JP6807259B2 - Insulation oil deterioration diagnosis system and method of transformer - Google Patents

Insulation oil deterioration diagnosis system and method of transformer Download PDF

Info

Publication number
JP6807259B2
JP6807259B2 JP2017062509A JP2017062509A JP6807259B2 JP 6807259 B2 JP6807259 B2 JP 6807259B2 JP 2017062509 A JP2017062509 A JP 2017062509A JP 2017062509 A JP2017062509 A JP 2017062509A JP 6807259 B2 JP6807259 B2 JP 6807259B2
Authority
JP
Japan
Prior art keywords
insulating oil
transformer
breakdown voltage
deterioration
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017062509A
Other languages
Japanese (ja)
Other versions
JP2018165648A (en
Inventor
明 山岸
明 山岸
莉 呂
莉 呂
和田 純一
純一 和田
玄洋 植田
玄洋 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017062509A priority Critical patent/JP6807259B2/en
Publication of JP2018165648A publication Critical patent/JP2018165648A/en
Application granted granted Critical
Publication of JP6807259B2 publication Critical patent/JP6807259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変圧器における絶縁油の劣化診断を可能とする変圧器の絶縁油劣化診断システム及び方法に関する。 The present invention relates to an insulating oil deterioration diagnosis system and a method for a transformer, which enables deterioration diagnosis of insulating oil in the transformer.

従来から変圧器では、その内部の絶縁油を採取し、その絶縁油をガス分析することで、劣化を確認している。ただし、採取した絶縁油は再利用出来ないため破壊検査となっている。よって絶縁油の分析の度に変圧器内の絶縁油が減少し、絶縁油が規定値より減少した場合には、絶縁油を継ぎ足す必要があり、保守作業の増加となる。 Conventionally, in a transformer, deterioration is confirmed by collecting the insulating oil inside the transformer and performing gas analysis on the insulating oil. However, the collected insulating oil cannot be reused, so it is subject to destructive inspection. Therefore, every time the insulating oil is analyzed, the insulating oil in the transformer decreases, and if the insulating oil decreases from the specified value, it is necessary to add the insulating oil, which increases the maintenance work.

また変圧器の内部の絶縁油の健全性トレンド管理にも影響を与えることが考えられる。高経年化した変圧器の場合には絶縁油の健全性を診断する上でもこの点は課題となる。 It may also affect the health trend management of insulating oil inside the transformer. In the case of an aged transformer, this point is also an issue in diagnosing the soundness of insulating oil.

この問題を解決するための従来技術として、特許文献1に記載されたものがある。特許文献1には、絶縁油の吸収波長を含む紫外光を外部より被測定物に照射した際に、絶縁油から放出される蛍光を検出することが記載され、非破壊検査にて、電気機器の漏油、腐食を判定することが出来ると記載されている。 As a conventional technique for solving this problem, there is one described in Patent Document 1. Patent Document 1 describes that when an object to be measured is irradiated with ultraviolet light including an absorption wavelength of insulating oil from the outside, fluorescence emitted from the insulating oil is detected, and an electric device is subjected to a non-destructive inspection. It is stated that it is possible to determine oil leakage and corrosion.

特開2008‐116389号公報Japanese Unexamined Patent Publication No. 2008-116389

しかしながら、特許文献1に記載の技術では、絶縁油の識別は可能であるが、絶縁油の劣化診断(絶縁油の経年劣化や異常の度合い)については判定ができないという問題があった。 However, although the insulating oil can be identified by the technique described in Patent Document 1, there is a problem that the deterioration diagnosis of the insulating oil (the degree of aging deterioration and abnormality of the insulating oil) cannot be determined.

本発明は、上述の点に鑑みてなされたもので、その目的とするところは、装置を複雑化することなく、高い精度で変圧器の絶縁油の経年劣化や異常の度合いを非破壊検査にて行うことが可能な変圧器の絶縁油劣化診断システム及び方法を提供することである。 The present invention has been made in view of the above points, and an object of the present invention is to perform non-destructive inspection of the degree of aging deterioration and abnormality of the insulating oil of a transformer with high accuracy without complicating the apparatus. It is to provide an insulating oil deterioration diagnosis system and a method of a transformer which can be performed.

本発明の変圧器の絶縁油劣化診断システムは、上記課題を解決するために、「変圧器の絶縁油を被測定物としてブラックライトを照射する光源と、ブラックライトが照射された前記被測定物から放出される蛍光を撮影する撮像機とを含む測定装置と、該測定装置からの情報を用いて前記絶縁油の劣化診断を行う分析装置から構成され、分析装置は、測定装置の光源と撮像機の動作を制御する駆動制御部と、撮像機で撮影された被測定物の画像を記録する記録部と、記録部で記録した被測定物の画像を処理する画像処理部と、画像処理部で判定した結果を表示する表示部と、を備え、画像処理部は、被測定物の画像からその輝度を算出し、当該輝度から絶縁油の絶縁破壊電圧を算出し、算出した絶縁破壊電圧と絶縁油について予め設定された絶縁破壊電圧のしきい値とから劣化度合いを算出し、診断することを特徴とする変圧器の絶縁油劣化診断システム」としたものである。 In order to solve the above-mentioned problems, the transformer insulating oil deterioration diagnosis system of the present invention "is a light source that irradiates black light with the insulating oil of the transformer as the object to be measured, and the object to be measured that is irradiated with black light. It is composed of a measuring device including an imager that captures the fluorescence emitted from the measuring device and an analyzer that diagnoses deterioration of the insulating oil using the information from the measuring device. The analyzer is a light source of the measuring device and an image pickup. A drive control unit that controls the operation of the machine, a recording unit that records an image of the object to be measured taken by the imager, an image processing unit that processes the image of the object to be measured recorded by the recording unit, and an image processing unit. The image processing unit includes a display unit that displays the result of the determination in the above, calculates the brightness from the image of the object to be measured, calculates the insulation breakdown voltage of the insulating oil from the brightness, and uses the calculated breakdown voltage. This is a transformer insulating oil deterioration diagnosis system characterized in that the degree of deterioration is calculated from a preset threshold value of the insulation breakdown voltage for the insulating oil and diagnosed.

