JP6809000B2 - Method for producing anhydrous alkali metal sulfide - Google Patents

Method for producing anhydrous alkali metal sulfide Download PDF

Info

Publication number
JP6809000B2
JP6809000B2 JP2016128871A JP2016128871A JP6809000B2 JP 6809000 B2 JP6809000 B2 JP 6809000B2 JP 2016128871 A JP2016128871 A JP 2016128871A JP 2016128871 A JP2016128871 A JP 2016128871A JP 6809000 B2 JP6809000 B2 JP 6809000B2
Authority
JP
Japan
Prior art keywords
alkali metal
metal sulfide
sulfide
hydrous
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128871A
Other languages
Japanese (ja)
Other versions
JP2018002511A (en
Inventor
周次郎 大槻
周次郎 大槻
渡邉 英樹
英樹 渡邉
井上 敏
井上  敏
高志 古沢
高志 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2016128871A priority Critical patent/JP6809000B2/en
Publication of JP2018002511A publication Critical patent/JP2018002511A/en
Application granted granted Critical
Publication of JP6809000B2 publication Critical patent/JP6809000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、無水アルカリ金属硫化物の製造方法に関し、詳しくは、高純度で均一な無水アルカリ金属硫化物を効率よく製造する方法に関する。 The present invention relates to a method for producing an anhydrous alkali metal sulfide, and more particularly to a method for efficiently producing a high-purity and uniform anhydrous alkali metal sulfide.

近年、エンジニアリングプラスチックや医薬品の原料として、高純度であり、かつ取り扱いの容易な無水アルカリ金属硫化物、中でもポリアリーレンスルフィドやスルフィド結合を有する医薬品等の原料である無水硫化ナトリウムが要求されている。現在、一般に市販されている硫化ナトリウムとしては、硫化ナトリウム水溶液を冷却または濃縮して晶析させた結晶水を有する硫化ナトリウム結晶(Na2S・9H2O、Na2S・6H2O、Na2S・5.5HO、Na2S・5H2O等)や60%程度の濃度の硫化ナトリウム熱水溶液をペレット状、フレーク状、チップ状等に固化して得られる含水硫化ナトリウム等がある。しかしながら、これらの硫化ナトリウムは水分を30 % 以上含有するものであり、純度が低いことに加えて潮解性が強く酸化され易いという欠点を有する。 In recent years, as a raw material for engineering plastics and pharmaceuticals, anhydrous alkali metal sulfide which has high purity and is easy to handle, particularly anhydrous sodium sulfide which is a raw material for pharmaceuticals having polyarylene sulfide and a sulfide bond, has been required. Currently, as the sodium sulfide generally commercially available, sodium sulfide crystals (Na 2 S · 9H 2 O having a crystal water to crystallize by cooling or concentrating the aqueous sodium sulphide, Na 2 S · 6H 2 O , Na 2 S ・ 5.5H 2 O, Na 2 S ・ 5H 2 O, etc.) and hydrous sodium sulfide obtained by solidifying a hot aqueous solution of sodium sulfide with a concentration of about 60% into pellets, flakes, chips, etc. is there. However, these sodium sulfides contain 30% or more of water, and have the disadvantages of low purity and strong deliquescent property and easy oxidation.

これらアルカリ金属硫化物を原料とする化学反応においては、製品中に存在する水が好ましくない副反応を誘発することや反応の平衡状態を変えると言う問題点があるため、反応に使用する前に脱水等の操作が必要となって操作が煩雑となる。また反応をスムーズに進行させるために反応溶媒に良分散して溶解し易い様な微粒子状の無水アルカリ金属硫化物が望まれている。 In chemical reactions using these alkali metal sulfides as raw materials, there are problems that water present in the product induces unfavorable side reactions and changes the equilibrium state of the reaction, so before using it in the reaction, Operations such as dehydration are required, which complicates the operations. Further, in order to allow the reaction to proceed smoothly, a fine particle anhydrous alkali metal sulfide that is well dispersed in the reaction solvent and easily dissolved is desired.

