JP6816496B2 - Electronics - Google Patents

Electronics Download PDF

Info

Publication number
JP6816496B2
JP6816496B2 JP2016245642A JP2016245642A JP6816496B2 JP 6816496 B2 JP6816496 B2 JP 6816496B2 JP 2016245642 A JP2016245642 A JP 2016245642A JP 2016245642 A JP2016245642 A JP 2016245642A JP 6816496 B2 JP6816496 B2 JP 6816496B2
Authority
JP
Japan
Prior art keywords
posture
working fluid
electronic device
normal operation
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016245642A
Other languages
Japanese (ja)
Other versions
JP2018101665A (en
Inventor
平澤 友康
友康 平澤
清正 加藤
清正 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016245642A priority Critical patent/JP6816496B2/en
Publication of JP2018101665A publication Critical patent/JP2018101665A/en
Application granted granted Critical
Publication of JP6816496B2 publication Critical patent/JP6816496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、電子機器に関する。 The present invention relates to electronic devices.

近年、電子機器において、発熱部からの熱による昇温を抑制する冷却手段として、小型で高効率のループ型ヒートパイプが用いられるようになってきている。 In recent years, in electronic devices, a small and highly efficient loop type heat pipe has been used as a cooling means for suppressing a temperature rise due to heat from a heat generating portion.

一般的に、ループ型ヒートパイプは、図7に示すように、外部から受熱して作動流体を液相から気相に蒸発させる蒸発部100と、外部に放熱して作動流体を気相から液相に凝縮させる凝縮部200と、蒸発部100から凝縮部200へ気相の作動流体を流通させる蒸気管300と、凝縮部200から蒸発部100へ液相の作動流体を流通させる液管400とを備える(特許文献1、特許文献2参照)。 Generally, in a loop type heat pipe, as shown in FIG. 7, an evaporation unit 100 that receives heat from the outside and evaporates the working fluid from the liquid phase to the gas phase, and a heat radiation to the outside to dissipate the working fluid from the gas phase to the liquid phase. A condensing unit 200 for condensing into a phase, a steam pipe 300 for flowing the working fluid of the gas phase from the evaporating part 100 to the condensing part 200, and a liquid pipe 400 for flowing the working fluid for the liquid phase from the condensing part 200 to the evaporating part 100. (See Patent Document 1 and Patent Document 2).

蒸発部100の内部には、多孔質材で構成されたウィック500が収容されており、液管400から送られた液相の作動流体がウィック500の微細な孔を毛細管現象によって浸透してウィック500の外表面に染み出す。このとき、蒸発部100と接触する発熱部(冷却対象)からの熱が蒸発部100の筐体を通してウィック500に伝達されることにより、その熱で作動流体が蒸発して気相に変化する。気相に変化した作動流体は蒸気管300を通って凝縮部200へ移動する。凝縮部200においては、作動流体の熱が外部に放出されることで、作動流体の温度が低下し液相へと変化する。そして、液相に変化した作動流体は液管400を通って蒸発部100へ移動し、再びウィック500内に浸透する。このように、ループ型ヒートパイプにおいては、作動流体の相変化を利用し、作動流体を循環させ、蒸発部で吸収した熱を凝縮部へと移送することで、冷却対象を効率良く冷却することができる。 A wick 500 made of a porous material is housed inside the evaporation unit 100, and the working fluid of the liquid phase sent from the liquid tube 400 permeates the fine pores of the wick 500 by capillary action and wicks. Exudes to the outer surface of 500. At this time, the heat from the heat generating unit (cooling target) in contact with the evaporation unit 100 is transferred to the wick 500 through the housing of the evaporation unit 100, and the working fluid evaporates due to the heat and changes to the gas phase. The working fluid changed to the gas phase moves to the condensing portion 200 through the steam pipe 300. In the condensing unit 200, the heat of the working fluid is released to the outside, so that the temperature of the working fluid is lowered and the phase changes to the liquid phase. Then, the working fluid changed to the liquid phase moves to the evaporation unit 100 through the liquid pipe 400 and permeates into the wick 500 again. In this way, in the loop type heat pipe, the cooling target is efficiently cooled by utilizing the phase change of the working fluid, circulating the working fluid, and transferring the heat absorbed by the evaporation part to the condensing part. Can be done.

ところで、ループ型ヒートパイプが効率良く冷却性能を発揮するには、ウィックの外側空間から、蒸気管、凝縮部の中間部辺りまでは気相の作動流体が満たされ、凝縮部の中間部辺りから、液管、ウィックの内側空間までは液相の作動流体が満たされていて、ウィックの外表面付近にて気液界面が形成された状態となっていることが望ましい。 By the way, in order for the loop type heat pipe to exhibit cooling performance efficiently, the working fluid of the gas phase is filled from the outer space of the wick to the steam pipe and the middle part of the condensing part, and from the middle part of the condensing part. It is desirable that the working fluid of the liquid phase is filled up to the liquid pipe and the inner space of the wick, and a gas-liquid interface is formed near the outer surface of the wick.

しかしながら、停止中又は待機中の電子機器の姿勢によっては、重力などの影響でループ型ヒートパイプ内の作動流体の気相と液相の分布が上記のような望ましい状態ではなくなることがある。 However, depending on the posture of the electronic device that is stopped or on standby, the distribution of the gas phase and the liquid phase of the working fluid in the loop type heat pipe may not be in the desired state as described above due to the influence of gravity or the like.

例えば、停止中又は待機中に蒸発部が凝縮部よりも上方に位置するような姿勢で電子機器が長時間放置されると、蒸気管内にも液相の作動流体が流入することで、蒸発部内の液相の作動流体の液面が下がり、ウィックの上部に液相の作動流体が浸透せず乾いた状態になることがある。このような場合、ウィックにおける作動流体の液相から気相への変化量が少なくなるうえ、ウィックの乾いている領域から液管側へ気相の作動流体の一部が逆流することで、所望の冷却性能を発揮することができなくなる。 For example, if the electronic device is left for a long time in a posture in which the evaporating part is located above the condensing part during stop or standby, the working fluid of the liquid phase also flows into the vapor pipe, so that the evaporating part is inside the evaporating part. The liquid level of the working fluid of the liquid phase may drop, and the working fluid of the liquid phase may not penetrate to the upper part of the wick and become dry. In such a case, the amount of change of the working fluid from the liquid phase to the gas phase in the wick is reduced, and a part of the working fluid of the gas phase flows back from the dry region of the wick to the liquid pipe side, which is desirable. It becomes impossible to demonstrate the cooling performance of.

