JP6808885B1 - 熱量計及び熱量計測方法 - Google Patents

熱量計及び熱量計測方法 Download PDF

Info

Publication number
JP6808885B1
JP6808885B1 JP2020146398A JP2020146398A JP6808885B1 JP 6808885 B1 JP6808885 B1 JP 6808885B1 JP 2020146398 A JP2020146398 A JP 2020146398A JP 2020146398 A JP2020146398 A JP 2020146398A JP 6808885 B1 JP6808885 B1 JP 6808885B1
Authority
JP
Japan
Prior art keywords
gas
unit
premixing
measuring
predetermined volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020146398A
Other languages
English (en)
Other versions
JP2022041292A (ja
Inventor
辰志 南
辰志 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2020146398A priority Critical patent/JP6808885B1/ja
Application granted granted Critical
Publication of JP6808885B1 publication Critical patent/JP6808885B1/ja
Priority to PCT/JP2021/030844 priority patent/WO2022045075A1/ja
Publication of JP2022041292A publication Critical patent/JP2022041292A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/24Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures using combustion tubes, e.g. for microanalysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】質量流量を一定としたガスの熱量を求める場合と比して、求める熱量の精度を向上させる。【解決手段】ガスを触媒燃焼させる燃焼部と、所定容積の計量管と、前記計量管へガスを流す流し状態、前記計量管へのガスの流れを遮断して前記計量管に所定体積のガスを保持させる保持状態、及び、前記計量管に空気を流して前記計量管に保持されたガスを押し出す押出状態に、流路を切り替える流路切替バルブと、を有する計量部と、前記計量部から押し出された前記所定体積のガスと空気とを触媒燃焼前に予め混合する予混合部と、前記予混合部によって空気と混合されたガスが前記燃焼部で触媒燃焼することで上昇した前記燃焼部の温度によって前記所定体積のガスに対応する熱量を導出する導出部と、を備える熱量計。【選択図】図1

