JP6816504B2 - Cooling device and cooling method for H-section steel - Google Patents

Cooling device and cooling method for H-section steel Download PDF

Info

Publication number
JP6816504B2
JP6816504B2 JP2016255154A JP2016255154A JP6816504B2 JP 6816504 B2 JP6816504 B2 JP 6816504B2 JP 2016255154 A JP2016255154 A JP 2016255154A JP 2016255154 A JP2016255154 A JP 2016255154A JP 6816504 B2 JP6816504 B2 JP 6816504B2
Authority
JP
Japan
Prior art keywords
water
cooling
web
air
section steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016255154A
Other languages
Japanese (ja)
Other versions
JP2018103248A (en
Inventor
明洋 坂本
明洋 坂本
雅典 河合
雅典 河合
弘充 勝嵜
弘充 勝嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016255154A priority Critical patent/JP6816504B2/en
Publication of JP2018103248A publication Critical patent/JP2018103248A/en
Application granted granted Critical
Publication of JP6816504B2 publication Critical patent/JP6816504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

本発明は、H形鋼を製造する際、仕上げ圧延後のH形鋼に焼入処理を行う冷却装置および冷却方法に関するものである。 The present invention relates to a cooling device and a cooling method for quenching an H-section steel after finish rolling when producing the H-section steel.

建造物の梁や柱などに使用される大型H形鋼の製造において、近年、殊に超高層建造物向けとして、仕上げ圧延後に焼入処理を行うことにより合金コストを抑えて高強度なH形鋼を製造する方法が開発されている。 In the manufacture of large H-beams used for beams and columns of buildings, in recent years, especially for super high-rise structures, high-strength H-beams with reduced alloy costs by quenching after finish rolling. Methods for producing steel are being developed.

このようなH形鋼の焼入処理を行う冷却装置では、フランジ部の均一強冷却と、ウェブ部の過冷却抑制が要求される。従来、フランジ部の均一強冷却については、強水冷型の冷却装置を設けることで実現されているが、フランジ部を強冷却した場合にはウェブ部が過冷却されてしまい、フランジ部の均一強冷却とウェブ部の過冷却抑制とを両立させることは困難である。 In a cooling device that performs such quenching treatment of H-shaped steel, uniform strong cooling of the flange portion and suppression of supercooling of the web portion are required. Conventionally, uniform strong cooling of the flange portion has been realized by providing a strong water cooling type cooling device, but when the flange portion is strongly cooled, the web portion is supercooled and the flange portion is uniformly strong. It is difficult to achieve both cooling and suppression of supercooling of the web portion.

H形鋼の製造設備において、冷却装置の下流側にホットソーによる鋸断部が設けられている場合、H形鋼の冷却停止温度を500℃以上、例えば550℃程度にする必要がある。ところが、フランジ部の強水冷時には、不可避的にウェブ部の上面に残留水が溜まり、この残留水によってウェブ部が過冷却される。殊に、大型H形鋼のウェブ厚はフランジ厚の2/3以下の薄いものが多く、このようなH形鋼では、ウェブ上面に溜まる水によって、ウェブ部がフランジ部に比べて過冷却されやすい。ウェブ部が過冷却されると、熱収縮の差によりウェブ部に波状の歪みが生じて製品の寸法精度が低下する。また、ウェブ部のみに強い焼き入れ効果が生じて硬くなると、鋸断不良等の問題が生じる。 In the H-section steel manufacturing equipment, when a saw-cut portion by a hot saw is provided on the downstream side of the cooling device, the cooling stop temperature of the H-section steel needs to be 500 ° C. or higher, for example, about 550 ° C. However, when the flange portion is strongly water-cooled, residual water inevitably accumulates on the upper surface of the web portion, and the residual water overcools the web portion. In particular, the web thickness of large H-section steels is often as thin as 2/3 or less of the flange thickness, and in such H-section steels, the web portion is overcooled compared to the flange portion by the water accumulated on the upper surface of the web. Cheap. When the web portion is supercooled, the difference in heat shrinkage causes wavy distortion in the web portion, which reduces the dimensional accuracy of the product. Further, if a strong quenching effect is generated only on the web portion and it becomes hard, problems such as poor sawing occur.

そのため、フランジ部を強水冷しつつ、ウェブ上面の残留水を排出して、ウェブ部の過冷却を抑制することが必要になる。さらに、冷却工程区間の前段側への水の逆流も防ぐ必要がある。 Therefore, it is necessary to discharge the residual water on the upper surface of the web while strongly cooling the flange portion to suppress supercooling of the web portion. Furthermore, it is necessary to prevent backflow of water to the front stage side of the cooling process section.

H形鋼の冷却に関して、例えば特許文献1には、H形鋼のフランジ部の外側を冷却する第1噴射部、および、フランジの内側およびウェブ部を冷却する第2噴射部を有する冷却装置が開示されている。さらに、特許文献2には、H形鋼のウェブ部と2つのR部、および、フランジ部の外側に、それぞれ3組ずつのノズルを設けたH形鋼の冷却装置が開示されている。 Regarding the cooling of the H-shaped steel, for example, Patent Document 1 describes a cooling device having a first injection portion for cooling the outside of the flange portion of the H-shaped steel and a second injection portion for cooling the inside of the flange and the web portion. It is disclosed. Further, Patent Document 2 discloses an H-shaped steel cooling device in which three sets of nozzles are provided on the outside of the web portion, the two R portions, and the flange portion of the H-shaped steel.

また、特許文献3には、H形鋼のフランジ外面を水量密度1000L/min・m以上で強冷却し、ウェブ部を、上面は冷却用のスプレーノズルまたはミストノズルと空気噴射ノズル、下面はスプレーノズルまたはミストノズルで冷却し、ウェブ部への水量密度をフランジ部よりも低くする冷却方法が開示されている。 Further, in Patent Document 3, the outer surface of the flange of the H-shaped steel is strongly cooled at a water content density of 1000 L / min · m 2 or more, and the web portion is formed, the upper surface is a cooling spray nozzle or mist nozzle and an air injection nozzle, and the lower surface is. A cooling method is disclosed in which cooling is performed with a spray nozzle or a mist nozzle so that the water content density to the web portion is lower than that of the flange portion.

