JP3713760B2 - Method for producing anhydrous alkali metal sulfide - Google Patents

Method for producing anhydrous alkali metal sulfide Download PDF

Info

Publication number
JP3713760B2
JP3713760B2 JP22028995A JP22028995A JP3713760B2 JP 3713760 B2 JP3713760 B2 JP 3713760B2 JP 22028995 A JP22028995 A JP 22028995A JP 22028995 A JP22028995 A JP 22028995A JP 3713760 B2 JP3713760 B2 JP 3713760B2
Authority
JP
Japan
Prior art keywords
alkali metal
sulfide
dispersion medium
metal sulfide
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22028995A
Other languages
Japanese (ja)
Other versions
JPH0967108A (en
Inventor
高志 古沢
敏夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP22028995A priority Critical patent/JP3713760B2/en
Publication of JPH0967108A publication Critical patent/JPH0967108A/en
Application granted granted Critical
Publication of JP3713760B2 publication Critical patent/JP3713760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明が属する技術の分野】
本発明は、微粒子状の無水アルカリ金属硫化物の製造法に関する。
【0002】
【従来の技術】
近年、エンジニアリングプラスチックや医薬品の原料として高純度でありかつ取り扱いの容易な無水アルカリ金属硫化物、中でもポリアリーレンスルフィドやスルフィド結合を有する医薬品等の原料である無水硫化ナトリウムが要求されている。現在、一般に市販されている硫化ナトリウムとしては、硫化ナトリウム水溶液を冷却または濃縮して晶析させた結晶水を有する硫化ナトリウム結晶(Na2S・9H2O、Na2S・6H2O、Na2S・5.5H2O、Na2S・5H2O等)や60%程度の濃度の硫化ナトリウム熱水溶液をペレット状、フレーク状、チップ状等に固化して得られる含水硫化ナトリウム等がある。しかしながら、これらの硫化ナトリウムは水分を30%以上含有するものであり、純度が低いことに加えて潮解性が強く酸化され易いという欠点を有する。
【0003】
これらアルカリ金属硫化物を原料とする化学反応においては、製品中に存在する水が好ましくない副反応を誘発することや反応の平衡状態を変えると言う問題点があるため、反応に使用する前に脱水等の操作が必要となって操作が煩雑となる。また反応をスムーズに進行させるために反応溶媒に良分散して溶解し易い様な微粒子状の無水アルカリ金属硫化物が望まれている。
【0004】
無水硫化ナトリウムを得る方法としては、水和または含水硫化ナトリウムを融点以上の温度に加熱し脱水する方法が一般的である。しかしながら、水分を含有する硫化ナトリウムを融解させると極めて高粘度の塊となって、容器に強固に付着して攪拌や取り出しが困難となる。これまでに無水硫化ナトリウムの製法として知られているものには、
(1)水和硫化ナトリウム(9水塩)をパイプに充填し、攪拌することなく1トールの減圧下で特定の条件で加熱して融解を避けながら徐々に800℃まで昇温し、強制脱水する方法(米国特許2533163号)
(2)水酸化ナトリウムを2〜15重量%含有する97℃以上の硫化ナトリウム水溶液から無水硫化ナトリウム結晶を析出させる方法(特開昭64―28207号)
(3)高水和硫化ナトリウム結晶を500トール以下の圧力で高水和硫化ナトリウム結晶から硫化ナトリウム1水和物への相転移点±10℃で4〜5時間加熱し、次いで大気圧下または減圧下で90〜200℃で4〜5時間加熱して無水硫化ナトリウムを得る方法(特開平2―51404号)