Description

本発明は、ガスの熱量を測定する熱量計、及び熱量計測方法に関するものである。
特許文献1に記載の熱量計では、加熱素子によって加熱された酸化触媒の近傍に、ガス導入管によってガスが導入され、導入されたガスは、触媒燃焼する。そして、酸化触媒の周囲に設けられた蓄熱部の上昇温度ΔTを測定することで、ガスの熱量が求められる。ここで、ガスの導入については、計測原理上、体積流量の制御が必要であるが、一般的に高精度な気体の体積流量制御は困難であることから、質量流量の制御で代替せざるを得ず、実際には質量流量が制御されたガスが、ガス導入管によって導入されている。
特開2015−87165号公報
従来の熱量計では、質量流量を一定としたガスが触媒燃焼することで蓄熱部の温度が上昇し、この上昇した蓄熱部の温度を測定することで、ガスの熱量が求められる。質量流量を一定としたガスの熱量を求める方式では、例えば、ガスの成分が変化するとガスの体積流量がばらついてしまい、求める熱量の精度が低かった。
本発明の課題は、質量流量を一定としたガスの熱量を求める場合と比して、求める熱量の精度を向上させることである。
第1態様に係る熱量計は、ガスを触媒燃焼させる燃焼部と、所定容積の計量管と、前記計量管へガスを流す流し状態、前記計量管へのガスの流れを遮断して前記計量管に所定体積のガスを保持させる保持状態、及び、前記計量管に空気を流して前記計量管に保持されたガスを押し出す押出状態に、流路を切り替える流路切替バルブと、を有する計量部と、前記計量部から押し出された前記所定体積のガスと空気とを触媒燃焼前に予め混合する予混合部と、前記予混合部によって空気と混合されたガスが前記燃焼部で触媒燃焼することで前記所定体積のガスに対応して上昇した前記燃焼部の温度によってガスの熱量を導出する導出部と、を備えることを特徴とする。
すなわち、第1態様に係る熱量計は、燃焼部と、計量部と、予混合部と、導出部とを備える。また、計量部は、計量管と、流路切替バルブとを有する。流路切替バルブは、計量管に対するガスの流路を、上述した流し状態、保持状態、及び押出状態に切り替えることが可能である。なお、計量管に保持されるガスの「所定体積」とは、計量管の「所定容積」と同じ値である。さらに、ガスの燃焼によって導出された熱量は、「所定体積のガス」と対応する。すなわち、「所定体積のガス」の一定の割合が燃焼することによって導出された熱量はガスの「所定体積」と対応することになる。ここで、「一定の割合」が100%である場合には、導出された熱量は「所定体積のガス」の全量の燃焼に起因することになる。
この構成によると、計量部が、所定体積のガスを計量し、計量されたガスは予混合部で空気と予め混合されてから燃焼部に供給され、導出部は、供給されたガスが燃焼部で加熱されて触媒燃焼することで、上昇した燃焼部の上昇温度ΔTによって、当該所定体積のガスに対応する熱量を導出する。なお、予混合部におけるガスの流速は、計量部から押し出された直後のガスの流速とは異なっている。
このため、例えばガスの成分の変化が生じた場合であっても、燃焼部で燃焼するガスに起因する熱量をガスの所定体積に対応して決めることができるので、質量流量を一定としたガスの熱量を求める場合と比して、求める熱量の精度を向上させることができる。さらに、所定体積のガスが予混合部で空気と予め混合されてから燃焼部に供給されるので、供給されたガスの全量が効率よく燃焼されることで、計量部で計量された所定体積のガスと導出された熱量とがより正確に対応づけられる。
第2態様に係る熱量計は、第1態様に記載の熱量計において、前記予混合部は、前記計量部と前記燃焼部との間に設けられる予混合室であって、前記所定体積のガスと空気とを滞留させる予混合室を有するとともに、前記予混合室では、前記所定体積のガスと空気とが滞留している間の拡散によって前記所定体積のガスと空気とが混合されることを特徴とする。
この構成によると、予混合室において、所定体積のガスの流速がほぼゼロにまで減少し、所定体積のガスと空気とが所定の時間、予混合室内で滞留している間の拡散によって、燃焼部における触媒燃焼の前に、所定体積のガスと空気とが混合される。
このため、ガスの燃焼に必要な空気がガスとともに燃焼部に供給され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第3態様に係る熱量計は、第1態様に記載の熱量計において、前記予混合部は、前記計量部と前記燃焼部とを連絡する予混合流路を有するとともに、前記予混合流路では、前記所定体積のガスが空気とともに流れる間に空気と混合されることを特徴とする。
この構成によると、予混合流路において、所定体積のガスが、空気とともに流れる間に、燃焼部における触媒燃焼の前に、所定体積のガスと空気とが混合される。この予混合流路では、所定体積のガス及びそのガスの前後に流れる空気の流れに乱れが生じ、撹拌効果が生じることによって、所定体積のガスと空気との混合が促進される。この際、予混合流路における所定体積のガス及び空気の流速は減少又は増加している。
このため、ガスの燃焼に必要な空気がガスとともに燃焼部に供給され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第4態様に係る熱量計は、第1態様に記載の熱量計において、前記予混合部は、前記計量部と前記燃焼部との間に設けられる予混合室であって、前記所定体積のガスと空気とを滞留させる予混合室と、前記計量部と前記燃焼部とを連絡する予混合流路であって、前記予混合室の上流側又は下流側の少なくとも一方に設けられる予混合流路とを有するとともに、前記予混合室では、前記所定体積のガスと空気とが滞留している間の拡散によって前記所定体積のガスと空気とが混合され、前記予混合流路では、前記所定体積のガスが空気とともに流れる間に混合されることを特徴とする。
この構成によると、予混合室において、所定体積のガスの流速がほぼゼロにまで減少し、所定体積のガスと空気とが所定の時間、予混合室内で滞留している間の拡散によって、燃焼部における触媒燃焼の前に、所定体積のガスと空気とが混合される。それとともに、予混合室の上流若しくは下流又はこれらの両方に設けられる予混合流路において、所定体積のガスが、空気とともに流れる間に、燃焼部における触媒燃焼の前に、所定体積のガスと空気とが混合される。この予混合流路では、所定体積のガス及びその前後を流れる空気の流れに乱れが生じ、撹拌効果が生じることによって、所定体積のガスと空気との混合が促進される。この際、予混合流路における所定体積のガス及び空気の流速は減少又は増加している。
このため、ガスの燃焼に必要な空気がガスとともに燃焼部に供給され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第5態様に係る熱量計は、第1態様から第4態様までのいずれかに記載の熱量計において、前記予混合部は、前記計量部から押し出された前記所定体積のガスの流路に合流する空気の合流路を有し、前記合流路から流入した空気が、触媒燃焼前に前記所定体積のガスと予め混合されることを特徴とする。
この構成によると、所定体積のガスは、燃焼部に至る前に、合流路から流入した空気と混合されることになる。この際、予混合部におけるガスの流速は、合流路からの空気の流入によって、計量部から押し出された直後の所定体積のガスの流速とは異なっている。
このため、ガスの燃焼に必要な空気がガスとともに燃焼部に供給され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第6態様に係る熱量計測方法は、計量部が備える所定容積の計量管にガスを流す流し工程と、前記流し工程の後、前記計量管へのガスの流れを遮断して前記計量管に所定体積のガスを保持させる保持工程と、前記保持工程で前記計量管に保持された前記所定体積のガスを前記計量部から押し出す押出工程と、前記押出工程で押し出された前記所定体積のガスと空気とを燃焼部での触媒燃焼前に予め混合する予混合工程と、前記予混合工程によって空気と混合されたガスを前記燃焼部で触媒燃焼させる燃焼工程と、前記燃焼工程により上昇した温度によって前記所定体積のガスに対応するガスの熱量を導出する導出工程と、を備え、前記計量部が備える流路切替バルブであって、前記計量管へガスを流す流し状態と、前記計量管へのガスの流れを遮断して前記計量管に所定体積のガスを保持させる保持状態と、前記計量管に空気を流して前記計量管に保持されたガスを押し出す押出状態とに、流路を切り替える流路切替バルブを用いて、前記流し工程と、前記保持工程と、前記押出工程とをそれぞれ行うことを特徴とする。
すなわち、流し工程の際には、流路切替バルブは流し状態に切り替えられる。また、保持工程の際には、流路切替バルブは保持状態に切り替えられる。さらに、押出工程の際には、流路切替バルブは押出状態に切り替えられる。
この構成によると、流し工程で計量管にガスが流される。その後、保持工程で、計量管へのガスの流れを遮断して計量管にガスが一旦保持される。さらに、押出工程で、保持工程で計量管に保持された所定体積のガスを押し出す。そして、押し出されたガスを予混合工程で空気と予め混合してから、燃焼工程で触媒燃焼させる。なお、予混合工程におけるガスの流速は、計量管から押し出された直後のガスの流速とは異なっている。さらに、導出工程で、ガスの燃焼により上昇した燃焼部の上昇温度ΔTによって、当該所定体積のガスに対応する熱量が導出される。
このため、例えばガスの成分の変化が生じた場合であっても、燃焼工程で燃焼されるガスに起因する熱量をガスの所定体積に対応して決めることができるので、質量流量を一定としたガスの熱量を求める場合と比して、求める熱量の精度を向上させることができる。さらに、所定体積のガスが予混合工程で空気と予め混合されてから燃焼工程に供されるので、供されたガスの全量が効率よく燃焼されることで、保持工程で計量された所定体積のガスと導出された熱量とがより正確に対応づけられる。
第7態様に係る熱量計測方法は、第6態様に記載の熱量計測方法において、前記予混合工程では、前記計量部と前記燃焼部との間に設けられる予混合室において前記所定体積のガスと空気とを滞留させている間の拡散によって前記所定体積のガスと空気とが混合されることを特徴とする。
この構成によると、予混合工程において、予混合室内で所定体積のガスの流速がほぼゼロにまで減少し、所定体積のガスと空気とが所定の時間、予混合室内で滞留している間の拡散によって、燃焼工程における触媒燃焼の前に、所定体積のガスと空気とが混合される。
このため、ガスの燃焼に必要な空気がガスとともに燃焼工程に供され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第8態様に係る熱量計測方法は、第6態様に記載の熱量計測方法において、前記予混合工程では、前記計量部と前記燃焼部とを連絡する予混合流路を前記所定体積のガスが空気とともに流れる間に空気と混合されることを特徴とする。
この構成によると、予混合工程において、所定体積のガスが、予混合流路を空気とともに流れる間に、燃焼工程における触媒燃焼の前に、所定体積のガスと空気とが混合される。この予混合流路では、所定体積のガス及びそのガスの前後に流れる空気の流れに乱れが生じ、撹拌効果が生じることによって、所定体積のガスと空気との混合が促進される。この際、予混合流路における所定体積のガス及び空気の流速は減少又は増加している。
このため、ガスの燃焼に必要な空気がガスとともに燃焼工程に供され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第9態様に係る熱量計測方法は、第6態様に記載の熱量計測方法において、前記予混合工程では、前記計量部と前記燃焼部との間に設けられる予混合室において前記所定体積のガスと空気とを滞留させている間の拡散によって前記所定体積のガスと空気とが混合されるとともに、前記計量部と前記燃焼部とを連絡する予混合流路であって、前記予混合室の上流側又は下流側の少なくとも一方に設けられる予混合流路を前記所定体積のガスが空気とともに流れる間に空気と混合されることを特徴とする。
この構成によると、予混合工程において、所定体積のガスと空気とが予混合室で滞留している間の拡散によって、燃焼工程における触媒燃焼の前に、所定体積のガスと空気とが混合される。この予混合室では、所定体積のガスの流速がほぼゼロにまで減少し、所定体積のガスと空気とが所定の時間、予混合室内で滞留している間の拡散によって、燃焼工程における触媒燃焼の前に、所定体積のガスと空気とが混合される。それとともに、予混合室の上流若しくは下流又はこれらの両方に設けられる予混合流路において、所定体積のガスが、空気とともに流れる間に、燃焼工程における触媒燃焼の前に、所定体積のガスと空気とが混合される。この予混合流路では、所定体積のガス及びその前後を流れる空気の流れに乱れが生じ、撹拌効果が生じることによって、所定体積のガスと空気との混合が促進される。この際、予混合流路における所定体積のガス及び空気の流速は減少又は増加している。
このため、ガスの燃焼に必要な空気がガスとともに燃焼工程に供され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第10態様に係る熱量計測方法は、第6態様から第9態様までのいずれかに記載の熱量計測方法において、前記予混合工程では、前記計量部から押し出された前記所定体積のガスの流路に合流する空気の合流路から流入した空気が、触媒燃焼前に前記所定体積のガスと予め混合される
この構成によると、所定体積のガスは、燃焼工程に供される前に、合流路から流入した空気と混合されることになる。この際、予混合工程におけるガスの流速は、合流路からの空気の流入によって、計量部から押し出された直後のガスの流速とは異なっている。
このため、ガスの燃焼に必要な空気がガスとともに燃焼工程に供され、燃焼状態が向上するため、未燃焼でのガスの排出が低減され、所定体積のガスに対応した熱量をより正確に測定することができる。
第11態様に係る熱量計測方法は、第6態様から第10態様までのいずれかに記載の熱量計測方法において、前記流し工程、前記保持工程、前記押出工程、前記予混合工程、前記燃焼工程、及び前記導出工程を、この順番で周期的に実施することを特徴とする。
この構成によると、流し工程、保持工程、押出工程、予混合工程、燃焼工程、及び導出工程は、この順番で周期的に実施される。これにより、熱量計測方法では、継続的(間欠的)にガスの熱量を導出することができる。
本態様では、質量流量を一定としたガスの熱量を求める場合と比して、求める熱量の精度を向上させることができる。
