesive or the like. If the structure is such that the insulating property can be ensured, a protrusion may be provided at the time of sheet metal processing of the wiring member 7 so as to be in contact with the insulating substrate 1. Since the spacer 9 is arranged to limit the thickness of the solder 5 on the semiconductor element, it may be arranged on the semiconductor element 2 as long as the insulating property can be ensured.

本実施の形態は、実施の形態1と組み合わせたものとしたが、実施の形態2のように、配線部材7がCuの厚さが異なるCu−インバー−Cuとなっているモジュールと組み合わせてもよい。 Although the present embodiment is combined with the first embodiment, it may be combined with a module in which the wiring member 7 is Cu-Invar-Cu having a different Cu thickness as in the second embodiment. Good.

実施の形態4.
図10は本発明の実施の形態4による半導体装置の断面模式図、図11は上面図であり、図10は図11のB−B位置での断面を示す。図11に示すように、半導体素子2の上で配線部材7と重なる領域のうち、半導体素子上はんだ5が配置されておらず、かつゲート配線と干渉しない領域に、線材による距離離隔部材10(Al製、φ400um)が1か所、または複数か所、ワイヤボンドによる捨てボンドのようにファーストボンド後すぐにワイヤをカットし、ルーピング配線しない1点ボンドで接合して配置されている。その他の構成は実施の形態1と同様である。
Embodiment 4.
10 is a schematic cross-sectional view of the semiconductor device according to the fourth embodiment of the present invention, FIG. 11 is a top view, and FIG. 10 shows a cross section at the BB position of FIG. As shown in FIG. 11, of the region overlapping the wiring member 7 on the semiconductor element 2, the distance separating member 10 (the wire rod) is used in the region where the solder 5 on the semiconductor element is not arranged and does not interfere with the gate wiring. Al, φ400um) is arranged at one place or at a plurality of places, and the wire is cut immediately after the first bond like a discard bond by a wire bond, and joined by a one-point bond without looping wiring. Other configurations are the same as those in the first embodiment.

本実施の形態のように距離離隔部材10を配置することで、はんだ付け時にバイメタル領域7bの線膨張係数差により変形し、配線部材7と絶縁基板1とが、過剰に接近することを防ぐことができる。このため、半導体素子2と配線部材7のはんだ付け部が狙い値を超えて近接し、余剰となったはんだが半導体素子2の上面電極2a以外に漏れることを防ぎつつ、安定的に半導体素子上はんだ5にフィレットを形成でき、信頼性の高い半導体装置が得られる。距離離隔部材10は、配線部材7と絶縁基板1とが、過剰に接近することを防ぐことができれば、線材でなくても、板材など線状以外の形状の部材であってもよい。また、距離離隔部材10は、はんだとは異なる材料で、はんだ付け時の加熱温度で溶融しない材料であればよい。 By arranging the distance separating member 10 as in the present embodiment, it is possible to prevent the wiring member 7 and the insulating substrate 1 from being excessively approached due to deformation due to the difference in the coefficient of linear expansion of the bimetal region 7b during soldering. Can be done. Therefore, the soldered portions of the semiconductor element 2 and the wiring member 7 are close to each other beyond the target value, and the excess solder is prevented from leaking to other than the upper surface electrode 2a of the semiconductor element 2 while being stably mounted on the semiconductor element. A fillet can be formed on the solder 5, and a highly reliable semiconductor device can be obtained. The distance separation member 10 may be a member having a shape other than the linear shape such as a plate material, as long as the wiring member 7 and the insulating substrate 1 can be prevented from being excessively approached. Further, the distance separating member 10 may be a material different from the solder and may be a material that does not melt at the heating temperature at the time of soldering.

配線部材7の主金属7aとしてのCuは、酸化しやすく、酸化膜があると封止樹脂8との密着性が阻害されるため、絶縁性が損なわれることが懸念されるが、Cuよりも酸化しにくいAlやNiなどの金属で表面を被覆したり、配線部材7の主金属7aをAlやNiにすることで、このような懸念が解消される。 Cu as the main metal 7a of the wiring member 7 is easily oxidized, and if there is an oxide film, the adhesion with the sealing resin 8 is hindered, so that the insulating property may be impaired. Such concerns can be resolved by coating the surface with a metal such as Al or Ni that is difficult to oxidize, or by changing the main metal 7a of the wiring member 7 to Al or Ni.

