JP6810883B2 - Iron-carbon sintered member and its manufacturing method - Google Patents

Iron-carbon sintered member and its manufacturing method Download PDF

Info

Publication number
JP6810883B2
JP6810883B2 JP2015061169A JP2015061169A JP6810883B2 JP 6810883 B2 JP6810883 B2 JP 6810883B2 JP 2015061169 A JP2015061169 A JP 2015061169A JP 2015061169 A JP2015061169 A JP 2015061169A JP 6810883 B2 JP6810883 B2 JP 6810883B2
Authority
JP
Japan
Prior art keywords
iron
carbon
based sintered
powder
sintered member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015061169A
Other languages
Japanese (ja)
Other versions
JP2016180156A (en
Inventor
哲 小野寺
哲 小野寺
勝彦 上田
勝彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015061169A priority Critical patent/JP6810883B2/en
Publication of JP2016180156A publication Critical patent/JP2016180156A/en
Application granted granted Critical
Publication of JP6810883B2 publication Critical patent/JP6810883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、押型のキャビティに原料粉末を充填し、上下パンチで圧縮成形して得られた圧粉体を焼結する焼結部材およびその製造方法に係り、特に原料粉末として鉄粉末に黒鉛粉末を添加した原料粉末を用いた鉄−炭素系焼結部材およびその製造方法に関する。 The present invention relates to a sintering member that sinters the green compact obtained by filling the cavity of the stamp with the raw material powder and compression molding with an upper and lower punch, and a method for producing the same. In particular, the raw material powder is iron powder and graphite powder. The present invention relates to an iron-carbon-based sintered member using the raw material powder to which the above is added and a method for producing the same.

粉末冶金法による焼結機械部品の製造は、図3に示すように、押型10の型孔11と下パンチ20とで形成されるキャビティに原料粉末を充填した後、原料粉末を下パンチ20と上パンチ30とで圧縮成形して成形体を作製(いわゆる押型法)し、得られた成形体を焼結炉中で加熱して焼結することで行われる。このような押型法は、焼結機械部品をニアネットシェイプに造形することができることに加え、一度押型を作製すれば同形状の製品を多量に生産可能であり、製造コストが低廉であるという利点を有していることから、種々の分野で利用されている。特に構造用機械部品は、他の製法に比して安価であることから粉末冶金法による焼結機械部品の適用が進んでいる。 In the production of the sintered machine parts by the powder metallurgy method, as shown in FIG. 3, the raw material powder is filled in the cavity formed by the mold hole 11 of the stamp 10 and the lower punch 20, and then the raw material powder is referred to as the lower punch 20. This is performed by compression molding with the upper punch 30 to prepare a molded product (so-called stamping method), and heating the obtained molded product in a sintering furnace to sinter it. Such an embossing method has the advantages that in addition to being able to form sintered machine parts into a near-net shape, it is possible to produce a large number of products of the same shape once the embossing is made, and the manufacturing cost is low. Because it has, it is used in various fields. In particular, structural machine parts are cheaper than other manufacturing methods, so the application of sintered machine parts by the powder metallurgy method is advancing.

構造用機械部品のための焼結材料としては、原料粉末として鉄粉末に銅粉末と黒鉛粉末を添加し混合した混合粉末を用い、これを圧縮成形して得られた圧粉体を銅の融点以上で焼結した、JIS規格のZ2550に規定されたSMF4種の鉄−銅−炭素系の焼結材料(Fe−0.2〜1質量%Cu−1〜5質量%C)が最も広く適用されている。 As the sintering material for structural machine parts, a mixed powder obtained by adding copper powder and graphite powder to iron powder as a raw material powder is used, and the green compact obtained by compression molding this is the melting point of copper. The SMF4 type iron-copper-carbon-based sintered material (Fe-0.2 to 1% by mass Cu-1 to 5% by mass C) specified in JIS standard Z2550, which has been sintered above, is most widely applied. Has been done.

鉄−銅−炭素系の焼結材料においては、焼結時に溶融して発生する銅が焼結を促進すること、銅は鉄への拡散が早いため、液相となって鉄粉末の表面を覆う銅が鉄基地に均一に拡散して鉄基地の固溶強化を行うこと、および鉄基地に固溶した銅が鉄基地の焼入れ性を向上させる結果、焼結工程の冷却過程において、析出するパーライトを微細のものとして鉄基地の強化に働くことから、気孔を有する鉄系焼結材料であっても、炭素鋼と同等の機械的強さが得られる。(非特許文献1,第59頁の図37等)このため、構造用機械部品への適用が広く行われている。(非特許文献2,第237頁等) In iron-copper-carbon based sintered materials, copper generated by melting during sintering promotes sintering, and copper diffuses quickly into iron, so it becomes a liquid phase and the surface of iron powder is exposed. As a result of the copper covering being uniformly diffused to the iron base to strengthen the solid solution of the iron base and the copper dissolved in the iron base improving the hardenability of the iron base, it precipitates in the cooling process of the sintering process. Since pearlite is made fine and works to strengthen the iron matrix, even an iron-based sintered material having pores can obtain mechanical strength equivalent to that of carbon steel. (Non-Patent Document 1, FIG. 37 on page 59, etc.) Therefore, it is widely applied to structural mechanical parts. (Non-Patent Document 2, page 237, etc.)

これに比して、JIS規格のZ2550に規定されたSMF3種の鉄−炭素系の焼結材料(Fe−0.2〜0.8質量%C)は、SMF4種の鉄−銅−炭素系の焼結材料に比して、機械的強さが低い。(非特許文献1,第56頁の図33等)このため、機械的強さが比較的要求されない部品への適用にとどまっている。 In comparison, the SMF3 type iron-carbon sintered material (Fe-0.2 to 0.8% by mass C) specified in JIS standard Z2550 is SMF4 type iron-copper-carbon type. The mechanical strength is low compared to the sintered material of. (Non-patent Document 1, 56 p. 33 etc.) Therefore, has remained for application to mechanical strength is relatively requested not part products.