その後、発熱部からの熱によって蒸気管の液相の作動流体が気相の作動流体に押し出されることで、蒸発部内の液相の作動流体の液面が上がってウィック全体に液相の作動流体が浸透するため、冷却性能は回復するが、冷却性能が低下したときに、万が一、発熱部の温度が許容温度上限値を超えると故障してしまう虞がある。また、このような電子機器の姿勢に起因する冷却性能の低下を見込んで、性能的に余裕のあるループ型ヒートパイプを選定すると、コストが増大したり、サイズが大きくなったりするといった課題が新たに生じる。 After that, the working fluid of the liquid phase of the steam pipe is pushed out to the working fluid of the gas phase by the heat from the heat generating part, so that the liquid level of the working fluid of the liquid phase in the evaporating part rises and the working fluid of the liquid phase spreads over the entire wick. However, when the cooling performance deteriorates, if the temperature of the heat generating portion exceeds the allowable temperature upper limit value, there is a risk of failure. In addition, if a loop type heat pipe with sufficient performance is selected in anticipation of a decrease in cooling performance due to the attitude of such electronic equipment, there are new problems such as increased cost and larger size. Occurs in.

上記課題を解決するため、本発明は、発熱部と、前記発熱部から熱を吸収して作動流体を液相から気相へと蒸発させる蒸発部と、前記蒸発部から導かれた気相の作動流体を液相へと凝縮させる凝縮部とを有し、凝縮した液相の作動流体を前記蒸発部に還流させるループ型ヒートパイプと、を備える電子機器であって、電子機器本体の姿勢を検知する姿勢検知手段を備え、停止状態又は待機状態から稼動する際に、前記姿勢検知手段によって検知された姿勢に基づいて、通常の稼動を行う前に通常の稼動時よりも前記発熱部の発熱量が小さくなるように稼動する低発熱稼動を行うか否かを決定することを特徴とする。 In order to solve the above problems, the present invention comprises a heat generating portion, an evaporating portion that absorbs heat from the generating portion and evaporates the working fluid from the liquid phase to the gas phase, and a gas phase derived from the evaporating portion. An electronic device having a condensing portion for condensing the working fluid into the liquid phase and a loop type heat pipe for returning the working fluid of the condensed liquid phase to the evaporating portion, wherein the posture of the electronic device main body is changed. It is equipped with a posture detecting means for detecting, and when operating from a stopped state or a standby state, the heat generated by the heat generating portion is higher than that during normal operation before normal operation is performed based on the posture detected by the posture detecting means. It is characterized in that it is determined whether or not to perform a low heat generation operation that operates so that the amount is small.

本発明によれば、電子機器本体の姿勢を検知することで、姿勢に起因するループ型ヒートパイプの冷却性能の低下状態を判断することができる。そして、ループ型ヒートパイプが本来の冷却性能を発揮できないと想定される姿勢であった場合は、通常の稼動を行う前に低発熱稼動を行うことで、発熱部の温度が許容温度上限値を超えるのを防止できる。一方、ループ型ヒートパイプが本来の冷却性能を発揮できると想定される姿勢であった場合は、低発熱稼動を行わずに通常の稼動を行うことで、使用者は機能的又は性能的に不必要な制約を受けることがなく電子機器を使用することができる。また、このように、ループ型ヒートパイプの冷却性能の低下状態に合せて電子機器の発熱部の発熱量を小さくすることで、性能的に余裕のあるループ型ヒートパイプを搭載しなくても電子機器の温度を許容範囲内に維持することができ、低コスト化や小型化に有利な構成となる。 According to the present invention, by detecting the posture of the main body of the electronic device, it is possible to determine the state of deterioration of the cooling performance of the loop type heat pipe due to the posture. Then, if the loop type heat pipe is in a posture where it is assumed that the original cooling performance cannot be exhibited, the temperature of the heat generating part is set to the allowable upper limit value by performing low heat generation operation before performing normal operation. It can be prevented from exceeding. On the other hand, if the loop type heat pipe is in a posture that is expected to be able to exhibit its original cooling performance, the user is functionally or performance-impaired by performing normal operation without performing low heat generation operation. Electronic devices can be used without the necessary restrictions. Further, in this way, by reducing the amount of heat generated by the heat generating portion of the electronic device according to the state in which the cooling performance of the loop type heat pipe is deteriorated, the electronic device can be used without mounting the loop type heat pipe having a sufficient performance. The temperature of the equipment can be maintained within the permissible range, which is advantageous for cost reduction and miniaturization.

ループ型ヒートパイプの一例を示す図である。It is a figure which shows an example of a loop type heat pipe. ループ型ヒートパイプにおける蒸発部の断面図である。It is sectional drawing of the evaporation part in a loop type heat pipe. 本発明に係る電子機器の実施の一形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the electronic device which concerns on this invention. 本実施形態に係る電子機器の制御フローを示す図である。It is a figure which shows the control flow of the electronic device which concerns on this embodiment. 稼動開始後の発熱部の発熱量と温度上昇との関係を示す図である。It is a figure which shows the relationship between the calorific value of the heat generating part and the temperature rise after the start of operation. 他の制御フローを示す図である。It is a figure which shows the other control flow. 一般的なループ型ヒートパイプの構成を示す図である。It is a figure which shows the structure of a general loop type heat pipe.

以下、添付の図面に基づき、本発明について説明する。なお、本発明を説明するための各図面において、同一の機能もしくは形状を有する部材や構成部品等の構成要素については、判別が可能な限り同一符号を付すことにより一度説明した後ではその説明を省略する。 Hereinafter, the present invention will be described with reference to the accompanying drawings. In each drawing for explaining the present invention, components such as members and components having the same function or shape will be described once by giving the same reference numerals as much as possible. Omit.

