JP6808749B2 - レーザ装置および極端紫外光生成装置 - Google Patents

レーザ装置および極端紫外光生成装置 Download PDF

Info

Publication number
JP6808749B2
JP6808749B2 JP2018549725A JP2018549725A JP6808749B2 JP 6808749 B2 JP6808749 B2 JP 6808749B2 JP 2018549725 A JP2018549725 A JP 2018549725A JP 2018549725 A JP2018549725 A JP 2018549725A JP 6808749 B2 JP6808749 B2 JP 6808749B2
Authority
JP
Japan
Prior art keywords
high voltage
laser
light
trigger signal
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018549725A
Other languages
English (en)
Other versions
JPWO2018087895A1 (ja
Inventor
素己 庭野
素己 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Publication of JPWO2018087895A1 publication Critical patent/JPWO2018087895A1/ja
Application granted granted Critical
Publication of JP6808749B2 publication Critical patent/JP6808749B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09702Details of the driver electronics and electric discharge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Description

本開示はレーザ装置および、このレーザ装置を用いる極端紫外光生成装置に関する。
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、20nm以下の微細加工が要求されるようになる。このため、例えば20nm以下の微細加工の要求に応えるべく、波長13.5nmの極端紫外(EUV)光を生成する極端紫外光生成装置と縮小投影反射光学系(Reduced Projection Reflective Optics)とを組み合わせた露光装置の開発が期待されている。
EUV光生成装置としては、ターゲット物質にパルスレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、電子加速器から出力される電子を用いた自由電子レーザ(Free Electron Laser)装置の3種類の装置が提案されている。
特開2015−026668号公報 特開2015−038922号公報 特開平10−163550号公報
概要
本開示の一態様によるレーザ装置は、発光トリガ信号を生成するレーザ制御部、レーザ制御部から送信された発光トリガ信号に基づいてパルスレーザ光を出力するマスターオシレータ、レーザ制御部から送信された発光トリガ信号を受信し、この受信時から所定の遅延時間を置いてスイッチング信号を生成する遅延回路、遅延回路から送信されたスイッチング信号に基づいて高電圧パルスを生成する高電圧スイッチ、マスターオシレータから出力されたパルスレーザ光の光路上に位置し、高電圧スイッチから出力された高電圧パルスに基づいて駆動される光シャッタ、および高電圧スイッチから出力された高電圧パルスを検出し、高電圧パルス検知信号を遅延回路に送信する高電圧モニタを含み、遅延回路は、発光トリガ信号と高電圧パルス検知信号とに基づいて遅延時間を決定する。
本開示の別の態様によるレーザ装置は、外部トリガ信号を受信し、この受信時から第1の遅延時間を置いて第1の発光トリガ信号を生成し、外部トリガ信号に基づいて第2の発光トリガ信号を生成するレーザ制御部、レーザ制御部から送信された第1の発光トリガ信号に基づいてパルスレーザ光を出力するマスターオシレータ、レーザ制御部から送信された第2の発光トリガ信号を受信し、この受信時から第2の遅延時間を置いてスイッチング信号を生成する遅延回路、遅延回路から送信されたスイッチング信号に基づいて高電圧パルスを生成する高電圧スイッチ、マスターオシレータから出力されたパルスレーザ光の光路上に位置し、高電圧スイッチから出力された高電圧パルスに基づいて駆動される光シャッタ、および高電圧スイッチから出力された高電圧パルスを検出し、高電圧パルス検知信号をレーザ制御部に送信する高電圧モニタを含み、レーザ制御部は、外部トリガ信号と高電圧パルス検知信号とに基づいて遅延時間を決定する。
本開示のさらに別の態様によるレーザ装置は、受信した外部トリガ信号に基づいて発光トリガ信号を生成し、外部トリガ信号の受信時から第3の遅延時間を置いてスイッチング信号を生成するレーザ制御部、レーザ制御部から送信された発光トリガ信号に基づいてパルスレーザ光を出力するマスターオシレータ、レーザ制御部から送信されたスイッチング信号に基づいて高電圧パルスを生成する高電圧スイッチ、マスターオシレータから出力されたパルスレーザ光の光路上に位置し、高電圧スイッチから出力された高電圧パルスに基づいて駆動される光シャッタ、および高電圧スイッチから出力された高電圧パルスを検出し、高電圧パルス検知信号をレーザ制御部に送信する高電圧モニタを含み、レーザ制御部は、外部トリガ信号と高電圧パルス検知信号とに基づいて第3の遅延時間を決定する。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、典型的なEUV光生成装置の全体構成を示す概略側面図である。 図2は、図1に示すEUV光生成装置の要部を概略的に示すブロック図である。 図3は、光シャッタの一例を示す概略図である。 図4は、比較例としてのレーザ装置の概略構成を示すブロック図である。 図5は、図4に示すレーザ装置における各信号の発生タイミングを示すタイミングチャートである。 図6は、実施形態1に係るレーザ装置の概略構成を示すブロック図である。 図7は、図6に示すレーザ装置における制御処理の流れを示すフローチャートである。 図8は、図6に示すレーザ装置における各信号の発生タイミングを示すタイミングチャートである。 図9は、実施形態2に係るレーザ装置の概略構成を示すブロック図である。 図10は、図9に示すレーザ装置における制御処理の流れを示すフローチャートである。 図11は、図9に示すレーザ装置における各信号の発生タイミングを示すタイミングチャートである。 図12は、実施形態3に係るレーザ装置の概略構成を示すブロック図である。 図13は、図12に示すレーザ装置における制御処理の流れを示すフローチャートである。 図14は、図12に示すレーザ装置における各信号の発生タイミングを示すタイミングチャートである。
実施形態
<目次>
1.EUV光生成装置の全体説明
1.1 構成
1.2 動作
2.比較例
2.1 構成
2.2 動作
2.3 課題
3.実施形態1
3.1 実施形態1の構成
3.2 実施形態1の動作
3.3 実施形態1の作用・効果
4.実施形態2
4.1 実施形態2の構成
4.2 実施形態2の動作