著者:若林▲光▼尚「新版 粉末冶金」株式会社技術書院、昭和51年6月10日発行Author: Wakabayashi ▲ Hikari ▼ "New Edition Powder Metallurgy", Technical Shoin Co., Ltd., published on June 10, 1976 社団法人粉体粉末冶金協会編「粉体粉末冶金便覧」2010年11月10日発行"Powder Powder Metallurgy Handbook" edited by Japan Powder Metallurgy Association, published on November 10, 2010

構造用機械部品への適用が広がっている鉄−銅−炭素系焼結材料ではあるが、近年銅地金のコストが上昇しており、原料コストも年々増加する傾向にある。この一方で、構造用機械部品としてはよりいっそうのコストの削減が求められており、原料コストの増加分を製造コストに上乗せすることが難しくなっている。 Although it is an iron-copper-carbon-based sintered material whose application is expanding to structural machine parts, the cost of copper bullion has been rising in recent years, and the raw material cost tends to increase year by year. On the other hand, further cost reduction is required for structural mechanical parts, and it is difficult to add the increase in raw material cost to the manufacturing cost.

このため原料として銅を用いない安価な鉄−炭素系焼結材料を用いた鉄−炭素系焼結部材を、鉄−銅−炭素系焼結材料よりも高強度にすることができれば、従来の鉄−銅−炭素系焼結材料に替えて、高強度な鉄−炭素系焼結部材を適用することにより構造用機械部品を安価に提供できることとなる。 Therefore, if an iron-carbon-based sintered member using an inexpensive iron-carbon-based sintered material that does not use copper as a raw material can be made stronger than the iron-copper-carbon-based sintered material, a conventional method can be used. By applying a high-strength iron-carbon-based sintered member instead of the iron-copper-carbon-based sintered material, structural mechanical parts can be provided at low cost.

このことから、本発明は、原料として銅を用いない安価な鉄−炭素系焼結材料を用いて、鉄−銅−炭素系焼結材料より高強度とした鉄−炭素系焼結部材を提供することを目的とする。また、このような鉄−炭素系焼結部材をより安価に製造できる製造方法を提供することを目的とする。 From this, the present invention provides an iron-carbon-based sintered member having higher strength than the iron-copper-carbon-based sintered material by using an inexpensive iron-carbon-based sintered material that does not use copper as a raw material. The purpose is to do. Another object of the present invention is to provide a manufacturing method capable of manufacturing such an iron-carbon-based sintered member at a lower cost.

本発明者らは、鋭意検討を行ったところ、鉄−炭素系焼結材料の密度を増加させると、ある密度領域以上では鉄−銅−炭素系焼結材料よりも、むしろ鉄−炭素系焼結材料のほうが機械的強さが高くなるという、従来から予測できなかった知見を得た。 As a result of diligent studies, the present inventors have conducted diligent studies, and found that when the density of the iron-carbon-based sintered material is increased, iron-carbon-based sintering is performed rather than iron-copper-carbon-based sintered material above a certain density region. We have obtained a previously unpredictable finding that the mechanical strength of the binder is higher.

本発明の鉄−炭素系焼結部材は、この知見に基づくものであり、具体的に、C:0.2〜1.0質量%、残部:Feおよび不可避不純物からなり、焼結体密度が7.4Mg/m以上、7.53Mg/m 以下、鉄−炭素系焼結部材の基地組織がマルテンサイトであり、引張り強さが1300MPa以上であることを特徴とする。 The iron-carbon-based sintered member of the present invention is based on this finding, and specifically comprises C: 0.2 to 1.0% by mass, the balance: Fe and unavoidable impurities, and the sintered body density is high. It is characterized in that the base structure of the iron-carbon-based sintered member is martensite and the tensile strength is 1300 MPa or more at 7.4 Mg / m 3 or more and 7.53 Mg / m 3 or less .

本発明の鉄−炭素系焼結部材においては、前記鉄−炭素系焼結部材が有する気孔の内、最大気孔径が50μm以下であることが好ましい。また、鉄基地をマルテンサイトとすると、引張り強さが1400MPa以上となるためより好ましい。
In the iron-carbon-based sintered member of the present invention, the maximum pore diameter of the pores of the iron -carbon- based sintered member is preferably 50 μm or less. Further, when the iron base is martensite, the tensile strength is 1400 MPa or more, which is more preferable.

また、本発明の鉄−炭素系焼結部材の製造方法は、上記の鉄−炭素系焼結部材の好ましい製造方法に関するものであり、具体的に、黒鉛粉末:0.3〜1.2質量%と、残部が鉄粉末からなる原料粉末を、押型のキャビティに充填し、上下パンチで圧縮成形して7.45Mg/m以上の密度の圧粉体を得る成形工程と、前記圧粉体を1000〜1300℃で焼結して焼結体を得る焼結工程と、を備えることを特徴とする。 Further, the method for producing the iron-carbon-based sintered member of the present invention relates to the above-mentioned preferable method for producing the iron-carbon-based sintered member, and specifically, graphite powder: 0.3 to 1.2 mass. % And the raw material powder whose balance is iron powder is filled in the cavity of the stamping die and compression-molded with an upper and lower punch to obtain a green compact having a density of 7.45 Mg / m 3 or more. It is characterized by comprising a sintering step of obtaining a sintered body by sintering the powder at 1000 to 1300 ° C.

上記の鉄−炭素系焼結部材の製造方法においては、前記押型のキャビティが成形潤滑剤で被覆されていることが好ましく、前記原料粉末が0.3質量%以下の成形潤滑剤を含むことが好ましい。 In the method for producing an iron-carbon-based sintered member, it is preferable that the cavity of the stamping die is coated with a molding lubricant, and the raw material powder contains 0.3% by mass or less of the molding lubricant. preferable.

本発明の鉄−炭素系焼結部材は、近年地金のコストが増加している銅を含まず、原料コストが安価であるとともに、鉄−銅−炭素系焼結部材よりも機械的強さが高いことから、鉄−銅−炭素系焼結部材に替わる安価な鉄−炭素系焼結部材を提供することができるという格別な効果を奏する。 The iron-carbon-based sintered member of the present invention does not contain copper, for which the cost of bare metal has been increasing in recent years, the raw material cost is low, and the mechanical strength is higher than that of the iron-copper-carbon-based sintered member. Therefore, it is possible to provide an inexpensive iron-carbon-based sintered member in place of the iron-copper-carbon-based sintered member, which is a special effect.

鉄−炭素系焼結部材と鉄−銅−炭素系焼結部材の焼結体密度と引張り強さの関係を示すグラフである。It is a graph which shows the relationship between the sintered body density, and the tensile strength of an iron-carbon-based sintered member and an iron-copper-carbon-based sintered member. 焼結体密度が7.5Mg/mの鉄−炭素系焼結部材と鉄−銅−炭素系焼結部材の気孔分布を示す図面代用写真である。It is a drawing substitute photograph which shows the pore distribution of the iron-carbon-based sintered member and the iron-copper-carbon-based sintered member having a sintered body density of 7.5 Mg / m 3 . 押型法による成形工程における成形装置の概要を示す図である。It is a figure which shows the outline of the molding apparatus in the molding process by a stamping method.