本発明の第1実施形態に係る熱量計を示した構成図である。 本発明の第1実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第1実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第1実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第1実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第1実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第1実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第1実施形態に係る熱量計に備えられた情報処理部を示した構成図である。 本発明の第1実施形態に係る熱量計に備えられた導出部に予め入力された上昇温度と熱量との関係を示したグラフである。 本発明の第1実施形態に係る熱量計に備えられた燃焼部によって検知される温度と時間との関係を示したグラフである。 本発明の第2実施形態に係る熱量計を示した構成図である。 本発明の第2実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第2実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第2実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第2実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第2実施形態に係る熱量計に備えられた情報処理部を示した構成図である。 本発明の第3実施形態に係る熱量計を示した構成図である。 本発明の第3実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第3実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第3実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第3実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第3実施形態に係る熱量計に備えられた情報処理部を示した構成図である。 本発明の第4実施形態に係る熱量計を示した構成図である。 本発明の第4実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第4実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第4実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第4実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第4実施形態に係る熱量計を示し、熱量を測定する工程を説明するのに用いた構成図である。 本発明の第4実施形態に係る熱量計に備えられた情報処理部を示した構成図である。 本発明の第5実施形態に係る熱量計を示した構成図である。 第5実施形態の変形例における予混合室を示した構成図である。 本発明の第6実施形態に係る熱量計を示した構成図である。 本発明の第7実施形態に係る熱量計を示した構成図である。 本発明の第8実施形態に係る熱量計を示した構成図である。 本発明の第9実施形態に係る熱量計を示した構成図である。 本発明の第10実施形態に係る熱量計を示した構成図である。 本発明の第11実施形態に係る熱量計を示した構成図である。 本発明の第12実施形態に係る熱量計を示した構成図である。 第12実施形態の変形例を示した構成図である。 第12実施形態の変形例を示した構成図である。 本発明の第13実施形態に係る熱量計を示した構成図である。 第13実施形態の変形例を示した構成図である。 第13実施形態の変形例を示した構成図である。 比較例の熱量計における燃焼実験の結果を示すグラフである。 実施例の熱量計における燃焼実験の結果を示すグラフである。
以下、本発明の各実施形態について、図面を参照しつつ説明する。以下で言及する各図面における各部位の大きさ及び各部位間の比率は、模式的に表現されており、実際の各部位の大きさ及び各部位間の比率を必ずしも反映していない。なお、各図において共通して付されている符号は、特に説明がない場合でも、同一の対象を指し示すものである。また、各図における流路の脇に付した矢印のうち、白抜き矢印は、ガス又はガスを含有するキャリアガスの流れを示し、実線矢印は、ガスを含有しないキャリアガスのみの流れを示す。下記の各実施形態の熱量計は、ガスの熱量を計測するために用いるものである。また、下記で言及する「熱量」とは、ガスの単位体積当たりの熱エネルギーであって、単位については、〔MJ/Nm〕を用いることがある。
<第1実施形態>
本発明の第1実施形態に係る熱量計及び熱量計測方法について図1〜図8に従って説明する。
(熱量計10の構成)
本実施形態の熱量計10の構成を図1に示す。熱量計10は、ガスを触媒燃焼させる燃焼部20と、ガスを計量して予混合部へ押し出す計量部50と、計量されたガスを触媒燃焼前に空気と予め混合する予混合部60と、ガスの熱量を導出する導出部80及び各部を制御する制御部90を備えた情報処理部70(図8参照)とを備えている。
〔燃焼部20〕
燃焼部20は、図1に示されるように、検知部蓄熱材24と、検知部加熱素子28を有する検知部触媒30と、検知部熱電対34と、混合ガス供給路36と、加熱回路部38とを備えている。
−検知部触媒30−
検知部触媒30は、一例として、球状に固められた酸化触媒であり、Pt系触媒、Pd系触媒などを用いることができる。検知部触媒30には、検知部加熱素子28が設けられており、この検知部加熱素子28は、発熱体であって、加熱回路部38に流れる電流によって発熱する。
−検知部蓄熱材24−
検知部蓄熱材24は、検知部触媒30を上方及び側方から囲うように配置されている。この検知部蓄熱材24には、アルミなどの熱伝導率が高い金属材料などを用いることができる。これにより、検知部蓄熱材24は、検知部触媒30で発生した熱量を間接的に把握するために、この発生した熱を蓄熱するようになっている。なお、検知部蓄熱材24の形状については、検知部触媒30の周囲を全て覆うような中空の球形状としてもよい。
−検知部熱電対34−
検知部熱電対34は、検知部蓄熱材24の温度を検知するために、検知部蓄熱材24に設けられている。なお、検知部熱電対34については、検知部触媒30の内部に設けられてもよい。
−混合ガス供給路36−
混合ガス供給路36は、検知部蓄熱材24によって囲まれた空間と、予混合部60の後述する予混合流路バルブ61とを連結するように配置されている。混合ガス供給路36の一端は、検知部蓄熱材24を貫通し、検知部触媒30側に開口し、混合ガス供給路36の他端は、予混合流路バルブ61のポート61fに連結されている。
−加熱回路部38−
加熱回路部38は、電源38aを有し、電源38aによって予め定められた電圧が印加されることで、前述したように、検知部加熱素子28に電流が流れ、検知部加熱素子28が発熱するようになっている。
この構成において、燃焼部20では、計量部50から供給されたガスが、検知部加熱素子28によって加熱されている検知部触媒30によって触媒燃焼して発熱し、検知部蓄熱材24は、検知部触媒30で発生した熱を蓄熱する。そして、検知部熱電対34は、検知部蓄熱材24の温度を検知する。なお、検知部熱電対34については、検知部触媒30の温度を検知してもよい。
〔計量部50〕
計量部50は、図1に示されるように、六方バルブにより構成される流路切替バルブ51と、測定対象であるガスを流路切替バルブ51に供給するガス供給路53と、流路切替バルブ51からガスを排出するガス排出路56と、測定対象であるガスを計量する所定容積の計量管52とを備えている。さらに、計量部50は、キャリアガスである空気を流路切替バルブ51に供給するキャリアガス供給路57を備えている。
−流路切替バルブ51−
流路切替バルブ51は、6個のポート51a〜51fを有する。これらのポート51a〜51fは、ガス供給路53と連結するポート51aから図面上の時計回りにポート51e、ポート51f、ポート51b、ポート51c及びポート51dの順に円周状に配置されている。これらのポート51a〜51f間の連結は、制御部90(図8参照)によって制御されるようになっている。
具体的には、流路切替バルブ51は、ポート51aとポート51bとを連結し、ポート51cとポート51dとを連結し、かつ、ポート51eとポート51fとを連結する第1連結状態(図2及び図3参照)と、ポート51aとポート51dとを連結し、ポート51cとポート51eとを連結し、かつ、ポート51bとポート51fとを連結する第2連結状態(図4〜図7参照)との何れかの連結態様に切り替えられる。
ポート51aは、ガス供給路53に連結され、ポート51bは、計量管52の一端と連結され、ポート51cは、計量管52の他端と連結されている。ポート51dは、ガス排出路56と連結されている。
また、ポート51eは、キャリアガス供給路57に連結され、ポート51fは、計量管52により計量された所定体積のガスを予混合部60に供給する計量ガス供給路63に連結されている。
−ガス供給路53−
ガス供給路53は、ポート51aと図示しないガス供給元とを連結し、その流路を開閉するガス供給弁53aを備えている。この構成において、このガス供給弁53aは、制御部90によって制御され、ガス供給路53の流路を開閉する。
−ガス排出路56−
ガス排出路56は、ポート51dに連結される。なお、このガス排出路56を開閉する弁を備えていてもよい。
−計量管52−
計量管52は、一方向に延びている所定容積の円筒形状を呈する。計量管52の長手方向の一端は連結路54を介してポート51bに連結されている。計量管52の長手方向の他端は連結路55を介してポート51cに連結されている。本実施形態では、計量管52の容積は、一例として、1.5〔ml〕である。
−キャリアガス供給路57−
キャリアガス供給路57は一端がポート51eに連結され、他端側にはキャリアガスとしての空気を供給するポンプ57aを備えている。さらに、キャリアガス供給路57は、ポート51eとポンプ57aとの間に設けられたマスフローコントローラー57bを備えている。なお、マスフローコントローラー57bの代わりに、流体の流量を制御可能であれば、いかなる公知の装置を用いてもよい。
〔予混合部60〕
予混合部60は、図1に示されるように、六方バルブにより構成される予混合流路バルブ61と、計量部50により計量された所定体積のガスを予混合流路バルブ61に供給する計量ガス供給路63と、予混合流路バルブ61からガスを排出するガス排出路66と、所定体積のガスを空気と予混合させる、計量管52の容積より大きな所定容積の予混合室62とを備えている。さらに、予混合部60は、キャリアガスである空気を予混合流路バルブ61に供給するキャリアガス供給路67を備えている。
−予混合流路バルブ61−
予混合流路バルブ61は、6個のポート61a〜61fを有する。これらのポート61a〜61fは、計量ガス供給路63と連結するポート61aから図面上の時計回りにポート61e、ポート61f、ポート61b、ポート61c及びポート61dの順に円周状に配置されている。これらのポート61a〜61f間の連結は、制御部90(図8参照)によって制御されるようになっている。
具体的には、予混合流路バルブ61は、ポート61aとポート61bとを連結し、ポート61cとポート61dとを連結し、かつ、ポート61eとポート61fとを連結する第1連結状態(図2〜図6参照)と、ポート61aとポート61dとを連結し、ポート61cとポート61eとを連結し、かつ、ポート61bとポート61fとを連結する第2連結状態(図7参照)との何れかの連結態様に切り替えられる。
ポート61aは、計量ガス供給路63に連結され、ポート61bは、予混合室62の一端と連結され、ポート61cは、予混合室62の他端と連結されている。ポート61dは、ガス排出路66と連結されている。
また、ポート61eは、キャリアガス供給路67に連結され、ポート61fは、予混合室62により空気と混合された所定体積のガスを燃焼部20に供給する混合ガス供給路36に連結されている。
−計量ガス供給路63−
計量ガス供給路63は、ポート61aと、計量部50の流路切替バルブ51のポート51fとを連結し、その流路を開閉する計量ガス供給弁63aを備えている。この構成において、この計量ガス供給弁63aは、制御部90によって制御され、計量ガス供給路63の流路を開閉する。
−ガス排出路66−
ガス排出路66は、ポート61dに連結される。このガス排出路66の途中には、その流路を開閉するガス排出弁66aが設けられている。
−予混合室62−
予混合室62は、一方向に延びている所定容積の円筒形状を呈する。予混合室62の一端は連結路64を介してポート61bに連結されている。予混合室62の他端は連結路65を介してポート61cに連結されている。本実施形態では、予混合室62の容積は、一例として、5.0〔ml〕である。
−キャリアガス供給路67−
キャリアガス供給路67は一端がポート61eに連結され、他端側にはキャリアガスとしての空気を供給するポンプ67aを備えている。さらに、キャリアガス供給路67は、ポート61eとポンプ67aとの間に設けられたマスフローコントローラー67bを備えている。なお、マスフローコントローラー67bの代わりに、流体の流量を制御可能であれば、いかなる公知の装置を用いてもよい。
〔情報処理部70〕
情報処理部70は、図8に示されるように、ガスの熱量を導出する導出部80と、各部を制御する制御部90とを備えている。
−制御部90−
制御部90は、各部を制御して熱量計10を稼働させる。具体的には、ポート51a〜51f間における第1連結状態と第2連結状態との切替を制御する。また、ポート61a〜61f間における第1連結態様と第2連結態様との切替を制御する。また、ガス供給弁53a、計量ガス供給弁63a及びガス排出弁66aのそれぞれの開閉を制御する。また、ポンプ57a、67aのそれぞれの作動を制御する。さらに、加熱回路部38を作動させる電源38aも制御する。
−導出部80−
導出部80は、検知部熱電対34によって検知された温度に基づいてガスの熱量を導出する。
具体的には、導出部80には、ガスの熱量と、ガスの触媒燃焼によって上昇した検知部蓄熱材24の上昇温度ΔTとの関係が予め記録されている。図9に示すグラフの横軸は、上昇温度ΔTとされ、縦軸は、ガスの熱量とされている。このように、ガスの熱量は、上昇温度ΔTに比例して大きくなる。導出部80には、この関係が入力されている。
また、上昇温度ΔTについては、導出部80が、検知部熱電対34によって検知された温度に基づいて算出する。図10に示すグラフの横軸は、経過時間とされ、縦軸は、検知部熱電対34によって検知された温度とされている。導出部80は、このグラフに示されるように、検知部熱電対34によって検知される温度をモニタリングし、ガスの触媒燃焼によって上昇した上昇温度ΔTを算出する。
この構成において、導出部80は、検知部熱電対34によって検知される温度をモニタリングすることで算出された上昇温度ΔT(ピーク値)によって、ガスの熱量を導出する。
(熱量計測方法)
図1の熱量計10による熱量計測方法について以下に説明する。
〔流し工程〕
流し工程では、計量部50が備える所定容積の計量管52にガスが流される。すなわち、図2に示すように、制御部90によって、ポート51a〜51fが第1連結状態に切り替えられることでガス供給路53と連結路54とが連絡し、連結路55とガス排出路56とが連絡し、及び、キャリアガス供給路57と計量ガス供給路63とが連絡する。さらに、制御部90によってガス供給路53のガス供給弁53aが開放されることで、流路切替バルブ51の流路は流し状態に切り替えられる。すなわち、ガスはガス供給路53及び連結路54を経て計量管52を満たし、さらに連結路55を経てガス排出路56から排出される。
一方、ポンプ57aの駆動によってキャリアガスはキャリアガス供給路57から計量ガス供給路63へ流れ、予混合部60へ流入する。このとき、予混合部60では、制御部90によって、ポート61a〜61fが第1連結状態に切り替えられることで計量ガス供給路63と連結路64とが連絡し、連結路65とガス排出路66とが連絡し、及び、キャリアガス供給路67と混合ガス供給路36とが連絡する。この状態で、計量ガス供給路63から流入したキャリアガスとしての空気は連結路64を経て予混合室62を満たし、さらに連結路65を経てガス排出路66から排出される。
また、ポンプ67aの駆動によってキャリアガスはキャリアガス供給路67からポート61e、61fを経て混合ガス供給路36を介して燃焼部20へ供給される。
〔保持工程〕
保持工程では、計量管52を満たす所定体積のガスG1が保持される。すなわち、図3に示すように、流路切替バルブ51のポート51a〜51fは第1連結状態のままで、制御部90によってガス供給路53のガス供給弁53aが閉鎖されることで、流路切替バルブ51の流路は保持状態に切り替えられる。この保持状態において、計量管52へのガスの流れは遮断され、計量管52を満たしている所定体積のガスG1はそのまま計量管52内に保持される。なお、予混合部60におけるキャリアガスの流動は流し工程と同様の状態を保っている。
〔押出工程〕