無水硫化ナトリウムを得る方法としては、水和または含水硫化ナトリウムを融点以上の温度に加熱し脱水する方法が一般的である。しかしながら、水分を含有する硫化ナトリウムを融解させると極めて高粘度の塊となって、容器に強固に付着して攪拌や取り出しが困難となる。これまでに無水硫化ナトリウムの製法として知られているものには、
(1)水和硫化ナトリウム・9水和物)をパイプに充填し、攪拌することなく1トールの減圧下で特定の条件で加熱して融解を避けながら徐々に800℃まで昇温し、強制脱水する方法(特許文献1参照)。
(2)水酸化ナトリウムを2〜15質量%含有する97℃以上の硫化ナトリウム水溶液から無水硫化ナトリウム結晶を析出させる方法(特許文献2参照)
(3)高水和硫化ナトリウム結晶を500トール以下の圧力で高水和硫化ナトリウム結晶から硫化ナトリウム1水和物への相転移点±10℃で4〜5時間加熱し、次いで大気圧下または減圧下で90〜200℃で4〜5時間加熱して無水硫化ナトリウムを得る方法(特許文献3参照)。
(4)炭化水素溶媒あるいはポリハロ芳香族化合物の存在下、硫化ナトリウム水和物及び有機スルホン酸金属塩、ハロゲン化リチウム、有機カルボン酸金属塩、リン酸アルカリ金属塩の中から選ばれる少なくとも一種の金属塩を接触せしめ脱水を行ない、硫化ナトリウム組成物を得る方法(特許文献4、5参照)等が知られている。
As a method for obtaining anhydrous sodium sulfide, a method of heating hydrated or hydrous sodium sulfide to a temperature equal to or higher than the melting point and dehydrating it is common. However, when sodium sulfide containing water is melted, it becomes an extremely viscous mass, which firmly adheres to the container, making it difficult to stir or take it out. What has been known as a method for producing anhydrous sodium sulfide is
(1) Hydrate Sodium sulfide / 9 hydrate) is filled in a pipe and heated under a reduced pressure of 1 toll under specific conditions without stirring to gradually raise the temperature to 800 ° C. while avoiding melting. Method of dehydration (see Patent Document 1).
(2) A method for precipitating anhydrous sodium sulfide crystals from an aqueous sodium sulfide solution containing 2 to 15% by mass of sodium hydroxide at 97 ° C. or higher (see Patent Document 2).
(3) The hyperhydrated sodium sulfide crystal is heated at a pressure of 500 toll or less at the phase transition point ± 10 ° C. from the highly hydrated sodium sulfide crystal to sodium sulfide monohydrate for 4 to 5 hours, and then under atmospheric pressure or A method for obtaining anhydrous sodium sulfide by heating under reduced pressure at 90 to 200 ° C. for 4 to 5 hours (see Patent Document 3).
(4) At least one selected from sodium sulfide hydrate and organic sulfonic acid metal salt, lithium halide, organic carboxylic acid metal salt, and alkali metal phosphate salt in the presence of a hydrocarbon solvent or a polyhalo aromatic compound. A method of contacting a metal salt and performing dehydration to obtain a sodium sulfide composition (see Patent Documents 4 and 5) and the like are known.

しかしながら、(1)の方法は、加熱温度が極めて高温であることから実用的ではなく、しかも得られた無水硫化ナトリウムは水和物の結晶形状を保持した骸晶となり、比表面積が大きく潮解性があり、非常に酸化され易いものであった。(2)及び(3)の方法は、これらの欠点を改良した方法ではあるが、(2)の方法では無水硫化ナトリウム結晶を析出させている間の水酸化ナトリウム濃度及び温度を厳密に制御する必要があり容易な方法ではなかった。また、(3)の方法では、減圧下で長時間を要し数工程が必要であり、原料としてNa2S・5水和物を溶融させることなく粒子形を保持したまま脱水を行なっており、原料であるNaS・5水和物の粒子径がそのまま無水硫化ナトリウムの粒子径に反映し、得られる無水硫化ナトリウムの粒子径も1〜1.5mmと、比較的大きい結晶であった。このような結晶体を呈していると、比表面積が小さくなり、エンジニアリングプラスチックや医薬品の原料として用いた場合に反応性が低下したり、それゆえ、別途、当該結晶を微子粒状(例えば800μm以下)にまで破砕する工程が必要になることもあった。また、(4)の方法では脱水時の系に有機スルホン酸金属塩、ハロゲン化リチウム、有機カルボン酸金属塩、リン酸アルカリ金属塩等を分散剤として加える必要があるため脱水後の系内はそれら金属塩との混合物となり無水硫化ナトリウム単品を取り出すことは不可能に近かった。 However, the method (1) is not practical because the heating temperature is extremely high, and the obtained anhydrous sodium sulfide becomes skeletal crystals that retain the crystal shape of hydrate, and has a large specific surface area and deliquescent property. It was very easy to oxidize. The methods (2) and (3) are methods that improve these drawbacks, but the method (2) strictly controls the sodium hydroxide concentration and temperature during the precipitation of anhydrous sodium sulfide crystals. It was necessary and not an easy method. In the method (3), it is necessary required number of steps for a long time under reduced pressure, and subjected to dehydration while retaining the particulate form without melting the Na 2 S · 5-hydrate as a raw material The particle size of the raw material Na 2 S. pentahydrate was directly reflected in the particle size of anhydrous sodium sulfide, and the obtained particle size of anhydrous sodium sulfide was 1 to 1.5 mm, which was a relatively large crystal. .. When such a crystal is exhibited, the specific surface area becomes small, and the reactivity decreases when it is used as a raw material for engineering plastics and pharmaceuticals. Therefore, the crystal is separately micro-granular (for example, 800 μm or less). In some cases, a step of crushing up to) was required. Further, in the method (4), it is necessary to add an organic sulfonic acid metal salt, lithium halide, an organic carboxylic acid metal salt, an alkali metal phosphate, etc. as a dispersant to the system at the time of dehydration, so that the inside of the system after dehydration is It was almost impossible to take out anhydrous sodium sulfide alone as a mixture with these metal salts.

そこで、微粒子状の高純度の無水アルカリ金属硫化物を得る方法として、アルカリ金属硫化物水溶液と、該水溶液の沸点以下の融点を有する分散媒とを接触させ脱水を行なう、無水アルカリ金属硫化物と分散媒の混合物の製造方法が知られている(特許文献6参照)。しかし該方法もエネルギー効率が低く、生産性良く無水アルカリ金属硫化物を得ることができなかった。 Therefore, as a method for obtaining fine-grained high-purity anhydrous alkali metal sulfide, an anhydrous alkali metal sulfide is dehydrated by contacting an aqueous alkali metal sulfide aqueous solution with a dispersion medium having a melting point equal to or lower than the boiling point of the aqueous solution. A method for producing a mixture of dispersion media is known (see Patent Document 6). However, this method also has low energy efficiency and cannot obtain anhydrous alkali metal sulfide with good productivity.