図1は、C:0.8質量%および残部がFeおよび不可避不純物からなる鉄−炭素系焼結部材の熱処理体と、C:0.8質量%、Cu:1.5質量%および残部がFeおよび不可避不純物からなる鉄−銅−炭素系焼結部材の熱処理体の焼結体密度と引張り強さの関係を示すグラフである。 1, C: 0.8 wt% and iron balance being Fe and No避不pure product - and heat treatment of the carbon-based sintered member, C: 0.8 mass%, Cu: 1.5 wt% and It is a graph which shows the relationship between the sintered body density and the tensile strength of the heat-treated body of the iron-copper-carbon system sintered member whose balance is made of Fe and unavoidable impurities.

図1より、鉄−炭素系焼結部材と鉄−銅−炭素系焼結部材ともに、焼結体密度の増加にしたがい引張り強さが増加する傾向を示している。また、一般の構造用機械部品で用いられる焼結体密度6.8〜7.2Mg/mの領域では、銅による焼結促進および基地の固溶強化の影響により、鉄−銅−炭素系焼結部材の機械的強さの方が高くなっている。従来は、この密度領域による結果から、鉄−銅−炭素系焼結部材のほうが機械的強さが高いとして、各種構造用部品への鉄−銅−炭素系焼結部材の適用を行っていた。 From FIG. 1, both the iron-carbon-based sintered member and the iron-copper-carbon-based sintered member tend to increase the tensile strength as the sintered body density increases. Further, in the region of the sintered body density of 6.8 to 7.2 Mg / m 3 used in general structural machine parts, the iron-copper-carbon system is affected by the effect of promoting sintering by copper and strengthening the solid solution of the matrix. The mechanical strength of the sintered member is higher. Conventionally, based on the results of this density region, the iron-copper-carbon-based sintered member is considered to have higher mechanical strength, and the iron-copper-carbon-based sintered member has been applied to various structural parts. ..

ただし、鉄−炭素系焼結部材の密度増加による引張り強さ増加の割合は、鉄−銅−炭素系焼結部材の密度増加による引張り強さ増加の割合よりも大きく、焼結体密度が7.4Mg/m以上の領域では、鉄−炭素系焼結部材の引張り強さが、鉄−銅−炭素系焼結部材の引張り強さよりも逆に高くなっている。この結果は、焼結体密度を7.4Mg/m以上とすれば、鉄−炭素系焼結部材は、鉄−銅−炭素系焼結部材よりも高強度とすることができるということである。このことから、本発明の鉄−炭素系焼結部材においては、焼結体密度を7.4Mg/m以上、好ましくは7.5Mg/m以上とする。 However, the rate of increase in tensile strength due to the increase in the density of the iron-carbon-based sintered member is larger than the rate of increase in tensile strength due to the increase in the density of the iron-copper-carbon-based sintered member, and the sintered body density is 7. In the region of .4 Mg / m 3 or more, the tensile strength of the iron-carbon-based sintered member is conversely higher than the tensile strength of the iron-copper-carbon-based sintered member. The result is that if the sintered body density is 7.4 Mg / m 3 or more, the iron-carbon-based sintered member can have a higher strength than the iron-copper-carbon-based sintered member. is there. For this reason, in the iron-carbon-based sintered member of the present invention, the sintered body density is set to 7.4 Mg / m 3 or more, preferably 7.5 Mg / m 3 or more.

この引張り強さの逆転現象について、本発明者らが検討したところ、気孔の形状が大きく影響していることが原因と考えた。すなわち、鉄粉末に黒鉛粉末と銅粉末を添加した混合粉末を原料粉末として用いて銅の融点以上の温度で焼結した鉄−銅−炭素系焼結部材は、焼結の過程において、銅が溶融して液相となって銅粉末が存在していた箇所が流出孔として残留する。このような粗大な気孔は形状が歪であり、焼結による球状化がし難いことから、引っ張り応力が働いた際に破壊の基点となり易い。このため、従来のような、気孔を多量に含む焼結体密度6.8〜7.2Mg/mの領域では、銅による焼結促進および基地の固溶強化の影響により引張り強さが高いが、焼結体密度が7.4Mg/m以上のような高密度領域においては、焼結促進および基地の固溶強化の影響よりも気孔の影響が大きくなって焼結体密度の増加に伴う引張り強さの増加の割合が小さくなっているものと考えられる。 When the present inventors examined this reversal phenomenon of tensile strength, it was considered that the cause was that the shape of the pores had a great influence. That is, the iron-copper-carbon-based sintered member sintered at a temperature equal to or higher than the melting point of copper using a mixed powder obtained by adding graphite powder and copper powder to iron powder as a raw material powder has copper in the sintering process. The portion where the copper powder was present remains as an outflow hole when it melts into a liquid phase. Since such coarse pores have a distorted shape and are difficult to be spheroidized by sintering, they tend to be a starting point of fracture when tensile stress is applied. Therefore, in the conventional region of the sintered body density of 6.8 to 7.2 Mg / m 3 containing a large amount of pores, the tensile strength is high due to the influence of the promotion of sintering by copper and the solid solution strengthening of the matrix. However, in a high-density region where the sintered body density is 7.4 Mg / m 3 or more, the effect of pores becomes greater than the effect of promoting sintering and strengthening the solid solution of the matrix, resulting in an increase in the sintered body density. It is considered that the rate of increase in tensile strength that accompanies it is small.

これに対して、鉄粉末に黒鉛粉末を添加した混合粉末を原料粉末として用いて焼結した鉄−炭素系焼結部材は、焼結促進および基地の固溶強化の作用は有さないものの、焼結体密度が7.4Mg/m以上のような高密度領域においては、気孔量が少なく、気孔の大きさも小さくなり、銅粉末の流出孔のような粗大な気孔を含まないことから、引張り強さが鉄−銅−炭素系焼結部材より高いものとなると考えられる。 On the other hand, the iron-carbon-based sintered member sintered by using a mixed powder obtained by adding graphite powder to iron powder as a raw material powder does not have the effects of promoting sintering and strengthening the solid solution of the matrix. In a high-density region where the sintered body density is 7.4 Mg / m 3 or more, the amount of pores is small, the size of the pores is also small, and coarse pores such as outflow pores of copper powder are not included. It is considered that the tensile strength is higher than that of the iron-copper-carbon-based sintered member.