韓国特許公開2013−0034216号公報Korean Patent Publication No. 2013-0034216 中国特許公開第103357678号公報Chinese Patent Publication No. 10337678 特許第3546300号公報Japanese Patent No. 3546300

上記特許文献1および2は、いずれも、H形鋼のフランジ部の外側および内側に対して、それぞれ、プレート等を有する噴射部、3組のノズルにより冷却するものであり、不可避的にウェブ部の上面に残留水が溜まり、この残留水によってウェブ部が過冷却されるという問題が生じるものである。 In each of the above-mentioned Patent Documents 1 and 2, the outside and the inside of the flange portion of the H-shaped steel are cooled by an injection portion having a plate or the like, respectively, and three sets of nozzles, and the web portion is unavoidably used. Residual water collects on the upper surface of the steel, and this residual water causes a problem that the web portion is supercooled.

特許文献3の冷却方法では、ウェブ部に冷却水が滞留しないように空気噴射ノズルを設けているが、ウェブ上面を水冷しているため、ウェブ部が過冷却になる問題は依然解決されない。 In the cooling method of Patent Document 3, an air injection nozzle is provided so that the cooling water does not stay in the web portion, but since the upper surface of the web is water-cooled, the problem that the web portion becomes supercooled is still not solved.

本発明は、かかる点に鑑みてなされたものであり、H形鋼の仕上げ圧延後の焼入処理の際、フランジ部の均一強冷却とウェブ部の過冷却抑制とを両立できる冷却装置および冷却方法を提供することを目的とする。 The present invention has been made in view of this point, and is a cooling device and cooling capable of achieving both uniform strong cooling of the flange portion and suppression of supercooling of the web portion during quenching treatment after finish rolling of H-shaped steel. The purpose is to provide a method.

上記問題を解決するため、本発明は、熱間仕上げ圧延後のH形鋼を冷却する装置であって、前記H形鋼のフランジ部の外面および内面を水量密度1.0m/min/m以上で冷却する水冷機構と、前記水冷機構が設けられた水冷帯において、前記H形鋼のウェブ上面に向けて圧縮空気を吹き付けるエアブロー機構と、前記H形鋼の搬送方向における前記水冷帯の前後に、前記H形鋼のウェブ上面の水を前記H形鋼の外側に排出する水切機構部と、を有し、前記水切機構部は、前記H形鋼のウェブ上面にエアを吹き付けるエア−水切機構を備えるとともに、前記エア−水切機構よりも前記水冷帯に近い位置で、前記H形鋼のウェブ上面およびフランジ内面に水を吹き付ける水−水切機構を備えていることを特徴とする、H形鋼の冷却装置を提供する。
In order to solve the above problem, the present invention is an apparatus for cooling the H-section steel after hot finish rolling, and the outer and inner surfaces of the flange portion of the H-section steel have a water content density of 1.0 m 3 / min / m. A water cooling mechanism for cooling by two or more, an air blow mechanism for blowing compressed air toward the upper surface of the web of the H-shaped steel in a water cooling zone provided with the water cooling mechanism, and the water cooling zone in the transport direction of the H-shaped steel. back and forth, said possess a draining mechanism for discharging to the outside, the water of the web top surface of the H-beam the H-shaped steel, the draining mechanism blows air to the web upper surface of the H-shaped steel air - A water-draining mechanism is provided, and a water-draining mechanism for spraying water onto the upper surface of the web and the inner surface of the flange of the H-shaped steel at a position closer to the water-cooled zone than the air-draining mechanism is provided. Provided is a cooling device for shaped steel.

前記水切機構部は、前記水冷帯と前記水−水切機構との間に堰き止め板を備えてもよい。
The drainage mechanism portion may be provided with a damming plate between the water cooling zone and the water-drainage mechanism.

また、本発明は、熱間仕上げ圧延後のH形鋼を冷却する方法であって、前記H形鋼のフランジ部の外面および内面を、水冷機構により水量密度1.0m/min/m以上で冷却し、前記水冷機構が設けられた水冷帯において、エアブロー機構により前記H形鋼のウェブ上面に向けて圧縮空気を吹き付けるとともに、前記H形鋼の搬送方向における前記水冷帯の前後において、エア−水切機構により前記H形鋼のウェブ上面にエアを吹き付け、さらに、前記エア−水切機構よりも前記水冷帯に近い位置で、水−水切機構により前記H形鋼のウェブ上面およびフランジ内面に水を吹き付けて、前記H形鋼のウェブ上面の水を前記H形鋼の外側に排出することを特徴とする、H形鋼の冷却方法を提供する。
Further, the present invention is a method for cooling an H-beam after hot finish rolling, in which the outer and inner surfaces of the flange portion of the H-beam are water-cooled to a water density of 1.0 m 3 / min / m 2. cooled at least in the water cooling band water cooling mechanism is provided, Rutotomoni blowing compressed air towards the web upper surface of the H-beam by air blow mechanism, before and after the water-cooled zone in the conveying direction of the H-shaped steel Air is blown onto the upper surface of the web of the H-shaped steel by the air-draining mechanism, and the upper surface of the web and the inner surface of the flange of the H-shaped steel are further operated by the water-draining mechanism at a position closer to the water cooling zone than the air-draining mechanism. Provided is a method for cooling an H-shaped steel , which comprises spraying water onto the H-shaped steel to discharge the water on the upper surface of the web of the H-shaped steel to the outside of the H-shaped steel.

本発明によれば、H形鋼の仕上げ圧延後の焼入処理において、フランジ部の均一強冷却とウェブ部の過冷却抑制とを両立することができる。 According to the present invention, in the quenching treatment after finish rolling of H-section steel, it is possible to achieve both uniform strong cooling of the flange portion and suppression of supercooling of the web portion.

本発明の実施の形態にかかる冷却装置を備えた熱間圧延設備の構成の概略を示す図である。It is a figure which shows the outline of the structure of the hot rolling equipment provided with the cooling device which concerns on embodiment of this invention. 本発明の実施の形態にかかる冷却装置の概略を示す側面図である。It is a side view which shows the outline of the cooling apparatus which concerns on embodiment of this invention. 図2のA−A線から見た水冷帯の断面図である。It is sectional drawing of the water cooling zone seen from the line AA of FIG. 図2のB−B線から見た水−水切機構の断面図である。It is sectional drawing of the water-draining mechanism seen from the line BB of FIG. 図2のC−C線から見たエア−水切機構の断面図である。It is sectional drawing of the air-draining mechanism seen from the CC line of FIG. 実施例における水切機構部の効果を示すグラフである。It is a graph which shows the effect of the drainage mechanism part in an Example. 実施例におけるエアブロー機構および水切機構部の効果を示すグラフである。It is a graph which shows the effect of the air blow mechanism and the drainage mechanism part in an Example.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description.