米国特許2533163号公報U.S. Pat. No. 25333163 特開昭64−28207号公報Japanese Unexamined Patent Publication No. 64-28207 特開平2−51404号公報Japanese Unexamined Patent Publication No. 2-51404 特開昭60−200807号公報Japanese Unexamined Patent Publication No. 60-20807 特開昭60−210509号公報Japanese Unexamined Patent Publication No. 60-210509 特開平9−67108号公報Japanese Unexamined Patent Publication No. 9-67108

そこで、本発明が解決しようとする課題は、微粒子状の高純度の無水アルカリ金属硫化物を生産性良く製造することにある。 Therefore, the problem to be solved by the present invention is to produce fine-grained high-purity anhydrous alkali metal sulfide with high productivity.

本発明者等は、上記の課題を解決するため鋭意研究を重ねた結果、含水アルカリ金属硫化物中に含まれる結晶水を、アルコール中に溶出させながら脱水させることで、効率よく、無水アルカリ金属硫化物が得られることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors efficiently dehydrate the water of crystallization contained in the hydrous alkali metal sulfide while eluting it in alcohol, thereby efficiently performing anhydrous alkali metal. They have found that sulfides can be obtained and have completed the present invention.

すなわち、本発明は、アルコール溶媒の存在下で、含水アルカリ金属硫化物にマイクロ波照射する工程を有することを特徴とする無水アルカリ金属硫化物の製造方法を提供する。 That is, the present invention provides a method for producing an anhydrous alkali metal sulfide, which comprises a step of irradiating a hydrous alkali metal sulfide with microwaves in the presence of an alcohol solvent.

本発明によれば、微粒子状の高純度の無水アルカリ金属硫化物を生産性良く製造することができる。 According to the present invention, fine particles of high-purity anhydrous alkali metal sulfide can be produced with high productivity.

本発明の無水アルカリ金属硫化物の製造方法は、水に溶解する有機溶媒の存在下で、含水アルカリ金属硫化物にマイクロ波照射する工程を有することを特徴とする。 The method for producing an anhydrous alkali metal sulfide of the present invention is characterized by having a step of irradiating the hydrous alkali metal sulfide with microwaves in the presence of an organic solvent soluble in water.

本発明で用いる含水アルカリ金属硫化物としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム等の化合物の液状又は固体状の含水物が挙げられ、その固形分濃度は特に限定されないが10〜80質量%、特に35〜65質量%であることが好ましい。含水アルカリ金属硫化物として、好ましいのは含水硫化ナトリウムである。使用する含水硫化ナトリウムの形状は、結晶、フレーク状、固形、液体及び水溶液のいずれでもかまわない。 Examples of the hydrous alkali metal sulfide used in the present invention include liquid or solid hydrous of compounds such as lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide, and the solid content concentration thereof is not particularly limited. Is preferably 10 to 80% by mass, particularly preferably 35 to 65% by mass. As the hydrous alkali metal sulfide, hydrous sodium sulfide is preferable. The shape of the hydrous sodium sulfide used may be crystalline, flake-like, solid, liquid or aqueous solution.

含水アルカリ金属硫化物は、例えば、含水アルカリ金属水硫化物及びアルカリ金属水酸化物より調製されたものであってもよい。含水アルカリ金属水硫化物としては、例えば水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム等の化合物の液状又は固体状の含水物が挙げられ、その固形分濃度は特に限定されないが10〜80質量%、特に35〜65質量%であることが好ましい。含水アルカリ金属水硫化物として、好ましいのは含水水硫化ナトリウムである。使用する含水水硫化ナトリウムの形状は、結晶、フレーク状、固形、液体及び水溶液のいずれでもかまわない。また、アルカリ金属水酸化物は、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、及びこれらの水溶液が挙げられる。なお、該水溶液として用いる場合には、濃度20質量%以上の水溶液であることが好ましい。これらの中でも特に水酸化リチウムと水酸化ナトリウムおよび水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。アルカリ金属水酸化物の使用量は、無水アルカリ金属硫化物の生成が促進される点から、アルカリ金属水硫化物1モル当たり、0.8〜1.2モルの範囲が好ましく、特に0.9〜1.1モルの範囲がより好ましい。 The hydrous alkali metal sulfide may be, for example, one prepared from a hydrous alkali metal hydrosulfide and an alkali metal hydroxide. Examples of the hydrous alkali metal hydrosulfide include liquid or solid hydrous of compounds such as lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide, and the solid content concentration thereof is particularly high. Although not limited, it is preferably 10 to 80% by mass, particularly preferably 35 to 65% by mass. As the hydrous alkali metal hydrosulfide, hydrous sodium hydrosulfide is preferable. The shape of the hydrous sodium hydrosulfide used may be crystalline, flake-like, solid, liquid or aqueous solution. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and an aqueous solution thereof. When used as the aqueous solution, it is preferably an aqueous solution having a concentration of 20% by mass or more. Among these, lithium hydroxide, sodium hydroxide and potassium hydroxide are particularly preferable, and sodium hydroxide is particularly preferable. The amount of the alkali metal hydroxide used is preferably in the range of 0.8 to 1.2 mol, particularly 0.9 mol, per 1 mol of the alkali metal hydrosulfide from the viewpoint of promoting the formation of anhydrous alkali metal sulfide. A range of ~ 1.1 mol is more preferred.