(4)炭化水素溶媒あるいはポリハロ芳香族化合物の存在下、硫化ナトリウム水和物及び有機スルホン酸金属塩、ハロゲン化リチウム、有機カルボン酸金属塩、リン酸アルカリ金属塩の中から選ばれる少なくとも一種の金属塩を接触せしめ脱水を行ない硫化ナトリウム組成物を得る方法(特開昭60―200807号、特開昭60―210509号)等が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、(1)の方法は、加熱温度が極めて高温であることから実用的ではなく、しかも得られた無水硫化ナトリウムは水和物の結晶形状を保持した骸晶となり、比表面積が大きく潮解性があり、非常に酸化され易いものである。(2)及び(3)の方法は、これらの欠点を改良した方法ではあるが、(2)の方法では無水硫化ナトリウム結晶を析出させている間の水酸化ナトリウム濃度及び温度を厳密に制御する必要があり容易な方法ではない。また、(3)の方法では、減圧下で長時間を要し数工程が必要であり、原料としてNa2S5水塩を溶融させることなく粒子形を保持したまま脱水を行なっており、原料であるNa2S5水塩の粒子径がそのまま無水硫化ナトリウムの粒子径に反映し、得られる無水硫化ナトリウムの粒径も1〜1.5mmと比較的大きいものである。また、(4)の方法では脱水時の系に有機スルホン酸金属塩、ハロゲン化リチウム、有機カルボン酸金属塩、リン酸アルカリ金属塩等を分散剤として加える必要があるため脱水後の系内はそれら金属塩との混合物となり無水硫化ナトリウム単品を取り出すことは不可能に近い。
【0006】
【課題を解決するための手段】
本発明は、上述した様な欠点を解決し、潮解性、比酸化性の少ない微粒子状の高純度の無水アルカリ金属硫化物単品を得る方法に関するものである。原料として結晶水含有アルカリ金属硫化物溶融物を炭化水素溶媒やポリハロ芳香族化合物中で脱水すると上述の有機スルホン酸金属塩等や有機極性溶媒等の分散剤が存在しないと塊状の無水アルカリ金属硫化物しか得られない。そこで発明者らが鋭意検討した結果、アルカリ金属水硫化物及びアルカリ金属水酸化物より混合調製されたアルカリ金属水硫化物水溶液と分散媒を接触させ脱水を行なうことにより、分散剤を用いなくとも微粒子状の無水アルカリ金属硫化物が得られることが判明し、ここに本発明を完成するに至った。この理由については、本発明者等は、本発明では上述のアルカリ金属硫化物水溶液と分散媒との界面付近で該水溶液の濃縮が起こりアルカリ金属硫化物粒子が析出し、用いた分散媒が析出した粒子の凝集を防ぐが、一方、結晶水含有アルカリ金属硫化物溶融物を用いた場合は、原料に含まれるアルカリ金属炭酸塩、アルカリ金属亜硫酸塩、アルカリ金属多硫化物等の不純物が多くなり、それらの不純物によって錯塩やイオン対等が形成されることによって無水アルカリ金属硫化物粒子同志を凝集させるバインダーの様な働きをして系内は良分散状態とはならないためであると現在までのところ推測しているが、定かではない。
【0007】
本発明方法におけるアルカリ金属硫化物水溶液は、アルカリ金属水硫化物及びアルカリ金属水酸化物との混合によって調製されるものである。かかる水溶液としては、分散媒と接触する前にアルカリ金属水硫化物とアルカリ金属水酸化物との混合によってアルカリ金属硫化物水溶液を予め調製しておいたもののほか、アルカリ金属水硫化物とアルカリ金属水酸化物とを分散媒に添加し、当該分散媒中においてアルカリ金属硫化物水溶液を生成させてものも本発明においては包含する。アルカリ金属水硫化物かアルカリ金属水酸化物のうちの少なくとも一方が水溶液の形態で供されればアルカリ金属硫化物水溶液の調製はより容易である。
【0008】
アルカリ金属水硫化物としては、たとえば水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、好ましいのは水硫化リチウム及び水硫化ナトリウムであり、特に好ましいのは水硫化ナトリウムである。使用する水硫化ナトリウムの形状は、結晶、フレーク状、固形、液体及び水溶液のいずれでもかまわない。
【0009】
アルカリ金属水酸化物としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等が挙げられるが、これらはそれぞれ単独で用いてもよいし、2種以上を混合して用いてもよい。アルカリ金属水酸化物の中では水酸化リチウムと水酸化ナトリウムおよび水酸化カリウムが好ましく、特に水酸化ナトリウムが好ましい。この時使用するアルカリ金属水酸化物の形状は固形、フレーク状、及び水溶液のいずれでも良く、その量は、アルカリ金属水硫化物に対しモル比で0.90〜1.20の範囲が好ましい。
【0010】