まず、電子機器に搭載されるループ型ヒートパイプについて説明する。 First, a loop type heat pipe mounted on an electronic device will be described.

図1は、ループ型ヒートパイプの一例を示す図である。
図1に示すループ型ヒートパイプ1は、内部に作動流体が封入されており、発熱部から熱を吸収して作動流体を液相から気相へと蒸発させる蒸発部2と、蒸発部2から導かれた気相の作動流体を液相へと凝縮させる凝縮部3と、蒸発部2から凝縮部3へ気相の作動流体を流通させる蒸気管4と、凝縮部3から蒸発部2へ液相の作動流体を流通させる液管5とを備える。作動流体としては、水、アルコール、アセトン、代替フロン等の凝縮性流体が用いられる。
FIG. 1 is a diagram showing an example of a loop type heat pipe.
In the loop type heat pipe 1 shown in FIG. 1, a working fluid is sealed inside, and the working fluid is absorbed from the heat generating part to evaporate the working fluid from the liquid phase to the vapor phase, and the evaporating part 2 The condensing unit 3 that condenses the guided working fluid of the gas phase into the liquid phase, the vapor pipe 4 that circulates the working fluid of the gas phase from the evaporating unit 2 to the condensing unit 3, and the liquid from the condensing unit 3 to the evaporating unit 2. A liquid pipe 5 for passing a phase working fluid is provided. As the working fluid, a condensable fluid such as water, alcohol, acetone, or CFC substitute is used.

蒸発部2は、銅や銅合金等の熱伝導性の良好な金属で形成された円筒状部材であり、内部にウィック6が収容された受熱部7と、液相の作動流体を貯留するリザーバ部8とで構成されている。受熱部7には蒸気管4の一端部が連結され、リザーバ部8には液管5の一端部が連結されている。また、蒸気管4と液管5のぞれぞれの他端部は凝縮部3に連結されている。凝縮部3は、作動流体が通過する複数の偏平管9と、各偏平管9の外部に設けられた多数のフィン10とを有する。各偏平管9は、両端部において互いに連結され、連結された一方の端部に蒸気管4が連結され、連結された他方の端部に液管5が連結されている。 The evaporation unit 2 is a cylindrical member formed of a metal having good thermal conductivity such as copper or a copper alloy, and has a heat receiving unit 7 in which the wick 6 is housed and a reservoir for storing the working fluid of the liquid phase. It is composed of a part 8. One end of the steam pipe 4 is connected to the heat receiving portion 7, and one end of the liquid pipe 5 is connected to the reservoir portion 8. Further, the other ends of the steam pipe 4 and the liquid pipe 5 are connected to the condensing part 3. The condensing portion 3 has a plurality of flat tubes 9 through which the working fluid passes, and a large number of fins 10 provided outside each flat tube 9. Each flat pipe 9 is connected to each other at both ends, a vapor pipe 4 is connected to one end of the connection, and a liquid pipe 5 is connected to the other end of the connection.

ウィック6は、金属、樹脂、セラミック等の多孔質材から成る中空部材であり、蒸気管4側が閉塞され、リザーバ部8側は開放されている。また、ウィック6の外周面には、蒸気管4側の端部からリザーバ部8側の端部の手前までの領域に渡って長手方向に延びる複数のグルーブ(溝)11が設けられている。図2に示すように、複数のグルーブ11は、ウィック6の周方向に渡って等間隔に設けられている。また、ウィック6のグルーブ11が設けられていない部分の外径は、蒸発部2の筐体の内径よりも若干大きい寸法に設定されている。このため、蒸発部2内にウィック6が収容された状態では、グルーブ11が設けられていない部分においてウィック6が蒸発部2の筐体の内周面に対して密着する。このように、ウィック6が蒸発部2の筐体に対して密着していることで、発熱部の熱が蒸発部2の筐体を通してウィック6に効率良く伝達される。また、ウィック6は、液相と気相とを分離して気相の作動流体がリザーバ部8に逆流するのを防止する機能も果たす。一方、グルーブ11が設けられた部分においては、蒸発部2の筐体との間に空間部が形成されている。 The wick 6 is a hollow member made of a porous material such as metal, resin, or ceramic, and the steam pipe 4 side is closed and the reservoir portion 8 side is open. Further, on the outer peripheral surface of the wick 6, a plurality of grooves 11 extending in the longitudinal direction are provided over a region from the end on the steam pipe 4 side to the front of the end on the reservoir 8 side. As shown in FIG. 2, the plurality of grooves 11 are provided at equal intervals in the circumferential direction of the wick 6. Further, the outer diameter of the portion of the wick 6 where the groove 11 is not provided is set to a size slightly larger than the inner diameter of the housing of the evaporation portion 2. Therefore, when the wick 6 is housed in the evaporation unit 2, the wick 6 comes into close contact with the inner peripheral surface of the housing of the evaporation unit 2 in the portion where the groove 11 is not provided. In this way, since the wick 6 is in close contact with the housing of the evaporation unit 2, the heat of the heat generating portion is efficiently transferred to the wick 6 through the housing of the evaporation unit 2. The wick 6 also has a function of separating the liquid phase and the gas phase to prevent the working fluid of the gas phase from flowing back into the reservoir portion 8. On the other hand, in the portion where the groove 11 is provided, a space portion is formed between the groove 11 and the housing of the evaporation portion 2.