本発明によれば、装置を複雑化することなく、高い精度で変圧器内の絶縁油の経年劣化や異常の度合いを非破壊検査にて行うことが可能となる。 According to the present invention, it is possible to perform non-destructive inspection on the degree of aging deterioration and abnormality of the insulating oil in the transformer with high accuracy without complicating the apparatus.

実施例1に係る変圧器の絶縁油劣化診断システムを示す概略構成図。The schematic block diagram which shows the insulating oil deterioration diagnosis system of the transformer which concerns on Example 1. FIG. 変圧器8に予め備えられている採油バルブ200を光透過窓9として利用する事例を示す図。The figure which shows the example which uses the oil-collecting valve 200 provided in advance in the transformer 8 as a light transmission window 9. 画像処理部5における処理を示すフローチャート例を示す図。The figure which shows the example of the flowchart which shows the processing in an image processing unit 5. 予め実験などにより作成された鉱油の場合の対応表TB1の一例を示す図。The figure which shows an example of correspondence table TB1 in the case of the mineral oil prepared in advance by an experiment. 鉱油の場合の絶縁破壊電圧と蛍光強度の関係を示す図。The figure which shows the relationship between the dielectric breakdown voltage and the fluorescence intensity in the case of mineral oil. 予め実験などにより作成された植物油の場合の対応表TB1の一例を示す図。The figure which shows an example of correspondence table TB1 in the case of vegetable oil prepared in advance by an experiment. 植物油の場合の絶縁破壊電圧と蛍光強度の関係を示す図。The figure which shows the relationship between the dielectric breakdown voltage and the fluorescence intensity in the case of vegetable oil. 変圧器8に予め備えられている採油バルブ200を光透過窓9として利用する他の実施例を示す図。The figure which shows the other embodiment which uses the oil sampling valve 200 provided in advance in the transformer 8 as a light transmission window 9.

以下、実施例に基づいて本発明に係る変圧器の絶縁油劣化診断システム及び方法について説明する。ただし、本発明は以下の実施例に限定されるものではなく、発明の要旨を変更しない範囲で当業者による様々な改良および変更を加えることができる。なお、各実施例において、同一構成部品には同符号を使用する。 Hereinafter, the insulating oil deterioration diagnosis system and method for the transformer according to the present invention will be described based on Examples. However, the present invention is not limited to the following examples, and various improvements and changes by those skilled in the art can be made without changing the gist of the invention. In each embodiment, the same reference numerals are used for the same components.

図1は、実施例1に係る変圧器の絶縁油劣化診断システムを示す概略構成図である。図1に示す実施例1の変圧器の絶縁油劣化診断システム100は、測定装置20と分析装置21とを含み構成されている。 FIG. 1 is a schematic configuration diagram showing an insulating oil deterioration diagnosis system for a transformer according to the first embodiment. The insulating oil deterioration diagnosis system 100 of the transformer of the first embodiment shown in FIG. 1 includes a measuring device 20 and an analyzer 21.

このうち測定装置20は、被測定物7にブラックライトを照射する光源1と、光源1からブラックライトが照射された被測定物7から放出される蛍光を撮影する撮像機2で構成されている。ここで被測定物7は、変圧器8の内部に収納された絶縁油であり、変圧器8の表面部分に形成されたガラスやアクリルなどの光透過窓9を含む領域10(照射光照射領域)にブラックライトを照射し、被測定物7である絶縁油から放出される蛍光を撮影している。 Of these, the measuring device 20 includes a light source 1 that irradiates the object 7 with black light, and an imager 2 that captures the fluorescence emitted from the object 7 irradiated with black light from the light source 1. .. Here, the object to be measured 7 is an insulating oil stored inside the transformer 8, and is a region 10 (irradiation light irradiation region) including a light transmitting window 9 such as glass or acrylic formed on the surface portion of the transformer 8. ) Is irradiated with black light, and the fluorescence emitted from the insulating oil which is the object 7 to be measured is photographed.