また、本発明で使用される分散媒は、アルカリ金属硫化物水溶液の沸点以下の融点を有する有機化合物であればかまわない。より具体的にはかかる分散媒は、水と共沸し、かつ脱水時に生成した無水アルカリ金属硫化物を実質的に分散する有機化合物である。これらの例としてはベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン、テトラリン、ジフェニル等の芳香族炭化水素、n―ヘキサン、n―ヘプタン、n―オクタン、イソオクタン等の脂肪族炭化水素、シクロヘキサン、デカリン等の脂環式炭化水素の炭化水素化合物;ブロモベンゼン、ヨードベンゼン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、テトラクロロベンゼン、ジクロロジフェニルスルホン、ジクロロジフェニルエーテル等のポリハロ芳香族化合物及びこれらの混合物が挙げられる。これらのうち好適に使用されるものは、反応系において水が除去されるための温度条件として少なくとも70℃以上の沸点を有し、かつ200℃以下の温度で水と共沸するものである。このようなもののうち、特にキシレン、p―ジクロロベンゼンは好適である。分散媒として特にp―ジクロロベンゼンを用いた場合は、そのままポリアリーレンスルフィドの製造に使用できる。使用する分散媒の量は、好ましくはアルカリ金属水硫化物量に対してモル比で0.1〜10の範囲でありさらに好ましくは1〜5の範囲である。
【0011】
(無水アルカリ金属硫化物と分散媒との混合物の製造工程)
本発明ではアルカリ金属水硫化物とアルカリ金属水酸化物を所定量混合して調製したアルカリ金属硫化物水溶液と分散媒を水が除去され得る温度、一般に70℃〜200、好ましくは100℃〜200℃の温度に加熱接触し脱水を行なう。その接触の方法は、
(1)該水溶液と分散媒を同時に仕込んで加熱脱水をする方法
(2)分散媒を仕込、水が留出する温度に加熱しながら該水溶液を滴下し、脱水を行なう方法
(3)該水溶液を仕込、水が留出する温度に加熱しながら分散媒を滴下し、脱水を行なう方法
のいずれでもかまわない。反応操作の面から好ましいのは(1)の方法である。この時、水と同時に分散媒が留出するが、留出した分散媒はデカンター等で分離し系内に戻してもよいし、留出した分を追加仕込してもかまわない。また水の沸点よりも高い沸点の分散媒を選べば回収する必要性が低減できる。脱水中の混合物の液温は、脱水の進行と共に上昇していく。さらに脱水を続けていくと急激に液温が上昇し、分散媒沸点まで上昇する。この時点で系内は無水となり脱水終了である。この脱水時間として好ましくは10分より24時間以内、生産性の面から見てさらに好ましくは30分より8時間以内である。脱水が終了した時点での系内は分散媒中に微粒状の無水アルカリ金属硫化物が分散している状態である。
【0012】
(無水アルカリ金属硫化物の製造法)
前述の無水アルカリ金属硫化物と分散媒の混合物の状態から減圧して分散媒を取り除くことによって無水アルカリ金属硫化物が得ること可能である。また、ろ過して分散媒を取り除き、ろ取した固体を減圧乾燥して無水アルカリ金属硫化物が得ることが可能である。さらにこの無水アルカリ金属硫化物を用いた反応を行なうのであれば、その反応で用いる分散媒を用いて脱水を行なえば、脱水終了後そのまま引き続いて反応を行なうことも可能である。例えば、p―ジクロロベンゼンを用いた場合は、必要ならば水を添加し200〜280℃で反応させるとポリフェニレンスルフィド(PPS)が得られる。
【0013】
【発明の実施形態】
本発明の好適な実施形態について以下の説明する。
水硫化アルカリ金属と、前記水硫化アルカリ金属量に対して0.90〜1.20モル比のアルカリ金属水酸化物と、前記水硫化アルカリ金属量に対して1〜5モル比の炭化水素化合物やポリハロ芳香族化合物の分散媒とを仕込、これらを100〜200℃の温度で加熱接触し、脱水をおこなって無水アルカリ金属硫化物を含む混合物を得る。さらに、前記の無水アルカリ金属硫化物を含む混合物から前記分散媒を除去して、粒状の無水アルカリ金属硫化物を製造する。
【0014】
【実施例】
以下に本発明を実施例により具体的に説明するが、本発明はこれら実施例にのみ限定されるものではない。
【0015】
〔実施例1〕
攪拌機及びデカンターを備えたフラスコに水硫化ナトリウム1.2水塩78.0g(1.0モル)、44%水酸化ナトリウム水溶液90.4g(1.0モル)及び分散媒としてp―ジクロロベンゼン147.0g(1.0モル)を入れ昇温を開始した。内温が140℃に到達すると水とp―ジクロロベンゼンの留出 が始まった。p―ジクロロベンゼンは、デカンターで分離して連続的に系内に戻した。留出開始後しばらくすると系内に粒子が分散し始めた。2時間後90.0gの水が留出し内温がp―ジクロロベンゼンの沸点である174℃に上昇したので脱水を終了した。脱水終了時の系内は、無水硫化ナトリウムの微粒子がp―ジクロロベンゼンに分散している状態であった。冷却後粒子をろ取し、100℃で2時間減圧乾燥し77.2g(収率99.0%)の粒状生成物を得た。生成物は硫化ナトリウム98%及び水分0.001%を含むものであった。得られた無水硫化ナトリウムの粒子径は、150〜600μmであった。
【0016】
〔実施例2〕
攪拌機及びデカンターを備えたフラスコに水硫化ナトリウム1.2水塩78.0g(1.0モル)、44%水酸化ナトリウム水溶液90.4g(1.0モル)及び分散媒としてキシレン106.0g(1.0モル)を入れ昇温を開始した。内温が140℃に到達すると水とキシレンの留出 が始まった。その後の操作は、実施例と同様な操作を行ない、脱水は4時間を要した。その結果、77.0g(収率98.7%)の生成物を得た。生成物は硫化ナトリウム98%及び水分0.001%を含むものであった。得られた無水硫化ナトリウムの粒子径は、150〜600μmであった。