押出工程では、保持工程で計量管52に保持された所定体積のガスG1が、計量部50から予混合部60へ押し出される。すなわち、図4に示すように、ガス供給路53のガス供給弁53aは閉鎖されたまま、制御部90によって、ポート51a〜51fが第2連結状態に切り替えられることでガス供給路53とガス排出路56とが連絡し、キャリアガス供給路57と連結路55とが連絡し、及び、連結路54と計量ガス供給路63とが連絡することで、流路切替バルブ51の流路は押出状態に切り替えられる。この押出状態において、計量管52内に保持されていた所定体積のガスG1は、キャリアガス供給路57から連結路55を経て計量管52へ流入してきたキャリアガスによって押し出され、連結路54からポート51b、51fを経て、計量ガス供給路63へ流れ込み、予混合部60へと向かう。本実施形態では、計量管52に保持された所定体積のガスG1を押し出すキャリアガスの流速は、一例として、120〔ml/min〕である。なお、予混合部60におけるキャリアガスの流動は保持工程と同様の状態を保っている。
〔予混合工程〕
予混合工程では、押出工程で押し出された所定体積のガスG1と空気とが燃焼部20の触媒燃焼前に予め混合される。すなわち、計量ガス供給路63へ押し出された所定体積のガスG1(図4参照)が、予混合流路バルブ61のポート61a、61bを経て、連結路64を通って予混合室62に達したタイミングで、図5に示すように、制御部90は、計量ガス供給弁63a及びガス排出弁66aを閉鎖する。この状態で、所定体積のガスG1は、流速がほぼゼロとなり、予混合室62内で滞留している間に拡散し、図6に示すように、キャリアガスとしての空気と混合された混合ガスG2となる。なお、予混合部60においてキャリアガス供給路67から混合ガス供給路36を経て燃焼部20へ至るキャリアガスの流れは押出工程と同様である。
〔燃焼行程〕
燃焼行程では、予混合工程によって空気と混合されたガスである混合ガスG2が、燃焼部20での触媒燃焼に供される。すなわち、図7に示すように、計量ガス供給弁63a及びガス排出弁66aは閉鎖されたまま、制御部90によって、予混合流路バルブ61のポート61a〜61fが第2連結状態に切り替えられることで計量ガス供給路63とガス排出路66とが連絡し、キャリアガス供給路67と連結路65とが連絡し、及び、連結路64と混合ガス供給路36とが連絡する。この状態において、予混合室62内に保持されていた混合ガスG2は、キャリアガス供給路67から連結路65を経て予混合室62へ流入してきたキャリアガスによって押し出され、連結路64から予混合流路バルブ61のポート61b、61fを経て、混合ガス供給路36へ流れ込み、そして燃焼部20に供給される。本実施形態では、予混合室62に保持された混合ガスG2を押し出すキャリアガスの流速は、一例として、120〔ml/min〕である。
混合ガス供給路36から燃焼部20に供給された混合ガスG2は、電源38aによって電圧が加熱回路部38に印加されることで発熱した検知部加熱素子28によって熱せられた酸化触媒である検知部触媒30により触媒燃焼に供される。ここで、混合ガスG2は、ガスの燃焼に必要な空気を十分含んでいるため、混合ガスG2に含まれるガスがより効率よく、かつより完全に燃焼することが可能となっている。
〔導出工程〕
導出工程では、燃焼工程により上昇した温度によって所定体積のガスG1に対応するガスの熱量が導出される。すなわち、この混合ガスG2の燃焼により検知部触媒30の温度が上昇し、それに伴って検知部蓄熱材24の温度も上昇する。そして、検知部熱電対34によって、検知部蓄熱材24の温度が検知される。
図8に示す導出部80は、検知部熱電対34によって検知された温度をモニタリングし、ガスの触媒燃焼によって上昇した検知部蓄熱材24の上昇温度ΔT(図7参照)を導出する。さらに、導出部80は、導出された上昇温度ΔTと、予め入力されているガスの熱量と上昇温度ΔTとの関係とから、ガスの熱量を導出する。
この導出工程で導出されたガスの熱量は、直接的には混合ガスG2の燃焼に起因するものであるが、この混合ガスG2は、所定体積のガスG1に起因するものである。よって、この導出工程で導出されたガスの熱量は所定体積のガスG1に起因するものである、換言すると、所定体積のガスG1に対応するものである、といえる。
このような工程を繰り返すことで、計量部50及び予混合部60は、周期的にガスを空気と十分に混合させた状態で燃焼部20に供給し、燃焼部20は、周期的に供給された混合ガスG2を触媒燃焼させる。さらに、導出部80は、触媒燃焼することで上昇した上昇温度ΔTによって所定体積のガスG1に対応した熱量を周期的に導出する。換言すれば、流し工程、保持工程、押出工程、燃焼工程、及び導出工程は、この順番で周期的に実施される。
<第2実施形態>
本発明の第2実施形態に係る熱量計及び熱量計測方法について図11〜図16に従って説明する。
(熱量計10の構成)
本実施形態の熱量計10の構成を図11に示す。熱量計10は、ガスを触媒燃焼させる燃焼部20と、ガスを計量して予混合部へ押し出す計量部50と、計量されたガスを触媒燃焼前に空気と予め混合する予混合部60と、ガスの熱量を導出する導出部80及び各部を制御する制御部90を備えた情報処理部70(図16参照)とを備えている。
〔燃焼部20〕
燃焼部20については、第1実施形態と同様であるため、詳細の図示は省略している。
〔計量部50〕
計量部50は、図11に示されるように、十方バルブにより構成される流路切替バルブ51と、測定対象であるガスを流路切替バルブ51に供給するガス供給路53と、流路切替バルブ51からガスを排出するガス排出路56と、測定対象であるガスを計量する所定容積の計量管52とを備えている。さらに、計量部50は、キャリアガスである空気を流路切替バルブ51に供給するキャリアガス供給路57を備えている。
−流路切替バルブ51−
流路切替バルブ51は、10個のポート51a〜51jを有する。これらのポート51a〜51jは、ガス供給路53と連結するポート51aから図面上の時計回りにポート51b、ポート51f、ポート51g、ポート51i、ポート51h、ポート51j、ポート51e、ポート51c及びポート51dの順に円周状に配置されている。これらのポート51a〜51j間の連結は、制御部90(図8参照)によって制御されるようになっている。
具体的には、流路切替バルブ51は、ポート51aとポート51bとを連結し、ポート51fとポート51gとを連結し、ポートiとポートhとを連結し、ポート51jとポート51eとを連結し、かつ、ポート51cとポート51dとを連結する第1連結状態(図12及び図14参照)と、ポート51aとポート51dとを連結し、ポート51cとポート51eとを連結し、ポート51jとポート51hとを連結し、ポート51iとポート51gとを連結し、かつ、ポート51bとポート51fとを連結する第2連結状態(図13及び図15参照)との何れかの連結態様に切り替えられる。
ポート51aは、ガス供給路53に連結され、ポート51bは、計量管52の一端と連結され、ポート51cは、計量管52の他端と連結されている。ポート51dは、ガス排出路56と連結されている。
また、ポート51eは、キャリアガス供給路57に連結され、ポート51fは、計量管52により計量された所定体積のガスを予混合部60に供給する、予混合室62の一端に連結される連結路64に連結されている。ポート51gは、予混合室62の他端に連結される連結路65に連結されている。
さらに、ポート51hは、キャリアガス供給路67に連結され、ポート51iは、予混合室62により空気と混合された所定体積のガスを燃焼部20に供給する混合ガス供給路36に連結されている。ポート51jは、キャリアガス供給路57又はキャリアガス供給路67からのキャリアガスを排出するキャリアガス排出路58に連結されている。
−ガス供給路53−
ガス供給路53は、ポート51aと図示しないガス供給元とを連結し、その流路を開閉するガス供給弁53aを備えている。この構成において、このガス供給弁53aは、制御部90によって制御され、ガス供給路53の流路を開閉する。
−ガス排出路56−
ガス排出路56は、ポート51dに連結される。なお、このガス排出路56を開閉する弁を備えていてもよい。
−計量管52−
計量管52は、一方向に延びている所定容積の円筒形状を呈する。計量管52の長手方向の一端は連結路54を介してポート51bに連結されている。計量管52の長手方向の他端は連結路55を介してポート51cに連結されている。本実施形態では、計量管52の容積は、一例として、1.5〔ml〕である。
−キャリアガス供給路57−
キャリアガス供給路57は一端がポート51eに連結され、他端側にはキャリアガスとしての空気を供給するポンプ57aを備えている。さらに、キャリアガス供給路57は、ポート51eとポンプ57aとの間に設けられたマスフローコントローラー57bを備えている。なお、マスフローコントローラー57bの代わりに、流体の流量を制御可能であれば、いかなる公知の装置を用いてもよい。
−キャリアガス供給路67−
キャリアガス供給路67は一端がポート51hに連結され、他端側にはキャリアガスとしての空気を供給するポンプ67aを備えている。さらに、キャリアガス供給路67は、ポート51hとポンプ67aとの間に設けられたマスフローコントローラー67bを備えている。なお、マスフローコントローラー67bの代わりに、流体の流量を制御可能であれば、いかなる公知の装置を用いてもよい。
−キャリアガス排出路58−
キャリアガス排出路58は一端がポート51jに連結される。なお、このキャリアガス排出路58を開閉する弁を備えていてもよい。
〔予混合部60〕
予混合部60は、図11に示されるように、所定体積のガスを空気と予混合させる、計量管52の容積より大きな所定容積の予混合室62と、予混合室62の一端とポート51fとを連結する連結路64と、予混合室62の他端とポート51gとを連結する連結路65とを備えている。
−予混合室62−
予混合室62は、一方向に延びている所定容積の円筒形状を呈する。予混合室62の一端は連結路64を介してポート51fに連結されている。予混合室62の他端は連結路65を介してポート51gに連結されている。本実施形態では、予混合室62の容積は、一例として、5.0〔ml〕である。
〔情報処理部70〕
情報処理部70は、図16に示されるように、ガスの熱量を導出する導出部80と、各部を制御する制御部90とを備えている。
−制御部90−
制御部90は、各部を制御して熱量計10を稼働させる。具体的には、ポート51a〜51j間における第1連結状態と第2連結状態との切替を制御する。また、ガス供給弁53aの開閉を制御する。また、ポンプ57a、67aのそれぞれの作動を制御する。さらに、加熱回路部38を作動させる電源38aも制御する。
−導出部80−
導出部80は、検知部熱電対34によって検知された温度に基づいてガスの熱量を導出する。なお、その詳細については第1実施形態と同様である。
(熱量計測方法)
図11の熱量計10による熱量計測方法について以下に説明する。
〔流し工程〕
流し工程では、計量部50が備える所定容積の計量管52にガスが流される。すなわち、図12に示すように、制御部90によって、ポート51a〜51jが第1連結状態に切り替えられることでガス供給路53と連結路54とが連絡し、連結路55とガス排出路56とが連絡し、及び、キャリアガス供給路57とキャリアガス排出路58とが連絡する。さらに、制御部90によってガス供給路53のガス供給弁53aが開放されることで、流路切替バルブ51の流路は流し状態に切り替えられる。すなわち、ガスはガス供給路53及び連結路54を経て計量管52を満たし、さらに連結路55を経てガス排出路56から排出される。
一方、ポンプ57aの駆動によってキャリアガスはキャリアガス供給路57からキャリアガス排出路58へ排出される。また、ポンプ67aの駆動によってキャリアガスはキャリアガス供給路67からポート51h、51iを経て混合ガス供給路36を介して燃焼部20へ供給される。このとき、予混合部60では、ポート51fとポート51gとが連絡して、予混合室62は閉鎖空間となる。
〔保持工程〕
保持工程では、計量管52を満たす所定体積のガスG1が保持される。すなわち、図12に示すように、流路切替バルブ51のポート51a〜51jは第1連結状態のままで、制御部90によってガス供給路53のガス供給弁53aが閉鎖されることで、流路切替バルブ51の流路は保持状態に切り替えられる。この保持状態において、計量管52へのガスの流れは遮断され、計量管52を満たしている所定体積のガスG1はそのまま計量管52内に保持される。なお、キャリアガス供給路57及びキャリアガス供給路67からのキャリアガスの流動は流し工程と同様の状態を保っている。
〔押出工程〕
押出工程では、保持工程で計量管52に保持された所定体積のガスG1が、計量部50から予混合部60へ押し出される。すなわち、図13に示すように、ガス供給路53のガス供給弁53aは閉鎖されたまま、制御部90によって、ポート51a〜51jが第2連結状態に切り替えられることでガス供給路53とガス排出路56とが連絡し、キャリアガス供給路57と連結路55とが連絡し、及び、連結路54と連結路64とが連絡することで、流路切替バルブ51の流路は押出状態に切り替えられる。この押出状態において、計量管52内に保持されていた所定体積のガスG1は、キャリアガス供給路57から連結路55を経て計量管52へ流入してきたキャリアガスによって押し出され、連結路54からポート51b、51fを経て、連結路64へ流れ込み、予混合室62へと向かう。本実施形態では、計量管52に保持された所定体積のガスG1を押し出すキャリアガスの流速は、一例として、120〔ml/min〕である。なお、予混合室62を満たしていたキャリアガスは連結路65を通ってポート51g、51iを経て混合ガス供給路36に至り、燃焼部20に供給される。なお、キャリアガス供給路67からのキャリアガスは、ポート51h、51jを経てキャリアガス排出路58から排出される。
〔予混合工程〕
予混合工程では、押出工程で押し出された所定体積のガスG1と空気とが燃焼部20の触媒燃焼前に予め混合される。すなわち、連結路64へ押し出された所定体積のガスG1(図13参照)が予混合室62に達したタイミングで、図14に示すように、制御部90がポート51a〜51jを第1連結状態に切り替えることで、予混合室62は再び閉鎖空間となる。この状態で、所定体積のガスG1は、予混合室62内で流速がほぼゼロとなり滞留している間に拡散し、キャリアガスとしての空気と混合された混合ガスG2となる。なお、キャリアガス供給路57及びキャリアガス供給路67からのキャリアガスの流れは流し工程と同様である。
〔燃焼行程〕
燃焼行程では、予混合工程によって空気と混合されたガスである混合ガスG2が、燃焼部20での触媒燃焼に供される。すなわち、図15に示すように、制御部90によって、ポート51a〜51jが第2連結状態に切り替えられることでガス供給路53とガス排出路56とが連絡し、キャリアガス供給路57と連結路55とが連絡し、連結路54と連結路64とが連絡し、及び、連結路65と混合ガス供給路36とが連絡する。この状態において、予混合室62内に保持されていた混合ガスG2は、連結路64を経て予混合室62へ流入してきたキャリアガスによって押し出され、連結路65からポート51g、51iを経て、混合ガス供給路36へ流れ込み、そして燃焼部20に供給される。本実施形態では、予混合室62に保持された混合ガスG2を押し出すキャリアガスの流速は、一例として、120〔ml/min〕である。
混合ガス供給路36から燃焼部20に供給された混合ガスG2は、電源38aによって電圧が加熱回路部38に印加されることで発熱した検知部加熱素子28によって熱せられた酸化触媒である検知部触媒30により触媒燃焼に供される。ここで、混合ガスG2は、ガスの燃焼に必要な空気を十分含んでいるため、混合ガスG2に含まれるガスがより効率よく、かつより完全に燃焼することが可能となっている。
〔導出工程〕
導出工程については、第1実施形態と同様である。
このような工程を繰り返すことで、計量部50及び予混合部60は、周期的にガスを空気と十分に混合させた状態で燃焼部20に供給し、燃焼部20は、周期的に供給された混合ガスG2を触媒燃焼させる。さらに、導出部80は、触媒燃焼することで上昇した上昇温度ΔTによって所定体積のガスG1に対応した熱量を周期的に導出する。換言すれば、流し工程、保持工程、押出工程、燃焼工程、及び導出工程は、この順番で周期的に実施される。
<第3実施形態>
本発明の第2実施形態に係る熱量計及び熱量計測方法について図17〜図22に従って説明する。
(熱量計10の構成)