水に溶解する有機溶媒としては、例えば、アセトン(溶解度:全ての割合で水と相溶する。沸点:56.1℃)等のケトン類;メタノール(溶解度:全ての割合で水と相溶する、沸点:64.7℃)、エタノール(溶解度:全ての割合で水と相溶する、沸点:78.3℃)、イソプロピルアルコール(溶解度:全ての割合で水と相溶する、沸点:82.26℃)、エチレングリコール(溶解度:全ての割合で水と相溶する、沸点:197℃)等のアルコール類;酢酸メチル(溶解度:24質量%、沸点:56.9℃)等のエステル類等が挙げられる。これらの有機溶剤は単独で用いても良いし、2種以上を混合した混合溶剤を用いても良い。有機溶剤として好ましいものはケトン類、アルコール類であり、より好ましいものはメタノール、アセトン、イソプロピルアルコール、エチレングリコールであり、最も好ましいものはメタノール、アセトン、エチレングリコールである。 Examples of the organic solvent that dissolves in water include ketones such as acetone (solubility: compatible with water at all ratios; boiling point: 56.1 ° C.); methanol (solubility: compatible with water at all ratios). , Boiling: 64.7 ° C), Ethanol (Solubility: Incompatible with water in all proportions, Boiling: 78.3 ° C), Isopropyl alcohol (Solubility: Incompatible with water in all proportions, Boiling: 82. 26 ° C.), alcohols such as ethylene glycol (solubility: compatible with water at all ratios, boiling point: 197 ° C.); esters such as methyl acetate (solubility: 24% by mass, boiling point: 56.9 ° C.), etc. Can be mentioned. These organic solvents may be used alone, or a mixed solvent in which two or more kinds are mixed may be used. Preferred organic solvents are ketones and alcohols, more preferred are methanol, acetone, isopropyl alcohol and ethylene glycol, and most preferred are methanol, acetone and ethylene glycol.

また、マイクロ波照射する際の、前記有機溶媒および水の合計に対する前記有機溶媒の割合は、本発明の効果を損ねない範囲であれば特に限定されないが、好ましくは0.1%以上の範囲であり、さらに好ましくは、15質量%以上の範囲であり、さらに30質量%以上の範囲がより好ましい。一方、上限値は、100質量%未満の範囲であることが好ましく、さらに好ましくは90質量%以下の範囲であり、さらに、80質量%以下の範囲がより好ましい。なお、100質量%未満とは、系内に存在する結晶水と、遊離の水(いわゆる自由水)のうち、遊離の水をすべて除いた状態のものを含む。 Further, the ratio of the organic solvent to the total of the organic solvent and water at the time of microwave irradiation is not particularly limited as long as it does not impair the effect of the present invention, but is preferably in the range of 0.1% or more. Yes, more preferably the range is 15% by mass or more, and further preferably the range is 30% by mass or more. On the other hand, the upper limit value is preferably in the range of less than 100% by mass, more preferably in the range of 90% by mass or less, and further preferably in the range of 80% by mass or less. In addition, less than 100% by mass includes water of crystallization existing in the system and free water (so-called free water) in a state where all free water is removed.

含水アルカリ金属硫化物を含む、アルカリ金属硫化物水溶液と前記有機溶剤を水が除去され得る温度、一般に70℃〜200、好ましくは100℃〜200℃の温度になるようマイクロ波照射を行い加熱することで脱水を行なう。 The aqueous alkali metal sulfide solution containing the hydrous alkali metal sulfide and the organic solvent are heated by microwave irradiation so as to be at a temperature at which water can be removed, generally 70 ° C. to 200, preferably 100 ° C. to 200 ° C. By doing so, dehydration is performed.

マイクロ波照射による結晶水の脱水は、(1)前記有機溶媒の存在下、含水アルカリ金属硫化物にマイクロ波照射する、(2)含水アルカリ金属硫化物が水溶液状態の場合で、かつ前記有機溶媒として水よりも沸点の高いものを用いる場合、(2a)アルカリ金属硫化物含有水溶液をヒーター等で外部加熱し、遊離の水を脱水させつつ、前記有機溶媒を加えながら、含水アルカリ金属硫化物を溶解ないし析出させた後、次に、溶解ないし析出した含水アルカリ金属硫化物に、必要に応じて前記有機溶媒または後述する分散媒を追加した上で、マイクロ波照射する、(2b)アルカリ金属硫化物含有水溶液に前記有機溶媒を加えた上で、ヒーター等で外部加熱し、遊離の水を脱水させながら含水アルカリ金属硫化物を溶解ないし析出させた後、次に、溶解ないし析出した含水アルカリ金属硫化物に、必要に応じて前記有機溶媒または後述する分散媒を追加しながら、マイクロ波照射する、(3)含水アルカリ金属硫化物が水溶液状態の場合で、かつ前記有機溶媒として水よりも沸点の低いものを用いる場合、(3a)アルカリ金属硫化物含有水溶液をヒーター等で外部加熱し、遊離の水を脱水させつつ、後述する分散媒を加えながら含水アルカリ金属硫化物を析出させた後、次に、析出した含水アルカリ金属硫化物に、前記有機溶媒を加えた上で、マイクロ波照射する、(3b)アルカリ金属硫化物含有水溶液に後述する分散媒を加えた上で、ヒーター等で外部加熱し、遊離の水を脱水させながら含水アルカリ金属硫化物を析出させた後、次に、析出した含水アルカリ金属硫化物に、前記有機溶媒を加えた上で、マイクロ波照射する、方法などが挙げられる。いずれの場合も、含水アルカリ金属硫化物を前記有機溶媒に溶解した状態ないし分散媒に分散した状態で析出させ、当該溶解ないし分散状態を維持した上でマイクロ波照射することが重要である。 Dehydration of crystalline water by microwave irradiation is performed by (1) irradiating the hydrous alkali metal sulfide with a microwave in the presence of the organic solvent, (2) when the hydrous alkali metal sulfide is in an aqueous state, and the organic solvent. When a solvent having a boiling point higher than that of water is used, (2a) the alkali metal sulfide-containing aqueous solution is externally heated with a heater or the like to dehydrate the free water, and the hydrous alkali metal sulfide is added while adding the organic solvent. After the dissolution or precipitation, the organic solvent or the dispersion medium described later is added to the dissolved or precipitated hydrous alkali metal sulfide as necessary, and then microwave irradiation is performed. (2b) Alkali metal sulfide. After adding the organic solvent to the substance-containing aqueous solution, externally heat it with a heater or the like to dissolve or precipitate a hydrous alkali metal sulfide while dehydrating free water, and then dissolve or precipitate a hydrous alkali metal. Microwave irradiation is performed while adding the organic solvent or the dispersion medium described later to the sulfide as necessary. (3) When the hydrous alkali metal sulfide is in an aqueous state, and the organic solvent has a boiling point higher than that of water. When using a low-grade solvent, (3a) the alkali metal sulfide-containing aqueous solution is externally heated with a heater or the like to dehydrate the free water, and the hydrous alkali metal sulfide is precipitated while adding a dispersion medium described later. Next, the above-mentioned organic solvent is added to the precipitated hydrous alkali metal sulfide and then irradiated with microwaves. (3b) The dispersion medium described later is added to the alkali metal sulfide-containing aqueous solution, and then the outside is used with a heater or the like. After heating to precipitate hydrous alkali metal sulfide while dehydrating free water, the organic solvent is added to the precipitated hydrous alkali metal sulfide, and then microwave irradiation is performed. Can be mentioned. In either case, it is important to precipitate the hydrous alkali metal sulfide in a state of being dissolved in the organic solvent or in a state of being dispersed in a dispersion medium, and to maintain the dissolved or dispersed state before irradiating with microwaves.