【0017】
〔比較例1〕
攪拌機及びデカンターを備えたフラスコに硫化ナトリウム5水塩168.0g(1.0モル)及び分散媒としてp―ジクロロベンゼン147.0g(1.0モル)を入れ昇温を開始した。内温が140℃に到達すると水とp―ジクロロベンゼンの留出が始まった。p―ジクロロベンゼンは、デカンターで分離して連続的に系内に戻した。留出開始後しばらくすると系内に粒子が分散し始めた。4時間後86.2gの水が留出し脱水を終了した。脱水終了時の系内は硫化ナトリウムの粒子が凝集し壁面や攪拌羽根等に付着して塊となり、微粒子状の無水硫化ナトリウムを取り出すことはできなかった。
【0018】
【発明の効果】
本発明の無水アルカリ金属硫化物の製造方法は、アルカリ金属水硫化物及びアルカリ金属水酸化物より調製されたアルカリ金属硫化物水溶液と分散媒を接触させ脱水を行なうことにより、界面付近でアルカリ金属硫化物溶液の濃縮が起こりアルカリ金属硫化物の粒子が析出し、用いた分散媒が析出した粒子の凝集を防ぎ微粒子状の無水アルカリ金属硫化物が得られる。得られた無水アルカリ金属硫化物は硫黄系のポリマーであるポリアリーレンスルフィドや医薬品の原料として使用される。
[0001]
[Field of the Invention]
The present invention relates to a method for producing fine particulate anhydrous alkali metal sulfide.
[0002]
[Prior art]
In recent years, anhydrous alkali metal sulfides which are high purity and easy to handle as raw materials for engineering plastics and pharmaceuticals, especially anhydrous sodium sulfide which is a raw material for pharmaceuticals having polyarylene sulfide and sulfide bonds have been required. Currently, commercially available sodium sulfide includes sodium sulfide crystals (Na 2 S · 9H 2 O, Na 2 S · 6H 2 O, Na) having crystal water crystallized by cooling or concentrating a sodium sulfide aqueous solution. 2 S · 5.5H2O, Na 2 S · 5H 2 O, etc.) and hydrous sodium sulfide obtained by solidifying a sodium sulfide hot aqueous solution having a concentration of about 60% into pellets, flakes, chips and the like. However, these sodium sulfides contain 30% or more of moisture, and have the disadvantage that they are highly pure and easy to oxidize in addition to low purity.
[0003]
In chemical reactions using these alkali metal sulfides as raw materials, there is a problem that water present in the product induces undesirable side reactions and changes the equilibrium state of the reaction. An operation such as dehydration is required, and the operation becomes complicated. Further, in order to allow the reaction to proceed smoothly, a fine anhydrous alkali metal sulfide that is well dispersed and easily dissolved in the reaction solvent is desired.