図1は、H形鋼の圧延設備1の構成の概略を示す説明図である。圧延設備1は、搬送方向順に、スラブを加熱する加熱炉2、加熱炉2で加熱されたスラブを略H形状に圧延する粗圧延機3、さらに製品形状に近いH形状に圧延する中間圧延機4、製品形状に仕上げ圧延する仕上圧延機5、仕上圧延機5により仕上げ圧延されたH形鋼10を所定の温度まで冷却する冷却装置6、冷却装置6で冷却されたH形鋼10を所定の長さに鋸断する鋸断装置7を備えている。なお、上記の圧延設備1は一般的な設備構成であって、本発明が適用されるH形鋼の圧延設備はこれに限るものではない。本発明の冷却装置6が適用されるH形鋼は、例えばフランジ幅が概ね200mm以上、ウェブ高さが概ね400mm以上、さらにはウェブ高さが600mm以上の大型H形鋼を主な対象とする。 FIG. 1 is an explanatory diagram showing an outline of the configuration of an H-section steel rolling facility 1. The rolling equipment 1 includes a heating furnace 2 that heats slabs in order of transport direction, a rough rolling mill 3 that rolls slabs heated by the heating furnace 2 into a substantially H shape, and an intermediate rolling mill that rolls slabs into an H shape close to the product shape. 4. A finish rolling machine 5 for finish rolling to a product shape, a cooling device 6 for cooling the H-shaped steel 10 finished and rolled by the finish rolling machine 5 to a predetermined temperature, and an H-shaped steel 10 cooled by the cooling device 6 are specified. The rolling mill 7 is provided for rolling to the length of. The above-mentioned rolling equipment 1 has a general equipment configuration, and the rolling equipment for H-section steel to which the present invention is applied is not limited to this. The H-section steel to which the cooling device 6 of the present invention is applied mainly targets, for example, a large H-section steel having a flange width of about 200 mm or more, a web height of about 400 mm or more, and a web height of 600 mm or more. ..

図2は、本発明の実施の形態に係る冷却装置6を示す側面図であり、図3は、図2のA−A線から見た断面図である。冷却装置6は、搬送ローラ8上を搬送されるH形鋼10が水冷帯20を通過する間、主にフランジ部11を水冷する水冷機構21と、水冷帯20を通過中のH形鋼10のウェブ上面12aに圧縮空気を吹き付けるエアブロー機構22を備えている。さらに、搬送方向における水冷帯20の前後に、水切機構部23を備えている。 FIG. 2 is a side view showing the cooling device 6 according to the embodiment of the present invention, and FIG. 3 is a cross-sectional view taken from the line AA of FIG. The cooling device 6 includes a water cooling mechanism 21 that mainly water-cools the flange portion 11 while the H-shaped steel 10 conveyed on the transport roller 8 passes through the water-cooled zone 20, and the H-shaped steel 10 passing through the water-cooled zone 20. An air blow mechanism 22 for blowing compressed air onto the upper surface 12a of the web is provided. Further, a drainage mechanism portion 23 is provided before and after the water cooling zone 20 in the transport direction.

水冷機構21は、図3に示すように、H形鋼10のフランジ部11の外面側、フランジ部11の内面側のうちウェブ部12の上側、フランジ部11の内面側のうちウェブ部12の下側に、それぞれ、冷却水噴射用ノズルを設けたノズルヘッダ31、32、33を備えている。各ノズルヘッダ31、32、33には、冷却水が供給される。 As shown in FIG. 3, the water cooling mechanism 21 includes the outer surface side of the flange portion 11 of the H-shaped steel 10, the upper side of the web portion 12 of the inner surface side of the flange portion 11, and the web portion 12 of the inner surface side of the flange portion 11. On the lower side, nozzle headers 31, 32, and 33 provided with cooling water injection nozzles are provided, respectively. Cooling water is supplied to the nozzle headers 31, 32, and 33.

先ず、H形鋼10のフランジ部11の均一強冷却を実現するために必要な水量密度(水冷面における単位面積あたりの冷却水量;m/min/m)と材料性能(引張強度および靭性)との関係を小鋼片試験にて調査したところ、フランジ部11に十分な焼き入れ効果が得られる水量密度は1.0m/min/m以上であった。したがって、水冷帯20では、この水量密度を実現するように冷却水噴射用ノズルが配置される。なお、この水量密度は、H形鋼10の材質やサイズによって異なる。 First, the water volume density (cooling water volume per unit area on the water-cooled surface; m 3 / min / m 2 ) and material performance (tensile strength and toughness) required to realize uniform strong cooling of the flange portion 11 of the H-shaped steel 10. ) Was investigated by a small steel piece test, and the water volume density at which a sufficient quenching effect was obtained on the flange portion 11 was 1.0 m 3 / min / m 2 or more. Therefore, in the water cooling zone 20, the cooling water injection nozzle is arranged so as to realize this water amount density. The water density varies depending on the material and size of the H-section steel 10.