4.3 実施形態2の作用・効果
5.実施形態3
5.1 実施形態3の構成
5.2 実施形態3の動作
5.3 実施形態3の作用・効果
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成および動作の全てが本開示の構成および動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.EUV光生成装置の全体説明
1.1 構成
図1は、典型的な極端紫外(EUV)光生成装置の全体構成を示す概略側面図である。同図に示すEUV光生成装置は、露光装置80に露光光として利用されるEUV光を供給するためのものである。すなわち、図1中の、露光装置80および露光装置制御部81以外の要素により、EUV光生成装置が構成されている。本例のEUV光生成装置は、レーザ光をターゲット物質に照射してターゲット物質を励起することによりEUV光を発生させる、レーザ生成プラズマ(LPP)方式を採用した装置である。このEUV光生成装置は、EUVチャンバ1と、EUV光生成制御部2と、レーザ装置3と、送光光学系(ビームデリバリシステム)4と、ドロップレット供給部5と、ドロップレット検出装置6と、制御システム50とを含む。
上記EUVチャンバ1は、その内部でEUV光を生成するためのチャンバであり、好ましくは真空チャンバとされる。EUVチャンバ1は、ステージ10と、第1プレート11と、ステージ10を介してEUVチャンバ1に保持された第2プレート12と、この第2プレート12に保持された高反射軸外放物面ミラー13と、同じく第2プレート12に保持された高反射平面ミラー14と、レーザ光導入用のウインドウ15とを含む。なお、上記第1プレート11には、レーザ光導入用の貫通孔16が設けられている。上記高反射軸外放物面ミラー13および高反射平面ミラー14は、後述するパルスレーザ光Lを集光するためのレーザ集光光学系17を構成している。
EUVチャンバ1はさらに、EUV光集光ミラーホルダ20と、このEUV光集光ミラーホルダ20に保持されたEUV光集光ミラー21と、ターゲット受け22と、EUV光パルスエネルギセンサ25とを含む。EUV光集光ミラー21は、例えば回転楕円面形状の反射面を有するミラーであり、第1の焦点がプラズマ生成領域23に位置し、第2の焦点が中間集光点(IF)24に位置するように配置されている。EUV光パルスエネルギセンサ25は、プラズマ生成領域23において発生するパルス状のEUV光のエネルギを検出するように配置されている。
レーザ装置3は、ターゲット物質を励起するためのパルスレーザ光Lを発生させる。このレーザ装置3としては、一例として発振増幅型レーザ装置(master oscillator power amplifier type laser apparatus)が適用される。あるいは、レーザ装置3として、プリパルスレーザビームを発生させるYAG(Yttrium Aluminum Garnet)レーザ装置と、メインパルスレーザビームを発生させるCOレーザ装置との組合せ等も適用可能である。さらに、レーザ装置3として、その他のレーザ装置が用いられてもよい。このレーザ装置3から出力されるパルスレーザ光Lは、例えばパルス幅が数ns〜数十ns程度、周波数が10kHz〜100kHz程度のレーザ光である。
送光光学系4は、レーザ装置3から出力されたパルスレーザ光Lを反射させてその進行方向を変える第1高反射ミラー91と、この第1高反射ミラー91で反射したパルスレーザ光Lを上記ウインドウ15に向けて反射させる第2高反射ミラー92とを含む。
ドロップレット供給部5は、EUV光を発生させるために用いられるスズ(Sn)やリチウム(Li)等のターゲット物質を、球状のドロップレットDLとしてEUVチャンバ1内に供給する。このドロップレット供給部5は、圧力調節器31と、溶融した状態のターゲット物質を蓄えるタンク32と、ターゲット物質を溶融させるヒータ33と、溶融状態のターゲット物質を吐出させるノズル34と、ノズル34の側壁を振動させるピエゾ素子35とを含む。なお、上記圧力調節器31の動作は、制御システム50の制御部51によって制御される。上記ドロップレットDLは断続的かつ周期的に生成され、EUVチャンバ1内においてドロップレット軌道Q上を進行する。
ドロップレット検出装置6は、例えば可視域の波長の照明光Fを発する半導体レーザ等の光源40と、照明光学系41とを含む光源部42を備えている。照明光学系41は、上記ドロップレット軌道Q上の所定の位置Pに照明光Fを集光する。そこで、この位置PにドロップレットDLが存在すれば、そのドロップレットDLが照明光Fを一部遮ることになる。またドロップレット検出装置6は、上記照明光Fを集光する受光光学系43と、集光された照明光Fを検出する光センサ44とを含む受光部45を備えている。受光部45は、光源部42と対向する状態に配置されている。
上記照明光学系41は例えば集光レンズを含む。光源40から発せられた後、この照明光学系41を経た照明光Fは、上記位置Pにおいて集光する。一方受光光学系43も例えば集光レンズを含む。上記位置Pにおいて集光した後に発散した照明光Fは、受光光学系43により集光されて光センサ44に入射する。
1.2 動作
上記の構成において、タンク32中のターゲット物質は、ヒータ33によって融点以上の所定温度に加熱される。例えばターゲット物質がSnである場合、Snはその融点(232℃)以上の250〜290℃の温度範囲に加熱される。この加熱を行うに当たっては、制御部51によりヒータ33の動作を制御して、温度調節を行ってもよい。また、制御部51により圧力調節器31の動作が制御されて、タンク32内の圧力が、融解したターゲット物質のジェットがノズル34から所定の速度で出力する圧力に維持される。そして制御部51により、図示外のピエゾ電源を介してピエゾ素子35に、所定波形の電圧信号であるドロップレット供給信号が印加される。それによりピエゾ素子35が振動して、この振動がノズル34に加えられる。以上により、ノズル34から出力される上記ジェットがノズル34の振動によって所定周期で分断され、ドロップレットDLが断続的に供給されるようになる。上記振動の周波数、すなわちドロップレット生成の周波数は、例えば50kHz〜100kHz程度とされる。
一方、ドロップレット検出装置6の光源部42から出力された照明光Fは、受光部45に受光される。そして、上述のように生成されて落下するドロップレットDLが、その軌道Qにおいて所定の位置Pを通過すると、ドロップレットDLにより照明光Fが遮られる。そのとき、受光部45が検出する照明光Fの受光量が低下し、受光部45が出力する出力信号は、この受光量の低下に対応して信号レベルが低下する。信号レベルがある閾値電圧より小さくなるときが、ドロップレットDLが上記所定の位置Pを通過したタイミングを示すものとなる。受光部45が出力する出力信号は、通過タイミング信号S1として、制御部51を介して制御回路52に入力される。制御回路52は遅延回路53(後述の図2参照)を含む。制御回路52は、入力された通過タイミング信号S1の信号レベル低下を検出すると、その検出時点から所定の時間遅延させて発光トリガ信号S2を出力する。
この発光トリガ信号S2は、レーザ装置3に入力される。レーザ装置3は、発光トリガ信号S2が入力されると、後に詳述するようにしてパルスレーザ光Lを出力する。このパルスレーザ光Lは、送光光学系4の第1高反射ミラー91および第2高反射ミラー92で反射した後、ウインドウ15を通過してEUVチャンバ1内に入射する。
