JP6806956B1 - Thin film transistor substrate and display device - Google Patents

Thin film transistor substrate and display device Download PDF

Info

Publication number
JP6806956B1
JP6806956B1 JP2020536705A JP2020536705A JP6806956B1 JP 6806956 B1 JP6806956 B1 JP 6806956B1 JP 2020536705 A JP2020536705 A JP 2020536705A JP 2020536705 A JP2020536705 A JP 2020536705A JP 6806956 B1 JP6806956 B1 JP 6806956B1
Authority
JP
Japan
Prior art keywords
electrode
tft
gate
insulating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020536705A
Other languages
Japanese (ja)
Other versions
JPWO2021166067A1 (en
Inventor
井上 和式
和式 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6806956B1 publication Critical patent/JP6806956B1/en
Publication of JPWO2021166067A1 publication Critical patent/JPWO2021166067A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

薄膜トランジスタ基板に関し、基板上にボトムゲート型の第1の薄膜トランジスタと、トップゲート型の第2の薄膜トランジスタとを備え、それぞれの半導体層が同一の半導体層で構成され、かつそれぞれの電極を含めた各層の構造が共通化できるように構成されている。第1の薄膜トランジスタのゲート電極と第2の薄膜トランジスタのドレイン電極は、連続した一体パターンで構成され、保持容量を形成する容量電極として機能し、容量電極と第1の薄膜トランジスタの第1のドレイン電極との間で保持容量が形成される。Regarding the thin film transistor substrate, a bottom gate type first thin film transistor and a top gate type second thin film transistor are provided on the substrate, each semiconductor layer is composed of the same semiconductor layer, and each layer including each electrode. It is configured so that the structure of can be standardized. The gate electrode of the first thin film transistor and the drain electrode of the second thin film transistor are composed of a continuous integrated pattern and function as a capacitive electrode forming a holding capacitance, and the capacitive electrode and the first drain electrode of the first thin film transistor A holding capacity is formed between them.

Description

本開示は薄膜トランジスタ(Thin Film Transistor;TFT)を有する薄膜トランジスタ基板およびそれを備えた表示装置に関する。 The present disclosure relates to a thin film transistor substrate having a thin film transistor (TFT) and a display device including the thin film transistor.

近年、表示素子として有機EL(Electro Luminescence;EL)素子およびLED(Light Emitting Diode;LED)素子のような発光体を用いたディスプレイが、自発光型表示装置の表示パネルのひとつとして一般に用いられるようになってきた。 In recent years, a display using a light emitting body such as an organic EL (Electro Luminescence; EL) element and an LED (Light Emitting Diode; LED) element as a display element has been generally used as one of the display panels of a self-luminous display device. It has become.

TFTをスイッチング素子として用いたアクティブマトリックス基板(以下、TFT基板と呼称)が、このような電気光学表示装置に利用されるものとして知られている。TFT基板を用いた電気光学表示装置では、表示性能の向上に必要なTFT特性の高性能化および高信頼性化が要求されるだけでなく、製造工程を簡略化して製造を効率的に行うことによる低コスト化も要求されている。 An active matrix substrate (hereinafter, referred to as a TFT substrate) using a TFT as a switching element is known to be used in such an electro-optical display device. An electro-optical display device using a TFT substrate is required not only to have high performance and high reliability of TFT characteristics necessary for improving display performance, but also to simplify the manufacturing process and efficiently perform manufacturing. There is also a demand for cost reduction.

有機EL素子とは、アノード電極とカソード電極の間に有機EL素子を含む電界発光層を挟んだ構造を基本構成とするものであり、アノード電極とカソード電極の間に電圧を加えることで、アノード側から正孔(ホール)が、カソード側から電子が注入される電流制御によって有機EL素子が発光する。 The organic EL element has a basic structure in which an electric field light emitting layer containing an organic EL element is sandwiched between an anode electrode and a cathode electrode, and an anode is formed by applying a voltage between the anode electrode and the cathode electrode. The organic EL element emits light by controlling the current in which holes are injected from the side and electrons are injected from the cathode side.