本発明では、水冷機構21におけるフランジ部11を冷却するノズルの配置は限定しないが、所定量の十分な水量密度を実現して強冷却を行うために、冷却水噴射面の非衝突部面積が最小限となるように配置することが望ましい。具体的には、例えばノズルのタイプを楕円または正円のフルコーンノズルとし、搬送方向に隣接するノズルの上下方向の位置をずらして千鳥配置にし、水冷帯20を通過するH形鋼10のフランジ部11全体に隙間無く冷却水が届くようにすることが好ましい。さらに、噴射面が干渉し合わないようにノズルを配置して、フランジ部11が均一に冷却されるようにする。また、フランジ外面11aとフランジ内面11bとを同じ水量密度で冷却し、フランジ部11の厚さ方向で温度勾配が生じないようにすることが好ましい。また、フランジ外面11a側の側部ノズルヘッダ31は、H形鋼10の寸法の違いに対応できるように、H形鋼10のウェブ部12の高さ方向(図3の左右方向)に可動とするとともに、側部ノズルヘッダ31の各ノズル41のオンオフを、上下位置毎に制御できるようにすればよい。 In the present invention, the arrangement of the nozzles for cooling the flange portion 11 in the water cooling mechanism 21 is not limited, but the area of the non-collision portion of the cooling water injection surface is increased in order to achieve a sufficient water density of a predetermined amount and perform strong cooling. It is desirable to arrange it so as to be the minimum. Specifically, for example, the nozzle type is an elliptical or perfect circular full cone nozzle, the vertical positions of the nozzles adjacent to the transport direction are staggered, and the flange of the H-shaped steel 10 passes through the water cooling zone 20. It is preferable that the cooling water reaches the entire portion 11 without a gap. Further, the nozzles are arranged so that the injection surfaces do not interfere with each other so that the flange portion 11 is uniformly cooled. Further, it is preferable to cool the flange outer surface 11a and the flange inner surface 11b with the same water density so that a temperature gradient does not occur in the thickness direction of the flange portion 11. Further, the side nozzle header 31 on the flange outer surface 11a side is movable in the height direction (horizontal direction in FIG. 3) of the web portion 12 of the H-shaped steel 10 so as to correspond to the difference in dimensions of the H-shaped steel 10. At the same time, the on / off of each nozzle 41 of the side nozzle header 31 may be controlled for each vertical position.

フランジ部11の内面側のうちウェブ部12の上側には、図3に示すように、上部ノズルヘッダ32が配置される。上部ノズルヘッダ32のノズル42は、フランジ内面11bおよび、フランジ内面11bとウェブ上面12aとの境界のR部に向けて冷却水を噴射するように設けられる。フランジ部11の厚みが大きい大型のH形鋼10では、フランジ外面11aのみの冷却では十分な焼き入れが行われないため、内面側も外面側と同様に強冷却する。また、上部ノズルヘッダ32は、冷却するH形鋼10のフランジ部11の寸法の違いに対応できるように、各ノズル42のオンオフを上下位置毎に制御できるようにすればよい。 As shown in FIG. 3, the upper nozzle header 32 is arranged on the upper side of the web portion 12 on the inner surface side of the flange portion 11. The nozzle 42 of the upper nozzle header 32 is provided so as to inject cooling water toward the flange inner surface 11b and the R portion of the boundary between the flange inner surface 11b and the web upper surface 12a. In the large H-shaped steel 10 having a large thickness of the flange portion 11, since sufficient quenching is not performed by cooling only the flange outer surface 11a, the inner surface side is also strongly cooled as in the outer surface side. Further, the upper nozzle header 32 may be able to control the on / off of each nozzle 42 for each vertical position so as to cope with the difference in the dimensions of the flange portion 11 of the H-shaped steel 10 to be cooled.

さらに、ウェブ部12の上側には、エアブロー機構22が設けられている。エアブロー機構22は、圧縮空気供給管36から供給された圧縮空気を水冷帯20全域のウェブ上面12aに向けて吹き付ける圧縮空気噴出板37および固定枠38を備えている。圧縮空気噴出板37および固定枠38は、圧縮空気噴出板37がウェブ上面12aから例えば20〜50mm程度上方に位置するように、水冷帯20の全長にわたってウェブ上面12aの上方に配置される。圧縮空気噴出板37には、全面にわたって適宜間隔で噴出口が開けられている。したがって、圧縮空気供給管36から固定枠38内に圧縮空気が供給されると、圧縮空気噴出板37の噴出口を介して、ウェブ上面12aに圧縮空気が吹き付けられる。圧縮空気供給管36は、固定枠38の中央部に一カ所、または、水冷帯20の長さ等に応じて適宜複数箇所に接続される。エアブロー機構22によるエアの噴出圧は、0.02〜0.3MPa程度とする。 Further, an air blow mechanism 22 is provided on the upper side of the web portion 12. The air blow mechanism 22 includes a compressed air ejection plate 37 and a fixed frame 38 that blow the compressed air supplied from the compressed air supply pipe 36 toward the upper surface 12a of the web in the entire water cooling zone 20. The compressed air ejection plate 37 and the fixed frame 38 are arranged above the web upper surface 12a over the entire length of the water cooling zone 20 so that the compressed air ejection plate 37 is located above the web upper surface 12a by, for example, about 20 to 50 mm. The compressed air ejection plate 37 is provided with ejection ports at appropriate intervals over the entire surface. Therefore, when the compressed air is supplied from the compressed air supply pipe 36 into the fixed frame 38, the compressed air is blown to the upper surface 12a of the web through the ejection port of the compressed air ejection plate 37. The compressed air supply pipe 36 is connected to one place at the center of the fixed frame 38, or at a plurality of places as appropriate depending on the length of the water cooling zone 20 and the like. The air ejection pressure by the air blow mechanism 22 is about 0.02 to 0.3 MPa.

エアブロー機構22により、ウェブ上面12aに向けて圧縮空気を吹き付けることで、フランジ内面11bの冷却水を図3の矢印DのようにH形鋼10の外側に逃がすことができる。これにより、冷却水がウェブ上面12aに流れてきたり滞留したりするのを抑制し、ウェブ上面12aの過冷却を防ぐ。 By blowing compressed air toward the upper surface 12a of the web by the air blow mechanism 22, the cooling water on the inner surface 11b of the flange can be released to the outside of the H-shaped steel 10 as shown by the arrow D in FIG. As a result, the cooling water is suppressed from flowing or staying on the upper surface 12a of the web, and supercooling of the upper surface 12a of the web is prevented.

フランジ部11の内面側のうちウェブ部12の下側には、図3に示すように、下部ノズルヘッダ33が配置される。下部ノズルヘッダ33には、フランジ内面11b、フランジ内面11bとウェブ下面12bとの境界のR部、およびウェブ下面12bに向けてノズル43が設けられる。 As shown in FIG. 3, the lower nozzle header 33 is arranged on the lower side of the web portion 12 on the inner surface side of the flange portion 11. The lower nozzle header 33 is provided with a nozzle 43 toward the flange inner surface 11b, the R portion at the boundary between the flange inner surface 11b and the web lower surface 12b, and the web lower surface 12b.