さらに、距離離隔部材10は半導体素子上で完結するため、実施の形態3で説明したスペーサーとは異なり、絶縁基板1との絶縁性を確保する必要がない。また、距離離隔部材10の材料がAlのような熱伝導に優れた材料の場合、配線部材7と距離離隔部材10が接触するので、配線部材7を介しての放熱性が向上する効果がある。 Further, since the distance separating member 10 is completed on the semiconductor element, it is not necessary to secure the insulating property with the insulating substrate 1 unlike the spacer described in the third embodiment. Further, when the material of the distance separating member 10 is a material having excellent heat conduction such as Al, the wiring member 7 and the distance separating member 10 come into contact with each other, so that there is an effect of improving heat dissipation through the wiring member 7. ..

以上では距離離隔部材10は半導体素子上はんだ5を配置していない領域に配置するとしたが、半導体素子上はんだ5の中となる位置に配置してもよい。特に、この場合におい
ては、距離離隔部材10をCu製やAu製とすると、距離離隔部材10がはんだに濡れるため、最も高温となる部分から放熱でき、放熱性をさらに向上させる効果がある。
In the above, the distance separating member 10 is arranged in the region where the solder 5 on the semiconductor element is not arranged, but it may be arranged at a position inside the solder 5 on the semiconductor element. In particular, in this case, if the distance separating member 10 is made of Cu or Au, the distance separating member 10 gets wet with the solder, so that heat can be dissipated from the hottest portion, which has the effect of further improving the heat dissipation.

距離離隔部材10として線材を使用する場合、ワイヤの径は400umとしたが、これに限るものではない。ループを形成しない1点ボンドとして形成するようにしたが、ループ高さを安定して形成できればループを形成してもよい。 When a wire rod is used as the distance separating member 10, the diameter of the wire is 400 um, but the diameter is not limited to this. Although it is formed as a one-point bond that does not form a loop, a loop may be formed as long as the loop height can be stably formed.

本実施の形態は、実施の形態1と組み合わせたものとしたが、実施の形態2のように、配線部材7が主金属7aとしてのCuの厚さが異なるCu−インバー−Cuとなっているモジュールと組み合わせてもよい。 Although the present embodiment is combined with the first embodiment, the wiring member 7 is a Cu-invar-Cu having a different thickness of Cu as the main metal 7a as in the second embodiment. It may be combined with a module.

以上の実施の形態では、絶縁基板と半導体素子間にワイヤバンプ4を形成しているが、無くても良い。但し、無い場合、半導体素子が傾く可能性があり、ワイヤバンプがある方が好ましい。 In the above embodiment, the wire bump 4 is formed between the insulating substrate and the semiconductor element, but it may not be formed. However, if it is not present, the semiconductor element may be tilted, and it is preferable that there are wire bumps.

実施の形態5.
本実施の形態は、上述した実施の形態1から4にかかる半導体装置を電力変換装置に適用したものである。本発明は特定の電力変換装置に限定されるものではないが、以下、実施の形態5として、三相のインバータに本発明を適用した場合について説明する。
Embodiment 5.
In this embodiment, the semiconductor devices according to the above-described first to fourth embodiments are applied to a power conversion device. Although the present invention is not limited to a specific power conversion device, the case where the present invention is applied to a three-phase inverter will be described below as a fifth embodiment.

図12は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。 FIG. 12 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.

図12に示す電力変換システムは、電源100、電力変換装置200、負荷300から構成される。電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源100を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 The power conversion system shown in FIG. 12 includes a power supply 100, a power conversion device 200, and a load 300. The power source 100 is a DC power source, and supplies DC power to the power converter 200. The power supply 100 can be configured with various things, for example, it can be configured with a DC system, a solar cell, a storage battery, or it can be configured with a rectifier circuit or an AC / DC converter connected to an AC system. May be good. Further, the power supply 100 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.

電力変換装置200は、電源100と負荷300の間に接続された三相のインバータであり、電源100から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図12に示すように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201を制御する制御信号を主変換回路201に出力する制御回路203とを備えている。 The power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300, converts the DC power supplied from the power supply 100 into AC power, and supplies AC power to the load 300. As shown in FIG. 12, the power conversion device 200 has a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit 203 that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201. And have.