上記パルスレーザ光Lは、レーザ集光光学系17の高反射軸外放物面ミラー13および高反射平面ミラー14で反射した後、EUV光集光ミラー21の中央部に設けられた開口を通過して、EUV光集光ミラー21の光軸上を進行する。このパルスレーザ光Lは、高反射軸外放物面ミラー13の作用により、プラズマ生成領域23において集光する。プラズマ生成領域23に到達したドロップレットDLは、この集光したパルスレーザ光Lの照射を受けてプラズマ化し得る。そして、このプラズマからEUV光が生成される。なお、パルスレーザ光Lが照射されなかったドロップレットDLは、ターゲット受け22に受けられる。
ドロップレットDLは周期的に生成され、そしてこのドロップレットDLがドロップレット検出装置6において検出される毎にパルスレーザ光Lが出力されるので、EUV光は周期的に生成される。こうして周期的に生成されるEUV光は、中間集光点24に集光した後、露光装置80に入射する。露光装置80では、入射したEUV光が半導体露光等に用いられる。
露光装置80の露光装置制御部81はバースト信号S4を出力する。このバースト信号S4は、EUV光生成制御部2および制御部51を経由して制御回路52に入力される。上記発光トリガ信号S2の出力は、露光装置制御部81から制御回路52にバースト信号S4が入力されているときだけ行われる。制御回路52にバースト信号S4が入力されていない場合は、通過タイミング信号S1が制御部51に入力されていても、発光トリガ信号S2は出力されない。したがって、この場合はパルスレーザ光Lが出力されないので、EUV光は生成されない。
なお、図1に示すEUV光パルスエネルギセンサ25は、プラズマ生成領域23において発生するパルス状のEUV光のエネルギを検出し、そのエネルギを示すパルスエネルギ検出信号S5を出力する。このパルスエネルギ検出信号S5は、制御システム50の制御部51に入力される。制御部51は、このパルスエネルギ検出信号S5が示すEUV光のパルスエネルギに基づいて、パルスレーザ光Lのエネルギの目標値を計算し、その目標値を示す目標エネルギ信号S3をレーザ装置3に入力する。それにより、レーザ装置3が出力するパルスレーザ光Lのエネルギが、上記目標値に設定される。
なお、露光装置80からの指令によって、プラズマ生成領域23を移動させる場合がある。プラズマ生成領域23をドロップレット軌道Qと平行な方向に移動させる場合は、制御部51が通過タイミング信号S1の信号レベル低下を検出してから、発光トリガ信号S2を出力するまでの時間遅延を変更させてもよい。また、プラズマ生成領域23をドロップレット軌道Qに垂直な面内で移動させる場合は、ステージ10を作動させ、第2プレート12を介して高反射軸外放物面ミラー13および高反射平面ミラー14を、ドロップレット軌道Qに垂直な面内で移動させてもよい。
ここで図2に、以上説明したEUV光生成制御部2、露光装置制御部81、制御システム50、EUV光パルスエネルギセンサ25、ドロップレット検出装置6をまとめてブロック図として示す。ここに示される通り、制御システム50は前述した遅延回路53を含む。この遅延回路53は、制御システム50に通過タイミング信号S1が入力されてから、所定時間遅延させて発光トリガ信号S2を出力させる。この所定時間は、図1に示すドロップレットDLが所定の位置Pを通過してからプラズマ生成領域23に到達した時に、発光トリガ信号S2を受信したレーザ装置3から出力されるパルスレーザ光Lが、ドロップレットDLに照射されるように設定される。すなわちこの所定時間は例えば、ドロップレットDLが上記位置Pを通過してからプラズマ生成領域23に到達するまでの時間Dt1と、レーザ装置3に発光トリガ信号S2が入力されてからパルスレーザ光Lがプラズマ生成領域23に到達するまでの時間αとの和(Dt1+α)とされる。制御システム50の制御部51は、この所定時間を示すデータを遅延回路53に送り、このデータに基づいて遅延回路53による遅延時間が設定される。
図2には、レーザ装置3の基本的な構成をブロック図で示す。図示の通りレーザ装置3は、パルス状のレーザ光を発するマスターオシレータ100と、このレーザ光を順次増幅するn個の増幅器311、312・・・31k・・・31nと、(n+1)個の光シャッタ320、321、322・・・32k・・・32nと、レーザ制御部300とを含む。なお図2中では、上記マスターオシレータをMOと表記し、上記増幅器をPAと表記しており、以下の説明でもその表記を用いることとする。ここで、MO100に最も近い光シャッタを第0光シャッタ320と称する。そしてこの第0光シャッタ320の下流側に、第1PA311、第1光シャッタ321、・・・第nPA31n、第n光シャッタ32nが順次配されている。図中kを付した括弧で示す通り、第kPA31kと第k光シャッタ32kとが1組として設けられ、第0光シャッタ320に加えて、この組がn個設けられている。
MO100としては、Qスイッチを含むCOレーザ発振器、または、COレーザガスの増幅波長域で発振する量子カスケードレーザ(QCL)等が好適に用いられ得る。MO100は発光トリガ信号S2を受信すると、パルスレーザ光Lを出力する。このパルスレーザ光Lは、直線偏光であってもよい。PA311、312・・・31k・・・31nは、MO100から出力されるパルスレーザ光Lの光路上に配置された、COレーザガスを含む放電励起式の増幅器であってもよい。さらにPA311、312・・・31k・・・31nは、COレーザガスと、1対の電極と、これらの電極間で高周波放電させる電源とを含んでもよい。そのような構成が適用される場合は、PA311、312・・・31k・・・31nの各々において所定の励起強度となるように、COレーザガスをポンピングしておいてもよい。また、MO100が上記QCLのような小出力(数十mW)のものである場合には、PA311、312・・・31k・・・31nは、光共振器と、EOポッケルスセルと、偏光子とを含む再生増幅器であってもよい。
(n+1)個の光シャッタ320、321、322・・・32k・・・32nはそれぞれ、パルス状のレーザ光を通過させる短い時間だけ開状態となる機能を有する。なお、この光シャッタの機能については、後に詳しく説明する。光シャッタ320、321、322・・・32k・・・32nを通過したパルス状のレーザ光は、PA311、312・・・31k・・・31nによって順次増幅され、高強度のパルスレーザ光Lが得られる。
光シャッタ320、321、322・・・32k・・・32nは、EOポッケルスセルを含んで構成されても、あるいはEOポッケルスセルおよび2つの偏光子を含んで構成されてもよい。ここで、パルスレーザ光Lに対して耐性が低い光シャッタは、パルスレーザ光Lのパルスエネルギが比較的低い上流側の位置、例えば図2に示す第0光シャッタ320のように、MO100と第1PA311との間に配置するのが好ましい。
図3に、光シャッタの一例を示す。ここでは1つの光シャッタを示し、それを代表的に光シャッタ32kとして示す。図示の通りこの光シャッタ32kは、互いに離して配置された第1偏光子341および第2偏光子342と、それらの間に配置されたEOポッケルスセル340と、第2偏光子342とEOポッケルスセル340との間に配置されたλ/2板(1/2波長板)343とを含む。EOポッケルスセル340は、例えば電極340aおよび340bと、それらの間に配置された電気光学(EO)結晶340cとを含む。この光シャッタ32kにおいては、図示外の制御回路により制御される高電圧スイッチ304から、上記電極340aおよび340bを介して、電気光学結晶340cに所定値の高電圧が印加され得る。電気光学結晶340cは上記高電圧が印加されると、通過するパルスレーザ光Lの直線偏光方向を90°回転させる。