本発明では、ウェブ上面12aには冷却水の噴射を行わないが、圧縮空気や、若干侵入してくるフランジ内面11bの冷却水および後述する水−水切機構24からの水により、ウェブ上面12aが若干冷却される。そのため、ウェブ部12の厚さ方向で温度勾配が生じて寸法の歪みが起こらないように、ウェブ下面12bに対して水冷を行う。下部ノズルヘッダ33のノズル43の配置の詳細は特に限定しないが、フランジ内面11bへの冷却水の噴射は、上部ノズルヘッダ32と同様に行い、ウェブ下面12bに対しては、ウェブ上面12aの温度低下と釣り合う程度の弱冷却として過冷却にならないようにする。ウェブ下面12bの冷却用のノズル43の配置としては、水冷帯20の前後両端に一カ所ずつ設置し、さらに、必要に応じて水冷帯20中に1〜3カ所程度追加する。 In the present invention, the cooling water is not sprayed onto the upper surface 12a of the web, but the upper surface 12a of the web is formed by compressed air, the cooling water of the inner surface 11b of the flange slightly invading, and the water from the water-draining mechanism 24 described later. It is cooled slightly. Therefore, the lower surface 12b of the web is water-cooled so that the temperature gradient does not occur in the thickness direction of the web portion 12 and the dimensional distortion does not occur. The details of the arrangement of the nozzles 43 of the lower nozzle header 33 are not particularly limited, but the cooling water is sprayed onto the inner surface 11b of the flange in the same manner as the upper nozzle header 32, and the temperature of the upper surface 12a of the web is relative to the lower surface 12b of the web. Avoid overcooling with a weak cooling that is commensurate with the drop. As for the arrangement of the cooling nozzles 43 on the lower surface 12b of the web, one is installed at each of the front and rear ends of the water cooling zone 20, and about 1 to 3 are added to the water cooling zone 20 as needed.

図3に示す実施の形態では、上部ノズルヘッダ32は、ウェブ部12の寸法毎に製作されたものを使用する。また、下部ノズルヘッダ33は、フランジ部11とウェブ部12の両方の寸法毎に製作されたものを使用する。あるいは、上部ノズルヘッダ32とエアブロー機構22とを分離し、さらにそれぞれの設置位置を可変とすることにより、任意の寸法のH形鋼10に対応させることもできる。また、下部ノズルヘッダ33も、フランジ内面11b用の冷却ノズルとウェブ下面12b用の冷却ノズルとを別配管に接続し、それぞれの設置位置を可変とすることにより、任意の寸法のH形鋼10に対応させることもできる。 In the embodiment shown in FIG. 3, the upper nozzle header 32 is manufactured for each dimension of the web portion 12. Further, as the lower nozzle header 33, one manufactured for each dimension of both the flange portion 11 and the web portion 12 is used. Alternatively, the upper nozzle header 32 and the air blow mechanism 22 can be separated from each other, and their respective installation positions can be made variable so that the H-shaped steel 10 having an arbitrary size can be used. Further, as for the lower nozzle header 33, the cooling nozzle for the flange inner surface 11b and the cooling nozzle for the web lower surface 12b are connected to separate pipes, and the installation positions of the cooling nozzles are made variable so that the H-shaped steel 10 having an arbitrary size can be used. It can also be made to correspond to.

また、本実施の形態では、冷却装置6の前後への水の流出を防ぎ、ウェブ上面12aの残留水を掃き出すために、図2に示すように、水冷帯20の前後両側に水切機構部23を設けている。水切機構部23は、水冷帯20の前後に設けられた水−水切機構24と、両側の水−水切機構24よりも水冷帯20から離れた位置に設けられたエア−水切機構25と、両側の水−水切機構24に近接し水−水切機構24よりも水冷帯20寄りの位置に設けられた堰き止め板26とを備えている。エア−水切機構25だけでも、十分な圧力と風量の圧搾空気を供給すれば残留水を掃き出すことが可能であるが、強水冷条件をはじめ大量の残留水を掃き出す場合には、水−水切機構24を併用することが好ましい。 Further, in the present embodiment, in order to prevent the outflow of water to the front and back of the cooling device 6 and to sweep out the residual water on the upper surface 12a of the web, as shown in FIG. 2, the drainage mechanism portions 23 on both front and rear sides of the water cooling zone 20 Is provided. The drainage mechanism portion 23 includes a water-drainage mechanism 24 provided before and after the water-cooled zone 20, an air-drainage mechanism 25 provided at a position farther from the water-drainage zone 20 than the water-drainage mechanism 24 on both sides, and both sides. It is provided with a damming plate 26 provided at a position close to the water-draining mechanism 24 and closer to the water-cooled zone 20 than the water-draining mechanism 24. The air-draining mechanism 25 alone can sweep out residual water if a sufficient pressure and air volume of compressed air are supplied, but when a large amount of residual water is swept out, including in strong water cooling conditions, the water-draining mechanism It is preferable to use 24 together.

水−水切機構24は、H形鋼10の上部の内面側全体、すなわち、ウェブ部12の上側のフランジ内面11bおよびウェブ上面12aに向けて水を吹き付けることにより、水冷機構21による冷却水が、水冷帯20を通過する前後のH形鋼10のウェブ上面12aに流入するのを抑制するものである。水−水切機構24は、図4に示すように、ウェブ部12の上方に配置された水切用ノズルヘッダ51を有している。水切用ノズルヘッダ51は、ウェブ上面12aに平行な水平ヘッダ52と、左右両側のフランジ部11に平行な2つの垂直ヘッダ53とからなり、それぞれに、例えば1列ずつ、ノズル61が配置されている。水切用ノズルヘッダ51には、給水ヘッダ(図示せず)から冷却水が供給される。各ノズル61からの水の噴射方向は、水冷帯20側に傾けることが好ましく、H形鋼10の内面側の上部全体に、隙間無く水が届くようにする。これにより、水冷帯20から流れてきた水は、H形鋼10の外側へ排出され、冷却装置6の前後のH形鋼10のウェブ上面12aに水が溜まって過冷却されるのを防ぐことができる。 The water-draining mechanism 24 sprays water toward the entire inner surface side of the upper part of the H-section steel 10, that is, toward the flange inner surface 11b and the web upper surface 12a on the upper side of the web portion 12, so that the cooling water by the water cooling mechanism 21 is released. It suppresses the inflow into the web upper surface 12a of the H-shaped steel 10 before and after passing through the water cooling zone 20. As shown in FIG. 4, the water-draining mechanism 24 has a drainage nozzle header 51 arranged above the web portion 12. The drainage nozzle header 51 is composed of a horizontal header 52 parallel to the upper surface 12a of the web and two vertical headers 53 parallel to the flange portions 11 on both the left and right sides, and nozzles 61 are arranged in each row, for example. There is. Cooling water is supplied to the drain nozzle header 51 from a water supply header (not shown). The direction of water injection from each nozzle 61 is preferably tilted toward the water cooling zone 20, so that the water reaches the entire upper part of the inner surface side of the H-shaped steel 10 without a gap. As a result, the water flowing from the water cooling zone 20 is discharged to the outside of the H-shaped steel 10 to prevent the water from accumulating on the web upper surface 12a of the H-shaped steel 10 before and after the cooling device 6 and being overcooled. Can be done.