図2に、焼結体密度が7.5Mg/mの鉄−炭素系焼結部材と鉄−銅−炭素系焼結部材の気孔分布を示す。鉄−銅−炭素系焼結部材は、銅粉末の存在していた箇所と思われる粗大な気孔が認められるとともに、粗大な気孔は異形状となっており、応力が集中して破壊が進行し易い形状となっている。その一方で、鉄−炭素系焼結部材の気孔は小さいものばかりであり、また大きさが小さいため球状化が進行して、応力が集中し難い形状となっている。 FIG. 2 shows the pore distribution of the iron-carbon-based sintered member and the iron-copper-carbon-based sintered member having a sintered body density of 7.5 Mg / m 3 . In the iron-copper-carbon-based sintered member, coarse pores that are thought to have existed in the copper powder were observed, and the coarse pores had an irregular shape, and stress was concentrated and fracture proceeded. It has an easy shape. On the other hand, the pores of the iron-carbon-based sintered member are all small, and since the size is small, spheroidization progresses and the shape is such that stress is difficult to concentrate.

鉄−炭素系焼結部材は、焼結体密度が7.4Mg/m以上のような高密度領域において、気孔の大きさが最大粒径として50μm以下となる。このような小さい気孔は、焼結時に球状化が進行して比較的丸味を帯びた形状となって、応力が集中し難くなる。 The iron-carbon-based sintered member has a pore size of 50 μm or less as a maximum particle size in a high-density region such as a sintered body density of 7.4 Mg / m 3 or more. Such small pores become spheroidized during sintering and become a relatively rounded shape, making it difficult for stress to concentrate.

鉄−炭素系焼結部材は、C:0.2〜1.0質量%、残部:Feおよび不可避不純物からなるものとする。C量が0.2質量%に満たないと鉄基地の強化が不充分となり機械的強さが低いものとなる。その一方で、C量が1.0質量%を超えると、鉄基地中にセメンタイトが析出するようになって、鉄−炭素系焼結部材が脆くなるとともに、機械的強さも低下することとなる。鉄−炭素系焼結部材のC量は、0.3〜0.7質量%の範囲とすることが好ましい。 The iron-carbon sintered member shall consist of C: 0.2 to 1.0% by mass, the balance: Fe, and unavoidable impurities. If the amount of C is less than 0.2% by mass, the strengthening of the iron base becomes insufficient and the mechanical strength becomes low. On the other hand, when the amount of C exceeds 1.0% by mass, cementite is deposited in the iron matrix, the iron-carbon sintered member becomes brittle, and the mechanical strength also decreases. .. The amount of C in the iron-carbon sintered member is preferably in the range of 0.3 to 0.7% by mass.

鉄−炭素系焼結部材は、焼結体として用いてもよいが、焼入れ処理および焼き戻し処理を行って基地組織をマルテンサイトすると鉄基地の機械的強さが増加するため好ましい。鉄−炭素系焼結部材の焼結体密度を7.4Mg/m以上のような高密度領域とするとともに、鉄−炭素系焼結部材の鉄基地をマルテンサイトとすると、鉄−銅−炭素系焼結部材よりも高い1400MPa以上の引張り強さを示すようになる。 The iron-carbon-based sintered member may be used as a sintered body, but it is preferable to perform quenching treatment and tempering treatment to martensite the matrix structure because the mechanical strength of the iron matrix increases. If the sintered body density of the iron-carbon-based sintered member is in a high-density region such as 7.4 Mg / m 3 or more and the iron base of the iron-carbon-based sintered member is martensite, iron-copper- It exhibits a tensile strength of 1400 MPa or more, which is higher than that of the carbon-based sintered member.

上記のような焼結体密度が7.4Mg/m以上の鉄−炭素系焼結部材は、鉄粉末に黒鉛粉末:0.4〜1.2質量%を添加して混合した原料粉末を用いて、従来より知られている高密度手法を用いて、成形および焼結等を行うことにより得ることができる。例えば、原料粉末を予備成形して仮焼結した後再圧縮した再圧縮体を本焼結する2P−2S(Double Pressing−Double Sintering)法や、温間成形法等の手法により製造してもよい。しかしながら、2P−2S法は成形および焼結の手間が2倍となり製造コストが著しく増加することから好ましくなく、温間成形法は成形プレス装置およびホッパーやフィーダ等の原料粉末の充填装置等にも加熱装置が必要となりこれも製造コストの増加につながるため好ましくない。 For the iron-carbon-based sintered member having a sintered body density of 7.4 Mg / m 3 or more as described above, a raw material powder obtained by adding graphite powder: 0.4 to 1.2% by mass to iron powder and mixing it is used. It can be obtained by performing molding, sintering, or the like using a conventionally known high-density method. For example, even if it is manufactured by a method such as a 2P-2S (Double Pressing-Double Sintering) method in which the raw material powder is pre-molded, temporarily sintered, and then the recompressed body is main-sintered, or a warm forming method. Good. However, the 2P-2S method is not preferable because the labor for molding and sintering is doubled and the manufacturing cost is remarkably increased, and the warm molding method is also used for molding press devices and raw material powder filling devices such as hoppers and feeders. A heating device is required, which is also not preferable because it leads to an increase in manufacturing cost.

これに対し、鉄粉末に黒鉛粉末を添加し混合した原料粉末を、高圧力の下で冷間成形することで高い圧粉体密度の圧粉体を得る高圧成形法は、特別な追加の装置が不要で、従来より使用している成形プレス装置をそのまま使用できるため好ましい。具体的には、黒鉛粉末:0.4〜1.2質量%と、残部が鉄粉末からなる原料粉末を、押型のキャビティに充填し、上下パンチで圧縮成形して7.4Mg/m以上の密度の圧粉体とする。このような圧粉体密度するためには、従来の一般的な成形圧力よりもはるかに高い750〜1200MPaの成形圧力として成形することより得ることができる。得られた圧粉体は従来と同様に非酸化性ガス雰囲気中で1000〜1300℃で焼結する。このように成形および焼結を行うことで、C:0.2〜1.0質量%、残部:Feおよび不可避不純物からなり、焼結体密度が7.4Mg/m以上の鉄−炭素系焼結部材を得ることができる。 On the other hand, the high-pressure molding method in which a raw material powder obtained by adding graphite powder to iron powder and mixing it is cold-molded under high pressure to obtain a green compact having a high green compact density is a special additional device. This is preferable because the molding press device that has been used conventionally can be used as it is. Specifically, a raw material powder consisting of graphite powder: 0.4 to 1.2% by mass and iron powder as the balance is filled in the cavity of the stamping die and compression-molded with an upper and lower punch to 7.4 Mg / m 3 or more. The powder powder has a density of. Such a green compact density can be obtained by molding at a molding pressure of 750 to 1200 MPa, which is much higher than the conventional general molding pressure. The obtained green compact is sintered at 1000 to 1300 ° C. in a non-oxidizing gas atmosphere as in the conventional case. By molding and sintering in this way, it is composed of C: 0.2 to 1.0% by mass, the balance: Fe and unavoidable impurities, and is an iron-carbon system with a sintered body density of 7.4 Mg / m 3 or more. A sintered member can be obtained.