図1に示すループ型ヒートパイプにおいては、リザーバ部8内に貯留される液相の作動流体が毛細管現象によってウィック6内に浸透する。また、この毛細管現象によって、ウィック6は液相の作動流体を凝縮部3から蒸発部2へ送るポンプの役割も果たす。ウィック6内に浸透した液相の作動流体に対して発熱部からの熱が蒸発部2の筐体を通して伝達されると、その熱で作動流体が蒸発して気相に変化する。蒸発して気相に変化した作動流体はグルーブ11を通って蒸気管4へと送られる。そして、気相の作動流体は蒸気管4を通って凝縮部3へと送られる。凝縮部3においては、各偏平管9を通過する作動流体の熱がフィン10を介して外部に放出されることで、作動流体の温度が低下して凝縮し、気相から液相へと変化する。液相に変化した作動流体は液管5を通って蒸発部2へ移動し、毛細管現象によってリザーバ部8から再びウィック6内に浸透する。このような作動流体の循環が行われることで、発熱部の熱が連続して外部に放出され、冷却対象が冷却される。 In the loop type heat pipe shown in FIG. 1, the working fluid of the liquid phase stored in the reservoir portion 8 permeates into the wick 6 due to the capillary phenomenon. In addition, due to this capillary phenomenon, the wick 6 also serves as a pump that sends the working fluid of the liquid phase from the condensing unit 3 to the evaporation unit 2. When the heat from the heat generating portion is transferred to the working fluid of the liquid phase that has permeated into the wick 6 through the housing of the evaporating portion 2, the working fluid evaporates due to the heat and changes to the gas phase. The working fluid that evaporates and changes to the gas phase is sent to the steam pipe 4 through the groove 11. Then, the working fluid of the gas phase is sent to the condensing portion 3 through the steam pipe 4. In the condensing portion 3, the heat of the working fluid passing through each flat tube 9 is released to the outside through the fins 10, so that the temperature of the working fluid is lowered and condensed, and the phase changes from the gas phase to the liquid phase. To do. The working fluid changed to the liquid phase moves to the evaporation section 2 through the liquid tube 5, and permeates into the wick 6 again from the reservoir section 8 due to the capillary phenomenon. By performing such circulation of the working fluid, the heat of the heat generating portion is continuously released to the outside, and the cooling target is cooled.

次に、本発明の実施の一形態に係る電子機器について説明する。 Next, the electronic device according to the embodiment of the present invention will be described.

図3は、本実施形態に係る電子機器の概略構成図である。
図3に示すように、本実施形態に係る電子機器20は、その機能を発揮するために稼動したときに発熱する発熱部21を備える。ここで、電子機器20は、例えば携帯電話(一般的にスマートフォンと称されるものも含む。)やノートパソコン等の携帯端末機器、プロジェクタ等の投射表示装置等であり、発熱部21は、例えばノートパソコンに搭載されるCPU(Central Processing Unit)、携帯電話に搭載されるバッテリ、プロジェクタに搭載される光源等である。
FIG. 3 is a schematic configuration diagram of an electronic device according to the present embodiment.
As shown in FIG. 3, the electronic device 20 according to the present embodiment includes a heat generating portion 21 that generates heat when it is operated in order to exert its function. Here, the electronic device 20 is, for example, a mobile terminal device such as a mobile phone (including a device generally referred to as a smartphone), a laptop computer, a projection display device such as a projector, and the heat generating unit 21 is, for example. These include a CPU (Central Processing Unit) mounted on a notebook computer, a battery mounted on a mobile phone, and a light source mounted on a projector.

また、本実施形態に係る電子機器20は、発熱部21を冷却する冷却手段として、上記ループ型ヒートパイプ1を備える。ループ型ヒートパイプ1の蒸発部2は、その受熱部7が発熱部21に対して接触するように配置されており、発熱部21から熱を受熱部7によって吸収する。 Further, the electronic device 20 according to the present embodiment includes the loop type heat pipe 1 as a cooling means for cooling the heat generating portion 21. The evaporation section 2 of the loop type heat pipe 1 is arranged so that the heat receiving section 7 is in contact with the heat generating section 21, and the heat receiving section 7 absorbs heat from the heat generating section 21.

さらに、本実施形態に係る電子機器20は、電子機器本体の姿勢を検知する姿勢検知手段としての姿勢センサ22と、姿勢センサ22によって検知された姿勢に基づいて発熱部21の発熱量を変更して稼動状態を制御する制御部23とを備える。姿勢センサ22としては、例えばジャイロセンサ(角速度センサ)や加速度センサ等が用いられる。 Further, the electronic device 20 according to the present embodiment changes the heat generation amount of the heat generating portion 21 based on the posture sensor 22 as a posture detecting means for detecting the posture of the electronic device main body and the posture detected by the posture sensor 22. A control unit 23 that controls the operating state is provided. As the attitude sensor 22, for example, a gyro sensor (angular velocity sensor), an acceleration sensor, or the like is used.

続いて、本実施形態に係る電子機器の制御について説明する。 Subsequently, the control of the electronic device according to the present embodiment will be described.

図4に、本実施形態に係る電子機器の制御フローを示す。
図4に示すように、電子機器を起動させると、まず、姿勢センサによる姿勢検知が行われる。次いで、制御部が、検知された姿勢に基づいて、すぐに通常の稼動を行うか、通常の稼動を行う前に通常の稼動時よりも発熱部の発熱量が小さくなるように稼動する低発熱稼動を行うかを決定し、さらに、低発熱稼動を行うことを決定した場合は、検知された姿勢に基づいて、低発熱稼動を行う時間と低発熱稼動時における発熱部の発熱量とを決定する。具体的には、下記表1に示す判定テーブル基づいて発熱量と低発熱稼動時間とを決定する。
FIG. 4 shows a control flow of the electronic device according to the present embodiment.
As shown in FIG. 4, when the electronic device is activated, the posture is first detected by the posture sensor. Next, based on the detected posture, the control unit immediately performs normal operation, or operates so that the amount of heat generated by the heat generating unit is smaller than that during normal operation before performing normal operation. When it is decided whether to perform the operation and further, when it is decided to perform the low heat generation operation, the time for the low heat generation operation and the heat generation amount of the heat generating part during the low heat generation operation are determined based on the detected posture. To do. Specifically, the calorific value and the low heat generation operating time are determined based on the determination table shown in Table 1 below.

本実施形態では、電子機器を様々な姿勢で稼動させた場合のループ型ヒートパイプの冷却性能を実験によって検証し、表1に示すように、電子機器の姿勢を、蒸発部が凝縮部と同等の高さにある姿勢(姿勢1)と、蒸発部が凝縮部より上方にある姿勢(姿勢2)と、蒸発部が凝縮部より下方にある姿勢(姿勢3)の、3パターンに分類した。 In the present embodiment, the cooling performance of the loop type heat pipe when the electronic device is operated in various postures is verified by experiments, and as shown in Table 1, the posture of the electronic device is the same as that of the condensing part in the evaporation part. It was classified into three patterns: a posture at the height of (posture 1), a posture in which the evaporation part is above the condensing part (posture 2), and a posture in which the evaporation part is below the condensing part (posture 3).