図3においては、パルスレーザ光Lの光路に沿って、上下に延びる矢印と、〇印とを付してある。前者の矢印はパルスレーザ光Lの直線偏光方向が紙面に平行な方向(上下方向)であることを示し、後者の〇印はパルスレーザ光Lの直線偏光方向が紙面に垂直な方向であることを示している。この例では、図3中で光シャッタ32kを左から右に通過するパルスレーザ光L、特に同図中上下方向に直線偏光したパルスレーザ光Lが利用されるものとする。この直線偏光したパルスレーザ光Lは、第2偏光子342を透過し、λ/2板343において偏光方向が90°回転される。こうして直線偏光方向が紙面に垂直な方向となったパルスレーザ光Lは、電気光学結晶340cに上記高電圧が印加されていない場合は、偏光方向をそのまま維持し、第1偏光子341で反射するので、光シャッタ32kを通過不能となる。それに対して電気光学結晶340cに上記高電圧が印加されている場合、パルスレーザ光Lは、電気光学結晶340cを通過することにより直線偏光方向が紙面に平行な方向に戻るので、第1偏光子341を透過し、光シャッタ32kを通過する。以上の通りにして光シャッタ32kは、高電圧印加のON−OFFに応じて開閉する。また、本例の光シャッタ32kは、光シャッタ32kを図3中で右から左に通過しようとするパルスレーザ光Lに対しても、同様に高電圧印加のON−OFFに応じて開閉する。
なお光シャッタは、高電圧が印加された場合、パルスレーザ光Lを上述の通り図2中で左から右に通過させると共に、図2中で右から左に向かう光は遮断する機能を有する光アイソレータであってもよい。図1および図2に示す構成においては、パルスレーザ光Lの一部がターゲットで反射することがある。また、複数のPAの各々から発せられた自然放出光が他のPAで増幅される、いわゆる自励発振現象が起きることもある。この自励発振で生じた自励発振光や、上述のターゲットで反射した光は戻り光となって、パルスレーザ光Lの光路をMO100側に逆流することがある。上に述べた光アイソレータが用いられた場合は、そのような戻り光によってレーザ装置が破損することを抑制でき、また、パルスレーザ光Lの出力を安定化させることが可能になる。
図2に戻って説明すると、パルスレーザ光Lの一部はビームスプリッタ303で反射し、残余はビームスプリッタ303を透過して図1に示す送光光学系4に入射する。ビームスプリッタ303で反射したパルスレーザ光Lは、パルスエネルギセンサ302に入射する。パルスエネルギセンサ302はパルスレーザ光Lのエネルギを検出し、エネルギ検出信号をレーザ制御部300に入力する。レーザ制御部300はこのエネルギ検出信号に基づいて、図1に示した目標エネルギ信号S3が示す目標エネルギが得られるように、MO100の出力を制御する。なおビームスプリッタ303は、図2に示す位置に限らず、その位置よりもパルスレーザ光Lの進行方向上流側に配置されてもよい。
レーザ制御部300の動作は、制御システム50の制御部51によって制御される。前述したバースト信号S4が制御部51に入力されていない場合は、光シャッタ320、321、322・・・32k・・・32nに対する高電圧印加はなされない。すなわち、バースト信号S4が制御部51に入力されている場合のみ、この高電圧印加がなされれば、光シャッタ320、321、322・・・32k・・・32nをパルスレーザ光Lが通過可能となる。なお、このように複数の光シャッタ320、321、322・・・32k・・・32nが設けられている場合は、パルスレーザ光Lが各光シャッタを通過するタイミングに合わせて、それぞれの光シャッタを開状態に設定するようにしてもよい。
2.比較例
2.1 構成
以下、図4を参照して、比較例としてのレーザ装置について説明する。このレーザ装置は、図1および図2に示すレーザ装置3として適用され得るものである。先に説明した図2では、光シャッタ320、321、322・・・32k・・・32nの各々に高電圧を印加する構成は省略している。図4では、この高電圧を印加する構成も示しており、以下、この構成についても詳しく説明する。なお図4では、1つの光シャッタを代表的に光シャッタ32kとして示し、この光シャッタ32kの周辺の構成について説明する。光シャッタが図2に示すように複数設けられる場合は、各光シャッタに対して図4に示す構成がそれぞれ設けられてもよい。
図4に示すレーザ装置は、レーザ制御部300と、MO100と、光シャッタ32kと、遅延回路301と、高電圧スイッチ304とを含む。レーザ制御部300を通過した発光トリガ信号S2は、MO100と遅延回路301とに入力され得る。光シャッタ32kは、例えば図3に示したようなEOポッケルスセル340を含んで構成される。高電圧スイッチ304は例えば半導体スイッチを含み、図示外の高電圧源に接続されている。
2.2 動作
上述したMO100は発光トリガ信号S2を受信すると、パルスレーザ光を出力する。このパルスレーザ光は、例えば図2に示したようなPA(図示せず)によって増幅され、高強度のパルスレーザ光Lが得られる。遅延回路301に発光トリガ信号S2が入力されると、遅延回路301は発光トリガ信号S2と同期した発光同期トリガ信号S10を出力する。この発光同期トリガ信号S10は高電圧スイッチ304に入力される。高電圧スイッチ304は発光同期トリガ信号S10が入力されるとスイッチング動作して、上記高電圧源から所定の高電圧を光シャッタ32kに印加する。発光同期トリガ信号S10は、光シャッタ32kをパルスレーザ光Lが通過するタイミングに合わせて光シャッタ32kに高電圧が印加されるように、発光トリガ信号S2から所定時間遅延させて遅延回路301から出力される。光スイッチとしての光シャッタ32kは、上記高電圧が印加されている間、パルスレーザ光Lを通過させる。
2.3 課題
図5は、図4の構成における各信号が生成されるタイミングを、パルスレーザ光Lの進行位置と併せて示すタイミングチャートである。以下、この図5を参照して、上記タイミングについて説明する。図5の横軸は、例えばs(秒)で示す時間を示している。また図5において、最上位の段から下に向かって順次、発光トリガ信号S2、MO100から出力されるパルスレーザ光L、発光同期トリガ信号S10、および光シャッタ32kに印加される高電圧の各波形および生成タイミングを示している。また縦軸位置に引いた下向きの矢印上の位置は、MO100から光シャッタ32k側への光路長に対応している。
図5に示される通り、発光トリガ信号S2の立上りから略一定の時間Aが経過したところでMO100から、図中aで波形を示すパルスレーザ光Lが出力される。一例としてパルスレーザ光Lのパルス幅(全値全幅)は、10〜20ns程度である。また一例として、発光同期トリガ信号S10のパルス幅は100ns程度である。光シャッタ32kに印加される高電圧の波形を、図5においてbあるいはcで示す。この高電圧のパルス幅は、発光同期トリガ信号S10のパルス幅と対応して100ns程度である。
上述のように、光シャッタ32kをパルスレーザ光Lが通過するタイミングに合わせて、光シャッタ32kに高電圧を印加するためには、発光トリガ信号S2の立上りから、高電圧印加開始までの時間が一定である必要がある。つまり、図5において、この時間が常に(B+C)であって、高電圧の波形が破線bのようになっていれば、パルスレーザ光Lはパルス幅の全幅に亘って光シャッタ32kを通過する。また、パルスレーザ光Lのパルス裾部に存在する不要な発光成分も、光シャッタ32kにおいて除去され得る。