有機EL素子を平面状にアレイ状に複数形成して構成される有機ELディスプレイの場合、有機EL素子を駆動するための基本的な画素駆動回路は、2つのTFTと1つの保持容量で構成されている。 In the case of an organic EL display formed by forming a plurality of organic EL elements in a planar array, the basic pixel drive circuit for driving the organic EL elements is composed of two TFTs and one holding capacitance. ing.

2つのTFTのうち、1つは表示画素を選択するためのスイッチング(選択)TFTであり、もう1つは有機EL素子を発光させるための電流を供給する画素駆動TFTである。保持容量は、例えば画素駆動TFTのゲート電極を一方の電極とし、画素駆動TFTのソース電極またはドレイン電極をもう一方の電極として、絶縁層を挟んで互いに対向させた態様で構成される。選択TFTのゲート電極に接続された走査線(ゲート線)が選択されると選択TFTがオンとなり、選択TFTに接続された信号線(ソース線)から信号電圧が保持容量に蓄積される。保持容量に蓄積された信号電圧によって画素駆動TFTがオンとなり、設定された電流が画素駆動TFTのドレイン電極から出力され、さらに画素駆動TFTのドレイン電極に接続されたアノード電極(画素電極)から有機EL素子に供給されて発光状態となる。この発光状態は次の書き込みが行われるまで保持される。このような画素駆動回路の具体的な基本構成は、例えば特許文献1に開示されている。 Of the two TFTs, one is a switching (selection) TFT for selecting display pixels, and the other is a pixel-driven TFT that supplies a current for causing the organic EL element to emit light. The holding capacitance is configured such that, for example, the gate electrode of the pixel-driven TFT is used as one electrode and the source electrode or drain electrode of the pixel-driven TFT is used as the other electrode so as to face each other with an insulating layer interposed therebetween. When the scanning line (gate line) connected to the gate electrode of the selected TFT is selected, the selected TFT is turned on, and the signal voltage from the signal line (source line) connected to the selected TFT is accumulated in the holding capacitance. The pixel-driven TFT is turned on by the signal voltage stored in the holding capacitance, the set current is output from the drain electrode of the pixel-driven TFT, and the anode electrode (pixel electrode) connected to the drain electrode of the pixel-driven TFT is organic. It is supplied to the EL element and becomes a light emitting state. This light emitting state is maintained until the next writing is performed. A specific basic configuration of such a pixel drive circuit is disclosed in, for example, Patent Document 1.

従来の電気光学表示装置用TFT基板のTFTの半導体チャネル層には、一般的にアモルファス(非晶質)シリコン(a−Si)が用いられてきた。その主な理由として、アモルファスであるために大面積の基板上でも特性の均一性がよい膜が形成できること、また、比較的低温で形成できるので耐熱性に劣る安価なガラス基板上でも製造でき、表示装置用ディスプレイの製造コストを抑えることができること、さらには耐熱性に劣る樹脂製基板上でも製造できるので、折り曲げが可能な表示装置用ディスプレイを製造できること、などが挙げられる。 Amorphous silicon (a-Si) has generally been used for the semiconductor channel layer of the TFT of the conventional TFT substrate for an electro-optical display device. The main reasons for this are that a film with good uniformity of characteristics can be formed even on a large-area substrate because it is amorphous, and that it can be manufactured on an inexpensive glass substrate that is inferior in heat resistance because it can be formed at a relatively low temperature. The manufacturing cost of the display device display can be suppressed, and since it can be manufactured on a resin substrate having inferior heat resistance, a foldable display device display can be manufactured.

一方、近年になって、例えば、特許文献2および3、非特許文献1に開示されるように、酸化物半導体をチャネル層に用いたTFT(酸化物半導体TFT)が開発され、実用化が進められている。酸化物半導体としては、酸化亜鉛(ZnO)系、酸化亜鉛(ZnO)に酸化ガリウム(Ga)および酸化インジウム(In)を添加したInGaZnO系などが挙げられる。On the other hand, in recent years, for example, as disclosed in Patent Documents 2 and 3 and Non-Patent Document 1, TFTs (oxide semiconductor TFTs) using oxide semiconductors in the channel layer have been developed and put into practical use. Has been done. Examples of the oxide semiconductor include zinc oxide (ZnO) type and InGaZnO type in which gallium oxide (Ga 2 O 3 ) and indium oxide (In 2 O 3 ) are added to zinc oxide (ZnO).