[0004]
As a method for obtaining anhydrous sodium sulfide, a method is generally used in which hydrated or hydrous sodium sulfide is heated to a temperature higher than the melting point and dehydrated. However, when water-containing sodium sulfide is melted, it becomes a very viscous mass and adheres firmly to the container, making stirring and taking out difficult. What has been known as an anhydrous sodium sulfide process so far
(1) Filling the pipe with hydrated sodium sulfide (9 hydrate), heating under specific conditions under a reduced pressure of 1 torr without stirring and gradually raising the temperature to 800 ° C. while avoiding melting, forced dehydration Method (US Pat. No. 2,533,163)
(2) A method for precipitating anhydrous sodium sulfide crystals from a sodium sulfide aqueous solution at 97 ° C. or higher containing 2 to 15% by weight of sodium hydroxide (Japanese Patent Laid-Open No. 64-28207)
(3) Heating the highly hydrated sodium sulfide crystals at a pressure of 500 torr or less at a phase transition point of ± 10 ° C. from the highly hydrated sodium sulfide crystals to sodium sulfide monohydrate for 4 to 5 hours, and then at atmospheric pressure or A method of obtaining anhydrous sodium sulfide by heating at 90 to 200 ° C. for 4 to 5 hours under reduced pressure (Japanese Patent Laid-Open No. 2-51404)
(4) In the presence of a hydrocarbon solvent or a polyhaloaromatic compound, at least one selected from sodium sulfide hydrate, organic sulfonic acid metal salt, lithium halide, organic carboxylic acid metal salt, and alkali metal phosphate A method for obtaining a sodium sulfide composition by bringing a metal salt into contact with each other to perform dehydration (Japanese Patent Laid-Open Nos. 60-200807 and 60-210509) is known.
[0005]
[Problems to be solved by the invention]
However, the method (1) is not practical because the heating temperature is extremely high, and the obtained anhydrous sodium sulfide becomes a body crystal that retains the crystal shape of the hydrate, and has a large specific surface area and deliquescence. It is very easy to oxidize. Although the methods (2) and (3) are methods that improve these drawbacks, the method (2) strictly controls the sodium hydroxide concentration and temperature during the precipitation of anhydrous sodium sulfide crystals. It is necessary and not an easy way. In the method (3), it takes a long time under reduced pressure and several steps are required. Dehydration is performed while maintaining the particle shape without melting Na 2 S5 hydrate as a raw material. The particle diameter of a certain Na 2 S5 hydrate is directly reflected in the particle diameter of anhydrous sodium sulfide, and the particle diameter of the obtained anhydrous sodium sulfide is also relatively large at 1 to 1.5 mm. In the method of (4), it is necessary to add organic sulfonic acid metal salt, lithium halide, organic carboxylic acid metal salt, alkali metal phosphate, etc. as a dispersing agent to the system during dehydration. It is almost impossible to take out anhydrous sodium sulfide alone as a mixture with these metal salts.
[0006]
[Means for Solving the Problems]
The present invention relates to a method for solving the above-mentioned drawbacks and obtaining a single high-purity anhydrous alkali metal sulfide having a fine particle shape with low deliquescence and specific oxidation properties. When dehydrated alkali metal sulfide melt containing water of crystallization as a raw material in a hydrocarbon solvent or polyhaloaromatic compound, if there is no dispersant such as the above-mentioned organic sulfonic acid metal salt or organic polar solvent, it is a massive anhydrous alkali metal sulfide You can only get things. Thus, as a result of intensive studies by the inventors, it is possible to perform dehydration by bringing a dispersion medium into contact with an alkali metal hydrosulfide aqueous solution prepared by mixing an alkali metal hydrosulfide and an alkali metal hydroxide without using a dispersant. It has been found that fine anhydrous alkali metal sulfide can be obtained, and the present invention has been completed here. For this reason, the present inventors, in the present invention, concentrated the aqueous solution near the interface between the aqueous alkali metal sulfide solution and the dispersion medium described above to precipitate the alkali metal sulfide particles, and the used dispersion medium was deposited. On the other hand, when an alkali metal sulfide melt containing crystallization water is used, impurities such as alkali metal carbonate, alkali metal sulfite, alkali metal polysulfide, etc. contained in the raw material increase. So far, the complex system, ion pairs, etc. formed by these impurities act like a binder to agglomerate anhydrous alkali metal sulfide particles, and the system is not well dispersed so far. I guess, but I'm not sure.