ところが高電圧スイッチ304においては、発光同期トリガ信号S10を受信してから高電圧印加を開始するまでの時間が、温度変化により変動することがある。この時間変動、いわゆる時間のドリフトが有ると、図5に示す高電圧の波形が例えば実線cのようになり、発光トリガ信号S2の立上りから高電圧印加開始までの時間が(B+C+D)と変わり得る。ここでDは、上記時間の本来の値(B+C)からの変動分を示す。このような場合パルスレーザ光Lは、パルス幅の一部しか光シャッタ32kを通過し得ないので、光シャッタ32kを通過する際に減衰することになる。
3.実施形態1
3.1 実施形態1の構成
次に図6〜8を参照して、実施形態1に係るレーザ装置について説明する。なお図6〜8において、図1〜5に示したものと同様の要素については同じ番号を付してあり、それらについての説明は、特に必要の無い限り省略する(以下、同様)。この実施形態1のレーザ装置も、図1および図2に示すレーザ装置3として適用され得るものである。図6は、実施形態1に係るレーザ装置の基本構成を示すブロック図である。このレーザ装置は、図4に示したレーザ装置と対比すると、高電圧モニタ151が追加され、また遅延回路301に代えて、カウンタを含む遅延回路153が用いられている点で異なる。このカウンタは、高電圧スイッチ304が発光同期トリガ信号S10を受信してから高電圧印加を開始するまでの時間の変動分D(図5参照)よりも極めて短い単位で経過時間をカウントする。高電圧モニタ151は、高電圧スイッチ304が出力する高電圧パルスを検知して、検知信号S6を遅延回路153に入力する。
3.2 実施形態1の動作
図7は、光シャッタ32kにパルス状の高電圧を印加するタイミングを、光シャッタ32kをパルスレーザ光Lが通過するタイミングと一致させる制御の流れを示している。また図8は、この制御の下に各信号が生成されるタイミングを、パルスレーザ光Lの進行位置と併せて示すタイミングチャートである。この図8の表示の仕方は、先に説明した図5と同様である。以下、図7および図8を参照して、上記の制御について説明する。
図7に示す制御がスタートすると、遅延回路153はまずステップSP1において、自身が記憶するDi−1の値を0(ゼロ)にセットする。Dは図8に示すように、高電圧スイッチ304が発光同期トリガ信号S10を受信してから高電圧印加が開始するまでの時間内における、上記の時間変動分を示す。より詳しくは、この時間は本来一定の時間Cであるべきところ、それに対して加減する分の時間がDである。図7の制御では、次のステップSP2に入るとそれ以降は、ステップSP2〜ステップSP7までの処理が繰り返しなされる。上記のiは、この繰り返し処理の順番を示している。Dはこの順番がi番目の場合の上記時間変動分を表している。iの値は最初に1とされるので、上記の通りDi−1の値が0とされる。iの値は、処理がステップSP7からステップSP2に戻る度に、「1」ずつインクリメントされる。
遅延回路153は次にステップSP2において、自身のカウンタのカウント値を0(ゼロ)にセットする。遅延回路153は、図1および図2に示す発光トリガ信号S2を外部トリガ信号として受信し、受信すると所定時間後に発光トリガ信号S21を出力する。この発光トリガ信号S21は図6に示す通り、MO100と遅延回路153に同時に入力される。遅延回路153は図7のステップSP3において発光トリガ信号S21を受信すると、次のステップSP4においてカウンタによる計時を開始させる。
遅延回路153はステップSP5において、カウント値が(B−Di−1)になると発光同期トリガ信号S10を出力し、それにより高電圧スイッチ304がスイッチング動作を開始し、光シャッタ32kに高電圧パルスが印加される。このように発光同期トリガ信号S10は、高電圧スイッチ304の動作を開始させるスイッチング信号として作用する。光シャッタ32kは、この高電圧パルスが印加されている間、光通過が可能な状態となり、パルスレーザ光Lが光シャッタ32kを通過する。なお上記Bは図8に示すように、発光トリガ信号S21が遅延回路153に入力されてから、発光同期トリガ信号S10が出力されるまでの遅延時間の目標値である。ただし、本実施形態1において実際の遅延時間は、(B−Di−1)となる。また後述するCは、発光同期トリガ信号S10が立ち上がってから光シャッタ32kに高電圧パルスが印加開始されるまで時間の目標値である。これらの目標値BおよびCは所定の一定値であり、例えば遅延回路153に記憶される。
図6に示す高電圧モニタ151は、高電圧スイッチ304が出力する高電圧パルスを検知して、検知信号S6を遅延回路153に入力する。遅延回路153はこの高電圧パルス検知信号S6が入力されると、カウンタによる計時をストップさせる(図7のステップSP6)。遅延回路153は、こうしてカウンタによる計時がストップすると、次にステップSP7において、Di−1の値に修正値ΔDを加算して、その加算後の値を新たなDi−1としてセットする。ここで修正値ΔD=(計時がストップしたときのカウント値−(B−Di−1+C))である。このステップSP7の処理がなされると、処理の流れはステップSP2に戻り、それ以降はステップSP2〜ステップSP7の処理が繰り返される。
3.3 実施形態1の作用・効果
以上述べた処理がなされることにより、図8に示すように、発光トリガ信号S21が出力されてから、発光同期トリガ信号S10が出力されるまでの遅延時間は(B−Di−1)となる。つまり、i番目の繰り返し処理において、この遅延時間は目標値Bから、前回つまりi−1番目の繰り返し処理において実測された時間変動分(Di−1)を減じた時間となる。そこで、図8に実線bで示すように、光シャッタ32kにパルス状の高電圧を印加するタイミングを、光シャッタ32kをパルスレーザ光Lが通過するタイミングと一致させることが可能になる。つまり、パルスレーザ光Lはパルス幅の全幅に亘って光シャッタ32kを通過するので、この通過の際にパルスレーザ光Lが減衰することが抑制される。また、パルスレーザ光Lのパルス裾部に存在する不要な発光成分も、光シャッタ32kにおいて除去され得る。
なお、光シャッタ32kにパルス状の高電圧を印加するタイミングを、パルスレーザ光Lの検出に基づいて制御することも考えられる。しかしその場合は、パルスレーザ光Lの出力低下が上記高電圧印加のタイミングずれによるものか、あるいはMOの出力低下によるものか区別できないので、そのような制御は不正確なものとなる。
4.実施形態2
4.1 実施形態2の構成
次に図9〜11を参照して、実施形態2に係るレーザ装置について説明する。この実施形態2のレーザ装置も、図1および図2に示すレーザ装置3として適用され得るものである。図9は、実施形態2に係るレーザ装置の基本構成を示すブロック図である。このレーザ装置は、図6に示した実施形態1に係るレーザ装置と対比すると、レーザ制御部300に代えてカウンタを含むレーザ制御部330が用いられている点、および遅延回路153に代えて、カウンタを含まない遅延回路253が用いられている点で異なる。レーザ制御部330が含むカウンタは、高電圧スイッチ304が発光同期トリガ信号S10を受信してから高電圧印加を開始するまでの時間の変動分D(図5参照)よりも極めて短い単位で経過時間をカウントする。高電圧モニタ151は、高電圧スイッチ304が出力する高電圧パルスを検知して、検知信号S6をレーザ制御部330に入力する。
4.2 実施形態2の動作