図2は、変圧器8に予め備えられている採油バルブ200を光透過窓9として利用する事例を示している。図2の場合、採油バルブ200の一方端(図示左側)は変圧器8の内部の被測定物7(すなわち絶縁油)と連通しており、採油バルブ200の他方端(図示右側)はガラス閉止板201により塞がれている。202は閉止板兼のぞき窓である。光源1からのブラックライトはガラス閉止板201を経由して採油バルブ200内の絶縁油に照射され、ガラス閉止板201に取り付けられた撮像機2により、画像を撮影する。 FIG. 2 shows an example in which the oil sampling valve 200 provided in advance in the transformer 8 is used as the light transmission window 9. In the case of FIG. 2, one end of the oil sampling valve 200 (left side in the drawing) communicates with the object 7 (that is, insulating oil) inside the transformer 8, and the other end (right side in the drawing) of the oil sampling valve 200 is closed with glass. It is closed by a plate 201. Reference numeral 202 denotes a closing plate and a peephole. The black light from the light source 1 is irradiated to the insulating oil in the oil sampling bulb 200 via the glass closing plate 201, and an image is taken by the imager 2 attached to the glass closing plate 201.

また、分析装置21は、測定装置20の光源1と撮像機2の動作を制御する駆動制御部3と、撮像機2で撮影された被測定物7の画像を記録する記録部4と、記録部4で記録した被測定物7の画像を呼び出して画像を処理する画像処理部5と、この画像処理部5で判定した結果を表示する表示部6を含んで構成されている。 Further, the analyzer 21 includes a drive control unit 3 that controls the operation of the light source 1 and the imager 2 of the measuring device 20, a recording unit 4 that records an image of the object 7 to be measured taken by the imager 2, and a recording unit 4. The image processing unit 5 that calls the image of the object to be measured 7 recorded by the unit 4 and processes the image, and the display unit 6 that displays the result of the determination by the image processing unit 5 are included.

本実施例に係る変圧器の絶縁油劣化診断システム100では、基本的には上記画像処理部5の部分において、絶縁油特有の絶縁破壊電圧と蛍光強度の対応表もしくは算定式により劣化度合いを算出し、判定(診断)するものである。 In the insulating oil deterioration diagnosis system 100 of the transformer according to this embodiment, the degree of deterioration is basically calculated in the image processing unit 5 by the correspondence table or calculation formula of the dielectric breakdown voltage and the fluorescence intensity peculiar to the insulating oil. And judge (diagnose).

図3は、画像処理部5における処理を示すフローチャートである、画像処理部5の最初の処理である処理ステップS1では、撮像機3で撮影された被測定物7の画像を記録する記録部4からの画像を用いて、被測定物7である絶縁油から放出される蛍光の輝度(強度)を求める。なお蛍光の輝度は、例えば画像の明るさを数値化し画像全体の平均値を求めることで得ることができる。 FIG. 3 is a flowchart showing the processing in the image processing unit 5. In the processing step S1, which is the first processing of the image processing unit 5, the recording unit 4 records the image of the object 7 to be measured taken by the imager 3. The brightness (intensity) of the fluorescence emitted from the insulating oil, which is the object to be measured 7, is obtained by using the image from. The brightness of fluorescence can be obtained, for example, by quantifying the brightness of an image and obtaining the average value of the entire image.

次に、求められた蛍光の輝度(強度)を用いて、処理ステップS2または処理ステップS3のいずれか一方の処理、または双方の処理が実施される。処理ステップS2の処理では、絶縁油特有の絶縁破壊電圧と蛍光強度の対応表TB1が参照され、当該油種に特有の対応表について、測定した絶縁油の蛍光強度の時の絶縁破壊電圧を求める。 Next, using the obtained brightness (intensity) of fluorescence, one of the treatments of the treatment step S2 and the treatment step S3, or both treatments are performed. In the processing of the processing step S2, the correspondence table TB1 of the insulation breakdown voltage and the fluorescence intensity peculiar to the insulating oil is referred to, and the insulation breakdown voltage at the time of the fluorescence intensity of the measured insulating oil is obtained from the correspondence table peculiar to the oil type. ..

図4は、予め実験などにより作成された鉱油の場合の対応表TB1の一例であり、ここでは絶縁油の油種として鉱油が採用された場合の絶縁破壊電圧と蛍光強度の対応表TB1が例示されている。対応表は、例えば記録部4内に油種ごとに記憶されている。図4の場合には、鉱油の輝度が151.3であれば絶縁破壊電圧は13.5kV、鉱油の輝度が153であれば絶縁破壊電圧は19.7kV、鉱油の輝度が152.3であれば絶縁破壊電圧は29.9kV、鉱油の輝度が160.3であれば絶縁破壊電圧は49.3kVといった具合である。なお、後述する図6には絶縁油の油種として植物油が採用された場合の絶縁破壊電圧と蛍光強度の対応表が例示されている。図6の数値についての説明は割愛する。 FIG. 4 is an example of the correspondence table TB1 in the case of mineral oil prepared in advance by experiments or the like, and here, the correspondence table TB1 of the insulation breakdown voltage and the fluorescence intensity when the mineral oil is adopted as the oil type of the insulating oil is illustrated. Has been done. The correspondence table is stored in the recording unit 4, for example, for each oil type. In the case of FIG. 4, if the brightness of the mineral oil is 151.3, the breakdown voltage is 13.5 kV, if the brightness of the mineral oil is 153, the breakdown voltage is 19.7 kV, and the brightness of the mineral oil is 152.3. For example, if the insulation breakdown voltage is 29.9 kV and the brightness of the mineral oil is 160.3, the breakdown voltage is 49.3 kV. In addition, FIG. 6 described later exemplifies a correspondence table of dielectric breakdown voltage and fluorescence intensity when vegetable oil is adopted as the oil type of insulating oil. The explanation of the numerical values in FIG. 6 is omitted.