本実施形態の熱量計10の構成を図17に示す。熱量計10は、ガスを触媒燃焼させる燃焼部20と、ガスを計量して予混合部へ押し出す計量部50と、計量されたガスを触媒燃焼前に空気と予め混合する予混合部60と、ガスの熱量を導出する導出部80及び各部を制御する制御部90を備えた情報処理部70(図22参照)とを備えている。
〔燃焼部20〕
燃焼部20については、第1実施形態と同様であるため、詳細の図示は省略している。
〔計量部50〕
計量部50は、図17に示されるように、測定対象であるガスを供給するガス供給路53と、キャリアガスである空気を供給するキャリアガス供給路57と、測定対象であるガスを計量する所定容積の計量管52と、計量管52に流入する連結路54と、計量管52から流出する連結路55と、ガスを排出するガス排出路56と、キャリアガスを予混合部60へバイパスさせるキャリアガス迂回路59と、を備えている。さらに、計量部50は、ガス供給路53、キャリアガス供給路57及び連結路54を連結する三方弁50aと、連結路55とガス排出路56と計量されたガスを予混合部60へ送出する計量ガス供給路63とを連結する三方弁50bと、ガス供給路53を開閉する二方弁50cと、キャリアガス迂回路59を開閉する二方弁50dと、を備えている。なお、キャリアガス迂回路59の下流端は、計量ガス供給路63に接続されている。
制御部90は、三方弁50aを、ガス供給路53と連結路54とが流通している状態と、キャリアガス供給路57と連結路54とが流通している状態とに切り替え、また、三方弁50bを、連結路55とガス排出路56とが流通している状態と、連結路55と計量ガス供給路63とが流通している状態とに切り替える。
−ガス供給路53−
ガス供給路53は、三方弁50aと図示しないガス供給元とを連結し、その流路を開閉する二方弁50cを備えている。この構成において、この二方弁50cは、制御部90によって制御され、ガス供給路53の流路を開閉する。
−ガス排出路56−
ガス排出路56は、三方弁50bに連結される。なお、このガス排出路56を開閉する弁を備えていてもよい。
−計量管52−
計量管52は、一方向に延びている所定容積の円筒形状を呈する。計量管52の長手方向の一端は連結路54を介して三方弁50aに連結されている。計量管52の長手方向の他端は連結路55を介して三方弁50bに連結されている。本実施形態では、計量管52の容積は、一例として、1.5〔ml〕である。
−キャリアガス供給路57−
キャリアガス供給路57は一端が三方弁50aに連結され、他端側にはキャリアガスとしての空気を供給するポンプ57aを備えている。さらに、キャリアガス供給路57は、三方弁50aとポンプ57aとの間に設けられたマスフローコントローラー57bを備えている。なお、マスフローコントローラー57bの代わりに、流体の流量を制御可能であれば、いかなる公知の装置を用いてもよい。
−キャリアガス迂回路59−
キャリアガス迂回路59は、マスフローコントローラー57bと三方弁50aとの間でキャリアガス供給路57から分岐し、三方弁50bの下流側で計量ガス供給路63と合流する。キャリアガス迂回路59は、その流路を開閉する二方弁50dを備えている。この構成において、この二方弁50dは、制御部90によって制御され、キャリアガス迂回路59の流路を開閉する。
〔予混合部60〕
予混合部60は、図17に示されるように、計量部50により計量された所定体積のガスを供給する計量ガス供給路63と、キャリアガスである空気を供給するキャリアガス供給路67と、所定体積のガスを空気と予混合させて混合ガスにする、計量管52の容積より大きな所定容積の予混合室62と、予混合室62に流入する連結路64と、予混合室62から流出する連結路65と、ガスを排出するガス排出路66と、予混合室62から流出した混合ガスを燃焼部20へ供給する混合ガス供給路36とキャリアガス供給路67とをバイパスさせるキャリアガス迂回路69と、を備えている。さらに、予混合部60は、計量ガス供給路63、キャリアガス供給路67及び連結路64を連結する三方弁60aと、連結路65とガス排出路66と混合ガス供給路36とを連結する三方弁60bと、連結路64を開閉する二方弁60cと、連結路65を開閉する二方弁60dと、キャリアガス迂回路69を開閉する二方弁60eと、を備えている。
制御部90は、三方弁60aを計量ガス供給路63と連結路64とが流通している状態と、キャリアガス供給路67と連結路64とが流通している状態とに切り替え、また、三方弁60bを、連結路65とガス排出路66とが流通している状態と、連結路65と混合ガス供給路36とが流通している状態とに切り替える。
−計量ガス供給路63−
計量ガス供給路63は、三方弁50bと三方弁60aとを連結する。
−ガス排出路66−
ガス排出路66は、三方弁60bに連結される。なお、このガス排出路66を開閉する弁を備えていてもよい。
−予混合室62−
予混合室62は、一方向に延びている所定容積の円筒形状を呈する。予混合室62の一端は連結路64を介して三方弁60aに連結されている。予混合室62の他端は連結路65を介して三方弁60bに連結されている。本実施形態では、予混合室62の容積は、一例として、5.0〔ml〕である。また、連結路64の途中には、制御部90によって制御され、連結路64の流路を開閉する二方弁60cを備えている。さらに、連結路65の途中には、制御部90によって制御され、連結路65の流路を開閉する二方弁60dを備えている。
−キャリアガス迂回路69−
キャリアガス迂回路69は、マスフローコントローラー67bと三方弁60aとの間でキャリアガス供給路67から分岐し、三方弁60bの下流側で混合ガス供給路36と合流する。キャリアガス迂回路69は、その流路を開閉する二方弁60eを備えている。この構成において、この二方弁60eは、制御部90によって制御され、キャリアガス迂回路69の流路を開閉する。
〔情報処理部70〕
情報処理部70は、図22に示されるように、ガスの熱量を導出する導出部80と、各部を制御する制御部90とを備えている。
−制御部90−
制御部90は、各部を制御して熱量計10を稼働させる。具体的には、三方弁50a、50b、60a、60bのそれぞれにおける流路の切替を制御する。また、二方弁50c、50d、60c〜60eの開閉を制御する。また、ポンプ57a、67aのそれぞれの作動を制御する。さらに、加熱回路部38を作動させる電源38aも制御する。
−導出部80−
導出部80は、検知部熱電対34によって検知された温度に基づいてガスの熱量を導出する。なお、その詳細については第1実施形態と同様である。
(熱量計測方法)
図11の熱量計10による熱量計測方法について以下に説明する。
〔流し工程〕
流し工程では、計量部50が備える所定容積の計量管52にガスが流される。すなわち、図18に示すように、制御部90によって、ガス供給路53と連結路54とが連絡するように三方弁50aを切り替え、連結路55とガス排出路56とが連絡するように三方弁50bを切り替え、計量ガス供給路63と連結路64とが連絡するように三方弁60aを切り替え、及び、連結路65とガス排出路66とが連絡するように三方弁60bを切り替える。さらに、制御部90は、二方弁50c、50d、60c〜60eの全てを開放する。以上により、計量部50の流路は流し状態に切り替えられる。すなわち、ガスはガス供給路53及び連結路54を経て計量管52を満たし、さらに連結路55を経てガス排出路56から排出される。
一方、ポンプ57aの駆動によってキャリアガスはキャリアガス供給路57からキャリアガス迂回路59を経て計量ガス供給路63へ至り、さらに連結路64を経て予混合室62を満たし、さらに連結路65を経てガス排出路66から排出される。また、ポンプ67aの駆動によってキャリアガスはキャリアガス供給路67からキャリアガス迂回路69を経て混合ガス供給路36を介して燃焼部20へ供給される。
〔保持工程〕
保持工程では、計量管52を満たす所定体積のガスG1が保持される。すなわち、図18に示す状態から、制御部は二方弁50cのみを閉鎖することで、計量部50の流路は保持状態に切り替えられる。この保持状態において、計量管52へのガスの流れは遮断され、計量管52を満たしている所定体積のガスG1はそのまま計量管52内に保持される。なお、キャリアガス供給路57及びキャリアガス供給路67からのキャリアガスの流動は流し工程と同様の状態を保っている。
〔押出工程〕
押出工程では、保持工程で計量管52に保持された所定体積のガスG1が、計量部50から予混合部60へ押し出される。すなわち、図19に示すように、ガス供給路53の二方弁50cは閉鎖されたまま、制御部90によって、二方弁50dを閉鎖し、キャリアガス供給路57と連結路54とが連絡するように三方弁50aの流路を切り替え、及び、連結路55と計量ガス供給路63とが連絡するように三方弁50bの流路を切り替えることで、計量部の流路は押出状態に切り替えられる。この押出状態において、計量管52内に保持されていた所定体積のガスG1は、キャリアガス供給路57から連結路54を経て計量管52へ流入してきたキャリアガスによって押し出され、連結路55から三方弁50bを経て、計量ガス供給路63へ流れ込み、予混合室62へと向かう。本実施形態では、計量管52に保持された所定体積のガスG1を押し出すキャリアガスの流速は、一例として、120〔ml/min〕である。なお、予混合部60における三方弁60a、60bの流路は流し工程及び保持工程と同じであり、二方弁60c〜60eはいずれも開放状態と保っているため、予混合室62を満たしていたキャリアガスは連結路65を通って三方弁60bを経てガス排出路66から排出される。なお、キャリアガス供給路67からのキャリアガスは、キャリアガス迂回路69を経て混合ガス供給路36に至り、燃焼部20に供給される。
〔予混合工程〕
予混合工程では、押出工程で押し出された所定体積のガスG1と空気とが燃焼部20の触媒燃焼前に予め混合される。すなわち、連結路64へ押し出された所定体積のガスG1(図19参照)が予混合室62に達したタイミングで、図20に示すように、制御部90が二方弁60c、60dを閉鎖することで、予混合室62は閉鎖空間となる。この状態で、所定体積のガスG1は、予混合室62内で流速がほぼゼロとなり滞留している間に拡散し、キャリアガスとしての空気と混合された混合ガスG2となる。なお、キャリアガス供給路57からのキャリアガスの流れは停止する。キャリアガス供給路67からのキャリアガスの流れは押出工程と同様である。
〔燃焼行程〕
燃焼行程では、予混合工程によって空気と混合されたガスである混合ガスG2が、燃焼部20での触媒燃焼に供される。すなわち、図21に示すように、制御部90によって、キャリアガス供給路67と連結路64とが連絡するように三方弁60aの流路を切り替え、連結路65と混合ガス供給路36とが連絡するように三方弁60bの流路を切り替え、さらに二方弁60c、60dを開放した上で、二方弁60eを閉鎖する。この状態において、予混合室62内に保持されていた混合ガスG2は、キャリアガス供給路67から連結路64を経て予混合室62へ流入してきたキャリアガスによって押し出され、連結路65から三方弁60bを経て、混合ガス供給路36へ流れ込み、そして燃焼部20に供給される。本実施形態では、予混合室62に保持された混合ガスG2を押し出すキャリアガスの流速は、一例として、120〔ml/min〕である。
混合ガス供給路36から燃焼部20に供給された混合ガスG2は、電源38aによって電圧が加熱回路部38に印加されることで発熱した検知部加熱素子28によって熱せられた酸化触媒である検知部触媒30により触媒燃焼に供される。ここで、混合ガスG2は、ガスの燃焼に必要な空気を十分含んでいるため、混合ガスG2に含まれるガスがより効率よく、かつより完全に燃焼することが可能となっている。
〔導出工程〕
導出工程については、第1実施形態と同様である。
このような工程を繰り返すことで、計量部50及び予混合部60は、周期的にガスを空気と十分に混合させた状態で燃焼部20に供給し、燃焼部20は、周期的に供給された混合ガスG2を触媒燃焼させる。さらに、導出部80は、触媒燃焼することで上昇した上昇温度ΔTによって所定体積のガスG1に対応した熱量を周期的に導出する。換言すれば、流し工程、保持工程、押出工程、燃焼工程、及び導出工程は、この順番で周期的に実施される。
<第4実施形態>
本発明の第4実施形態に係る熱量計及び熱量計測方法について図23〜図29に従って説明する。
(熱量計10の構成)
本実施形態の熱量計10の構成を図23に示す。熱量計10は、ガスを触媒燃焼させる燃焼部20と、ガスを計量して予混合部へ押し出す計量部50と、計量されたガスを触媒燃焼前に空気と予め混合する予混合部60と、ガスの熱量を導出する導出部80及び各部を制御する制御部90を備えた情報処理部70(図16参照)とを備えている。
〔燃焼部20〕
燃焼部20については、第1実施形態と同様であるため、詳細の図示は省略している。
〔計量部50〕
計量部50は、図23に示されるように、六方バルブにより構成される流路切替バルブ51と、測定対象であるガスを流路切替バルブ51に供給するガス供給路53と、流路切替バルブ51からガスを排出するガス排出路56と、測定対象であるガスを計量する所定容積の計量域52aとを備えている。さらに、計量部50は、キャリアガスである空気を流路切替バルブ51に供給するキャリアガス供給路57を備えている。
−流路切替バルブ51−
流路切替バルブ51は、6個のポート51a〜51fを有する。これらのポート51a〜51fは、ガス供給路53と連結するポート51aから図面上の時計回りにポート51e、ポート51f、ポート51b、ポート51c及びポート51dの順に円周状に配置されている。これらのポート51a〜51f間の連結は、制御部90(図8参照)によって制御されるようになっている。
具体的には、流路切替バルブ51は、ポート51aとポート51dとを連結し、ポート51cとポート51eとを連結し、かつ、ポート51bとポート51fとを連結する第1連結状態(図24、図25及び図28参照)と、ポート51aとポート51bとを連結し、ポート51cとポート51dとを連結し、かつ、ポート51eとポート51fとを連結する第2連結状態(図26及び図27参照)との何れかの連結態様に切り替えられる。
ポート51aは、ガス供給路53に連結され、ポート51bは、予混合室62の一端と連結され、ポート51cは、予混合室62の他端と連結されている。ポート51dは、ガス排出路56と連結されている。
また、ポート51eは、キャリアガス供給路57に連結され、ポート51fは、予混合室62で空気と混合された混合ガスを燃焼部20に供給する混合ガス供給路36に連結されている。
−ガス供給路53−
ガス供給路53は、ポート51aと図示しないガス供給元とを連結し、その流路を開閉するガス供給弁53aを備えている。この構成において、このガス供給弁53aは、制御部90によって制御され、ガス供給路53の流路を開閉する。
−ガス排出路56−
ガス排出路56は、ポート51dに連結され、その流路を開閉するガス排出弁56aを備えている。この構成において、このガス排出弁56aは、制御部90によって制御され、ガス排出路56の流路を開閉する。
−計量域52a−
本実施形態では、流路切替バルブ51のポート51a〜51fが第1連結状態となっている場合において、ガス供給路53におけるガス供給弁53aからポート51aまでの間、及び、ガス排出路56におけるポート51dからガス排出弁56aまでの間が、上述の第1実施形態から第3実施形態までにおける計量管52に相当する、計量域52aとなっている。この計量域52aの容積をX〔ml〕とする。なお、流路切替バルブ51における各バルブ間の流路の容積はこの容積Xに対して無視できるほど小さいので、以下では流路切替バルブ51内のガスの容積は無視して説明する。
−キャリアガス供給路57−
キャリアガス供給路57は一端がポート51eに連結され、他端側にはキャリアガスとしての空気を供給するポンプ57aを備えている。さらに、キャリアガス供給路57は、ポート51eとポンプ57aとの間に設けられたマスフローコントローラー57bを備えている。なお、マスフローコントローラー57bの代わりに、流体の流量を制御可能であれば、いかなる公知の装置を用いてもよい。
〔予混合部60〕