上記の成形工程においては、従来に比して高い成形圧力で圧粉成形を行うため、圧粉成形後の圧粉体を押型のキャビティから抜き出す際に大きな抜き出し圧力が必要となるとともに、抜き出し時に押型のキャビティに高密度の圧粉体が凝着して良好な抜き出しができなくなる虞がある。このため、上記の成形工程においては押型として通常用いられる超硬合金製押型ではなく、型孔表面に摩擦係数が小さいTiNやTiCN等を被覆した被覆押型や、セラミックス製押型やサーメット性押型を用いることが好ましい。 In the above molding step, since the compaction molding is performed at a higher molding pressure than in the conventional case, a large extraction pressure is required when extracting the green compact after the compaction molding from the cavity of the stamping die, and at the time of extraction. There is a risk that high-density green compact will adhere to the cavity of the stamp and it will not be possible to perform good extraction. Therefore, in the above molding process, instead of the cemented carbide stamp that is usually used as the stamp, a coated stamp in which the surface of the mold hole is coated with TiN, TiCN, etc. having a small friction coefficient, a ceramic stamp, or a cermet stamp is used. Is preferable.

通常の超硬合金製押型を用いる場合、押型の型孔表面に成形潤滑剤の被膜を形成した後、原料粉末を成形潤滑剤を被覆したキャビティに充填して圧粉成形を行うと、高密度に圧粉成形された圧粉体の抜き出し時に、型孔表面に被覆した成形潤滑剤が摩擦を低減して圧粉体の抜き出しが容易になるので好ましい。 When a normal cemented carbide stamp is used, a coating of molding lubricant is formed on the surface of the mold hole of the stamp, and then the raw material powder is filled in the cavity coated with the molding lubricant to perform compaction molding. At the time of extracting the green compact, the molding lubricant coated on the surface of the mold hole reduces friction and facilitates the extraction of the green compact, which is preferable.

原料粉末は、成形潤滑剤を多量に含むものとすると、成形潤滑剤が焼結工程における脱ろう時に分解して離脱するため得られる焼結体の密度がその分低下することとなる。また、脱ろう時に分解してガス化した成形潤滑剤が鉄粉末の表面を汚染して焼結の進行を阻害することとなる。この汚染は通常の6.8〜7.2Mg/mの領域の圧粉体の焼結時にはガス化した成形潤滑剤が抜けやすいためあまり問題とはなっていないが、本発明で用いる圧粉体は密度が7.4Mg/m以上と高い領域であることから、分解してガス化した成形潤滑剤が抜け出し難く、残留して焼結性を阻害することとなる。このため、鉄粉末に黒鉛粉末を添加混合した原料粉末には、成形潤滑剤を含有させないことが好ましい。 If the raw material powder contains a large amount of molding lubricant, the density of the sintered body obtained will be reduced by that amount because the molding lubricant is decomposed and separated at the time of dewaxing in the sintering step. Further, the molding lubricant decomposed and gasified at the time of dewaxing contaminates the surface of the iron powder and hinders the progress of sintering. This contamination is not a problem because the gasified molding lubricant is easily released when sintering the green compact in the normal region of 6.8 to 7.2 Mg / m 3 , but the green compact used in the present invention is not a problem. Since the body has a high density of 7.4 Mg / m 3 or more, the decomposed and gasified molding lubricant is difficult to escape, and remains to hinder the sinterability. Therefore, it is preferable that the raw material powder obtained by adding and mixing graphite powder to iron powder does not contain a molding lubricant.

その一方で、原料粉末に添加した成形潤滑剤は少量であれば、圧粉成形時に粉末どうしの滑りによる緻密化を促すため圧粉成形体の圧粉密度向上には寄与する。このため、成形潤滑剤の添加量が原料粉末に対して0.3質量%以下であれば成形潤滑剤を原料粉末に添加してもよい。なお、上記の粉末どうしの滑りによる緻密化促進の効果をよりよく得るためには成形潤滑剤の添加量は0.05質量%以上とすることが好ましい。 On the other hand, if the amount of the molding lubricant added to the raw material powder is small, it contributes to the improvement of the powder density of the powder compact because it promotes densification due to slippage between the powders during powder molding. Therefore, if the amount of the molding lubricant added is 0.3% by mass or less with respect to the raw material powder, the molding lubricant may be added to the raw material powder. The amount of the molding lubricant added is preferably 0.05% by mass or more in order to better obtain the effect of promoting densification by slipping between the powders.

[第1実施例]
鉄粉末として株式会社神戸製鋼所製アトメル250M、銅粉末として福田金属箔粉工業株式会社製CE−15、および黒鉛粉末としてAsbery Carbon社製SW1651を用意した。
[First Example]
Atmel 250M manufactured by Kobe Steel Co., Ltd. was prepared as an iron powder, CE-15 manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. as a copper powder, and SW1651 manufactured by Asbery Carbon Co., Ltd. as a graphite powder.