処理ステップS3の処理では、以下の(1)式に測定した蛍光強度Mを代入して、測定した絶縁油の蛍光強度の時の絶縁破壊電圧Yを導く。なお(1)式の係数A,Bは予め定めておく。
[数1]
絶縁油の絶縁破壊電圧Y=A×ln(輝度M)−B (1)
(1)式の絶縁油の絶縁破壊電圧Yをマスターカーブと称することにする。本実施例においては、変圧器内の絶縁油の健全性診断のマスターカーブ作成のために、変圧器タンク内に注油される絶縁油を人工的に加速劣化させた。人工的な加速劣化後の経年絶縁油の特性としては、新油、経年30年後、経年50年後相当の絶縁油の絶縁破壊電圧、全酸価、色相、水分量、蛍光強度(蛍光/入射光)の関係を整理した。この実験、計測結果によると、絶縁油の絶縁破壊電圧Y―蛍光強度M(蛍光/入射光)の特性の間には、(1)式の絶縁油の絶縁破壊電圧Y=A×ln(輝度X)−Bなる相関式が成り立ち、健全性診断のためのマスターカーブが作成できることが判明した。因みに鉱油の場合、係数Aは549.42であり、係数Bは2740であった。また図6で後述する植物油の場合、係数Aは588.43であり、係数Bは2910.5であった。
In the process of the process step S3, the fluorescence intensity M measured by the following equation (1) is substituted to derive the dielectric breakdown voltage Y at the measured fluorescence intensity of the insulating oil. The coefficients A and B in Eq. (1) are predetermined.
[Number 1]
Dielectric breakdown voltage of insulating oil Y = A × ln (luminance M) −B (1)
The dielectric breakdown voltage Y of the insulating oil of the formula (1) is referred to as a master curve. In this embodiment, in order to create a master curve for the soundness diagnosis of the insulating oil in the transformer, the insulating oil lubricated in the transformer tank is artificially accelerated and deteriorated. The characteristics of the aged insulating oil after artificial acceleration deterioration include the breakdown voltage, total acid value, hue, water content, and fluorescence intensity (fluorescence /) of the insulating oil equivalent to new oil, 30 years after aged, and 50 years after aged. The relationship between incident light) was organized. According to the results of this experiment and measurement, between the characteristics of the dielectric breakdown voltage Y of the insulating oil and the fluorescence intensity M (fluorescence / incident light), the dielectric breakdown voltage of the insulating oil of equation (1) Y = A × ln (brightness). It was found that the correlation equation X) -B was established and a master curve for soundness diagnosis could be created. Incidentally, in the case of mineral oil, the coefficient A was 549.42 and the coefficient B was 2740. Further, in the case of the vegetable oil described later in FIG. 6, the coefficient A was 588.43 and the coefficient B was 2910.5.

図3の処理ステップS2または処理ステップS3により、当該油種における絶縁油の絶縁破壊電圧を求めることができた。これに対し、絶縁油の劣化診断上の健全性についてのしきい値については、電気学会、石油学会、石油学会 電気絶縁油保守管理指針にて記載のしきい値にて設定されている。 By the processing step S2 or the processing step S3 of FIG. 3, the dielectric breakdown voltage of the insulating oil in the oil type could be obtained. On the other hand, the threshold value for the soundness of the deterioration diagnosis of insulating oil is set by the threshold value described in the Institute of Electrical Engineers of Japan, the Petroleum Society, and the Electrical Insulation Oil Maintenance and Management Guideline of the Petroleum Society.

絶縁油の絶縁破壊電圧のしきい値は、系統システム上の電圧(例えば変圧器の定格電圧)が11〜77kVの場合には絶縁破壊電圧VL1(kV/2.5mm) ≧30、系統システム上の電圧が110〜275kVの場合には絶縁破壊電圧VL2(kV/2.5mm) ≧40、系統システム上の電圧が500kVの場合には絶縁破壊電圧VL3(kV/2.5mm) ≧50である。 The threshold value of the insulation breakdown voltage of the insulating oil is the insulation breakdown voltage VL1 (kV / 2.5mm) ≥30 when the voltage on the system (for example, the rated voltage of the transformer) is 11 to 77 kV, on the system. When the voltage is 110 to 275 kV, the breakdown voltage is VL2 (kV / 2.5 mm) ≧ 40, and when the voltage on the system is 500 kV, the breakdown voltage is VL3 (kV / 2.5 mm) ≧ 50. ..

図5は、絶縁破壊電圧と蛍光強度の関係を示す図である。この図では高さ方向に、絶縁油の絶縁破壊電圧とそのしきい値VL1,VL2,VL3が、記述されている。また、このグラフには、図5の対応表TB1により特定される各点、及び(1)式(絶縁油の絶縁破壊電圧Y)が記載されている。この表示によれば、対応表TB1あるいは(1)式から求めた現時点における測定対象絶縁油の絶縁破壊電圧が、絶縁破壊電圧のしきい値にどれほど近接しているのかが、測定値としきい値の比較から明らかである。 FIG. 5 is a diagram showing the relationship between the dielectric breakdown voltage and the fluorescence intensity. In this figure, the dielectric breakdown voltage of the insulating oil and its threshold values VL1, VL2, and VL3 are described in the height direction. Further, in this graph, each point specified by the correspondence table TB1 of FIG. 5 and equation (1) (dielectric breakdown voltage Y of insulating oil) are described. According to this display, the measured value and the threshold value show how close the dielectric breakdown voltage of the insulating oil to be measured at the present time obtained from the correspondence table TB1 or Eq. (1) is to the threshold value of the dielectric breakdown voltage. It is clear from the comparison of.