図9の構成の動作は、基本的にレーザ制御部330によって制御される。図10はこの制御、つまり光シャッタ32kにパルス状の高電圧を印加するタイミングを、光シャッタ32kをパルスレーザ光Lが通過するタイミングと一致させる制御の流れを示している。また図11は、この制御の下に各信号が生成されるタイミングを、パルスレーザ光Lの進行位置と併せて示すタイミングチャートである。この図11の表示の仕方は、先に説明した図5と同様である。以下、図10および図11を参照して、このレーザ制御部330による制御について説明する。
図10に示す制御がスタートすると、レーザ制御部330はまずステップSP11において、自身が記憶するDi−1の値を0(ゼロ)にセットする。このD、iおよびDi−1の意味は、実施形態1におけるものと同じである。この制御は、次のステップSP12に入るとそれ以降は、ステップSP12〜ステップSP18までの処理が繰り返しなされる。iの値は、処理がステップSP18からステップSP12に戻る度に、「1」ずつインクリメントされる。
レーザ制御部330は次にステップSP12において、カウンタのカウント値を0(ゼロ)にセットする。レーザ制御部330は、図1および図2に示す発光トリガ信号S2を外部トリガ信号として受信する。レーザ制御部330はステップSP13においてこの発光トリガ信号S2を受信すると同時に、ステップSP14においてカウンタによる計時を開始させる。レーザ制御部330は次にステップSP15において、カウント値が(t0−Di−1)となった時点で第2の発光トリガ信号S22を出力し、次いでステップSP16において、カウント値がt0となった時点で第1の発光トリガ信号S21を出力する。なおt0は予め定められた値で、この値は本開示における第1の遅延時間となる。このt0の値は、レーザ制御部330に記憶されている。図9に示すように第1の発光トリガ信号S21はMO100に入力され、第2の発光トリガ信号S22は遅延回路253に入力される。
図9に示すMO100は第1の発光トリガ信号S21を受信すると、パルスレーザ光Lを出力する。一方、遅延回路253は、第2の発光トリガ信号S22を受信すると、図11に示すように、下に述べる時間Bだけ遅延させて、スイッチング信号としての発光同期トリガ信号S10を出力する。この時間Bは、本開示における第2の遅延時間である。発光同期トリガ信号S10は図9に示す高電圧スイッチ304に入力される。高電圧スイッチ304は発光同期トリガ信号S10が入力されるとスイッチング動作を開始し、光シャッタ32kに高電圧パルスを印加する。この高電圧パルスを印加するタイミングは、本来、発光同期トリガ信号S10が立ち上がってから目標値Cだけ時間が経過したタイミングである。しかし、高電圧スイッチ304が発光同期トリガ信号S10を受信してから高電圧印加を開始するまでの時間に変動があれば、実際の上記タイミングは発光同期トリガ信号S10が立ち上がってから(C+D)時間が経過したタイミングとなる。ここでDは上記変動分の時間である。また図11等に示すDは、上記繰り返しの処理がi番目である場合の変動分を示す。なお、上記目標値BおよびC、並びにt0の値は、例えばレーザ制御部330において記憶されている。また目標値Bの値は、遅延回路253にも記憶されている。
図9に示す高電圧モニタ151は、高電圧スイッチ304が出力する高電圧パルスを検知して、検知信号S6をレーザ制御部330に入力する。レーザ制御部330はこの高電圧パルス検知信号S6が入力されると、カウンタによる計時をストップさせる(図10のステップSP17)。レーザ制御部330は、こうしてカウンタによる計時がストップすると、次にステップSP18において、Di−1の値に修正値ΔDを加算して、その加算後の値を新たなDi−1として記憶する。本実施形態においては、修正値ΔD=(計時がストップしたときのカウント値−(t0−Di−1+B+C))である。このステップSP18の処理がなされると、処理の流れはステップSP12に戻り、それ以降はステップSP12〜ステップSP18の処理が繰り返される。
4.3 実施形態2の作用・効果
以上述べた処理がなされることにより、図11に示すように、第1の発光トリガ信号S21が出力されてから、発光同期トリガ信号S10が出力されるまでの遅延時間は(B−Di−1)となる。つまり、i番目の繰り返し処理において、この遅延時間は目標値Bから、前回つまりi−1番目の繰り返し処理において実測された時間変動分(Di−1)を減じた時間となる。そこで、図11に実線bで示すように、光シャッタ32kにパルス状の高電圧を印加するタイミングを、光シャッタ32kをパルスレーザ光Lが通過するタイミングと一致させることが可能になる。つまり、パルスレーザ光Lはパルス幅の全幅に亘って光シャッタ32kを通過するので、この通過の際にパルスレーザ光Lが減衰することが抑制される。また、パルスレーザ光Lのパルス裾部に存在する不要な発光成分も、光シャッタ32kにおいて除去され得る。
5.実施形態3
5.1 実施形態3の構成
次に図12〜14を参照して、実施形態3に係るレーザ装置について説明する。図12は、実施形態3に係るレーザ装置の基本構成を示すブロック図である。このレーザ装置は、図6に示した実施形態1に係るレーザ装置と対比すると、レーザ制御部300に代えて、遅延回路153を含むレーザ制御部350が用いられている点で異なる。遅延回路153は、図6に示した遅延回路153と基本的に同じ構成および機能を有し、前述したカウンタも内包している。
5.2 実施形態3の動作
上記遅延回路153は、レーザ制御部350によって制御される。図13はこの制御、つまり光シャッタ32kにパルス状の高電圧を印加するタイミングを、光シャッタ32kをパルスレーザ光Lが通過するタイミングと一致させる制御の流れを示している。また図14は、この制御の下に各信号が生成されるタイミングを、パルスレーザ光Lの進行位置と併せて示すタイミングチャートである。この図14の表示の仕方は、先に説明した図5と同様である。以下、図13および図14を参照して、このレーザ制御部350による制御について説明する。
図13に示す制御は、図7に示した実施形態1における制御と対比すると、発光トリガ信号の受信および出力が異なるだけであり、レーザ制御部350が内包する遅延回路153の動作も実施形態1における動作と同じである。すなわち、図13に示すステップSP21および22は、図7のステップSP1および2と同じであり、さらに図13に示すステップSP26、27および28は、図7のステップSP5、6および7と同じである。図13の制御においてレーザ制御部350は、ステップSP23において外部トリガ信号である発光トリガ信号S2を受信し、ステップSP24において自身が含むカウンタの計時を開始させ、それと同時にステップSP25において発光トリガ信号S21を出力する。
なお、本実施形態1では図14に示す通り、外部トリガ信号である発光トリガ信号S2がレーザ制御部350に受信されてから、遅延時間(B−Di−1)だけ遅れて、スイッチング信号である発光同期トリガ信号S10が出力される。この遅延時間(B−Di−1)は、本開示における第3の遅延時間である。
5.3 実施形態3の作用・効果
以上の通りであるので、この実施形態3によれば、実施形態1におけるのと基本的に同様の作用・効果が得られる。すなわち本実施形態3においても、図14に実線bで示すように、光シャッタ32kにパルス状の高電圧を印加するタイミングを、光シャッタ32kをパルスレーザ光Lが通過するタイミングと一致させることが可能になる。そこで、パルスレーザ光Lはパルス幅の全幅に亘って光シャッタ32kを通過するので、この通過の際にパルスレーザ光Lが減衰することが抑制される。また、パルスレーザ光Lのパルス裾部に存在する不要な発光成分も、光シャッタ32kにおいて除去され得る。