蒸発部と凝縮部との高さが同等である姿勢(姿勢1)の場合は、ループ型ヒートパイプ内の気相と液相の分布が望ましい状態となっていると想定される場合である。詳しくは、ウィックの外側空間(グルーブ)から、蒸気管、凝縮部(偏平管)の中間部辺りまでは気相の作動流体が満たされ、凝縮部(偏平管)の中間部辺りから、液管、リザーバ部、ウィックの内側空間までは液相の作動流体が満たされていて、ウィックの外表面付近にて気液界面が形成されている状態である。この場合、ループ型ヒートパイプの冷却性能の低下は生じないので、表1に示すように、発熱部の発熱量を通常稼動時と同じ発熱量Qで、低発熱稼動を行う時間を0に設定している。従って、姿勢1の場合は、低発熱稼動を行わずに、すぐに通常の稼動を行う。 In the case of the posture (posture 1) in which the heights of the evaporation part and the condensation part are the same, it is assumed that the distribution of the gas phase and the liquid phase in the loop type heat pipe is in a desirable state. Specifically, the working fluid of the gas phase is filled from the outer space (groove) of the wick to the middle part of the steam pipe and the condensing part (flat pipe), and the liquid pipe from the middle part of the condensing part (flat pipe). The reservoir and the inner space of the wick are filled with the working fluid of the liquid phase, and a gas-liquid interface is formed near the outer surface of the wick. In this case, the cooling performance of the loop type heat pipe does not deteriorate. Therefore, as shown in Table 1, the heat generation amount of the heat generating part is set to the same heat generation amount Q as in the normal operation, and the time for performing the low heat generation operation is set to 0. doing. Therefore, in the case of the posture 1, the normal operation is immediately performed without performing the low heat generation operation.

これに対して、蒸発部が凝縮部より上方にある姿勢(姿勢2)の場合は、ループ型ヒートパイプ内の気相と液相の分布が上記のような望ましい状態とはなっていないと想定される場合である。このため、ループ型ヒートパイプの冷却性能が回復するまで低発熱稼動を行う。この場合は、表1に示すように、発熱部の発熱量を通常稼動時の発熱量Qの50%に設定し、低発熱稼動時間を所定時間Tに設定している。ここで、設定された発熱量(0.5×Q)は、姿勢2の場合でも発熱部の温度が許容温度上限値を超えない温度であり、設定された所定時間(T)は、その後に発熱部の温度が低下して一定値に収束するまでの時間(ループ型ヒートパイプの冷却性能が回復するまでの時間)である(図5参照)。 On the other hand, in the case where the evaporation part is above the condensation part (posture 2), it is assumed that the distribution of the gas phase and the liquid phase in the loop type heat pipe is not in the desired state as described above. If it is done. Therefore, low heat generation operation is performed until the cooling performance of the loop type heat pipe is restored. In this case, as shown in Table 1, the calorific value of the heat generating portion is set to 50% of the calorific value Q during normal operation, and the low heat generation operating time is set to the predetermined time T. Here, the set calorific value (0.5 × Q) is a temperature at which the temperature of the heat generating portion does not exceed the allowable temperature upper limit even in the posture 2, and the set predetermined time (T) is thereafter. This is the time required for the temperature of the heat generating portion to decrease and converge to a constant value (time required for the cooling performance of the loop type heat pipe to recover) (see FIG. 5).

また、蒸発部が凝縮部より下方にある姿勢(姿勢3)の場合も、ループ型ヒートパイプ内の気相と液相の分布が上記のような望ましい状態とはなっていないと想定される場合である。よって、この場合も、ループ型ヒートパイプの冷却性能が回復するまで低発熱稼動を行う。ただし、上記姿勢2の場合とは状況が異なるので、発熱部の発熱量と低発熱稼動時間は姿勢2の場合とは別に設定している。この場合、表1に示すように、発熱部の発熱量を通常稼動時の発熱量Qの20%に設定し、低発熱稼動時間を上記所定時間Tの50%に設定している。なお、ここでの発熱部の発熱量(0.2×Q)は、姿勢3の場合でも発熱部の温度が許容温度上限値を超えない温度であり、設定された時間(0.5×T)は、その後に発熱部の温度が低下して一定値に収束するまでの時間(ループ型ヒートパイプの冷却性能が回復するまでの時間)である。 Further, even when the evaporation portion is in the posture below the condensing portion (posture 3), it is assumed that the distribution of the gas phase and the liquid phase in the loop type heat pipe is not in the desired state as described above. Is. Therefore, in this case as well, low heat generation operation is performed until the cooling performance of the loop type heat pipe is restored. However, since the situation is different from that of the posture 2, the heat generation amount of the heat generating portion and the low heat generation operating time are set separately from those of the posture 2. In this case, as shown in Table 1, the calorific value of the heat generating portion is set to 20% of the calorific value Q during normal operation, and the low heat generation operating time is set to 50% of the predetermined time T. The calorific value (0.2 × Q) of the heat generating portion here is a temperature at which the temperature of the heat generating portion does not exceed the allowable temperature upper limit value even in the posture 3, and the set time (0.5 × T). ) Is the time until the temperature of the heat generating portion drops and converges to a constant value (time until the cooling performance of the loop type heat pipe is restored).

そして、制御部は、表1に示す判定テーブルを参照し、検知された姿勢に対応する稼動条件を選択して電子機器を稼動させる。すなわち、図4に示すように、姿勢1の場合は、低発熱稼動を行わずに通常の稼動を行い、姿勢2の場合は、通常稼動時の発熱量Qの50%の発熱量で所定時間Tだけ低発熱稼動を行い、姿勢3の場合は、通常稼動時の発熱量Qの20%の発熱量で所定時間Tの50%の時間だけ低発熱稼動を行う。 Then, the control unit refers to the determination table shown in Table 1, selects the operating conditions corresponding to the detected posture, and operates the electronic device. That is, as shown in FIG. 4, in the case of the posture 1, the normal operation is performed without performing the low heat generation operation, and in the case of the posture 2, the heat generation amount is 50% of the heat generation amount Q in the normal operation for a predetermined time. Low heat generation operation is performed only for T, and in the case of posture 3, low heat generation operation is performed for 50% of the predetermined time T with a heat generation amount of 20% of the heat generation amount Q during normal operation.