予混合部60は、図23に示されるように、ガスと空気とを予混合させる、予混合室62と、予混合室62の一端とポート51bとを連結する連結路64と、予混合室62の他端とポート51cとを連結する連結路65とを備えている。
−予混合室62−
予混合室62は、一方向に延びている所定容積の円筒形状を呈する。予混合室62の一端は連結路64を介してポート51bに連結されている。予混合室62の他端は連結路65を介してポート51cに連結されている。この予混合室62の容積をY〔ml〕とする。
〔情報処理部70〕
情報処理部70は、図29に示されるように、ガスの熱量を導出する導出部80と、各部を制御する制御部90とを備えている。
−制御部90−
制御部90は、各部を制御して熱量計10を稼働させる。具体的には、ポート51a〜51f間における第1連結状態と第2連結状態との切替を制御する。また、ガス供給弁53a及びガス排出弁56aそれぞれの開閉を制御する。また、ポンプ57aの作動を制御する。さらに、加熱回路部38を作動させる電源38aも制御する。
−導出部80−
導出部80は、検知部熱電対34によって検知された温度に基づいてガスの熱量を導出する。なお、その詳細については第1実施形態と同様である。
(熱量計測方法)
図23の熱量計10による熱量計測方法について以下に説明する。
〔流し工程〕
流し工程では、計量部50が備える所定容積の計量管52としての計量域52aにガスが流される。すなわち、図24に示すように、制御部90によって、ポート51a〜51fが第1連結状態に切り替えられることでガス供給路53とガス排出路56とが連絡し、キャリアガス供給路57と連結路65とが連絡し、及び、連結路64と混合ガス供給路36とが連絡する。さらに、制御部90によってガス供給路53のガス供給弁53aが開放され、また、ガス排出路56のガス排出弁56aが開放されることで、流路切替バルブ51の流路は流し状態に切り替えられる。すなわち、ガスはガス供給路53からガス排出路56に至る間に計量域52aを満たす。
一方、ポンプ57aの駆動によってキャリアガスはキャリアガス供給路57から連結路65を経て予混合室62へ至る。キャリアガスはさらに、予混合室62から連結路64及び混合ガス供給路36を経て燃焼部20へ供給される。これにより予混合室62はキャリアガスで満たされる。
〔保持工程〕
保持工程では、計量管52としての計量域52aを満たす所定体積のガスG1が保持される。すなわち、図25に示すように、流路切替バルブ51のポート51a〜51fは第1連結状態のままで、制御部90によってガス供給路53のガス供給弁53a及びガス排出路56のガス排出弁56aが閉鎖されることで、流路切替バルブ51の流路は保持状態に切り替えられる。この保持状態において、計量域52aへのガスの流れは遮断され、計量域52aを満たしている所定体積のガスG1はそのまま計量域52a内に保持される。お、キャリアガス供給路57からのキャリアガスの流動は流し工程と同様の状態を保っている。
〔押出工程〕
押出工程では、保持工程で計量管52としての計量域52aに保持されていた所定体積のガスG1が、計量部50から予混合部60へ拡散される。すなわち、図26に示すように、ガス供給路53のガス供給弁53a及びガス排出路56のガス排出弁56aは閉鎖されたまま、制御部90によって、ポート51a〜51fが第2連結状態に切り替えられることでガス供給路53と連結路64とが連絡し、ガス排出路56と連結路65とが連絡し、及び、キャリアガス供給路57と混合ガス供給路36とが連絡することで、流路切替バルブ51の流路は押出状態に切り替えられる。なお、キャリアガス供給路57からのキャリアガスは、ポート51e、51fを経て混合ガス供給路36から燃焼部20へ供給される。
〔予混合工程〕
予混合工程では、押出工程で押し出された所定体積のガスG1と空気とが燃焼部20の触媒燃焼前に予め混合される。すなわち、押出状態において、計量域52a内に保持されていた所定体積のガスG1は、図27に示すように、連結路64、65を経て、予混合室62と計量域52aとを合わせた空間内で流速がほぼゼロとなり、拡散し、滞留している間にキャリアガスとしての空気と混合された混合ガスG2となる。なお、キャリアガス供給路57からのキャリアガスの流れは流し工程と同様である。なお、キャリアガス供給路57からのキャリアガスは、ポート51e、51fを経て混合ガス供給路36から燃焼部20へ供給され続ける。
〔燃焼行程〕
燃焼行程では、予混合工程によって空気と混合されたガスである混合ガスG2が、燃焼部20での触媒燃焼に供される。すなわち、図28に示すように、制御部90によって、ポート51a〜51fが再び第1連結状態に切り替えられることでガス供給路53とガス排出路56とが連絡し、キャリアガス供給路57と連結路65とが連絡し、及び、連結路64と混合ガス供給路36とが連絡する。このとき、ガス供給路53のガス供給弁53a及びガス排出路56のガス排出弁56aは閉鎖されたままである。この状態において、予混合室62内に保持されていた混合ガスG2は、連結路65を経て予混合室62へ流入してきたキャリアガスによって押し出され、連結路64からポート51b、51fを経て、混合ガス供給路36へ流れ込み、そして燃焼部20に供給される。本実施形態では、予混合室62に保持された混合ガスG2を押し出すキャリアガスの流速は、一例として、120〔ml/min〕である。
ここで、本実施形態では、計量域52aに保持された所定体積のガスG1の全量が、混合ガスG2として燃焼部20に供給されるわけではない。換言すると、燃焼部に供給される混合ガスG2は、予混合工程において予混合室62内に存在していた分(図27参照)のみであり、計量域52aに存在していた分の混合ガスG2(図28参照)は燃焼には供されない。しかしながら、燃焼部20に供給された混合ガスG2の体積は、予混合室62の容積Yに相当する。また、図27において計量域52a及び予混合室62に拡散していた混合ガスG2の体積は、計量域52aの容積X及び予混合室の容積Yの合計に相当する。よって、燃焼部20で実際に燃焼して得られた熱量(Qとする)は、計量域52aで保持された所定体積のガスG1に対応するものといえる。すなわち、下記式で補正された熱量Q’を所定体積のガスG1の燃焼によって得られた熱量であると推定することができる。
Q’=Q÷Y×(X+Y)
<第5実施形態>
本発明の第5実施形態に係る熱量計は、図30に示すように、計量部50と燃焼部20との間に設けられる予混合室62を予混合部60としている。換言すると、予混合室62は、上流側の計量ガス供給路63と、下流側の混合ガス供給路36との間に設けられる。計量部50、燃焼部20及び予混合室62については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、予混合室62に流入する際に空気と拡散して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。
なお、予混合室62の内部は空洞であってもよいが、図31に示す本実施形態の変形例のように、計量ガス供給路63の先端を先細の流入ノズル62bから流入させたガスを内部に対流室62cで対流させて、混合ガスG2とし、これを混合ガス供給路36から流出させてもよい。
<第6実施形態>
本発明の第6実施形態に係る熱量計10は、図32に示すように、計量部50と燃焼部20との間の流路の管径を拡張した予混合流路62aを予混合部60としている。換言すると、予混合流路62aは、上流側の計量ガス供給路63と、下流側の混合ガス供給路36との間に設けられる。計量部50及び燃焼部20については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、予混合流路62aを流れる間に流速が減少し、空気と混合して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。
<第7実施形態>
本発明の第7実施形態に係る熱量計10は、図33に示すように、計量部50と燃焼部20との間の流路の管径を縮小した予混合流路62aを予混合部60としている。計量部50及び燃焼部20については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、予混合流路62aを流れる間に流速が増加し、空気と混合して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。
<第8実施形態>
本発明の第8実施形態に係る熱量計10は、図34に示すように、計量部50と燃焼部20との間の流路の管径を拡張した予混合流路62aの前後を、管径を縮小した予混合流路62aで挟んだものを予混合部60としている。計量部50及び燃焼部20については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、空気と混合して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。なお、予混合部60におけるガスの流速は、計量部50から押し出された直後のガスの流速とは異なっている。
<第9実施形態>
本発明の第9実施形態に係る熱量計10は、図35に示すように、計量部50と燃焼部20との間の流路を屈曲させた予混合流路62aを予混合部60としている。計量部50及び燃焼部20については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、空気と混合して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。なお、予混合部60におけるガスの流速は、計量部50から押し出された直後のガスの流速とは異なっている。
<第10実施形態>
本発明の第10実施形態に係る熱量計10は、図36に示すように、計量部50と燃焼部20との間の流路の内部空間を屈曲させる邪魔板62dが設けられた予混合流路62aを予混合部60としている。計量部50及び燃焼部20については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、邪魔板62dの間を屈曲しながら空気と混合して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。なお、予混合部60におけるガスの流速は、計量部50から押し出された直後のガスの流速とは異なっている。
<第11実施形態>
本発明の第11実施形態に係る熱量計10は、図37に示すように、計量部50と燃焼部20との間の流路の内部に多孔質体で形成されたフィルター部62eが設けられた予混合流路62aを予混合部60としている。計量部50及び燃焼部20については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、予混合流路62aのフィルター部62eを通過する間に空気と混合して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。なお、予混合部60におけるガスの流速は、計量部50から押し出された直後のガスの流速とは異なっている。
<第12実施形態>
本発明の第12実施形態に係る熱量計10は、図38に示すように、計量部50と燃焼部20との間に設けられる予混合室62と、その上流側で流路の管径を拡張した予混合流路62aとを組み合わせて予混合部60としている。計量部50、燃焼部20及び予混合室62については前記第1実施形態と同様である。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、予混合流路62aを流れる間に空気と混合し、さらに予混合室62に流入する際に空気と拡散して混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。なお、予混合部60におけるガスの流速は、計量部50から押し出された直後のガスの流速とは異なっている。
なお、図39に示す変形例のように、予混合室62の下流側に予混合流路62aを設けてもよい。また、図40に示す変形例のように、予混合室62の上流側及び下流側の両方に予混合流路62aを設けてもよい。
<第13実施形態>
本実施形態の第13実施形態に係る熱量計10は、図41に示すように、計量部50と燃焼部20との間に、例えばスタティックミキサーにより構成される混合部62fを設け、ここに合流路62gで空気を流入させ混合させた構成を予混合部60としている。本実施形態によっても、計量部50で計量された所定体積のガスG1(図3参照)が、混合部62fで空気が合流することで、合流した空気と混合されて混合ガスG2(図6参照)となった状態で、燃焼部20における触媒燃焼に供される。なお、予混合部60におけるガスの流速は、計量部50から押し出された直後のガスの流速とは異なっている。
なお、図42に示す変形例のように、前記第5実施形態において予混合室62の下流側に混合部62fを設け、ここに合流路62gで空気を流入させて混合させてもよい。また、図43の変形例のように、第1実施形態の混合ガス供給路36の途中に混合部62fを設け、ここに合流路62gで空気を流入させて混合させてもよい。
<実施形態補足>
上記各実施形態の熱量計10を用いたガスの熱量計測においては、圧力条件及び温度条件を一定にするのが前提である。なお、熱量測定に関与する部位(特に、計量部50及び予混合部60)において、圧力及び温度を測定する手段を設け、その測定値を基に燃焼部20で測定された熱量を導出部が補正することとしてもよい。
本発明の実施例として、前記した第1実施形態の熱量計10を用いて、単位体積あたりの熱量は同じであるものの、含有水素濃度の異なるガスを燃焼させた際の熱量を上昇温度を比較した。用いたガスは、熱量が45MJ/Nmの模擬都市ガス13Aであって、含有水素濃度0体積%(以下の記述及び図44及び図45において単に「%」と表記する。)のガスと、同じく熱量が45MJ/Nmのガスで水素濃度が20%のガスの2種類を使用した。
比較例として、前記した第1実施形態の熱量計10において、予混合部60を省いて、計量部50と燃焼部20とを直接連結したものを使用した。
また、計量管52の容積は1.5mlとし、予混合室62の容積は5.0mlとした。
上記実施例及び比較例の熱量計を用いて、以下のとおり燃焼実験を行った。すなわち、実施例及び比較例の両方について、まず、含有水素濃度0%のガスで5回連続上昇温度Δtを測定し、続いて含有水素濃度20%で5回連続上昇温度Δtを測定した。この手順をもう一度繰り返した後、再度含有水素濃度0%のガスで5回連続上昇温度Δtを測定した。比較例の結果を図44に、また、実施例の結果を図45にそれぞれ示す。なお、グラフの縦軸は上昇温度Δt(℃)、横軸は実験に供したガスの含有水素濃度を表す。また、各棒グラフは、5回測定した上昇温度Δtの平均値を示す。
まず、図44に示す比較例における燃焼実験では、単位体積あたりの熱量が同じであるにもかかわらず、ガスの成分の相違によって上昇温度Δtの値に差が生じていた。すなわち、また、水素濃度20%のうち最も高い、左から2番目の棒グラフの上昇温度の平均値A(126.7℃)と、水素濃度0%のうち最も低い、右端の棒グラフの上昇温度の平均値B(118.8℃)との差は7.9℃であり、上昇温度の平均値Bに対するこの差の割合を誤差と定義すると、図中の矢印で示されるこの誤差は6.6%であった。
一方、図45に示す実施例における燃焼実験では、上昇温度Δtが比較例に比べて水素濃度0%のガスで20℃程度高く、水素濃度20%のガスで10℃程度高いという結果となった。また、ガスの成分の相違による上昇温度Δtの値の差は、比較例よりも小さくなった。すなわち、水素濃度20%のうち最も高い、左から2番目の棒グラフの上昇温度の平均値A(138.5℃)と、水素濃度0%のうち最も低い、右端の棒グラフの上昇温度の平均値B(137.4℃)との差は1.1℃であり、上昇温度の平均値Bに対するこの差の割合を誤差と定義すると、図中の矢印で示されるこの誤差は0.8%であった。
以上の結果から、予混合工程を取り入れることで、所定体積のガスが空気とよく混合されることで、無駄なく燃焼に供されるとともに、単位体積あたりの熱量が上昇温度によく反映されることが示された。
10 熱量計
20 燃焼部
50 計量部
51 流路切替バルブ
52 計量管
60 予混合部
62 予混合室
62a 予混合流路
80 導出部