酸化物半導体は、組成を適正化することによって、比較的低温でも均一性がよいアモルファス状態の膜が安定的に得られるだけでなく、従来のa−Siよりも高い移動度を有するため、小型で高性能なTFTを実現できるという利点がある。 By optimizing the composition of oxide semiconductors, not only can stable amorphous films with good uniformity be obtained even at relatively low temperatures, but also they have higher mobility than conventional a-Si, so they are compact. There is an advantage that a high-performance TFT can be realized.

しかし、酸化物半導体は、一般的に薬液耐性に乏しく、シュウ酸(Oxalic Acid)系のような弱酸系の薬液でも容易に溶けてしまうという性質がある。従って、a−Siで主流となっているBCE(バックチャネルエッチング)型TFTに酸化物半導体を用いる場合、酸薬液を用いたウエットエッチングを行うことによって、チャネル層の直上のソース電極およびドレイン電極を形成すると、チャネル層の酸化物半導体もエッチングされ、信頼性の高いチャネル領域を形成することができないという問題があった。 However, oxide semiconductors generally have poor chemical resistance and have the property of being easily dissolved even in weak acid chemicals such as oxalic acid. Therefore, when an oxide semiconductor is used for the BCE (back channel etching) type TFT that is the mainstream in a-Si, the source electrode and drain electrode directly above the channel layer are formed by performing wet etching using an acid chemical solution. When formed, the oxide semiconductor of the channel layer is also etched, and there is a problem that a highly reliable channel region cannot be formed.

米国特許第9704887号明細書U.S. Pat. No. 9,704,887 特開2004−103957号公報Japanese Unexamined Patent Publication No. 2004-103957 特開2005−77822号公報Japanese Unexamined Patent Publication No. 2005-77722 米国特許第9721973号明細書U.S. Pat. No. 9721973

Kenji Nomura等著、「Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors」、Nature 2004年,第432巻,第488頁〜第492頁Kenji Nomura et al., "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature 2004, Vol. 432, pp. 488-492.

特許文献1の例えばFig.2、Fig.3およびFig.5には、基板上に選択TFTと、選択TFT上に画素駆動TFTが配設された有機ELディスプレイ用のTFT基板が開示されている。TFT基板には、一部BCE型のTFTが含まれている。従って、これらのTFT基板のチャネル層に、高移動度を有する酸化物半導体を用いる場合は、薬液耐性および環境耐性を確保して高信頼性を得るために、すべてのTFTをES型TFTで構成する必要がある。このために、有機EL素子形成前までのTFT基板を完成させるためには、少なくとも以下に示される(1)〜(10)の10回の写真製版工程が必要であると考えられる。 For example, Fig. 2. Fig. 3 and Fig. No. 5 discloses a TFT substrate for an organic EL display in which a selection TFT is arranged on the substrate and a pixel-driven TFT is arranged on the selection TFT. The TFT substrate includes a part of BCE type TFT. Therefore, when an oxide semiconductor having high mobility is used for the channel layer of these TFT substrates, all TFTs are composed of ES type TFTs in order to secure chemical resistance and environmental resistance and obtain high reliability. There is a need to. Therefore, in order to complete the TFT substrate before the formation of the organic EL element, it is considered that at least 10 photoplate-making steps (1) to (10) shown below are required.