負荷300は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。 The load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200. The load 300 is not limited to a specific application, and is an electric motor mounted on various electric devices. For example, the load 300 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.

以下、電力変換装置200の詳細を説明する。主変換回路201は、スイッチング素子や還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源100から供給される直流電力を交流電力に変換し、負荷300に供給する。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路201の各スイッチング素子や各還流ダイオードは、上述した実施の形態1から4のいずれかに相当する半導体装置202によって構成する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アーム
はフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。
The details of the power converter 200 will be described below. The main conversion circuit 201 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, the DC power supplied from the power supply 100 is converted into AC power and supplied to the load 300. There are various specific circuit configurations of the main conversion circuit 201, but the main conversion circuit 201 according to the present embodiment is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six anti-parallel freewheeling diodes. Each switching element and each freewheeling diode of the main conversion circuit 201 is configured by a semiconductor device 202 corresponding to any one of the above-described first to fourth embodiments. The six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 201 are connected to the load 300.

また、主変換回路201は、各スイッチング素子を駆動する駆動回路(図示なし)を備えているが、駆動回路は半導体装置202に内蔵されていてもよいし、半導体装置202とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 Further, although the main conversion circuit 201 includes a drive circuit (not shown) for driving each switching element, the drive circuit may be built in the semiconductor device 202, or a drive circuit may be provided separately from the semiconductor device 202. It may be provided. The drive circuit generates a drive signal for driving the switching element of the main conversion circuit 201 and supplies the drive signal to the control electrode of the switching element of the main conversion circuit 201. Specifically, according to the control signal from the control circuit 203 described later, a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrodes of each switching element. When the switching element is kept in the on state, the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when the switching element is kept in the off state, the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).

制御回路203は、負荷300に所望の電力が供給されるよう主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号が、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路201が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。 The control circuit 203 controls the switching element of the main conversion circuit 201 so that the desired power is supplied to the load 300. Specifically, the time (on time) for each switching element of the main conversion circuit 201 to be in the on state is calculated based on the power to be supplied to the load 300. For example, the main conversion circuit 201 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit included in the main conversion circuit 201 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off. Is output. The drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.

本実施の形態に係る電力変換装置では、主変換回路201のスイッチング素子と還流ダイオードとして実施の形態1から4のいずれかの実施の形態にかかる半導体装置を適用するため、安定してフィレットを形成でき、信頼性の高い電力変換装置を実現することができる。 In the power conversion device according to the present embodiment, since the semiconductor device according to any one of the first to fourth embodiments is applied as the switching element of the main conversion circuit 201 and the freewheeling diode, a fillet is stably formed. It is possible to realize a highly reliable power conversion device.

本実施の形態では、2レベルの三相インバータに本発明を適用する例を説明したが、本発明は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本発明を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本発明を適用することも可能である。 In the present embodiment, an example of applying the present invention to a two-level three-phase inverter has been described, but the present invention is not limited to this, and can be applied to various power conversion devices. In the present embodiment, a two-level power converter is used, but a three-level or multi-level power converter may be used, and when power is supplied to a single-phase load, the present invention is applied to a single-phase inverter. You may apply it. Further, when supplying electric power to a DC load or the like, the present invention can be applied to a DC / DC converter or an AC / DC converter.

また、本発明を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触器給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 Further, the power conversion device to which the present invention is applied is not limited to the case where the above-mentioned load is an electric motor, for example, a power source for an electric discharge machine, a laser machine, an induction heating cooker, or a non-contact power supply system. It can be used as a device, and can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.

なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, each embodiment can be combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

1 絶縁基板、2 半導体素子、2a 上面電極、3 半導体素子下はんだ、4 ワイヤバンプ、5 半導体素子上はんだ、6 周壁、7 配線部材、7a 主金属、7b 線膨張係数が小さい金属、7e 線膨張係数が大きい部材、7c バイメタル領域、7d 外部端子と反対側の端部、8 封止樹脂、9 スペーサー、10 距離離隔部材、200 電力変換装置、201 主変換回路、202 半導体装置、203 制御回路 1 Insulated substrate, 2 Semiconductor element, 2a Top electrode, 3 Solder under semiconductor element, 4 Wire bump, 5 Solder on semiconductor element, 6 peripheral wall, 7 Wiring member, 7a Main metal, 7b Metal with small linear expansion coefficient, 7e Linear expansion coefficient Large member, 7c bimetal region, 7d end opposite to external terminal, 8 sealing resin, 9 spacer, 10 distance separation member, 200 power conversion device, 201 main conversion circuit, 202 semiconductor device, 203 control circuit