Claims (11)

  1. ガスを触媒燃焼させる燃焼部と、
    所定容積の計量管と、前記計量管へガスを流す流し状態、前記計量管へのガスの流れを遮断して前記計量管に所定体積のガスを保持させる保持状態、及び、前記計量管に空気を流して前記計量管に保持されたガスを押し出す押出状態に、流路を切り替える流路切替バルブと、を有する計量部と、
    前記計量部から押し出された前記所定体積のガスと空気とを触媒燃焼前に予め混合する予混合部と、
    前記予混合部によって空気と混合されたガスが前記燃焼部で触媒燃焼することで上昇した前記燃焼部の温度によって前記所定体積のガスに対応する熱量を導出する導出部と、
    を備える熱量計。
  2. 前記予混合部は、前記計量部と前記燃焼部との間に設けられる予混合室であって、前記所定体積のガスと空気とを滞留させる予混合室を有するとともに、前記予混合室では、前記所定体積のガスと空気とが滞留している間の拡散によって前記所定体積のガスと空気とが混合される、請求項1に記載の熱量計。
  3. 前記予混合部は、前記計量部と前記燃焼部とを連絡する予混合流路を有するとともに、前記予混合流路では、前記所定体積のガスが空気とともに流れる間に空気と混合される、請求項1に記載の熱量計。
  4. 前記予混合部は、前記計量部と前記燃焼部との間に設けられる予混合室であって、前記所定体積のガスと空気とを滞留させる予混合室と、前記計量部と前記燃焼部とを連絡する予混合流路であって、前記予混合室の上流側又は下流側の少なくとも一方に設けられる予混合流路とを有するとともに、
    前記予混合室では、前記所定体積のガスと空気とが滞留している間の拡散によって前記所定体積のガスと空気とが混合され、
    前記予混合流路では、前記所定体積のガスが空気とともに流れる間に混合される、請求項1に記載の熱量計。
  5. 前記予混合部は、前記計量部から押し出された前記所定体積のガスの流路に合流する空気の合流路を有し、前記合流路から流入した空気が、触媒燃焼前に前記所定体積のガスと予め混合される、請求項1から請求項4までの何れか1項に記載の熱量計。
  6. 計量部が備える所定容積の計量管にガスを流す流し工程と、
    前記流し工程の後、前記計量管へのガスの流れを遮断して前記計量管に所定体積のガスを保持させる保持工程と、
    前記保持工程で前記計量管に保持された前記所定体積のガスを前記計量部から押し出す押出工程と、
    前記押出工程で押し出された前記所定体積のガスと空気とを燃焼部での触媒燃焼前に予め混合する予混合工程と、
    前記予混合工程によって空気と混合されたガスを前記燃焼部で触媒燃焼させる燃焼工程と、
    前記燃焼工程により上昇した温度によって前記所定体積のガスに対応するガスの熱量を導出する導出工程と、
    を備え、
    前記計量部が備える流路切替バルブであって、前記計量管へガスを流す流し状態と、前記計量管へのガスの流れを遮断して前記計量管に所定体積のガスを保持させる保持状態と、前記計量管に空気を流して前記計量管に保持されたガスを押し出す押出状態とに、流路を切り替える流路切替バルブを用いて、前記流し工程と、前記保持工程と、前記押出工程とをそれぞれ行う熱量計測方法。
  7. 前記予混合工程では、前記計量部と前記燃焼部との間に設けられる予混合室において前記所定体積のガスと空気とを滞留させている間の拡散によって前記所定体積のガスと空気とが混合される、請求項6に記載の熱量計測方法。
  8. 前記予混合工程では、前記計量部と前記燃焼部とを連絡する予混合流路を前記所定体積のガスが空気とともに流れる間に空気と混合される、請求項6に記載の熱量計測方法。
  9. 前記予混合工程では、前記計量部と前記燃焼部との間に設けられる予混合室において前記所定体積のガスと空気とを滞留させている間の拡散によって前記所定体積のガスと空気とが混合されるとともに、
    前記計量部と前記燃焼部とを連絡する予混合流路であって、前記予混合室の上流側又は下流側の少なくとも一方に設けられる予混合流路を前記所定体積のガスが空気とともに流れる間に空気と混合される、請求項6に記載の熱量計測方法。
  10. 前記予混合工程では、前記計量部から押し出された前記所定体積のガスの流路に合流する空気の合流路から流入した空気が、触媒燃焼前に前記所定体積のガスと予め混合される、請求項6から請求項9までのいずれか1項に記載の熱量計測方法。
  11. 前記流し工程、前記保持工程、前記押出工程、前記予混合工程、前記燃焼工程、及び前記導出工程を、この順番で周期的に実施する請求項6から請求項10までの何れか1項に記載の熱量計測方法。
JP2020146398A 2020-08-31 2020-08-31 熱量計及び熱量計測方法 Active JP6808885B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020146398A JP6808885B1 (ja) 2020-08-31 2020-08-31 熱量計及び熱量計測方法
PCT/JP2021/030844 WO2022045075A1 (ja) 2020-08-31 2021-08-23 熱量計及び熱量計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020146398A JP6808885B1 (ja) 2020-08-31 2020-08-31 熱量計及び熱量計測方法