当該分散媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、テトラリン、ジフェニル等の芳香族炭化水素、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン等の脂肪族炭化水素、シクロヘキサン、デカリン等の脂環式炭化水素の炭化水素化合物、ブロモベンゼン、ヨードベンゼン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、テトラクロロベンゼン、ジクロロジフェニルスルホン、ジクロロジフェニルエーテル等のポリハロ芳香族化合物及びこれらの混合物が挙げられる。これらのうち特にキシレン、p−ジクロロベンゼンは好適である。分散媒として特にp−ジクロロベンゼンを用いた場合は、そのままポリアリーレンスルフィドの製造に使用できるためさらに好ましい。分散媒を使用する場合、その量は、前記の分散状態が維持できれば特に制限は無いが、好ましくはアルカリ金属硫化物の硫黄原子1モルに対して0.1〜10モルの範囲であることが好ましく、さらに1〜5モルの範囲であることがより好ましい。 Examples of the dispersion medium include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, tetraline and diphenyl, aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane and isooctane, cyclohexane and decalin. Examples thereof include hydrocarbon compounds of alicyclic hydrocarbons, polyhaloaromatic compounds such as bromobenzene, iodobenzene, chlorobenzene, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dichlorodiphenyl sulfone, and dichlorodiphenyl ether, and mixtures thereof. Of these, xylene and p-dichlorobenzene are particularly suitable. Especially when p-dichlorobenzene is used as the dispersion medium, it is more preferable because it can be used as it is for the production of polyarylene sulfide. When a dispersion medium is used, the amount thereof is not particularly limited as long as the above-mentioned dispersed state can be maintained, but is preferably in the range of 0.1 to 10 mol with respect to 1 mol of sulfur atom of the alkali metal sulfide. It is preferably in the range of 1 to 5 mol, more preferably.

マイクロ波照射は、マイクロ波発振機を用いて行い、水分子を加熱することが可能な周波数であれば特に限定されないが、好ましくは0.915GHz、または2.450GHzが挙げられ、その何れであっても良い。 Microwave irradiation is performed using a microwave oscillator, and the frequency is not particularly limited as long as it can heat water molecules, but 0.915 GHz or 2.450 GHz is preferable, and any of these is preferable. You may.

上記の方法により得られた無水アルカリ金属硫化物は、乾燥して粉末状ないし顆粒状の無水アルカリ金属硫化物として調製することができる。脱水が終了した時点での系内は前記有機溶媒または前記分散媒中に微粒状の無水アルカリ金属硫化物が分散している状態であることが好ましい。無水アルカリ金属硫化物は、ろ過等の手段により、前記有機溶媒や分散媒と固液分離することも可能であるが、潮解性を有することから、記有機溶媒または前記分散媒中に微粒状の無水アルカリ金属硫化物が分散している状態で保存ないし使用することが好ましい。 The anhydrous alkali metal sulfide obtained by the above method can be dried and prepared as a powdery or granular anhydrous alkali metal sulfide. It is preferable that the inside of the system at the time when dehydration is completed is in a state in which fine-grained anhydrous alkali metal sulfide is dispersed in the organic solvent or the dispersion medium. Anhydrous alkali metal sulfide can be solid-liquid separated from the organic solvent or dispersion medium by means such as filtration, but since it has deliquescent property, it is finely granular in the organic solvent or the dispersion medium. It is preferable to store or use the anhydrous alkali metal sulfide in a dispersed state.

上記の方法で得られた本発明の無水アルカリ金属硫化物は、高純度で均一なことから エンジニアリングプラスチックや医薬品の原料として用いることができる。 The anhydrous alkali metal sulfide of the present invention obtained by the above method can be used as a raw material for engineering plastics and pharmaceuticals because of its high purity and uniformity.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。なお、特に断りが無い場合、%は質量%をあらわすものとする。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. Unless otherwise specified,% represents mass%.