図3の処理ステップS4では、例えば、対応表TB1あるいは(1)式から求めた現時点における測定対象絶縁油の絶縁破壊電圧がV0であり、絶縁油の絶縁破壊電圧のしきい値がVL2であるとき、ΔV=VL2―V0が近接の度合いを示している指標であるとして求め、変圧器設置当初に測定したΔVの値が、その後如何ほど変化しているかを監視することで絶縁油の経年劣化や異常の度合いを監視する。 In the processing step S4 of FIG. 3, for example, the dielectric breakdown voltage of the insulating oil to be measured at the present time obtained from the correspondence table TB1 or the equation (1) is V0, and the threshold value of the dielectric breakdown voltage of the insulating oil is VL2. When ΔV = VL2-V0 is determined as an index indicating the degree of proximity, and by monitoring how much the value of ΔV measured at the beginning of transformer installation changes thereafter, the aged deterioration of the insulating oil And monitor the degree of abnormality.

以上説明したように、本実施例に係る変圧器の絶縁油劣化診断システムにおいては、絶縁破壊電圧と蛍光強度に相関性をもち、変圧器用絶縁油の劣化診断の判定のしきい値(ΔVについてのしきい値)としては、絶縁破壊電圧値と蛍光強度値から対応表もしくは算定式により算出し、しきい値を算出するのがよい。 As described above, in the transformer insulating oil deterioration diagnosis system according to the present embodiment, there is a correlation between the breakdown voltage and the fluorescence intensity, and the threshold value (ΔV) for determining the deterioration diagnosis of the transformer insulating oil has a correlation. As the threshold value), it is preferable to calculate the threshold value by calculating from the breakdown voltage value and the fluorescence intensity value using a correspondence table or a calculation formula.

なお、油入変圧器で最も使用される鉱油については、上記の実験から求めた相関式から導かれ、図5に示すように鉱油の絶縁破壊電圧Y=549.42×ln(輝度M)―2740の近似式となる。 The mineral oil most used in oil-immersed transformers is derived from the correlation equation obtained from the above experiment, and as shown in FIG. 5, the breakdown voltage of the mineral oil Y = 549.42 × ln (luminance M)- It becomes an approximate expression of 2740.

尚、上記相関式は、変圧器納入時に現地での外乱要因を加味して、かつ当該変圧器に使用された絶縁油にて最初の輝度を測定し、補正項A,Bを適宜に微調整して使用することで、健全性診断の精度が向上すると期待される。 In the above correlation formula, the disturbance factors in the field are taken into consideration when the transformer is delivered, and the initial brightness is measured with the insulating oil used for the transformer, and the correction items A and B are finely adjusted as appropriate. It is expected that the accuracy of soundness diagnosis will be improved by using it.

以上、これらのことから、経年した変圧器の絶縁油の健全性診断を非破壊(非接触)法にて実施することができる。 From these facts, the soundness diagnosis of the insulating oil of the aged transformer can be carried out by the non-destructive (non-contact) method.

実施例1では、変圧器に使用された絶縁油が鉱油である場合について述べたが、実施例2では、近年環境対応で広まりつつある植物油入変圧器で最も使用される植物油について説明する。 In the first embodiment, the case where the insulating oil used in the transformer is mineral oil has been described, but in the second embodiment, the vegetable oil most used in the vegetable oil-filled transformer, which has become widespread in response to the environment in recent years, will be described.

図6は、予め実験などにより作成された植物油のときの対応表TB2の一例を示す図であり、図7は植物油のときの絶縁破壊電圧Y=588.43×ln(輝度M)―2910.5の近似式を示している。ここでは、具体的な数値での説明を割愛するが、植物油の場合にも実施例1と同様の傾向を示しており、係る数値関係や式を予め準備しておくことで、図3の処理と同様にして絶縁油の経年劣化や異常の度合いを監視する。 FIG. 6 is a diagram showing an example of the correspondence table TB2 in the case of vegetable oil prepared in advance by an experiment or the like, and FIG. 7 is a diagram showing the dielectric breakdown voltage Y = 588.43 × ln (luminance M) −2910 in the case of vegetable oil. The approximate expression of 5 is shown. Although the explanation with specific numerical values is omitted here, the same tendency as in Example 1 is shown in the case of vegetable oil, and the processing of FIG. 3 can be performed by preparing the relevant numerical relations and formulas in advance. In the same way, monitor the degree of deterioration and abnormality of the insulating oil over time.

尚、上記相関式は、変圧器納入時に現地での外乱要因を加味して、かつ当該変圧器に使用された絶縁油にて最初の輝度を測定し、補正項A,Bを適宜に微調整して使用することで、健全性診断の精度が向上すると期待される。 In the above correlation formula, the disturbance factors in the field are taken into consideration when the transformer is delivered, and the initial brightness is measured with the insulating oil used for the transformer, and the correction items A and B are finely adjusted as appropriate. It is expected that the accuracy of soundness diagnosis will be improved by using it.