(1) 選択TFTのゲート電極の形成工程
(2) 選択TFTのチャネル層の形成工程
(3) 選択TFTのチャネル層上のエッチングストッパ(ES)層の形成工程
(4) 選択TFTのソース電極、ドレイン電極、駆動用TFTのゲート電極の形成工程
(5) 画素駆動TFTのチャネル層の形成工程
(6) 画素駆動TFTのチャネル層上のES層の形成工程
(7) 画素駆動TFTのソース電極(駆動電流供給電極)、ドレイン電極の形成工程
(8) 保護絶縁層のコンタクトホールの形成工程
(9) 画素電極の形成工程
(10) 画素分離層(バンク層)の画素開口部の形成工程
(1) Step of forming the gate electrode of the selected TFT
(2) Step of forming the channel layer of the selected TFT
(3) Step of forming an etching stopper (ES) layer on the channel layer of the selected TFT
(4) Step of forming the source electrode, drain electrode, and gate electrode of the driving TFT of the selected TFT
(5) Pixel-driven TFT channel layer forming process
(6) Step of forming ES layer on channel layer of pixel-driven TFT
(7) Pixel drive TFT source electrode (drive current supply electrode), drain electrode forming process
(8) Process of forming contact holes in the protective insulating layer
(9) Pixel electrode forming process
(10) Step of forming a pixel opening of a pixel separation layer (bank layer)

また、特許文献4の例えばFig.7に開示される有機ELディスプレイ用のTFT基板の構成では、選択TFTおよび画素駆動TFTともにES型TFTで構成され、有機EL層形成前までのTFT基板を8回の写真製版工程で形成することができ、特許文献1の方法に比べて製造を効率よく行うことができるが、これ以上に写真製版工程を減らすことは難しい。 In addition, for example, Fig. In the configuration of the TFT substrate for the organic EL display disclosed in 7, both the selective TFT and the pixel-driven TFT are composed of the ES type TFT, and the TFT substrate before the formation of the organic EL layer is formed by eight photoplate making steps. However, it is difficult to further reduce the photoplate-making process, although the production can be performed more efficiently than the method of Patent Document 1.

本開示は上記のような問題を解決するためになされたものであり、TFTを有するTFT基板を、製造工程を簡略化して生産性よく低コストで得る技術を提供することを目的とする。 The present disclosure has been made in order to solve the above problems, and an object of the present invention is to provide a technique for obtaining a TFT substrate having a TFT with high productivity and low cost by simplifying a manufacturing process.

本開示に係る薄膜トランジスタ基板は、基板と、前記基板上に設けられた、ボトムゲート型の第1の薄膜トランジスタと、トップゲート型の第2の薄膜トランジスタと、を少なくとも備え、前記第1の薄膜トランジスタは、前記基板上に設けられた第1のゲート電極と、前記第1のゲート電極上に設けられた第1のゲート絶縁層と、前記第1のゲート絶縁層上に設けられた第1の半導体層と、前記第1の半導体層上に設けられた第1の保護絶縁層と、前記第1の保護絶縁層を貫通する第1の開口部および第2の開口部を通して前記第1の半導体層にそれぞれ接する、第1のソース電極および第1のドレイン電極と、を有し、前記第2の薄膜トランジスタは、前記基板上に設けられた第2のソース電極および第2のドレイン電極と、前記第2のソース電極および前記第2のドレイン電極上に設けられた第2の保護絶縁層と、前記第2の保護絶縁層上に設けられ、それぞれ前記第2の保護絶縁層を貫通する第3の開口部および第4の開口部を通して、前記第2のソース電極および前記第2のドレイン電極に接する第2の半導体層と、前記第2の半導体層上に設けられた第2のゲート絶縁層と、前記第2のゲート絶縁層上に設けられた第2のゲート電極と、を有し、少なくとも前記第1の薄膜トランジスタおよび前記第2の薄膜トランジスタを有した画素が前記基板上にマトリックス状に配置され、前記画素は、エレクトロルミネッセンス素子と、互いに直交するソース配線およびゲート配線と、前記ソース配線と平行し、前記エレクトロルミネッセンス素子に前記第1の薄膜トランジスタを介して駆動電流を供給する駆動電流配線と、前記第1のソース電極、前記第1のドレイン電極および前記第2のゲート電極上に設けられた第3の保護絶縁層と、前記第3の保護絶縁層上に設けられ、前記第3の保護絶縁層を貫通する第5の開口部を通して、前記第1のドレイン電極と接するアノード電極と、を備え、前記エレクトロルミネッセンス素子は、前記アノード電極上に設けられ、前記第1のゲート電極、前記第2のソース電極、前記第2のドレイン電極、前記ソース配線および前記駆動電流配線は、同層で同じ第1の導電膜で形成され、前記第2のソース電極は前記ソース配線の一部として形成され、前記第1のゲート電極と前記第2のドレイン電極は、連続した一体パターンで構成され、保持容量を形成する容量電極として機能し、前記第1のゲート絶縁層および前記第2の保護絶縁層は、同層で同じ第1の絶縁膜で形成され、前記第1の半導体層および前記第2の半導体層は、同層で同じ半導体膜で形成され、前記第1の保護絶縁層および前記第2のゲート絶縁層は、同層で同じ第2の絶縁膜で形成され、前記第1のソース電極、前記第1のドレイン電極、前記第2のゲート電極および前記ゲート配線は、同層で同じ第2の導電膜で形成され、前記第2のゲート電極は前記ゲート配線から延在して形成され、前記第1のソース電極と前記駆動電流配線は電気的に接続される。