なお以上の説明は、制限ではなく単なる例示を意図したものである。したがって、添付の請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書および添付の請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」または「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、および添付の請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」または「1またはそれ以上」を意味すると解釈されるべきである。
1 EUVチャンバ
2 EUV光生成制御部
3 レーザ装置
4 送光光学系
5 ドロップレット供給部
6 ドロップレット検出装置
10 ステージ
11 第1プレート
12 第2プレート
13 高反射軸外放物面ミラー
14 高反射平面ミラー
16 貫通孔
17 レーザ集光光学系
20 EUV光集光ミラーホルダ
21 EUV光集光ミラー
22 ターゲット受け
23 プラズマ生成領域
24 中間集光点
25 EUV光パルスエネルギセンサ
31 圧力調節器
32 タンク
33 ヒータ
34 ノズル
35 ピエゾ素子
40 光源
41 照明光学系
42 光源部
43 受光光学系
44 光センサ
45 受光部
50 制御システム
51 制御部
52 制御回路
53、153、253、301 遅延回路
80 露光装置
81 露光装置制御部
91 第1高反射ミラー
92 第2高反射ミラー
100 マスターオシレータ
151 高電圧モニタ
300、330、350 レーザ制御部
302 パルスエネルギセンサ
303 ビームスプリッタ
304 高電圧スイッチ
311、312・・・31k・・・31n 増幅器
320、321、322・・・32k・・・32n 光シャッタ
DL ドロップレット
F 照明光
L パルスレーザ光
P ドロップレット軌道上の所定の位置
Q ドロップレット軌道
S1 通過タイミング信号
S2 発光トリガ信号(外部トリガ信号)
S3 目標エネルギ信号
S4 バースト信号
S5 パルスエネルギ検出信号
S6 高電圧パルスの検知信号
S10 発光同期トリガ信号
S21、S22 発光トリガ信号

Claims (20)

  1. 発光トリガ信号を生成するレーザ制御部、
    前記レーザ制御部から送信された発光トリガ信号に基づいてパルスレーザ光 を出力するマスターオシレータ、
    前記レーザ制御部から送信された発光トリガ信号を受信し、この受信時から所定の遅延時間を置いてスイッチング信号を生成する遅延回路、
    前記遅延回路から送信されたスイッチング信号に基づいて高電圧パルスを生成する高電圧スイッチ、
    前記マスターオシレータから出力されたパルスレーザ光の光路上に位置し、前記高電圧スイッチから出力された高電圧パルスに基づいて駆動される光シャッタ、および
    前記高電圧スイッチから出力された高電圧パルスを検出し、高電圧パルス検知信号を前記遅延回路に送信する高電圧モニタ、
    を含み、
    前記遅延回路は、前記発光トリガ信号と前記高電圧パルス検知信号とに基づいて前記遅延時間を決定するレーザ装置。
  2. 前記遅延回路は、前記発光トリガ信号を受信してから前記スイッチング信号を生成するまでの時間の目標値をB、前記スイッチング信号が立ち上がってから前記光シャッタに前記高電圧スイッチが印加されるまでの時間の目標値をC、前記高電圧スイッチが印加されるタイミングが目標値Cから長時間側にずれる変動分をDとしたとき、前記発光トリガ信号を受信してから前記スイッチング信号を生成するまでの時間を(B−D)に設定する請求項1記載のレーザ装置。
  3. 前記遅延回路は、少なくとも前記発光トリガ信号を受信してからの経過時間を計測するカウンタを含む請求項1記載のレーザ装置。
  4. 前記遅延回路は、前記高電圧パルス検知信号が入力されたときに前記カウンタによる計測を終了する請求項3記載のレーザ装置。
  5. 前記光シャッタが、前記パルスレーザ光の光路に沿って複数設けられている請求項1記載のレーザ装置。
  6. 前記マスターオシレータから出力されたパルスレーザ光を増幅する増幅器をさらに含む請求項1記載のレーザ装置。
  7. ターゲット物質からなるドロップレットにパルスレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、前記パルスレーザ光を発する光源として請求項1記載のレーザ装置を含む極端紫外光生成装置。
  8. 外部トリガ信号を受信し、この受信時から第1の遅延時間を置いて第1の発光トリガ信号を生成し、前記外部トリガ信号に基づいて第2の発光トリガ信号を生成するレーザ制御部、
    前記レーザ制御部から送信された第1の発光トリガ信号に基づいてパルスレーザ光を出力するマスターオシレータ、
    前記レーザ制御部から送信された第2の発光トリガ信号を受信し、この受信時から第2の遅延時間を置いてスイッチング信号を生成する遅延回路、
    前記遅延回路から送信されたスイッチング信号に基づいて高電圧パルスを生成する高電圧スイッチ、
    前記マスターオシレータから出力されたパルスレーザ光の光路上に位置し、前記高電圧スイッチから出力された高電圧パルスに基づいて駆動される光シャッタ、および
    前記高電圧スイッチから出力された高電圧パルスを検出し、高電圧パルス検知信号を前記レーザ制御部に送信する高電圧モニタ、
    を含み、
    前記レーザ制御部は、前記外部トリガ信号と前記高電圧パルス検知信号とに基づいて、前記外部トリガ信号の受信時から前記スイッチング信号の送信までの遅延時間を決定するレーザ装置。
  9. 前記レーザ制御回路は、前記第1の遅延時間をt0、前記第2の遅延時間の目標値をB、前記スイッチング信号が立ち上がってから前記光シャッタに前記高電圧スイッチが印加されるまでの時間の目標値をC、前記高電圧スイッチが印加されるタイミングが目標値Cから長時間側にずれる変動分をDとしたとき、前記外部トリガ信号を受信してから前記第2の発光トリガ信号を生成するまでの時間を(t0−D)に設定する請求項8記載のレーザ装置。
  10. 前記レーザ制御部は、少なくとも前記外部トリガ信号を受信してからの経過時間を計測するカウンタを含む請求項9記載のレーザ装置。
  11. 前記レーザ制御部は、前記高電圧パルス検知信号が入力されたときに前記カウンタによる計測を終了する請求項10記載のレーザ装置。
  12. 前記光シャッタが、前記パルスレーザ光の光路に沿って複数設けられている請求項9記載のレーザ装置。
  13. 前記マスターオシレータから出力されたパルスレーザ光を増幅する増幅器をさらに含む請求項9記載のレーザ装置。
  14. ターゲット物質からなるドロップレットにパルスレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、前記パルスレーザ光を発する光源として請求項8記載のレーザ装置を含む極端紫外光生成装置。
  15. 受信した外部トリガ信号に基づいて発光トリガ信号を生成し、外部トリガ信号の受信時から第3の遅延時間を置いてスイッチング信号を生成するレーザ制御部、
    前記レーザ制御部から送信された発光トリガ信号に基づいてパルスレーザ光を出力するマスターオシレータ、
    前記レーザ制御部から送信されたスイッチング信号に基づいて高電圧パルスを生成する高電圧スイッチ、