堰き止め板26は、ウェブ上面12aよりも例えば20mm程度上方から、搬送されるH形鋼10の上端よりも高い位置まで、ほぼウェブ部12の高さ(搬送時の左右方向)全体にわたって設けられる。 The damming plate 26 is provided over the entire height of the web portion 12 (left-right direction during transportation) from, for example, about 20 mm above the upper surface of the web 12a to a position higher than the upper end of the H-shaped steel 10 to be transported. ..

エア−水切機構25は、ウェブ上面12aに向けて圧縮空気を噴射することにより、水冷機構21や水−水切機構24からウェブ上面12aに沿って流れる水をH形鋼10の外側へ排出し、冷却装置6の前後への水の流れを遮断するものである。エア−水切機構25は、図5に示すように、エアヘッダ(図示せず)に接続された水切用配管54を有している。水切用配管54は、ウェブ上面12aに平行な水平配管からなり、ウェブ上面12aに向けた圧縮空気の吹出口が、ウェブ部12の高さ方向(図5の左右方向)に複数箇所形成されている。なお、水切機構部23は、水−水切機構24のみでも構わないが、エア−水切機構25を併設することで、さらに水切能力が向上する。 The air-draining mechanism 25 injects compressed air toward the upper surface 12a of the web to discharge water flowing along the upper surface 12a of the web from the water cooling mechanism 21 or the water-draining mechanism 24 to the outside of the H-shaped steel 10. It blocks the flow of water to and from the cooling device 6. As shown in FIG. 5, the air-draining mechanism 25 has a drainage pipe 54 connected to an air header (not shown). The drainage pipe 54 is composed of a horizontal pipe parallel to the upper surface 12a of the web, and a plurality of outlets of compressed air toward the upper surface 12a of the web are formed in the height direction of the web portion 12 (left-right direction in FIG. 5). There is. The drainage mechanism unit 23 may be only the water-drainage mechanism 24, but the addition of the air-drainage mechanism 25 further improves the drainage capacity.

水切機構部23の水またはエアの噴出圧は、H形鋼10の種類や焼き入れ条件等によっても異なるが、水−水切機構24とエア−水切機構25とを併用した場合、水−水切機構24の水の噴出圧は例えば0.1〜0.5MPa程度、エア−水切機構25のエアの噴出圧は例えば0.02〜0.3MPa程度が好ましい。噴出圧が大きいほど効果は高くなるが、発明者らの実験によると、これらの上限値以下の噴出圧により、完全に滞留水を掃き出せることがわかっている。また、水切機構部23を水−水切機構24のみとした場合には、水の噴出圧を0.2MPa以上程度とすることが好ましい。 The water or air ejection pressure of the drainage mechanism unit 23 differs depending on the type of the H-shaped steel 10, quenching conditions, etc., but when the water-drainage mechanism 24 and the air-drainage mechanism 25 are used in combination, the water-drainage mechanism The water ejection pressure of 24 is preferably about 0.1 to 0.5 MPa, and the air ejection pressure of the air-draining mechanism 25 is preferably about 0.02 to 0.3 MPa, for example. The larger the ejection pressure, the higher the effect, but according to the experiments by the inventors, it is known that the accumulated water can be completely swept out by the ejection pressure below these upper limits. Further, when the draining mechanism portion 23 is only the water-draining mechanism 24, it is preferable that the water ejection pressure is about 0.2 MPa or more.

前述の通り、大型H形鋼にはウェブ厚がフランジ厚よりも薄いものが多いうえ、ウェブ上面12aには冷却後の残留水が溜まりやすいため、従来のH形鋼の冷却方法では、ウェブ部12が過冷却されることが問題となっていた。本発明によれば、フランジ部11を内外両側から水量密度1.0m/min/m以上で強水冷しつつ、ウェブ部12の過冷却を抑制することができる。つまり、H形鋼10の焼き入れ時の冷却速度および水冷停止温度を制御して強冷却を実施することで材料性能を確保し、且つ、ウェブ部12の過冷却を防止することでウェブ波などの形状不良発生を抑制するとともに鋸断性を確保できる。したがって、大規模建造物の梁や柱などに使用される大型H形鋼製品として、合金コストを抑えつつ焼入処理によって高品質な製品を製造できる。 As described above, many large H-beams have a web thickness thinner than the flange thickness, and residual water after cooling tends to collect on the upper surface 12a of the web. Therefore, in the conventional H-section steel cooling method, the web portion is used. There was a problem that 12 was overcooled. According to the present invention, it is possible to suppress supercooling of the web portion 12 while strongly water-cooling the flange portion 11 from both inside and outside with a water density of 1.0 m 3 / min / m 2 or more. That is, the material performance is ensured by controlling the cooling rate and the water cooling stop temperature at the time of quenching of the H-section steel 10 to perform strong cooling, and the web wave or the like is prevented by preventing the supercooling of the web portion 12. It is possible to suppress the occurrence of shape defects and ensure sawnability. Therefore, as a large H-section steel product used for beams and columns of large-scale buildings, it is possible to manufacture a high-quality product by quenching while suppressing the alloy cost.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the technical idea described in the claims, and of course, the technical scope of the present invention also includes them. It is understood that it belongs to.

ウェブ高さ800mm×フランジ幅300mm×ウェブ厚19mm×フランジ厚40mm、全長2000mmのH形鋼を、電気炉で850℃に加熱均熱処理した後、炉から抽出し、搬送しながら冷却装置を通過させて、フランジ部11を水冷した。水量密度は一定(2.0m/min/m)とした。 H-section steel with a web height of 800 mm x flange width of 300 mm x web thickness of 19 mm x flange thickness of 40 mm and a total length of 2000 mm is heat-equalized to 850 ° C in an electric furnace, extracted from the furnace, and passed through a cooling device while being conveyed. The flange portion 11 was water-cooled. The water density was constant (2.0 m 3 / min / m 2 ).