鉄−炭素系焼結部材として、鉄粉末に黒鉛粉末0.8質量%を添加し混合した原料を用い、型孔に成形潤滑剤としてステアリン酸亜鉛を塗布した金型を用いて、成形圧力を変えて、幅10mm、長さ60mm、高さ10mmの柱状に成形し、得られた成形体試料を非酸化性雰囲気中1120℃で焼結し、得られた焼結体試料について非酸化性雰囲気中850℃に加熱し、油中に焼入れを行った後、180℃で焼き戻しを行って、試料番号01〜09の焼結体試料を作製した。このようにして得られた試料番号01〜09の全体組成は、C:0.6質量%および残部がFeおよび不可避不純物(不純物:0.4質量%以下)であった。 As the iron-carbon-based sintered member, a raw material obtained by adding 0.8% by mass of graphite powder to iron powder and mixing it is used, and a mold in which zinc stearate is applied as a molding lubricant to the mold holes is used to control the molding pressure. Instead, it was molded into a columnar shape with a width of 10 mm, a length of 60 mm, and a height of 10 mm, and the obtained molded product sample was sintered in a non-oxidizing atmosphere at 1120 ° C., and the obtained sintered body sample was subjected to a non-oxidizing atmosphere. After heating to medium 850 ° C. and quenching in oil, tempering was performed at 180 ° C. to prepare sintered samples of sample numbers 01 to 09 . The overall composition of sample numbers 01 to 09 thus obtained was C: 0.6% by mass and the balance was Fe and unavoidable impurities (impurities: 0.4% by mass or less).

鉄−銅−炭素系焼結部材として、鉄粉末に銅粉末1.5質量%と黒鉛粉末0.8質量%を添加し混合した原料を用い、上記の鉄−炭素系焼結部材の場合と同様にして、試料番号1017の焼結体試料を作製した。このようにして得られた試料番号10〜17の全体組成は、Cu:1.5質量%、C:0.6質量%および残部がFeおよび不可避不純物(不純物:0.4質量%以下)であった。 As the iron-copper-carbon-based sintered member, a raw material obtained by adding 1.5% by mass of copper powder and 0.8% by mass of graphite powder to iron powder and mixing them is used, as in the case of the above-mentioned iron-carbon-based sintered member. In the same manner, sintered samples of sample numbers 10 to 17 were prepared. The overall composition of sample numbers 10 to 17 thus obtained is Cu: 1.5% by mass, C: 0.6% by mass, and the balance is Fe and unavoidable impurities (impurities: 0.4% by mass or less). there were.

上記の試料番号01〜17の成形体試料および焼結体試料について、JIS Z2505に規定の方法で密度を測定した。また、焼結体試料について、引っ張り試験片形状に機械加工を行い、引っ張り試験を行った。さらに、焼結体試料について切断し、断面を鏡面研磨して、光学顕微鏡で気孔の状態を観察し、最大粒径が50μm以上となる気孔の有無につき確認した。これらの結果について、表1に併せて記載した。 The densities of the molded product samples and sintered body samples of sample numbers 01 to 17 described above were measured by the method specified in JIS Z2505. In addition, the sintered body sample was machined into the shape of a tensile test piece, and a tensile test was performed. Further, the sintered sample was cut, the cross section was mirror-polished, and the state of pores was observed with an optical microscope to confirm the presence or absence of pores having a maximum particle size of 50 μm or more. These results are also shown in Table 1.

Figure 0006810883
Figure 0006810883

表1および図の結果より、鉄−炭素系焼結部材(試料番号01〜09)および鉄−銅−炭素系焼結部材(試料番号10〜17)の焼結体密度と引張り強さの関係を図1に示す。 From the results in Table 1 and the figure, the relationship between the sintered body density and the tensile strength of the iron-carbon-based sintered member (sample numbers 01 to 09) and the iron-copper-carbon-based sintered member (sample numbers 10 to 17). Is shown in FIG.

表1および図1より、鉄−炭素系焼結部材および鉄−銅−炭素系焼結部材とも、成形圧力を増加させると、成形体密度が増加するとともに焼結体密度が増加し、これにともない引張り強さも増加する傾向を示している。しかしながら、鉄−銅−炭素系焼結部材は、焼結体密度が7.2Mg/m以上では、密度の増加にともなう引張り強さの増加の割合が小さくなっている。これに対し、鉄−炭素系焼結部材は、焼結体密度が7.2Mg/mから7.4Mg/mにかけて急激に引張り強さが増加する傾向を示しており、焼結体密度が7.4Mg/m以上では、鉄−銅−炭素系焼結部材よりも高い引張り強さを示している。 From Table 1 and FIG. 1, for both the iron-carbon-based sintered member and the iron-copper-carbon-based sintered member, when the molding pressure is increased, the molded body density increases and the sintered body density increases. Along with this, the tensile strength also tends to increase. However, in the iron-copper-carbon-based sintered member, when the sintered body density is 7.2 Mg / m 3 or more, the rate of increase in tensile strength with the increase in density is small. On the other hand, the iron-carbon-based sintered member shows a tendency that the tensile strength increases sharply from 7.2 Mg / m 3 to 7.4 Mg / m 3 in the sintered body density. At 7.4 Mg / m 3 or more, the tensile strength is higher than that of the iron-copper-carbon-based sintered member.

図2に、焼結体密度がおよそ7.5Mg/mの鉄−炭素系焼結部材の試料(試料番号08)の気孔分布と鉄−銅−炭素系焼結部材の試料(試料番号17)の気孔分布を示す。 FIG. 2 shows the pore distribution of the iron-carbon sintered member sample (sample number 08 ) and the iron-copper-carbon sintered member sample (sample number 17 ) having a sintered body density of approximately 7.5 Mg / m 3. ) Shows the pore distribution.

図2より、鉄−銅−炭素系焼結部材の試料は、銅粉末の流出した痕跡と思われる50μm以上の粗大かつ異形状の気孔が認められる。その一方で、鉄−炭素系焼結部材の試料は、50μm以上の気孔は認められず、気孔の形状も丸味を帯びた円形に近い形状を示している。 From FIG. 2, in the sample of the iron-copper-carbon-based sintered member, coarse and irregularly shaped pores of 50 μm or more, which are considered to be traces of the outflow of copper powder, are observed. On the other hand, in the sample of the iron-carbon-based sintered member, no pores of 50 μm or more were observed, and the shape of the pores also showed a rounded circular shape.

これらのことから、鉄−銅−炭素系焼結部材は、焼結体密度が7.4Mg/m以上の高密度領域において、銅粉末の流出により形成される残留孔が破壊の基点となって、密度の向上の割に引張り強さが増加しないものと考えられる。これに対し、鉄−炭素系焼結部材は、7.4Mg/m以上の高密度領域において、気孔の球状化が促進されるため、応力が集中しにくくなって鉄−銅−炭素系焼結部材よりも高い引張り強さを示すものと考えられる。 From these facts, in the iron-copper-carbon-based sintered member, in the high-density region where the sintered body density is 7.4 Mg / m 3 or more, the residual holes formed by the outflow of copper powder become the starting point of fracture. Therefore, it is considered that the tensile strength does not increase for the improvement of the density. On the other hand, in the iron-carbon-based sintered member, spheroidization of pores is promoted in a high-density region of 7.4 Mg / m 3 or more, so that stress is less likely to be concentrated and iron-copper-carbon-based firing is performed. It is considered to exhibit higher tensile strength than the connecting member.