(測定法)水分量
水分気化装置を備えた電量式カールフィッシャー水分計(京都電子工業社製)を用い、得られた無水硫化ナトリウムを280℃20分加熱して、蒸発させた水分を窒素ガスでカールフィッシャー液に送り、カールフィッシャー法にて水分量を測定した。
(Measurement method) Using a coulometric Karl Fischer titer (manufactured by Kyoto Denshi Kogyo Co., Ltd.) equipped with a moisture vaporizer, the obtained anhydrous sodium sulfide is heated at 280 ° C. for 20 minutes, and the evaporated moisture is nitrogen gas. It was sent to the Karl Fischer solution and the water content was measured by the Karl Fischer method.

(測定法)結晶中の無水硫化ナトリウムの純度測定
無水硫化ナトリウムの純度測定はJIS K1435−1986に準拠した測定により求めた。
(Measurement method) Measurement of purity of anhydrous sodium sulfide The purity of anhydrous sodium sulfide was measured according to JIS K1435-1986.

(測定法)無水硫化ナトリウムの二次粒子径
無水硫化ナトリウムの二次粒子径は、JIS Z8815−1994に準拠した測定により求めた。
(Measurement method) Secondary particle size of anhydrous sodium sulfide The secondary particle size of anhydrous sodium sulfide was determined by measurement in accordance with JIS Z8815-1994.

〔実施例1〕
攪拌機及びデカンターを備えたフラスコに含水水硫化ナトリウム(48.30%水硫化ソーダ水溶液)116.1g(水硫化ナトリウム1.000モル)、48.64%水酸化ナトリウム水溶液82.22g(水酸化ナトリウム1.000モル)及びエチレングリコール62.00g(1.000モル、密度1.113(室温、常圧))を入れ昇温を開始した。内温170℃で2時間維持し、水を留去させた。留出開始後しばらくすると系内に粒子が分散し始めた。2時間後118.0gの水が留出したので脱水を終了した。脱水終了時の系内は、含水硫化ナトリウムを含む微粒子がエチレングリコールに分散している状態であった。
[Example 1]
116.1 g (1.000 mol of sodium hydrosulfide) containing hydrous sodium hydrosulfide (48.30% sodium hydrosulfide aqueous solution) and 82.22 g (sodium hydroxide) of 48.64% sodium hydroxide aqueous solution in a flask equipped with a stirrer and a decanter. (1,000 mol) and 62.00 g of ethylene glycol (1.00 mol, density 1.113 (room temperature, normal pressure)) were added and the temperature rise was started. The internal temperature was maintained at 170 ° C. for 2 hours, and water was distilled off. Some time after the start of distillation, the particles began to disperse in the system. After 2 hours, 118.0 g of water was distilled off, so dehydration was completed. In the system at the end of dehydration, fine particles containing hydrous sodium sulfide were dispersed in ethylene glycol.

次に、内温140℃を維持しつつ、マイクロ波発振機を用いて、窒素ガス中、周波数2.450GHzのマイクロ波を2分間照射させた。マイクロ波照射後の系内は、無水硫化ナトリウム微粒子がエチレングリコールに分散している状態であった。 Next, while maintaining the internal temperature of 140 ° C., microwaves having a frequency of 2.450 GHz were irradiated in nitrogen gas for 2 minutes using a microwave oscillator. In the system after microwave irradiation, anhydrous sodium sulfide fine particles were dispersed in ethylene glycol.

冷却後粒子をろ過し、100℃で2時間減圧乾燥し77.20g(収率99.50%)の粒状生成物を得た。生成物は、無水硫化ナトリウム99.99%及び水分0.001%を含むものであった。得られた無水硫化ナトリウムの粒子径は、下記表1に示した。 After cooling, the particles were filtered and dried under reduced pressure at 100 ° C. for 2 hours to obtain 77.20 g (yield 99.50%) of granular products. The product contained 99.99% anhydrous sodium sulfide and 0.001% water. The particle size of the obtained anhydrous sodium sulfide is shown in Table 1 below.

〔実施例2〕
含水硫化ナトリウム・9水和物(和光純薬工業株式会社「和光一級」)240.2g(硫化ナトリウム1.00モル)、水79.20g及びエチレングリコール62.00g(1.000モル)を入れ昇温を開始した。内温140℃で2時間維持し、水を留去させた。留出開始後しばらくすると系内に粒子が分散し始めた。2時間後79.20gの水が留出したので脱水を終了した。脱水終了時の系内は、含水硫化ナトリウムを含む微粒子がエチレングリコールに分散している状態であった。
[Example 2]
Add 240.2 g (1.00 mol of sodium sulfide), 79.20 g of water and 62.00 g (1.00 mol) of ethylene glycol of hydrous sodium sulfide / 9 hydrate (Wako Pure Chemical Industries, Ltd. "Wako 1st grade"). The temperature rise was started. The internal temperature was maintained at 140 ° C. for 2 hours, and water was distilled off. Some time after the start of distillation, the particles began to disperse in the system. After 2 hours, 79.20 g of water was distilled off, so dehydration was completed. In the system at the end of dehydration, fine particles containing hydrous sodium sulfide were dispersed in ethylene glycol.