以上、これらのことから、経年変圧器の絶縁油の健全性診断を非破壊(非接触)法にて実施することができる。 From these facts, the soundness diagnosis of the insulating oil of the aged transformer can be carried out by the non-destructive (non-contact) method.

実施例3では、図2の方式とは異なる、油入機器8に予め備えられている採油バルブ200を光透過窓9として利用する事例を示す図である。撮像機2が採油バルブ200の絶縁油7に浸漬する位置に設けられている点で図2とは相違している。 In the third embodiment, it is a diagram showing an example in which the oil sampling valve 200 provided in advance in the oil filling device 8 is used as the light transmission window 9, which is different from the method of FIG. It differs from FIG. 2 in that the imager 2 is provided at a position where it is immersed in the insulating oil 7 of the oil sampling valve 200.

実施例1の場合には、測定の都度測定装置20(光源1と撮像機2)を据え付けし直す必要があるが、実施例3の場合には撮像機2との配線のみ行えばよく、かつ撮像機2の位置が固定されるので、時間経過後の測定であっても同一条件を保ちやすいという効果がある。 In the case of the first embodiment, it is necessary to re-install the measuring device 20 (light source 1 and the imager 2) each time the measurement is performed, but in the case of the third embodiment, only the wiring to the imager 2 needs to be performed. Since the position of the imager 2 is fixed, there is an effect that the same conditions can be easily maintained even in the measurement after the lapse of time.

以上説明したように、実施例3の構成によれば、装置を複雑化することなく、高い精度で変圧器の絶縁油劣化診断システムを提供することができる。 As described above, according to the configuration of the third embodiment, it is possible to provide the insulating oil deterioration diagnosis system of the transformer with high accuracy without complicating the apparatus.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 The present invention is not limited to the above-mentioned examples, and includes various modifications. The above-described embodiment describes the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

1…光源、2…撮像機、3…駆動制御部、4…記録部、5…画像処理部、6…表示部、7…被測定物、8…変圧器、9…光透過窓、20…測定装置、21…分析装置、100…変圧器の絶縁油劣化診断システム、200…採油バルブ、201…ガラス閉止板、202…閉止板兼のぞき窓 1 ... light source, 2 ... imager, 3 ... drive control unit, 4 ... recording unit, 5 ... image processing unit, 6 ... display unit, 7 ... object to be measured, 8 ... transformer, 9 ... light transmission window, 20 ... Measuring device, 21 ... Analytical device, 100 ... Transformer insulating oil deterioration diagnosis system, 200 ... Oil sampling valve, 201 ... Glass closing plate, 202 ... Closing plate and peephole

Claims (11)