上記の水冷試験に先行し、水切性能の評価として、水切機構部23から300mm背後への漏水量を冷間オフラインで計測し、漏水量が目標以下となる水切条件を調査した。また、水冷帯20でのウェブ上面12aへのエアブロー機構22を設け、さらに図2に示すように水冷帯20の前後に水切機構部23を設けた本発明例と、これらのいずれかまたは両方がない従来例について、ウェブ部12の過冷却抑制性能を評価した。試験結果を図6および図7に示す。 Prior to the above water cooling test, as an evaluation of the drainage performance, the amount of water leakage from the drainage mechanism unit 23 to the back 300 mm was measured cold offline, and the drainage condition in which the amount of water leakage was below the target was investigated. Further, an example of the present invention in which an air blow mechanism 22 is provided on the upper surface 12a of the web in the water cooling zone 20 and draining mechanism portions 23 are provided in front of and behind the water cooling zone 20 as shown in FIG. 2, and either or both of them are used. The supercooling suppression performance of the web portion 12 was evaluated for a conventional example. The test results are shown in FIGS. 6 and 7.

図6は水切機構部23の評価結果を示す。横軸は水またはエアの噴出圧、縦軸は水切機構部23の背後への漏水量を示す。図6より、目標漏水量を10L/min以下とすると、水−水切機構24のみの場合、水の噴出圧が0.2MPa以上であれば、十分に目標を達成できた。水の噴出圧が0.15MPaの場合には、水−水切機構24のみでは目標値に達しないが、エアの噴出圧が0.1MPaのエア−水切機構25を併用すると、漏水が観測されない程度まで水切りを行うことができた。 FIG. 6 shows the evaluation result of the drainage mechanism unit 23. The horizontal axis represents the ejection pressure of water or air, and the vertical axis represents the amount of water leaking behind the drainage mechanism portion 23. From FIG. 6, assuming that the target water leakage amount is 10 L / min or less, in the case of only the water-drainage mechanism 24, if the water ejection pressure is 0.2 MPa or more, the target can be sufficiently achieved. When the water ejection pressure is 0.15 MPa, the target value is not reached only by the water-draining mechanism 24, but when the air-draining mechanism 25 having an air ejection pressure of 0.1 MPa is used together, no water leakage is observed. I was able to drain the water.

図7は、エアブロー機構22、水切機構部23を稼働または停止した場合の、水冷前から水冷後にかけてのフランジ部11およびウェブ部12の温度の経時変化を示す。図中の細い線がフランジ部11、太い線がウェブ部12のデータを示す。水切機構部23を稼働すると、水切機構部23が無い場合に比べて、ウェブ部12の過冷却が抑制され、冷却停止温度が高くなった。ただし、この場合はまだ、フランジ部11の冷却停止温度よりもウェブ部12の冷却停止温度の方が低かった。さらに、ウェブ上面12aにエアブロー機構22を稼働させると、ウェブ部12の過冷却の抑制効果が高くなり、フランジ部11よりも高い冷却停止温度になった。 FIG. 7 shows the time course of the temperatures of the flange portion 11 and the web portion 12 from before water cooling to after water cooling when the air blow mechanism 22 and the draining mechanism portion 23 are operated or stopped. The thin line in the figure shows the data of the flange portion 11, and the thick line shows the data of the web portion 12. When the drainage mechanism unit 23 was operated, the supercooling of the web unit 12 was suppressed and the cooling stop temperature became higher than in the case where the drainage mechanism unit 23 was not provided. However, in this case, the cooling stop temperature of the web portion 12 was still lower than the cooling stop temperature of the flange portion 11. Further, when the air blow mechanism 22 is operated on the upper surface 12a of the web, the effect of suppressing supercooling of the web portion 12 is enhanced, and the cooling stop temperature is higher than that of the flange portion 11.

本発明は、超高層建造物の梁や柱などに使用される大型H形鋼の製造において、仕上げ圧延後の焼入処理を行う冷却装置および冷却方法に適用できる。 The present invention can be applied to a cooling device and a cooling method for performing quenching after finish rolling in the production of large H-section steels used for beams and columns of super high-rise buildings.

1 圧延設備
2 加熱炉
3 粗圧延機
4 中間圧延機
5 仕上圧延機
6 冷却装置
7 鋸断装置
8 搬送ローラ
10 H形鋼
11 フランジ部
11a フランジ外面
11b フランジ内面
12 ウェブ部
12a ウェブ上面
12b ウェブ下面
20 水冷帯
21 水冷機構
22 エアブロー機構
23 水切機構部
24 水−水切機構
25 エア−水切機構
26 堰き止め板
31 側部ノズルヘッダ
32 上部ノズルヘッダ
33 下部ノズルヘッダ
1 Rolling equipment 2 Heating furnace 3 Rough rolling mill 4 Intermediate rolling mill 5 Finishing rolling mill 6 Cooling device 7 Saw cutting device 8 Conveying roller 10 H-shaped steel 11 Flange part 11a Flange outer surface 11b Flange inner surface 12 Web part 12a Web upper surface 12b Web lower surface 20 Water cooling zone 21 Water cooling mechanism 22 Air blow mechanism 23 Draining mechanism 24 Water-draining mechanism 25 Air-draining mechanism 26 Dam stop plate 31 Side nozzle header 32 Upper nozzle header 33 Lower nozzle header

Claims (3)