    前記マスターオシレータから出力されたパルスレーザ光の光路上に位置し、前記高電圧スイッチから出力された高電圧パルスに基づいて駆動される光シャッタ、および
    前記高電圧スイッチから出力された高電圧パルスを検出し、高電圧パルス検知信号を前記レーザ制御部に送信する高電圧モニタ、
    を含み、
    前記レーザ制御部は、前記外部トリガ信号と前記高電圧パルス検知信号とに基づいて前記第3の遅延時間を決定するレーザ装置。
  16. 前記制御回路は、前記第3の遅延時間の目標値をB、前記スイッチング信号が立ち上がってから前記光シャッタに前記高電圧スイッチが印加されるまでの時間の目標値をC、前記高電圧スイッチが印加されるタイミングが目標値Cから長時間側にずれる変動分をDとしたとき、前記第3の遅延時間を(B−D)に設定する請求項15記載のレーザ装置。
  17. 前記レーザ制御部は、少なくとも前記発光トリガ信号を受信してからの経過時間を計測するカウンタを含む請求項15記載のレーザ装置。
  18. 前記レーザ制御部は、前記高電圧パルス検知信号が入力されたときに前記カウンタによる計測を終了する請求項17記載のレーザ装置。
  19. 前記光シャッタが、前記パルスレーザ光の光路に沿って複数設けられている請求項15記載のレーザ装置。
  20. ターゲット物質からなるドロップレットにパルスレーザ光を照射して極端紫外光を生成する極端紫外光生成装置であって、前記パルスレーザ光を発する光源として請求項15記載のレーザ装置を含む極端紫外光生成装置。
JP2018549725A 2016-11-11 2016-11-11 レーザ装置および極端紫外光生成装置 Active JP6808749B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083595 WO2018087895A1 (ja) 2016-11-11 2016-11-11 レーザ装置および極端紫外光生成装置

Publications (2)

Publication Number Publication Date
JPWO2018087895A1 JPWO2018087895A1 (ja) 2019-09-26
JP6808749B2 true JP6808749B2 (ja) 2021-01-06

Family

ID=62109519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018549725A Active JP6808749B2 (ja) 2016-11-11 2016-11-11 レーザ装置および極端紫外光生成装置

Country Status (3)

Country Link
US (1) US11006511B2 (ja)
JP (1) JP6808749B2 (ja)
WO (1) WO2018087895A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208386A1 (de) * 2019-06-07 2020-12-10 Infineon Technologies Ag Steuersystem und Verfahren für Laserabtastung
US11804690B2 (en) * 2020-11-11 2023-10-31 Seno Medical Instruments, Inc. Laser assembly for an optoacoustic probe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163550A (ja) 1996-12-02 1998-06-19 Shin Meiwa Ind Co Ltd 固体レーザ装置
JP2013065804A (ja) * 2010-12-20 2013-04-11 Gigaphoton Inc レーザ装置およびそれを備える極端紫外光生成システム
JP2015026668A (ja) 2013-07-25 2015-02-05 ギガフォトン株式会社 レーザシステム、極端紫外光生成及びレーザ装置の制御方法
JP6052802B2 (ja) 2013-08-19 2016-12-27 富士フイルム株式会社 レーザ装置、その制御方法、及び光音響計測装置
WO2016142995A1 (ja) 2015-03-06 2016-09-15 ギガフォトン株式会社 レーザ装置及び極端紫外光生成システム

Also Published As

Publication number Publication date
JPWO2018087895A1 (ja) 2019-09-26
US20190239330A1 (en) 2019-08-01
US11006511B2 (en) 2021-05-11
WO2018087895A1 (ja) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6594490B2 (ja) 極端紫外光生成システム
JP6195474B2 (ja) 極端紫外光生成装置及び極端紫外光生成システムにおけるレーザシステムの制御方法
JP6121414B2 (ja) 極端紫外光生成システム
WO2015012099A1 (ja) レーザシステム、極端紫外光生成システム及びレーザ装置の制御方法
US8811436B2 (en) Laser apparatus, extreme ultraviolet light generation system including the laser apparatus, and method for controlling the laser apparatus
JP2010103499A (ja) 極端紫外光源装置および極端紫外光生成方法
US20130032735A1 (en) Laser apparatus and extreme ultraviolet light generation system including the laser apparatus
JP6521870B2 (ja) レーザ装置
JP2006128157A (ja) 極端紫外光源装置用ドライバレーザシステム
US9439276B2 (en) Extreme ultraviolet light generating system
JP6808749B2 (ja) レーザ装置および極端紫外光生成装置
JP6855570B2 (ja) ターゲット供給装置、極端紫外光生成装置、及びターゲット供給方法
JP7261683B2 (ja) 極端紫外光生成システム及び電子デバイスの製造方法
JP7434096B2 (ja) 極端紫外光生成システム、及び電子デバイスの製造方法
US10481422B2 (en) Laser device and extreme ultraviolet light generation device
TWI825198B (zh) 極紫外線(euv)光源及用於euv光源之設備、用於形成光學脈衝之設備及調整光學脈衝之性質的方法
JPWO2019069454A1 (ja) 極端紫外光生成装置及びターゲット供給装置
NL2020778A (en) Laser produced plasma source
JP6697108B2 (ja) レーザ装置及び極端紫外光生成システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250