姿勢2の場合と姿勢3の場合は、それぞれ低発熱稼動を行った後、通常の稼動に切り換えられる。この時点では、ループ型ヒートパイプの冷却性能が回復していると想定されるため、通常の稼動に切り換えられても発熱部が許容温度の上限値を超えることなく稼動を継続できる。 In the case of posture 2 and the case of posture 3, each operation is switched to normal operation after performing low heat generation operation. At this point, it is assumed that the cooling performance of the loop type heat pipe has recovered, so that the operation can be continued without the heat generating portion exceeding the upper limit of the allowable temperature even if the operation is switched to the normal operation.

その後、各場合において稼動を継続する場合は通常の稼動が継続され、待機指示があった場合は待機状態となり、停止指示があった場合は稼動を停止させる。また、待機状態となった後、稼動指示があった場合は、上述のフローと同様に、再び姿勢検知を行って、検知された姿勢に基づいて稼動条件を決定して稼動を開始する。また、停止後に、稼動指示があった場合も、同様に再び姿勢検知を行って、検知された姿勢に基づいて稼動条件を決定して稼動を開始する。さらに、待機後に停止状態となってから稼動指示があった場合も同様である。 After that, in each case, when the operation is continued, the normal operation is continued, when the standby instruction is given, the operation is changed to the standby state, and when the stop instruction is given, the operation is stopped. Further, when an operation instruction is given after the standby state, the attitude is detected again, the operation condition is determined based on the detected attitude, and the operation is started, as in the above-mentioned flow. Further, even if an operation instruction is given after the stop, the attitude is detected again in the same manner, the operation condition is determined based on the detected attitude, and the operation is started. Further, the same applies when an operation instruction is given after the machine is stopped after waiting.

以上のように、本実施形態に係る電子機器においては、電子機器本体の姿勢によって冷却性能が変動するループ型ヒートパイプを備えていても、稼動を開始する際に電子機器本体の姿勢を検知することで、ループ型ヒートパイプが本来の冷却性能を発揮できる状態にあるか否かを判断することができる。そして、検知された姿勢に基づいてループ型ヒートパイプが本来の冷却性能を発揮できないと判断された場合は、冷却性能が回復すると想定される時間まで、通常の稼動時よりも発熱部の発熱量を小さくする低発熱稼動を行うことで、発熱部の温度が許容温度上限値を超えるのを防止できる。このように、本実施形態に係る電子機器によれば、ループ型ヒートパイプの冷却性能の低下状態に合せて電子機器の発熱部の発熱量を小さくすることで、性能的に余裕のあるループ型ヒートパイプを搭載しなくても電子機器の温度を許容範囲内に維持することができ、低コスト化や小型化に有利な構成となる。 As described above, even if the electronic device according to the present embodiment is provided with a loop type heat pipe whose cooling performance varies depending on the posture of the electronic device main body, the posture of the electronic device main body is detected when the operation is started. This makes it possible to determine whether or not the loop type heat pipe is in a state where it can exhibit its original cooling performance. If it is determined that the loop type heat pipe cannot exhibit its original cooling performance based on the detected posture, the amount of heat generated by the heat generating part is higher than that during normal operation until the time when the cooling performance is expected to recover. It is possible to prevent the temperature of the heat generating portion from exceeding the allowable temperature upper limit value by performing the low heat generation operation. As described above, according to the electronic device according to the present embodiment, the loop type has a margin in performance by reducing the amount of heat generated by the heat generating portion of the electronic device according to the state in which the cooling performance of the loop type heat pipe is lowered. The temperature of the electronic device can be maintained within the permissible range without mounting a heat pipe, which is advantageous for cost reduction and miniaturization.

一方、本来の冷却性能を発揮できると判断された場合は、低発熱稼動を行わずに通常の稼動を行うことで、使用者は機能的又は性能的に不必要な制約を受けることがなく電子機器を使用することができる。 On the other hand, if it is judged that the original cooling performance can be exhibited, by performing normal operation without performing low heat generation operation, the user is not subject to unnecessary restrictions in terms of functionality or performance, and the electronic device is used. Equipment can be used.

さらに、本実施形態のように、検知された姿勢の状態(種類)に基づいて、低発熱稼動時における発熱部の発熱量を変更することで、ループ型ヒートパイプの冷却性能低下の度合いに応じて発熱量を設定することができる。すなわち、ループ型ヒートパイプの冷却性能がより低いと想定される場合は、発熱部の発熱量をより小さくなるように設定することで、発熱部の温度が許容温度上限値を超えるのを確実に防止することができる。反対に、冷却性能の低下があまり見込まれない場合は、発熱部の発熱量を必要以上に抑えないことで、電子機器が機能的又は性能的に不必要な制約を受けるのを回避することができる。 Further, as in the present embodiment, by changing the amount of heat generated by the heat generating portion during low heat generation operation based on the detected posture state (type), the cooling performance of the loop type heat pipe is deteriorated according to the degree of deterioration. The amount of heat generated can be set. That is, when it is assumed that the cooling performance of the loop type heat pipe is lower, the heat generation amount of the heat generating part is set to be smaller to ensure that the temperature of the heat generating part exceeds the allowable temperature upper limit value. Can be prevented. On the other hand, if the cooling performance is not expected to deteriorate so much, it is possible to prevent the electronic device from being subject to unnecessary functional or performance restrictions by not suppressing the amount of heat generated by the heat generating part more than necessary. it can.