次に、内温140℃を維持しつつ、マイクロ波発振機を用いて、窒素ガス中、周波数2.450GHzのマイクロ波を2分間照射させた。マイクロ波照射後の系内は、無水硫化ナトリウム微粒子がエチレングリコールに分散している状態であった。 Next, while maintaining the internal temperature of 140 ° C., microwaves having a frequency of 2.450 GHz were irradiated in nitrogen gas for 2 minutes using a microwave oscillator. In the system after microwave irradiation, anhydrous sodium sulfide fine particles were dispersed in ethylene glycol.

冷却後粒子をろ過し、100℃で2時間減圧乾燥し77.2g(収率99.5%)の粒状生成物を得た。生成物は無水硫化ナトリウム99.999%及び水分0.001%を含むものであった。得られた無水硫化ナトリウムの粒子径は、下記表1に示した。 After cooling, the particles were filtered and dried under reduced pressure at 100 ° C. for 2 hours to obtain 77.2 g (yield 99.5%) of granular products. The product contained 99.999% anhydrous sodium sulfide and 0.001% water. The particle size of the obtained anhydrous sodium sulfide is shown in Table 1 below.

〔実施例3〕
含水硫化ナトリウム・9水和物240.2g(硫化ナトリウム1.00モル)、水79.2g及びエチレングリコール62g(1.0モル)を入れ昇温を開始した。内温140℃で2時間維持し、水を留去させた。留出開始後しばらくすると系内に粒子が分散し始めた。2時間後79.2gの水が留出したので脱水を終了した。脱水終了時の系内は、含水硫化ナトリウムを含む微粒子がエチレングリコールに分散している状態であった。
[Example 3]
240.2 g of hydrous sodium sulfide / nine hydrate (1.00 mol of sodium sulfide), 79.2 g of water and 62 g of ethylene glycol (1.0 mol) were added to start the temperature rise. The internal temperature was maintained at 140 ° C. for 2 hours, and water was distilled off. Some time after the start of distillation, the particles began to disperse in the system. After 2 hours, 79.2 g of water was distilled off, so dehydration was completed. In the system at the end of dehydration, fine particles containing hydrous sodium sulfide were dispersed in ethylene glycol.

次に、内温140℃を維持しつつ、13.3kPaまで減圧した上で、マイクロ波発振機を用いて、周波数2.450GHzのマイクロ波を2分間照射させた。マイクロ波照射後の系内は、無水硫化ナトリウム微粒子がエチレングリコールに分散している状態であった。 Next, while maintaining the internal temperature of 140 ° C., the pressure was reduced to 13.3 kPa, and then microwaves having a frequency of 2.450 GHz were irradiated for 2 minutes using a microwave oscillator. In the system after microwave irradiation, anhydrous sodium sulfide fine particles were dispersed in ethylene glycol.

冷却後粒子をろ過し、100℃で2時間減圧乾燥し77.2g(収率99.5%)の粒状生成物を得た。生成物は無水硫化ナトリウム99.999%及び水分0.001%を含むものであった。得られた無水硫化ナトリウムの粒子径は、下記表1に示した。 After cooling, the particles were filtered and dried under reduced pressure at 100 ° C. for 2 hours to obtain 77.2 g (yield 99.5%) of granular products. The product contained 99.999% anhydrous sodium sulfide and 0.001% water. The particle size of the obtained anhydrous sodium sulfide is shown in Table 1 below.

〔比較例1〕
攪拌機及びデカンターを備えたフラスコに含水水硫化ナトリウム(48.30%水硫化ソーダ水溶液)116.1g(水硫化ナトリウム1.000モル)、48.64%水酸化ナトリウム水溶液82.22g(水酸化ナトリウム1.000モル)及び分散媒としてp−ジクロロベンゼン147.0g(1.000モル)を入れ昇温を開始した。内温が140℃に到達すると水とp−ジクロロベンゼンの留出 が始まった。p−ジクロロベンゼンは、デカンターで分離して連続的に系内に戻した。留出開始後しばらくすると系内に粒子が分散し始めた。2時間後90.0gの水が留出し内温がp−ジクロロベンゼンの沸点である174℃に上昇したので脱水を終了した。脱水終了時の系内は、無水硫化ナトリウムの微粒子がp−ジクロロベンゼンに分散している状態であった。冷却後粒子をろ取し、100℃で2時間減圧乾燥し77.2g(収率99.0%)の粒状生成物を得た。生成物は硫化ナトリウム98%及び水分0.001%を含むものであった。得られた無水硫化ナトリウムの粒子径は、下記表1に示した。
[Comparative Example 1]
116.1 g (1.000 mol of sodium hydrosulfide) containing hydrous sodium hydrosulfide (48.30% sodium hydrosulfide aqueous solution) and 82.22 g (sodium hydroxide) of 48.64% sodium hydroxide aqueous solution in a flask equipped with a stirrer and a decanter. 1.000 mol) and 147.0 g (1.000 mol) of p-dichlorobenzene were added as a dispersion medium, and the temperature was started. Distillation of water and p-dichlorobenzene began when the internal temperature reached 140 ° C. The p-dichlorobenzene was separated by a decanter and continuously returned to the system. Some time after the start of distillation, the particles began to disperse in the system. After 2 hours, 90.0 g of water was distilled off and the internal temperature rose to 174 ° C., which is the boiling point of p-dichlorobenzene, so dehydration was completed. In the system at the end of dehydration, fine particles of anhydrous sodium sulfide were dispersed in p-dichlorobenzene. After cooling, the particles were collected by filtration and dried under reduced pressure at 100 ° C. for 2 hours to obtain 77.2 g (yield 99.0%) of granular products. The product contained 98% sodium sulfide and 0.001% water. The particle size of the obtained anhydrous sodium sulfide is shown in Table 1 below.