熱間仕上げ圧延後のH形鋼を冷却する装置であって、
前記H形鋼のフランジ部の外面および内面を水量密度1.0m/min/m以上で冷却する水冷機構と、
前記水冷機構が設けられた水冷帯において、前記H形鋼のウェブ上面に向けて圧縮空気を吹き付けるエアブロー機構と、
前記H形鋼の搬送方向における前記水冷帯の前後に、前記H形鋼のウェブ上面の水を前記H形鋼の外側に排出する水切機構部と、
を有し、
前記水切機構部は、前記H形鋼のウェブ上面にエアを吹き付けるエア−水切機構を備えるとともに、前記エア−水切機構よりも前記水冷帯に近い位置で、前記H形鋼のウェブ上面およびフランジ内面に水を吹き付ける水−水切機構を備えていることを特徴とする、H形鋼の冷却装置。
A device that cools H-beams after hot finish rolling.
A water cooling mechanism that cools the outer and inner surfaces of the flange of the H-section steel at a water density of 1.0 m 3 / min / m 2 or more.
In the water cooling zone provided with the water cooling mechanism, an air blow mechanism that blows compressed air toward the upper surface of the web of the H-section steel and
Before and after the water cooling zone in the transport direction of the H-shaped steel, a drainage mechanism portion for discharging water on the upper surface of the web of the H-shaped steel to the outside of the H-shaped steel,
Have a,
The drainage mechanism portion includes an air-drainage mechanism that blows air onto the upper surface of the web of the H-section steel, and is closer to the water-cooled zone than the air-drainage mechanism, and is the upper surface of the web and the inner surface of the flange of the H-section steel. A cooling device for H-section steel, characterized by having a water-draining mechanism for spraying water on the flange .
前記水切機構部は、前記水冷帯と前記水−水切機構との間に堰き止め板を備えていることを特徴とする、請求項に記載のH形鋼の冷却装置。 The H-shaped steel cooling device according to claim 1 , wherein the drainage mechanism portion includes a damming plate between the water cooling zone and the water-drainage mechanism. 熱間仕上げ圧延後のH形鋼を冷却する方法であって、
前記H形鋼のフランジ部の外面および内面を、水冷機構により水量密度1.0m/min/m以上で冷却し、
前記水冷機構が設けられた水冷帯において、エアブロー機構により前記H形鋼のウェブ上面に向けて圧縮空気を吹き付けるとともに
前記H形鋼の搬送方向における前記水冷帯の前後において、エア−水切機構により前記H形鋼のウェブ上面にエアを吹き付け、さらに、前記エア−水切機構よりも前記水冷帯に近い位置で、水−水切機構により前記H形鋼のウェブ上面およびフランジ内面に水を吹き付けて、前記H形鋼のウェブ上面の水を前記H形鋼の外側に排出することを特徴とする、H形鋼の冷却方法。
A method of cooling H-beams after hot finish rolling.
The outer and inner surfaces of the flange portion of the H-section steel are cooled by a water cooling mechanism at a water density of 1.0 m 3 / min / m 2 or more.
Wherein the water cooling system is cooled band provided, Rutotomoni blowing compressed air towards the web upper surface of the H-beam by air blow mechanism,
Before and after the water-cooled zone in the transport direction of the H-shaped steel, air is blown onto the upper surface of the web of the H-shaped steel by an air-draining mechanism, and water is further blown at a position closer to the water-cooled zone than the air-draining mechanism. -Cooling of the H-section steel, characterized in that water is sprayed onto the upper surface of the web and the inner surface of the flange of the H-section steel by a drainage mechanism, and the water on the upper surface of the web of the H-section steel is discharged to the outside of the H-section steel. Method.
JP2016255154A 2016-12-28 2016-12-28 Cooling device and cooling method for H-section steel Active JP6816504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016255154A JP6816504B2 (en) 2016-12-28 2016-12-28 Cooling device and cooling method for H-section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016255154A JP6816504B2 (en) 2016-12-28 2016-12-28 Cooling device and cooling method for H-section steel

Publications (2)

Publication Number Publication Date
JP2018103248A JP2018103248A (en) 2018-07-05
JP6816504B2 true JP6816504B2 (en) 2021-01-20

Family

ID=62784342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255154A Active JP6816504B2 (en) 2016-12-28 2016-12-28 Cooling device and cooling method for H-section steel

Country Status (1)

Country Link
JP (1) JP6816504B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020157364A (en) * 2019-03-27 2020-10-01 Jfeスチール株式会社 Manufacturing method for h section steel
CN114260316B (en) * 2020-09-16 2024-04-05 宝山钢铁股份有限公司 Driven roller of second intermediate roller of Sendzimir mill
CN115418559B (en) * 2022-07-20 2023-11-07 山东钢铁股份有限公司 High-strength and high-toughness hot rolled H-shaped steel for building and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218931B2 (en) * 1995-06-30 2001-10-15 日本鋼管株式会社 Method and apparatus for cooling section steel
JPH10272509A (en) * 1997-03-31 1998-10-13 Sumitomo Metal Ind Ltd Method for cooling wide flange shape and cooling device
JP3546300B2 (en) * 2000-02-08 2004-07-21 Jfeスチール株式会社 H-beam cooling method

Also Published As

Publication number Publication date
JP2018103248A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6816504B2 (en) Cooling device and cooling method for H-section steel
KR101421976B1 (en) Method for hot-rolling a slab and hot-rolling mill
KR101335815B1 (en) Cooling device for hot-rolled steel sheets
JP2016193446A (en) Method for cooling hot rolled steel sheet and cooling device
KR20180109864A (en) Continuous flow cooling apparatus and metal strip cooling method
KR101490663B1 (en) Dewatering device and dewatering method for cooling water for hot rolled steel sheet
KR101279387B1 (en) Method and device for cooling a leader or band of a metal strand in a hot-rolling mill
JP2010253529A (en) Secondary cooling method for continuous casting
JP5673530B2 (en) Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method
JP6816772B2 (en) Cooling device and cooling method for hot-rolled steel sheet
CN105073293A (en) Thick steel plate manufacturing method and manufacturing device
KR20180098542A (en) Process and apparatus for cooling metal substrates
WO2016006402A1 (en) Water deflecting device and water deflecting method for steel plate cooling water in hot rolling step
JP2008100253A (en) Cast slab draining device in continuous casting machine
JP2012051013A (en) Draining device and draining method for hot steel plate
JP4398898B2 (en) Thick steel plate cooling device and method
JP6515362B1 (en) Steel material cooling device and method
JP5910597B2 (en) Hot rolled steel sheet cooling device
KR102638366B1 (en) Secondary cooling method and device for continuous casting cast steel
JP5609199B2 (en) Secondary cooling method in continuous casting
WO2018073973A1 (en) Method and apparatus for cooling hot-rolled steel sheet
JP6179691B1 (en) Method and apparatus for cooling hot-rolled steel sheet
JP2009119512A (en) Method and apparatus for cooling flange of t-shape
JP5556073B2 (en) Secondary cooling method in continuous casting
JP3867073B2 (en) Cooling apparatus and cooling method for hot rolled steel sheet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R151 Written notification of patent or utility model registration

Ref document number: 6816504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151