[0007]
The aqueous alkali metal sulfide solution in the method of the present invention is prepared by mixing with an alkali metal hydrosulfide and an alkali metal hydroxide. As such an aqueous solution, an alkali metal sulfide aqueous solution prepared in advance by mixing an alkali metal hydrosulfide and an alkali metal hydroxide before contacting with the dispersion medium, as well as an alkali metal hydrosulfide and an alkali metal are prepared. In the present invention, a hydroxide is added to the dispersion medium to produce an aqueous alkali metal sulfide solution in the dispersion medium. If at least one of the alkali metal hydrosulfide or the alkali metal hydroxide is provided in the form of an aqueous solution, the preparation of the aqueous alkali metal sulfide solution is easier.
[0008]
Examples of the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, lithium hydrosulfide and sodium hydrosulfide are preferable, and sodium hydrosulfide is particularly preferable. The shape of sodium hydrosulfide to be used may be a crystal, flake, solid, liquid or aqueous solution.
[0009]
Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. These may be used alone or in combination of two or more. May be used. Among the alkali metal hydroxides, lithium hydroxide, sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is particularly preferable. The shape of the alkali metal hydroxide used at this time may be any of solid, flaky, and aqueous solution, and the amount is preferably in the range of 0.90 to 1.20 in molar ratio to the alkali metal hydrosulfide.
[0010]
Further, the dispersion medium used in the present invention may be an organic compound having a melting point equal to or lower than the boiling point of the alkali metal sulfide aqueous solution. More specifically, such a dispersion medium is an organic compound that is azeotropic with water and substantially disperses the anhydrous alkali metal sulfide generated during dehydration. Examples of these include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, mesitylene, tetralin and diphenyl, aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane and isooctane, cyclohexane and decalin, etc. Examples thereof include hydrocarbon compounds of alicyclic hydrocarbons; polyhaloaromatic compounds such as bromobenzene, iodobenzene, chlorobenzene, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dichlorodiphenyl sulfone, dichlorodiphenyl ether, and mixtures thereof. Among these, those suitably used are those having a boiling point of at least 70 ° C. or higher as a temperature condition for removing water in the reaction system and azeotroping with water at a temperature of 200 ° C. or lower. Of these, xylene and p-dichlorobenzene are particularly preferred. In particular, when p-dichlorobenzene is used as a dispersion medium, it can be used as it is for the production of polyarylene sulfide. The amount of the dispersion medium used is preferably in the range of 0.1 to 10 in terms of molar ratio with respect to the amount of alkali metal hydrosulfide, and more preferably in the range of 1 to 5.
[0011]
(Manufacturing process of a mixture of anhydrous alkali metal sulfide and dispersion medium)
In the present invention, the alkali metal sulfide aqueous solution prepared by mixing a predetermined amount of an alkali metal hydrosulfide and an alkali metal hydroxide and a dispersion medium are temperatures at which water can be removed, generally 70 ° C to 200 ° C, preferably 100 ° C to 200 ° C. Dehydrated by heating to a temperature of ℃. The method of contact is
(1) A method in which the aqueous solution and the dispersion medium are simultaneously charged and dehydrated by heating (2) A method in which the dispersion medium is charged and the aqueous solution is dropped while being heated to a temperature at which water is distilled, and dehydration is performed (3) The aqueous solution Any of the methods may be used in which dehydration is performed by dropping the dispersion medium while heating to a temperature at which water is distilled off. The method (1) is preferable from the viewpoint of reaction operation. At this time, the dispersion medium is distilled simultaneously with water, but the distilled dispersion medium may be separated by a decanter or the like and returned to the system, or the distillate may be additionally charged. Further, if a dispersion medium having a boiling point higher than that of water is selected, the necessity for recovery can be reduced. The liquid temperature of the mixture during dehydration increases with the progress of dehydration. As dehydration continues further, the liquid temperature rapidly rises to the boiling point of the dispersion medium. At this point, the system is dehydrated and dehydration is complete. The dehydration time is preferably 10 minutes to 24 hours, and more preferably 30 minutes to 8 hours from the viewpoint of productivity. When the dehydration is completed, the system is in a state where fine anhydrous alkali metal sulfide is dispersed in the dispersion medium.
[0012]
(Production method of anhydrous alkali metal sulfide)
An anhydrous alkali metal sulfide can be obtained by removing the dispersion medium by reducing the pressure from the state of the mixture of the anhydrous alkali metal sulfide and the dispersion medium. It is also possible to remove the dispersion medium by filtration, and dry the filtered solid under reduced pressure to obtain an anhydrous alkali metal sulfide. Further, if the reaction using the anhydrous alkali metal sulfide is performed, if the dehydration is performed using the dispersion medium used in the reaction, the reaction can be continued as it is after the completion of the dehydration. For example, when p-dichlorobenzene is used, polyphenylene sulfide (PPS) can be obtained by adding water if necessary and reacting at 200 to 280 ° C.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described below.