以上より、鉄−炭素系焼結部材は、焼結体密度が7.4Mg/m以上の高密度領域において、鉄−銅−炭素系焼結部材よりも高い引張り強さを示すとともに、1400MPa以上の高い引張り強さを示すことが確認された。また、鉄−炭素系焼結部材の焼結体密度を7.4Mg/m以上とするためには、成形圧力を790MPa以上として、成形体密度が7.45Mg/m以上とした成形体を焼結すればよいことが確認された。 From the above, the iron-carbon-based sintered member exhibits higher tensile strength than the iron-copper-carbon-based sintered member in a high-density region where the sintered body density is 7.4 Mg / m 3 or more, and 1400 MPa. It was confirmed that the above high tensile strength was exhibited. Further, in order to set the sintered body density of the iron-carbon-based sintered member to 7.4 Mg / m 3 or more, the molding pressure is set to 790 MPa or more and the molded body density is set to 7.45 Mg / m 3 or more. It was confirmed that it should be sintered.

[第2実施例]
第1実施例で用いた鉄粉末と黒鉛粉末を用い、表2に示す添加割合で添加し混合した原料を用い、成形圧力を1000MPaとし、それ以外は第1実施例と同様にして成形、焼結を行い、得られた焼結体試料について焼入れ、焼き戻しを行って、試料番号18〜27の焼結体試料を作製した。これらの焼結体試料について、第1実施例と同様にして引っ張り試験を行うとともに、最大粒径が50μm以上となる気孔の有無につき確認した。これらの結果について、表2に併せて記載した。なお、表2には第1実施例の試料番号07の値を併記した。
[Second Example]
Using the iron powder and graphite powder used in the first example, using the raw materials added and mixed at the addition ratio shown in Table 2, the molding pressure was set to 1000 MPa, and other than that, molding and firing were performed in the same manner as in the first example. After knotting, the obtained sintered body sample was quenched and tempered to prepare sintered body samples of sample numbers 18 to 27. A tensile test was carried out on these sintered body samples in the same manner as in the first example, and the presence or absence of pores having a maximum particle size of 50 μm or more was confirmed. These results are also shown in Table 2. In Table 2, the values of sample number 07 of the first example are also shown.

Figure 0006810883
Figure 0006810883

表2より、鉄粉末に黒鉛粉末を添加しない試料番号18の試料は、Cを含有しないことから、鉄基地の強化がなされず引張り強さが低い値となっている。また、鉄粉末に黒鉛粉末を添加して鉄−炭素系焼結部材のC量を0.1質量%含有する試料番号19の試料は、Cにより鉄基地の強化がなされ、引張り強さが向上しているが、引張り強さは1000MPaに満たない。これに対し、C量を0.2質量%とした試料番号20の試料は、Cにより鉄基地の強化が充分になされ、引張り強さが1000MPaを超えている。さらに、鉄粉末に添加する黒鉛粉末の量を増加させて、鉄−炭素系焼結部材のC量を増加させると、C量が0.5質量%の試料(試料番号23)で引張り強さが最大となり、C量がさらに増加すると引張り強さが低下する傾向を示している。そして、C量が1.0質量%を超える試料番号27の試料では引張り強さが1000MPaよりも下回ることとなる。 From Table 2, since the sample of sample No. 18 in which graphite powder is not added to the iron powder does not contain C, the iron matrix is not strengthened and the tensile strength is low. Further, in the sample of sample No. 19 in which graphite powder is added to iron powder and the C content of the iron-carbon sintered member is 0.1% by mass, the iron matrix is strengthened by C and the tensile strength is improved. However, the tensile strength is less than 1000 MPa. On the other hand, in the sample of sample No. 20 in which the amount of C is 0.2% by mass, the iron matrix is sufficiently strengthened by C, and the tensile strength exceeds 1000 MPa. Further, when the amount of graphite powder added to the iron powder is increased to increase the amount of C in the iron-carbon-based sintered member, the tensile strength of the sample (sample number 23) in which the amount of C is 0.5% by mass is increased. Is the maximum, and when the amount of C is further increased, the tensile strength tends to decrease. Then, in the sample of sample number 27 in which the amount of C exceeds 1.0% by mass, the tensile strength is lower than 1000 MPa.

これは、原料粉末へ黒鉛粉末を添加することにより、焼結後、Cによる鉄基地の強化がなされるため、鉄基地の機械的強さが増加するが、原料粉末へ黒鉛粉末を添加することにより原料粉末の圧縮性が低下するとともに、原料粉末中の黒鉛粉末が焼結時に鉄基地へCとして拡散するため、黒鉛粉末の添加量が増加すると、その分だけ黒鉛粉末の消失にともなう気孔の量が増加して焼結部材の機械的強さが低下するため、C量が0.5質量%程度で機械的強さが最大となり、これを超えると黒鉛粉末消失にともなう気孔量増加により引張り強さが低下するものと考えられる。 This is because the iron matrix is strengthened by C after sintering by adding the graphite powder to the raw material powder, so that the mechanical strength of the iron matrix increases, but the graphite powder is added to the raw material powder. As a result, the compressibility of the raw material powder decreases, and the graphite powder in the raw material powder diffuses as C to the iron matrix during sintering. Therefore, when the amount of the graphite powder added increases, the pores that accompany the disappearance of the graphite powder increase. Since the amount increases and the mechanical strength of the sintered member decreases, the mechanical strength becomes maximum when the amount of C is about 0.5% by mass, and when it exceeds this, the amount of pores increases due to the disappearance of the graphite powder, resulting in tension. It is thought that the strength will decrease.

このようなCによる鉄基地の強化と、黒鉛粉末消失にともなう気孔量増加のバランスが良好なC量が0.3〜0.7質量%の範囲の試料(試料番号07、21〜24)は、1200MPa以上の極めて高い引張り強さが得られている。

Samples with a C amount in the range of 0.3 to 0.7% by mass (Sample Nos. 07 , 21 to 24) have a good balance between the strengthening of the iron matrix by C and the increase in the amount of pores due to the disappearance of graphite powder. An extremely high tensile strength of 1200 MPa or more is obtained.