変圧器の絶縁油を被測定物としてブラックライトを照射する光源と、ブラックライトが照射された前記被測定物から放出される蛍光を撮影する撮像機とを含む測定装置と、該測定装置からの情報を用いて前記絶縁油の劣化診断を行う分析装置から構成され、
前記分析装置は、前記測定装置の光源と撮像機の動作を制御する駆動制御部と、撮像機で撮影された被測定物の画像を記録する記録部と、記録部で記録した被測定物の画像を処理する画像処理部と、該画像処理部で判定した結果を表示する表示部とを備え、
前記画像処理部は、前記被測定物の画像からその輝度を算出し、当該輝度から前記絶縁油の絶縁破壊電圧を算出し、算出した絶縁破壊電圧と絶縁油について予め設定された絶縁破壊電圧のしきい値とから劣化度合いを算出し、診断することを特徴とする変圧器の絶縁油劣化診断システム。
A measuring device including a light source that irradiates a black light using the insulating oil of a transformer as an object to be measured, and an imager that captures fluorescence emitted from the object to be measured that is irradiated with the black light, and a measuring device from the measuring device. It is composed of an analyzer that diagnoses the deterioration of the insulating oil using information.
The analyzer includes a drive control unit that controls the operation of the light source of the measuring device and the imager, a recording unit that records an image of the object to be measured taken by the imager, and an object to be measured recorded by the recording unit. It includes an image processing unit that processes an image and a display unit that displays the result of determination by the image processing unit.
The image processing unit calculates the brightness from the image of the object to be measured, calculates the insulation breakdown voltage of the insulating oil from the brightness, and calculates the insulation breakdown voltage and the insulation breakdown voltage preset for the insulating oil. An insulating oil deterioration diagnosis system for transformers, which is characterized by calculating the degree of deterioration from a threshold value and diagnosing it.
請求項1に記載の変圧器の絶縁油劣化診断システムであって、
絶縁油について予め設定された絶縁破壊電圧の前記しきい値は、前記絶縁油の油種に応じて定められていることを特徴とする変圧器の絶縁油劣化診断システム。
The transformer insulating oil deterioration diagnosis system according to claim 1.
An insulating oil deterioration diagnosis system for a transformer, wherein the threshold value of the insulating breakdown voltage set in advance for the insulating oil is determined according to the oil type of the insulating oil.
請求項1または請求項2に記載の変圧器の絶縁油劣化診断システムであって、
前記算出した絶縁破壊電圧と、前記絶縁油について予め設定された絶縁破壊電圧のしきい値との差を求め、求めた差の大きさから劣化度合いを算出することを特徴とする変圧器の絶縁油劣化診断システム。
The transformer insulating oil deterioration diagnosis system according to claim 1 or 2.
Insulation of a transformer, characterized in that the difference between the calculated dielectric breakdown voltage and the threshold value of the dielectric breakdown voltage set in advance for the insulating oil is obtained, and the degree of deterioration is calculated from the magnitude of the obtained difference. Oil deterioration diagnosis system.
請求項1から請求項3のいずれか1項に記載の変圧器の絶縁油劣化診断システムであって、
輝度から前記絶縁油の絶縁破壊電圧を算出するために、前記輝度と前記絶縁油の絶縁破壊電圧の関係を示す対応表を作成しておき、前記記録部に記録しておくことを特徴とする変圧器の絶縁油劣化診断システム。
The transformer insulating oil deterioration diagnosis system according to any one of claims 1 to 3.
In order to calculate the dielectric breakdown voltage of the insulating oil from the brightness, a correspondence table showing the relationship between the brightness and the dielectric breakdown voltage of the insulating oil is prepared and recorded in the recording unit. Transformer oil breakdown diagnostic system.
請求項1から請求項3のいずれか1項に記載の変圧器の絶縁油劣化診断システムであって、
輝度から前記絶縁油の絶縁破壊電圧を算出するために、前記輝度と前記絶縁油の絶縁破壊電圧の関係を数式化しておき、算出した前記輝度を数式に代入して前記絶縁油の絶縁破壊電圧を求めることを特徴とする変圧器の絶縁油劣化診断システム。
The transformer insulating oil deterioration diagnosis system according to any one of claims 1 to 3.
In order to calculate the insulation breakdown voltage of the insulating oil from the brightness, the relationship between the brightness and the insulation breakdown voltage of the insulating oil is formulated, and the calculated brightness is substituted into the formula to calculate the insulation breakdown voltage of the insulating oil. A transformer insulating oil deterioration diagnosis system characterized by finding.
請求項1から請求項5のいずれか1項に記載の変圧器の絶縁油劣化診断システムであって、
前記撮像機について、前記絶縁油の発光の受光部分を変圧器内部に備えたことを特徴とする変圧器の絶縁油劣化診断システム。
The transformer insulating oil deterioration diagnosis system according to any one of claims 1 to 5.
An insulating oil deterioration diagnosis system for a transformer, wherein the imager is provided with a light receiving portion for light emission of the insulating oil inside the transformer.
変圧器の絶縁油を被測定物としてブラックライトを照射し、ブラックライトが照射された前記被測定物から放出される蛍光の輝度を求め、当該輝度から前記絶縁油の絶縁破壊電圧を算出し、算出した絶縁破壊電圧と絶縁油について予め設定された絶縁破壊電圧のしきい値とから劣化度合いを算出し、判定(診断)することを特徴とする変圧器の絶縁油劣化診断方法。 Black light is irradiated using the insulating oil of the transformer as the object to be measured, the brightness of the fluorescence emitted from the object to be measured irradiated with the black light is obtained, and the insulation breakdown voltage of the insulating oil is calculated from the brightness. A method for diagnosing deterioration of insulating oil of a transformer, which comprises calculating the degree of deterioration from the calculated insulation breakdown voltage and a preset threshold value of the insulation breakdown voltage and determining (diagnosing) the degree of deterioration. 請求項7に記載の変圧器の絶縁油劣化診断方法であって、
絶縁油について予め設定された絶縁破壊電圧の前記しきい値は、前記絶縁油の油種に応じて定められていることを特徴とする変圧器の絶縁油劣化診断方法。
The method for diagnosing deterioration of insulating oil of a transformer according to claim 7.
A method for diagnosing deterioration of insulating oil in a transformer, wherein the threshold value of the insulating breakdown voltage set in advance for the insulating oil is determined according to the oil type of the insulating oil.
請求項7または請求項8に記載の変圧器の絶縁油劣化診断方法であって、
前記算出した絶縁破壊電圧と、前記絶縁油について予め設定された絶縁破壊電圧のしきい値との差を求め、求めた差の大きさから劣化度合いを算出することを特徴とする変圧器の絶縁油劣化診断方法。
The method for diagnosing deterioration of insulating oil of a transformer according to claim 7 or 8.
Insulation of a transformer, characterized in that the difference between the calculated dielectric breakdown voltage and the threshold value of the dielectric breakdown voltage set in advance for the insulating oil is obtained, and the degree of deterioration is calculated from the magnitude of the obtained difference. Oil deterioration diagnosis method.
請求項7から請求項9のいずれか1項に記載の変圧器の絶縁油劣化診断方法であって、
輝度から前記絶縁油の絶縁破壊電圧を算出するために、前記輝度と前記絶縁油の絶縁破壊電圧の関係を示す対応表を作成しておくことを特徴とする変圧器の絶縁油劣化診断方法。
The method for diagnosing deterioration of insulating oil of a transformer according to any one of claims 7 to 9.
A method for diagnosing deterioration of insulating oil of a transformer, which comprises preparing a correspondence table showing the relationship between the brightness and the insulating breakdown voltage of the insulating oil in order to calculate the insulation breakdown voltage of the insulating oil from the luminance.
請求項7から請求項9のいずれか1項に記載の変圧器の絶縁油劣化診断方法であって、
輝度から前記絶縁油の絶縁破壊電圧を算出するために、前記輝度と前記絶縁油の絶縁破壊電圧の関係を数式化しておき、算出した前記輝度を数式に代入して前記絶縁油の絶縁破壊電圧を求めることを特徴とする変圧器の絶縁油劣化診断方法。
The method for diagnosing deterioration of insulating oil of a transformer according to any one of claims 7 to 9.
In order to calculate the insulation breakdown voltage of the insulating oil from the brightness, the relationship between the brightness and the insulation breakdown voltage of the insulating oil is formulated, and the calculated brightness is substituted into the formula to calculate the insulation breakdown voltage of the insulating oil. A method for diagnosing deterioration of insulating oil of a transformer, which is characterized by obtaining.
JP2017062509A 2017-03-28 2017-03-28 Insulation oil deterioration diagnosis system and method of transformer Active JP6807259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062509A JP6807259B2 (en) 2017-03-28 2017-03-28 Insulation oil deterioration diagnosis system and method of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062509A JP6807259B2 (en) 2017-03-28 2017-03-28 Insulation oil deterioration diagnosis system and method of transformer