Alkali metal hydrosulfide, an alkali metal hydroxide in a 0.90 to 1.20 molar ratio relative to the amount of alkali metal hydrosulfide, and a hydrocarbon compound in a 1 to 5 molar ratio relative to the amount of alkali metal hydrosulfide And a dispersion medium of polyhaloaromatic compound are charged, these are heated and contacted at a temperature of 100 to 200 ° C., and dehydration is performed to obtain a mixture containing an anhydrous alkali metal sulfide. Further, the dispersion medium is removed from the mixture containing the anhydrous alkali metal sulfide to produce a granular anhydrous alkali metal sulfide.
[0014]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited only to these examples.
[0015]
[Example 1]
In a flask equipped with a stirrer and a decanter, 78.0 g (1.0 mol) of sodium hydrosulfide 1.2 hydrate, 90.4 g (1.0 mol) of 44% aqueous sodium hydroxide and p-dichlorobenzene 147 as a dispersion medium 0.0 g (1.0 mol) was added and the temperature was raised. When the internal temperature reached 140 ° C, distillation of water and p-dichlorobenzene began. p-Dichlorobenzene was separated by a decanter and continuously returned to the system. Some time after the start of distillation, the particles began to disperse in the system. Two hours later, 90.0 g of water was distilled, and the internal temperature rose to 174 ° C., which is the boiling point of p-dichlorobenzene. The system at the end of the dehydration was in a state where fine particles of anhydrous sodium sulfide were dispersed in p-dichlorobenzene. After cooling, the particles were collected by filtration and dried under reduced pressure at 100 ° C. for 2 hours to obtain 77.2 g (yield 99.0%) of a granular product. The product contained 98% sodium sulfide and 0.001% moisture. The particle size of the obtained anhydrous sodium sulfide was 150 to 600 μm.
[0016]
[Example 2]
In a flask equipped with a stirrer and a decanter, 78.0 g (1.0 mol) of sodium hydrosulfide 1.2 hydrate, 90.4 g (1.0 mol) of 44% aqueous sodium hydroxide and 106.0 g of xylene as a dispersion medium ( 1.0 mol) was added and the temperature was raised. When the internal temperature reached 140 ° C, distillation of water and xylene began. Subsequent operations were performed in the same manner as in Example, and dehydration took 4 hours. As a result, 77.0 g (yield 98.7%) of product was obtained. The product contained 98% sodium sulfide and 0.001% moisture. The particle size of the obtained anhydrous sodium sulfide was 150 to 600 μm.
[0017]
[Comparative Example 1]
A flask equipped with a stirrer and a decanter was charged with 168.0 g (1.0 mol) of sodium sulfide pentahydrate and 147.0 g (1.0 mol) of p-dichlorobenzene as a dispersion medium, and the temperature was increased. When the internal temperature reached 140 ° C., distillation of water and p-dichlorobenzene began. p-Dichlorobenzene was separated in a decanter and continuously returned to the system. Some time after the start of distillation, the particles began to disperse in the system. After 4 hours, 86.2 g of water was distilled to complete the dehydration. At the end of the dehydration, the sodium sulfide particles aggregated and adhered to the wall surface or stirring blade to form a lump, and it was impossible to take out fine anhydrous sodium sulfide.
[0018]
【The invention's effect】
The method for producing an anhydrous alkali metal sulfide according to the present invention comprises a step of contacting an alkali metal sulfide aqueous solution prepared from an alkali metal hydrosulfide and an alkali metal hydroxide with a dispersion medium to perform dehydration, thereby dehydrating the alkali metal near the interface. Concentration of the sulfide solution causes precipitation of alkali metal sulfide particles, preventing aggregation of the particles deposited by the used dispersion medium, thereby obtaining a particulate anhydrous alkali metal sulfide. The obtained anhydrous alkali metal sulfide is used as a raw material for polyarylene sulfide, which is a sulfur-based polymer, and pharmaceuticals.