以上より、鉄−炭素系焼結部材のC量は0.2〜1.0質量%で引張り強さを1000MPa以上として、一般的な鉄−銅−炭素系焼結部材よりも高い機械的強さとすることができることが確認された。また、鉄−炭素系焼結部材のC量は0.2〜1.0質量%とするためには、原料粉末への黒鉛粉末の添加量を0.4〜1.2質量%とすればよいことが確認された。 From the above, the C amount of the iron-carbon-based sintered member is 0.2 to 1.0% by mass, and the tensile strength is 1000 MPa or more, which is higher mechanical strength than the general iron-copper-carbon-based sintered member. It was confirmed that it can be used. Further, in order to make the C amount of the iron-carbon-based sintered member 0.2 to 1.0% by mass, the addition amount of the graphite powder to the raw material powder should be 0.4 to 1.2% by mass. It was confirmed that it was good.

本発明の鉄−炭素系焼結部材は、鉄−銅−炭素系焼結部材よりも高い機械的強さを示すことから、安価であり、構造用機械部品のための鉄系焼結部材として好適なものである。 Since the iron-carbon-based sintered member of the present invention exhibits higher mechanical strength than the iron-copper-carbon-based sintered member, it is inexpensive and can be used as an iron-based sintered member for structural mechanical parts. It is suitable.

Claims (5)

C:0.4〜0.6質量%、残部:Feおよび不可避不純物からなり、焼結体密度が7.4Mg/m以上、7.53Mg/m以下で、鉄−炭素系焼結部材の基地組織がマルテンサイトであり、引張り強さが1300MPa以上であることを特徴とする鉄−炭素系焼結部材。 C: 0.4 to 0.6 % by mass, balance: Fe and unavoidable impurities, sintered body density is 7.4 Mg / m 3 or more, 7.53 Mg / m 3 or less, and iron-carbon-based sintered member. An iron-carbon-based sintered member characterized by having a base structure of martensite and a tensile strength of 1300 MPa or more. 前記鉄−炭素系焼結部材が有する気孔の内、最大気孔径が50μm以下であることを特徴とする請求項1に記載の鉄−炭素系焼結部材。 Wherein the iron - carbon sintered member - in the pores with carbon-based sintered member, the iron according to claim 1, the maximum pore diameter is equal to or is 50μm or less. 黒鉛粉末:0.4〜1.2質量%と、残部が鉄粉末からなる原料粉末を、押型のキャビティに充填し、上下パンチで圧縮成形して7.45Mg/m以上の密度の圧粉体を得る成形工程と、
前記圧粉体を1000〜1300℃で焼結して焼結体を得る焼結工程と、
前記焼結体に焼入れ処理および焼き戻し処理を行って基地組織をマルテンサイトとする
焼入れ処理および焼き戻し処理工程と、
を備えることを特徴とする鉄−炭素系焼結部材の製造方法。
Graphite powder: A raw material powder of 0.4 to 1.2% by mass, the balance of which is iron powder, is filled in the cavity of the stamping die and compression-molded with upper and lower punches to produce a powder with a density of 7.45 Mg / m 3 or more. The molding process to obtain the body and
A sintering step of sintering the green compact at 1000 to 1300 ° C. to obtain a sintered body,
A quenching treatment and a tempering treatment step of performing a quenching treatment and a tempering treatment on the sintered body to make the base structure martensite.
A method for producing an iron-carbon-based sintered member, which comprises the above.
前記押型のキャビティが成形潤滑剤で被覆されていることを特徴とする請求項に記載の鉄−炭素系焼結部材の製造方法。 The method for producing an iron-carbon-based sintered member according to claim 3 , wherein the cavity of the stamp is coated with a molding lubricant. 前記原料粉末が0.3質量%以下の成形潤滑剤を含むことを特徴とする請求項3またはに記載の鉄−炭素系焼結部材の製造方法。 The method for producing an iron-carbon-based sintered member according to claim 3 or 4 , wherein the raw material powder contains 0.3% by mass or less of a molding lubricant.
JP2015061169A 2015-03-24 2015-03-24 Iron-carbon sintered member and its manufacturing method Active JP6810883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061169A JP6810883B2 (en) 2015-03-24 2015-03-24 Iron-carbon sintered member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061169A JP6810883B2 (en) 2015-03-24 2015-03-24 Iron-carbon sintered member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2016180156A JP2016180156A (en) 2016-10-13
JP6810883B2 true JP6810883B2 (en) 2021-01-13

Family

ID=57132348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061169A Active JP6810883B2 (en) 2015-03-24 2015-03-24 Iron-carbon sintered member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6810883B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729764B2 (en) * 2000-08-31 2005-12-21 Jfeスチール株式会社 Iron-based powder molding material, manufacturing method thereof, and manufacturing method of high-strength high-density iron-based sintered body

Also Published As

Publication number Publication date
JP2016180156A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
CA2911031C (en) Alloy steel powder for powder metallurgy and method of producing iron-based sintered body
JP5671526B2 (en) High strength low alloy sintered steel
JP5949952B2 (en) Method for producing iron-based sintered body
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
US2637671A (en) Powder metallurgy method of making steel cutting tools
JP2009041109A (en) Powder metallurgical body with compacted surface
WO2000062960A1 (en) Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
JP5765654B2 (en) Method for manufacturing sintered parts
JP4923801B2 (en) Method for producing high-density iron-based molded body and high-strength high-density iron-based sintered body
JPS63500313A (en) Impact-resistant powder metal parts and manufacturing method thereof
JP6810883B2 (en) Iron-carbon sintered member and its manufacturing method
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
GB1590953A (en) Making articles from metallic powder
JP6738038B2 (en) Iron-based sintered alloy and method for producing the same
JP2001181701A (en) Method for producing high strength/high density ferrous sintered body
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method
JP3871825B2 (en) Recompression molded body of metallic powder molding material, sintered body obtained from the recompression molded body, and production method thereof
Liu et al. Effect of carbusintering on densification behavior and mechanical properties of Fe–2% Ni–x% Cu alloys
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance
KR100845386B1 (en) Sintered metal parts and method for the manufacturing thereof
JP5923023B2 (en) Mixed powder for powder metallurgy and method for producing sintered material
US11590571B2 (en) Method for producing a sintered component
JP6728530B2 (en) Sintered body manufacturing method
JP2005187908A (en) Iron based powdery mixture for powder metallurgy
CN113677459A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R151 Written notification of patent or utility model registration

Ref document number: 6810883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350