Claims (7)

絶縁基板と、この絶縁基板の周辺部に設けられた周壁とで構成されたケースと、
前記周壁の内側の前記絶縁基板上に一面が接合された半導体素子と、
前記周壁に一端が固定され、他端が、前記半導体素子の前記絶縁基板とは反対側の面に形成された上面電極にはんだで接合された板状の配線部材と、を備えた半導体装置において、
前記配線部材は、前記配線部材の板面に垂直な断面において、線膨張係数が異なる少なくとも2種類の材料で形成され、はんだ付け時の加熱により前記絶縁基板側とは反対側に凸となるバイメタル領域を有することを特徴とする半導体装置。
A case composed of an insulating substrate and a peripheral wall provided around the insulating substrate,
A semiconductor element whose one surface is bonded to the insulating substrate inside the peripheral wall,
In a semiconductor device including a plate-shaped wiring member having one end fixed to the peripheral wall and the other end soldered to a top electrode formed on a surface of the semiconductor element opposite to the insulating substrate. ,
The wiring member is made of at least two kinds of materials having different linear expansion coefficients in a cross section perpendicular to the plate surface of the wiring member, and is a bimetal that becomes convex on the side opposite to the insulating substrate side due to heating during soldering. A semiconductor device characterized by having a region.
前記配線部材は、主部を構成する主金属と、前記配線部材の板に垂直な断面において、前記絶縁基板に近い側に配置された、前記主金属よりも線膨張係数が小さい金属とで形成されていることを特徴とする請求項1に記載の半導体装置。 The wiring member is formed of a main metal constituting the main portion and a metal having a linear expansion coefficient smaller than that of the main metal, which is arranged on a side close to the insulating substrate in a cross section perpendicular to the plate of the wiring member. The semiconductor device according to claim 1, wherein the semiconductor device is provided. 前記配線部材は、主部を構成する主金属と、前記配線部材の板に垂直な断面において、前記絶縁基板から遠い側に接合された前記主金属よりも線膨張係数が大きい部材とで形成されていることを特徴とする請求項1に記載の半導体装置。 The wiring member is formed of a main metal constituting the main portion and a member having a coefficient of linear expansion larger than that of the main metal joined to a side farther from the insulating substrate in a cross section perpendicular to the plate of the wiring member. The semiconductor device according to claim 1, wherein the semiconductor device is characterized by the above. 前記配線部材は、前記配線部材の板に垂直な断面において、主部を構成する主金属の間に、前記主金属よりも線膨張係数が小さい部材が挟まれ、前記絶縁基板から遠い側の前記主金属の厚みが、前記絶縁基板に近い側の前記主金属の厚みより厚いことを特徴とする請求項1に記載の半導体装置。 In the cross section perpendicular to the plate of the wiring member, a member having a coefficient of linear expansion smaller than that of the main metal is sandwiched between the main metals constituting the main portion, and the wiring member is located on the side far from the insulating substrate. The semiconductor device according to claim 1, wherein the thickness of the main metal is thicker than the thickness of the main metal on the side closer to the insulating substrate. 前記周壁と前記半導体素子との間の位置に、前記配線部材と前記絶縁基板との間の距離を規制するスペーサーを設けたことを特徴とする請求項1から4のいずれか1項に記載の半導体装置。 The invention according to any one of claims 1 to 4, wherein a spacer for regulating the distance between the wiring member and the insulating substrate is provided at a position between the peripheral wall and the semiconductor element. Semiconductor device. 前記半導体素子の上面電極と前記配線部材との間に、前記はんだとは異なる材料の距離離隔部材が配置されていることを特徴とする請求項1から4のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 4, wherein a distance separating member made of a material different from that of the solder is arranged between the upper surface electrode of the semiconductor element and the wiring member. .. 請求項1から6のいずれか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と、
を備えた電力変換装置。
A main conversion circuit having the semiconductor device according to any one of claims 1 to 6 and converting and outputting input power.
A control circuit that outputs a control signal for controlling the main conversion circuit to the main conversion circuit,
Power converter equipped with.
JP2016204804A 2016-10-19 2016-10-19 Semiconductor devices and power converters Active JP6818500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204804A JP6818500B2 (en) 2016-10-19 2016-10-19 Semiconductor devices and power converters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204804A JP6818500B2 (en) 2016-10-19 2016-10-19 Semiconductor devices and power converters