Figure 0006809000
Figure 0006809000

Claims (6)

水に溶解する有機溶媒の存在下で、含水アルカリ金属硫化物にマイクロ波照射する工程を有すること、および、水に溶解する有機溶媒がアルコール類であることを特徴とする無水アルカリ金属硫化物の製造方法。 An anhydrous alkali metal sulfide, which comprises a step of irradiating a hydrous alkali metal sulfide with a microwave in the presence of an organic solvent soluble in water, and the organic solvent dissolved in water is an alcohol. Production method. 含水アルカリ金属硫化物が、含水アルカリ金属水硫化物及びアルカリ金属水酸化物より調製されたアルカリ金属硫化物含有水溶液中に含まれるものである、請求項1に記載の無水アルカリ金属硫化物の製造方法。 The production of the anhydrous alkali metal sulfide according to claim 1, wherein the hydrous alkali metal sulfide is contained in the alkali metal sulfide-containing aqueous solution prepared from the hydrous alkali metal hydrosulfide and the alkali metal hydroxide. Method. アルカリ金属硫化物含有水溶液を外部加熱し、含水アルカリ金属硫化物を析出させた後、マイクロ波照射を行う、請求項2に記載の無水アルカリ金属硫化物の製造方法。 The method for producing an anhydrous alkali metal sulfide according to claim 2, wherein an aqueous solution containing an alkali metal sulfide is externally heated to precipitate a hydrous alkali metal sulfide, and then microwave irradiation is performed . 前記有機溶媒および水の合計に対する前記有機溶媒の割合が0.1wt%以上かつ100wt%未満の範囲である請求項1−3のいずれか一項に記載の無水アルカリ金属硫化物の製造方法。 The method for producing an anhydrous alkali metal sulfide according to any one of claims 1-3, wherein the ratio of the organic solvent to the total of the organic solvent and water is in the range of 0.1 wt% or more and less than 100 wt% . 前記有機溶媒が、メタノール、イソプロピルアルコールまたはエチレングリコールである請求項1−4のいずれか一項に記載の無水アルカリ金属硫化物の製造方法。 The method for producing an anhydrous alkali metal sulfide according to any one of claims 1-4, wherein the organic solvent is methanol, isopropyl alcohol or ethylene glycol. 減圧下でマイクロ波照射を行う、請求項1−5の何れか一項に記載の無水アルカリ金属硫化物の製造方法。 The method for producing an anhydrous alkali metal sulfide according to any one of claims 1 to 5, wherein microwave irradiation is performed under reduced pressure.
JP2016128871A 2016-06-29 2016-06-29 Method for producing anhydrous alkali metal sulfide Active JP6809000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128871A JP6809000B2 (en) 2016-06-29 2016-06-29 Method for producing anhydrous alkali metal sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128871A JP6809000B2 (en) 2016-06-29 2016-06-29 Method for producing anhydrous alkali metal sulfide

Publications (2)

Publication Number Publication Date
JP2018002511A JP2018002511A (en) 2018-01-11
JP6809000B2 true JP6809000B2 (en) 2021-01-06

Family

ID=60945916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128871A Active JP6809000B2 (en) 2016-06-29 2016-06-29 Method for producing anhydrous alkali metal sulfide

Country Status (1)

Country Link
JP (1) JP6809000B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114053759B (en) * 2020-07-29 2023-05-05 北京紫光英力化工技术有限公司 New process for salt-adding and dehydration of water-containing organic matter

Also Published As

Publication number Publication date
JP2018002511A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US4542001A (en) Fine particulate crystalline aluminum orthophosphate and method for preparing same
JP6809000B2 (en) Method for producing anhydrous alkali metal sulfide
Shi et al. Synthesis of an industrially important zinc borate, 2ZnO· 3B2O3· 3H2O, by a rheological phase reaction method
JP6686737B2 (en) Method for producing anhydrous alkali metal sulfide
Senkus Iron reduction of some aliphatic nitro compounds
JP6725876B2 (en) Method for producing anhydrous alkali metal sulfide
JP3713760B2 (en) Method for producing anhydrous alkali metal sulfide
JP6709686B2 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt
CN104529819A (en) Acetic acid ammonization method for preparing acetonitrile
JP6173931B2 (en) Method for producing alkali metal iodide or alkaline earth metal iodide
US2856278A (en) Making fertilizer-grade ammonium acid sulfate
JPH0259406A (en) Production of anhydrous sodium sulfide crystal
CN106800303B (en) Method for preparing potassium iodide by using microchannel reactor
CN110745866B (en) One-step synthesis method of stibium-based metal bromide and application of stibium-based metal bromide in reversible storage and release of bromine gas
TWI810366B (en) Crystalline of bisfluorene compound
JPS5945925A (en) Manufacture of complex of colloidal cesium oxide and free organic acid of same
JP5749991B2 (en) Method for producing inorganic metal salt
JP2018002512A (en) Method for producing anhydrous alkali metal sulfide
Su et al. Glutaric acid purification by coupled solution crystallization and melt crystallization
SE450129B (en) PROCEDURE FOR THE PREPARATION OF HYDRATED CULVET BASED FROM OIL-BREAKING SHIPS
JP2006016281A (en) Method for manufacturing alkali metal sulfide anhydride
TWI820160B (en) 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene crystal
TWI826527B (en) Crystalline mixture of bisfluorene compounds
JP6441662B2 (en) Method for producing alkali metal iodide or alkaline earth metal iodide
JP7098306B2 (en) Method for producing inorganic iodine compound anhydride, and lumps

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R151 Written notification of patent or utility model registration

Ref document number: 6809000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250