また、本実施形態のように、検知された姿勢の状態(種類)に基づいて、低発熱稼動を行う時間を変更することで、低発熱稼動時間が必要以上に長くなることを防止できるため、早い段階で電子機器が通常の機能又は性能を発揮できる状態にすることができる。 Further, as in the present embodiment, by changing the time for performing the low heat generation operation based on the detected posture state (type), it is possible to prevent the low heat generation operation time from becoming longer than necessary. At an early stage, the electronic device can be put into a state where it can perform its normal function or performance.

図6に、上記電子機器の他の制御フローを示す。
図6に示す制御フローは、上述の図4に示す制御フローと比べて、図6中の破線枠で囲んだ部分が追加されている。それ以外は、図4に示す制御フローとほぼ同様である。以下、上述の制御フローとは異なる部分を中心に説明する。
FIG. 6 shows another control flow of the electronic device.
In the control flow shown in FIG. 6, a portion surrounded by a broken line frame in FIG. 6 is added as compared with the control flow shown in FIG. 4 described above. Other than that, the control flow is almost the same as that shown in FIG. Hereinafter, a part different from the above-mentioned control flow will be mainly described.

図6に示す制御フローにおいては、電子機器が待機状態となった場合、タイマーなどにより待機時間の計測が開始される。そして、当該待機状態が予め設定された時間継続した場合は低発熱稼動を行う(図6中の破線枠参照)。この低発熱稼動は、待機状態となってから、その後、通常の稼動へ移行するための指示又は停止指示があるまでの待機中に行われるものであり、上記のような停止状態又は待機状態から通常の稼動へ移行する際に選択的に行われる通常稼動移行時の低発熱稼動とは異なる。また、この待機中の低発熱稼動は所定の時間間隔で行われ、通常の稼動へ移行するための指示又は停止指示があるまで、低発熱稼動を行う状態と低発熱稼動を行わない状態とが繰り返される。 In the control flow shown in FIG. 6, when the electronic device is in the standby state, the measurement of the standby time is started by a timer or the like. Then, when the standby state continues for a preset time, low heat generation operation is performed (see the broken line frame in FIG. 6). This low heat generation operation is performed during the standby state from the standby state to the subsequent instruction for shifting to the normal operation or the stop instruction, and from the stop state or the standby state as described above. It is different from the low heat generation operation during the normal operation transition, which is selectively performed when the transition to the normal operation. In addition, this low heat generation operation during standby is performed at predetermined time intervals, and until there is an instruction to shift to normal operation or a stop instruction, there are a state in which low heat generation operation is performed and a state in which low heat generation operation is not performed. Repeated.

一方、待機状態が予め設定された時間継続しなかった場合、すなわち、待機状態が予め設定された時間継続する前に、通常の稼動へ移行するための指示又は停止指示があった場合は、上記のような待機中の低発熱稼動を行わずに、通常の稼動への移行動作又は停止動作を開始する。また、待機中の低発熱稼動モードを実行中に通常の稼動へ移行するための指示又は停止指示があった場合は、当該低発熱稼動モードを中止して、通常の稼動への移行動作又は停止動作を開始する。 On the other hand, if the standby state does not continue for a preset time, that is, if there is an instruction or a stop instruction for shifting to normal operation before the standby state continues for a preset time, the above The transition operation to the normal operation or the stop operation is started without performing the low heat generation operation during standby as in. In addition, if there is an instruction or stop instruction to shift to normal operation during execution of the standby low heat generation operation mode, the low heat generation operation mode is stopped and the transition operation or stop to normal operation is performed. Start operation.

このように、図6に示す制御フローでは、待機状態が予め設定された時間継続した場合は、待機中に低発熱稼動を行うことで、待機中の電子機器の姿勢に起因するループ型ヒートパイプの冷却性能の低下を抑制することができる。これにより、待機中であってもループ型ヒートパイプの冷却性能を十分に維持しておくことができるので、その後、通常の稼動へ移行するための指示があった場合は、低発熱稼動を行うことなくすぐに通常の稼動に移行することができる。 As described above, in the control flow shown in FIG. 6, when the standby state continues for a preset time, the loop type heat pipe is caused by the posture of the electronic device in standby by performing low heat generation operation during standby. It is possible to suppress the deterioration of the cooling performance of. As a result, the cooling performance of the loop type heat pipe can be sufficiently maintained even during standby, and thereafter, when instructed to shift to normal operation, low heat generation operation is performed. It is possible to immediately shift to normal operation without any need.

なお、待機中の低発熱稼動における発熱部の発熱量と低発熱稼動時間は、予め設定された1つの発熱量と時間であってもよいし、起動時に検知された電子機器の姿勢に基づいて個別に設定されてもよい。また、図6に示す制御フローにおいて、停止状態から稼動(起動)する場合は、図4に示す制御フローと同様のフローであるので詳しい説明は省略する。 The heat generation amount and the low heat generation operation time of the heat generating portion in the low heat generation operation during standby may be one preset heat generation amount and time, or based on the posture of the electronic device detected at the time of startup. It may be set individually. Further, in the control flow shown in FIG. 6, when operating (starting) from the stopped state, the flow is the same as the control flow shown in FIG. 4, and detailed description thereof will be omitted.

以上、本発明に係る電子機器の実施形態について説明したが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。 Although the embodiment of the electronic device according to the present invention has been described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

上述の実施形態では、電子機器の姿勢を3パターンに分類して制御を行っているが、低発熱稼動を行う必要のない姿勢と、低発熱稼動を行う必要のある姿勢の、2パターンに分類して制御してもよい。また、姿勢をさらに細かく分類して、4パターン以上の姿勢に基づいて稼動条件を設定してもよい。 In the above-described embodiment, the postures of the electronic devices are classified into three patterns for control, but the postures are classified into two patterns, a posture that does not require low heat generation operation and a posture that requires low heat generation operation. May be controlled. Further, the postures may be further classified and the operating conditions may be set based on four or more patterns of postures.