Publications (2)

Publication Number Publication Date
JP6808885B1 true JP6808885B1 (ja) 2021-01-06
JP2022041292A JP2022041292A (ja) 2022-03-11

Family

ID=73993019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020146398A Active JP6808885B1 (ja) 2020-08-31 2020-08-31 熱量計及び熱量計測方法

Country Status (2)

Country Link
JP (1) JP6808885B1 (ja)
WO (1) WO2022045075A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129580B1 (ja) * 2022-04-11 2022-09-01 東京瓦斯株式会社 水素ガス濃度計

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433922A (en) * 1982-07-02 1984-02-28 The Babcock & Wilcox Company Calorimeter
US4614721A (en) * 1984-12-10 1986-09-30 Rocwell Heat recovery calorimeter
FR2626673B1 (fr) * 1988-01-29 1994-06-10 Gaz De France Procede et dispositif de mesurage de la puissance calorifique vehiculee par un courant de matiere combustible
NL9201845A (nl) * 1992-10-23 1994-05-16 Gastec Nv Werkwijze voor het bepalen van de calorische waarde van een gas en/of de Wobbe index van aardgas.
JP2020060471A (ja) * 2018-10-11 2020-04-16 矢崎エナジーシステム株式会社 熱量計
JP6770622B1 (ja) * 2019-09-24 2020-10-14 東京瓦斯株式会社 熱量計、熱量計測方法

Also Published As

Publication number Publication date
JP2022041292A (ja) 2022-03-11
WO2022045075A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
JP6808885B1 (ja) 熱量計及び熱量計測方法
US6497199B2 (en) Catalytic combustion heat exchanger
US8980181B2 (en) Ammonia generating and delivery apparatus
JP4358309B2 (ja) NOx蓄積体の監視方法及び装置
RU2012107343A (ru) Система топливного элемента и способ ее управления
CN103443416A (zh) 用于将热能输入连接在内燃机的废气道内的废气净化设备内的方法
JP2009162436A (ja) 流量制御装置
JP2004037161A5 (ja)
JP2016514235A (ja) 尿素温度合理性診断を備えた排気処理システム
JP5075286B1 (ja) 模擬排ガス用評価システム
JP6770622B1 (ja) 熱量計、熱量計測方法
CN112146285A (zh) 供热水装置以及供热水系统
JP4596474B2 (ja) 流量制御装置
US9857321B2 (en) Device and method for determining the combustion value of a fuel
JP2018538668A5 (ja)
JP6765798B2 (ja) 熱量計
JPH07208696A (ja) 水素吸蔵合金タンク構造
JP7129580B1 (ja) 水素ガス濃度計
CN112128839A (zh) 供热水装置以及供热水系统
JP7026054B2 (ja) 模擬ガス発生装置、評価装置及び模擬ガス発生方法
JP2006164786A (ja) 触媒燃焼器の異常検出装置
CN108757998A (zh) 控制阀和控制回路
JP2020160077A (ja) 熱量計
JP2000241025A (ja) バイパスミキシング式給湯器
JP2000009344A (ja) 給湯装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200904

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250