Publications (2)

Publication Number Publication Date
JP2018165648A JP2018165648A (en) 2018-10-25
JP6807259B2 true JP6807259B2 (en) 2021-01-06

Family

ID=63922826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062509A Active JP6807259B2 (en) 2017-03-28 2017-03-28 Insulation oil deterioration diagnosis system and method of transformer

Country Status (1)

Country Link
JP (1) JP6807259B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110209234B (en) * 2019-06-14 2024-02-13 未来(北京)黑科技有限公司 voltage processing circuit
WO2022154304A1 (en) * 2021-01-15 2022-07-21 엘에스일렉트릭(주) Transformer lifetime evaluation apparatus and method
KR102601865B1 (en) * 2021-01-15 2023-11-13 엘에스일렉트릭(주) Method for predicting life of transformer
CN114089131B (en) * 2021-11-03 2024-03-01 广东电网有限责任公司广州供电局 Method for detecting aging of insulating oil of natural ester insulating oil transformer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731183B2 (en) * 1989-09-14 1995-04-10 新日本製鐵株式会社 Oil concentration measuring device for rolling oil
WO2002004914A2 (en) * 2000-07-12 2002-01-17 Northern Photonics Optical food oil quality sensor
KR100504310B1 (en) * 2003-10-28 2005-07-28 한국과학기술연구원 In-line Fluorescene Detector for Measuring Oil Oxidation
KR100789724B1 (en) * 2006-02-14 2008-01-02 한국과학기술연구원 Method and apparatus for monitoring oil oxidation in real time by measuring fluorescence
JP4997314B2 (en) * 2010-04-23 2012-08-08 株式会社日本自動車部品総合研究所 Fuel property sensor and fuel property detection device
JP6194010B2 (en) * 2013-10-25 2017-09-06 ナブテスコ株式会社 Lubricant deterioration sensor
JP6509597B2 (en) * 2014-10-29 2019-05-08 株式会社日立製作所 Oil leakage detection device, oil leakage detection method and image processing unit

Also Published As

Publication number Publication date
JP2018165648A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6807259B2 (en) Insulation oil deterioration diagnosis system and method of transformer
KR100541996B1 (en) A dignosis method of insulation of electric apparatus
DK2615444T3 (en) Method and apparatus for determining the degradation state of a lubricating oil
JP6735383B2 (en) Oil leakage detection device, oil leakage detection method, and image processing unit of oil leakage detection device
JP6411856B2 (en) Oil leak detection device and method
JP4703519B2 (en) Remaining life diagnosis device for power transformers
Hjartarson et al. Predicting future asset condition based on current health index and maintenance level
JP6556266B2 (en) Defect inspection apparatus, method and program
US20170336156A1 (en) Method and system for thermographic analysis
WO2014006662A1 (en) Method for diagnosing an electric device
WO2020176329A1 (en) Apparatus and method for inspection of a film on a substrate
KR100825017B1 (en) Method for testing condition of lubricating oil
JP5374445B2 (en) Remaining life diagnosis method, remaining life diagnosis device and program
JP6419406B1 (en) Diagnostic method for oil-filled electrical equipment
Du et al. Age detection of lubricating oil with on-line sensors
JP4323396B2 (en) Power transformer remaining life diagnosis apparatus and remaining life diagnosis method
JP2010164442A (en) Analysis method by energy dispersive x-ray spectrometer, and x-ray analyzer
JP2013185960A (en) Adjustment method of digital radiography inspection
KR101494382B1 (en) Diagnosis method and apparatus of transformer oil
KR20160136533A (en) Electrical equipment failure detection system and a control method
RU2730876C1 (en) Diagnostic method of technical condition of high-voltage equipment of open distribution devices
JP2006098349A (en) Remaining insulation life duration estimating system and estimating method of high pressure rotary machine
CN104838456B (en) The diagnostic method of oil-filled electric equipment and maintaining method
KR101438158B1 (en) Method and apparatus for predicting life time of transformer
JP2005181235A (en) Method for diagnosing degradation of oil-filled electrical apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200306

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6807259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150