Publications (2)

Publication Number Publication Date
JP2018067611A JP2018067611A (en) 2018-04-26
JP6818500B2 true JP6818500B2 (en) 2021-01-20

Family

ID=62087268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204804A Active JP6818500B2 (en) 2016-10-19 2016-10-19 Semiconductor devices and power converters

Country Status (1)

Country Link
JP (1) JP6818500B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999807B2 (en) * 2018-06-06 2022-01-19 三菱電機株式会社 Semiconductor equipment and power conversion equipment
WO2020067059A1 (en) * 2018-09-26 2020-04-02 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device
JP7287164B2 (en) * 2019-07-23 2023-06-06 三菱電機株式会社 Power semiconductor device and power conversion device
WO2022185545A1 (en) * 2021-03-05 2022-09-09 三菱電機株式会社 Method for manufacturing semiconductor device, semiconductor device, electric power converting device, and mobile body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151324B2 (en) * 1993-01-22 2001-04-03 凸版印刷株式会社 Semiconductor device
JP4089143B2 (en) * 2000-08-30 2008-05-28 三菱電機株式会社 Power semiconductor device
JP2004128264A (en) * 2002-10-03 2004-04-22 Toyota Industries Corp Semiconductor module and flat lead
JP2008118010A (en) * 2006-11-07 2008-05-22 Fuji Electric Device Technology Co Ltd Semiconductor device
JP5542567B2 (en) * 2010-07-27 2014-07-09 三菱電機株式会社 Semiconductor device
JP2015115471A (en) * 2013-12-12 2015-06-22 三菱電機株式会社 Power semiconductor device
JP6293030B2 (en) * 2014-10-09 2018-03-14 三菱電機株式会社 Power semiconductor device

Also Published As

Publication number Publication date
JP2018067611A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6818500B2 (en) Semiconductor devices and power converters
JP7005449B2 (en) Semiconductor device, power conversion device, manufacturing method of semiconductor device, and manufacturing method of power conversion device
JP6685470B2 (en) Semiconductor device, manufacturing method thereof, and power conversion device
JP6783327B2 (en) Semiconductor devices and power converters
JP7101882B2 (en) Manufacturing method of semiconductor device, power conversion device and semiconductor device
JP2018190930A (en) Power semiconductor module, method for manufacturing the same, and power conversion device
WO2021085216A1 (en) Semiconductor device, electric power conversion device, and method for producing semiconductor device
JP6756407B2 (en) Semiconductor module and power converter
JP6667737B1 (en) Semiconductor module and power converter
JP6952889B2 (en) Power semiconductor modules, their manufacturing methods, and power converters
JP2018129352A (en) Power semiconductor device and power conversion device using the same
JPWO2021130989A1 (en) Power module and power converter
JPWO2019176199A1 (en) Semiconductor power modules and power converters
JP7094447B2 (en) Power module and power converter
JP7035920B2 (en) Semiconductor devices and power converters
JP7435896B2 (en) Semiconductor device manufacturing method, semiconductor device, power conversion device, and mobile object
JP7418474B2 (en) Semiconductor equipment and power conversion equipment
JP7439653B2 (en) Semiconductor devices and power conversion devices
JP7237192B2 (en) Semiconductor device, manufacturing method thereof, and power conversion device
JP7086204B2 (en) Semiconductor devices, power conversion devices, and methods for manufacturing semiconductor devices
JP6885522B1 (en) Semiconductor device, power conversion device and manufacturing method of semiconductor device
WO2021152795A1 (en) Semiconductor device and power conversion device
JP7088421B1 (en) Semiconductor devices and power converters
WO2024090278A1 (en) Semiconductor device, power conversion device, and semiconductor device production method
JP2022029886A (en) Semiconductor device, manufacturing method thereof, and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R151 Written notification of patent or utility model registration

Ref document number: 6818500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250