また、上述の実施形態の説明では、姿勢が変化する電子機器として、携帯電話やノートパソコン等の携帯端末機器、プロジェクタ等の投射表示装置等を例に挙げたが、本発明に係る電子機器はこれらの電子機器に限らず車両や飛行機等に搭載される電子機器であってもよい。これらの電子機器も自動車や飛行機の姿勢変化に伴って姿勢が変化するので、本発明を適用可能することで、上述の作用・効果を期待できる。 Further, in the above description of the embodiment, as the electronic device whose posture changes, a mobile terminal device such as a mobile phone or a notebook computer, a projection display device such as a projector, or the like is given as an example, but the electronic device according to the present invention is used. Not limited to these electronic devices, it may be an electronic device mounted on a vehicle, an airplane, or the like. Since the postures of these electronic devices also change as the postures of automobiles and airplanes change, the above-mentioned actions and effects can be expected by applying the present invention.

1 ループ型ヒートパイプ
2 蒸発部
3 凝縮部
4 蒸気管
5 液管
6 ウィック
20 電子機器
21 発熱部
22 姿勢センサ(姿勢検知手段)
23 制御部
1 Loop type heat pipe 2 Evaporation part 3 Condensation part 4 Steam pipe 5 Liquid pipe 6 Wick 20 Electronic equipment 21 Heat generation part 22 Posture sensor (posture detection means)
23 Control unit

特開2003−148882号公報Japanese Unexamined Patent Publication No. 2003-148882 特許第5720338号公報Japanese Patent No. 5720338

Claims (1)

発熱部と、
前記発熱部から熱を吸収して作動流体を液相から気相へと蒸発させる蒸発部と、前記蒸発部から導かれた気相の作動流体を液相へと凝縮させる凝縮部とを有し、凝縮した液相の作動流体を前記蒸発部に還流させるループ型ヒートパイプと、
を備える電子機器であって、
電子機器本体の姿勢を検知する姿勢検知手段を備え、
稼動が完全に停止した停止状態から稼動する際は、前記姿勢検知手段によって検知された姿勢に基づいて、通常の稼動を行う前に通常の稼動時よりも前記発熱部の発熱量が小さくなるように稼動する低発熱稼動を行うか否かを決定し、
稼動が完全に停止せずに再稼動又は停止の指示を待つ待機状態となって当該待機状態が予め設定された時間継続した場合は、その後、通常の稼動へ移行するための指示又は停止指示があるまで所定の時間間隔で前記低発熱稼動を行い、
前記待機状態から通常の稼動へ移行するための指示があった場合は、前記低発熱稼動を行わずに通常の稼動を行うことを特徴とする電子機器。
The heat generating part and
It has an evaporating part that absorbs heat from the heat generating part and evaporates the working fluid from the liquid phase to the gas phase, and a condensing part that condenses the working fluid of the gas phase derived from the evaporating part into the liquid phase. , A loop type heat pipe that recirculates the condensed working fluid of the liquid phase to the evaporation part,
It is an electronic device equipped with
Equipped with posture detection means to detect the posture of the electronic device body
When operating from a stopped state in which the operation is completely stopped, the amount of heat generated by the heat generating portion is reduced as compared with the normal operation before the normal operation is performed, based on the posture detected by the attitude detecting means. Decide whether or not to perform low heat generation operation
If the operation does not stop completely and waits for an instruction to restart or stop, and the standby state continues for a preset time, then an instruction or stop instruction to shift to normal operation is issued. The low heat generation operation is performed at predetermined time intervals until a certain time is reached.
An electronic device characterized in that, when instructed to shift from the standby state to normal operation, normal operation is performed without performing the low heat generation operation .
JP2016245642A 2016-12-19 2016-12-19 Electronics Active JP6816496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245642A JP6816496B2 (en) 2016-12-19 2016-12-19 Electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245642A JP6816496B2 (en) 2016-12-19 2016-12-19 Electronics

Publications (2)

Publication Number Publication Date
JP2018101665A JP2018101665A (en) 2018-06-28
JP6816496B2 true JP6816496B2 (en) 2021-01-20

Family

ID=62715532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245642A Active JP6816496B2 (en) 2016-12-19 2016-12-19 Electronics

Country Status (1)

Country Link
JP (1) JP6816496B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828438B2 (en) * 2017-01-06 2021-02-10 セイコーエプソン株式会社 Heat transport equipment and projector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116178A (en) * 1978-03-01 1979-09-10 Sony Corp Protective unit for semiconductor element
JPH0627961Y2 (en) * 1988-07-12 1994-07-27 菊水電子工業株式会社 Overheat protector
JP5720338B2 (en) * 2011-03-17 2015-05-20 富士通株式会社 Loop type heat pipe

Also Published As

Publication number Publication date
JP2018101665A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP5061911B2 (en) Loop heat pipe and electronic equipment
US20120132402A1 (en) Loop heat pipe and startup method for the same
JP6079343B2 (en) Cooling system
US7007746B2 (en) Circulative cooling apparatus
JP6351632B2 (en) Heat transport device using two-phase fluid
KR20230026360A (en) Scalable thermal ride-through for immersion cooled server systems
JP2010107153A (en) Evaporator and circulation type cooling device using the same
JP2012067981A (en) Cooling system
JP2006313056A (en) Heat pipe, and exhaust heat recovery system using the same
JP6816496B2 (en) Electronics
JP5471119B2 (en) Loop heat pipe, electronic device
JP5768514B2 (en) Loop heat pipe and electronic device equipped with the heat pipe
Lu et al. Experimental study on a novel loop heat pipe with both flat evaporator and boiling pool
TW202110522A (en) Capture and reclamation of fluid from 2-phase heat transfer thermal management systems
JP2013160420A (en) Self-excited vibration heat pipe
JPWO2011061952A1 (en) Loop heat pipe system and information processing apparatus
JP5304479B2 (en) Heat transport device, electronic equipment
JP5696466B2 (en) Loop heat pipe and information processing apparatus
JP5321716B2 (en) Loop heat pipe and electronic equipment
JP2014052110A (en) Heat exchanger and electronic equipment
JP5136376B2 (en) Loop heat pipe and electronic equipment
JP6960651B2 (en) Electronics, heat exchangers and evaporators
JP6095095B2 (en) Heat exchangers and electronics
JP6424734B2 (en) Two-phase cooling system
JP6605918B2 (en) heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R151 Written notification of patent or utility model registration

Ref document number: 6816496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151