Claims (3)

アルカリ金属水硫化物及びアルカリ金属水酸化物より調製されたアルカリ金属硫化物水溶液と、該水溶液の沸点以下の融点を有する分散媒とを接触させ脱水を行なうことを特徴とする無水アルカリ金属硫化物と分散媒の混合物の製造方法。  An anhydrous alkali metal sulfide comprising: an alkali metal sulfide aqueous solution prepared from an alkali metal hydrosulfide and an alkali metal hydroxide; and a dispersion medium having a melting point equal to or lower than the boiling point of the aqueous solution is contacted to perform dehydration. Of producing a mixture of a liquid and a dispersion medium. 請求項1に記載された前記混合物より分散媒を除去する粒状の無水アルカリ金属硫化物の製造方法。The manufacturing method of the granular anhydrous alkali metal sulfide which removes a dispersion medium from the said mixture described in Claim 1 . 該分散媒が炭化水素化合物及びポリハロ芳香族化合物である請求項1及び2記載の方法。  The method according to claim 1 or 2, wherein the dispersion medium is a hydrocarbon compound and a polyhaloaromatic compound.
JP22028995A 1995-08-29 1995-08-29 Method for producing anhydrous alkali metal sulfide Expired - Lifetime JP3713760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22028995A JP3713760B2 (en) 1995-08-29 1995-08-29 Method for producing anhydrous alkali metal sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22028995A JP3713760B2 (en) 1995-08-29 1995-08-29 Method for producing anhydrous alkali metal sulfide

Publications (2)

Publication Number Publication Date
JPH0967108A JPH0967108A (en) 1997-03-11
JP3713760B2 true JP3713760B2 (en) 2005-11-09

Family

ID=16748842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22028995A Expired - Lifetime JP3713760B2 (en) 1995-08-29 1995-08-29 Method for producing anhydrous alkali metal sulfide

Country Status (1)

Country Link
JP (1) JP3713760B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252657B2 (en) * 1999-02-25 2009-04-08 出光興産株式会社 Method for producing anhydrous alkali metal sulfide
JP2006016281A (en) * 2004-07-05 2006-01-19 Dainippon Ink & Chem Inc Method for manufacturing alkali metal sulfide anhydride
JP5629198B2 (en) * 2009-12-04 2014-11-19 出光興産株式会社 Alkali metal sulfide and method for producing the same
JP6686737B2 (en) * 2016-06-29 2020-04-22 Dic株式会社 Method for producing anhydrous alkali metal sulfide

Also Published As

Publication number Publication date
JPH0967108A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
JP5460283B2 (en) Method for producing lithium sulfide
CN108423651B (en) Method for preparing lithium difluorophosphate
DK155879B (en) PROCEDURE FOR THE PREPARATION OF GRANULATED METAL SOAPS
JP5122809B2 (en) Method for producing lithium fluoride
JP3713760B2 (en) Method for producing anhydrous alkali metal sulfide
KR100943872B1 (en) Method for producing trans-1,4-cyclohexane dicarboxylic acid
EP0361998B1 (en) Process for preparing crystals of anhydrous sodium sulfide
EP0572154A1 (en) Tetrabromobisphenol a having a large particle size and process for its production
JPH0512285B2 (en)
JP6809000B2 (en) Method for producing anhydrous alkali metal sulfide
TW524771B (en) Process for the preparation of anhydrous, highly pure sodium sulfide
CN106699510B (en) Post-treatment method for Grignard condensation reaction
JP6725876B2 (en) Method for producing anhydrous alkali metal sulfide
CN114890877A (en) 9, 9-di [ 3-phenyl-4- (2-hydroxyethoxy) phenyl ] fluorene and preparation method thereof
JP6686737B2 (en) Method for producing anhydrous alkali metal sulfide
JP2006016281A (en) Method for manufacturing alkali metal sulfide anhydride
JPH082863B2 (en) Method for producing high-purity 4,4'-dihydroxydiphenyl sulfone
US5241121A (en) Process for preparation of 4,4'-dihydroxydiphenylsulfone
JPH041151A (en) Production of 1,3-bis(2-hydroxyethoxy)benzene
JPH04310508A (en) Production of sodium sulfide low-hydrate or anhydride
JP2018002512A (en) Method for producing anhydrous alkali metal sulfide
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
TW202411186A (en) Crystal of 4,4'-bis(1,1-bis(4-hydroxy-3-methylphenyl)ethyl)biphenyl and method for manufacturing the same
JPH0586018A (en) Production of granular cysteamine hydrochloride
JPS5962542A (en) Preparation of purified phenol adduct of 2,2-bis (4-hydroxyphenyl)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term