The thin film substrate according to the present disclosure includes at least a substrate, a bottom gate type first thin film film provided on the substrate, and a top gate type second thin film thin film. A first gate electrode provided on the substrate, a first gate insulating layer provided on the first gate electrode, and a first semiconductor layer provided on the first gate insulating layer. To the first semiconductor layer through the first protective insulating layer provided on the first semiconductor layer and the first opening and the second opening penetrating the first protective insulating layer. It has a first source electrode and a first drain electrode that are in contact with each other, and the second thin film is a second source electrode and a second drain electrode provided on the substrate and the second drain electrode. A second protective insulating layer provided on the source electrode and the second drain electrode of the above, and a third opening provided on the second protective insulating layer and penetrating the second protective insulating layer, respectively. A second semiconductor layer in contact with the second source electrode and the second drain electrode through the portion and the fourth opening, and a second gate insulating layer provided on the second semiconductor layer. A second gate electrode provided on the second gate insulating layer, and pixels having at least the first thin film and the second thin film are arranged in a matrix on the substrate. The pixels include an electroluminescence element, source wiring and gate wiring orthogonal to each other, a drive current wiring that is parallel to the source wiring and supplies a drive current to the electroluminescence element via the first thin film, and the drive current wiring. A third protective insulating layer provided on the first source electrode, the first drain electrode, and the second gate electrode, and the third protective insulating layer provided on the third protective insulating layer. An anode electrode in contact with the first drain electrode through a fifth opening penetrating the layer is provided, the electroluminescence element is provided on the anode electrode, and the first gate electrode, the second. the source electrode of the second drain electrode, the source wiring and the drive current line is formed by the same first conductive film in the same layer, the second source electrode is formed as a part of the source wiring The first gate electrode and the second drain electrode are formed of a continuous integrated pattern, and serve as a capacitance electrode that forms a holding capacitance. The first gate insulating layer and the second protective insulating layer are formed of the same first insulating film in the same layer, and the first semiconductor layer and the second semiconductor layer are the same layer. The first protective insulating layer and the second gate insulating layer are formed of the same semiconductor film, and the first protective insulating layer and the second gate insulating layer are formed of the same second insulating film in the same layer, and the first source electrode and the first drain are formed. The electrode, the second gate electrode, and the gate wiring are formed of the same second conductive film in the same layer, and the second gate electrode is formed extending from the gate wiring, and the first source is formed. The electrodes and the drive current wiring are electrically connected.

本開示によれば、ボトムゲート型の第1の薄膜トランジスタおよびトップゲート型の第2の薄膜トランジスタの各層の構成が共通化されるので、製造工程を簡略化して生産性よく製造できるので、製造コストを低減できる。 According to the present disclosure, since the configurations of each layer of the bottom gate type first thin film transistor and the top gate type second thin film transistor are standardized, the manufacturing process can be simplified and the production can be carried out with high productivity, so that the manufacturing cost can be reduced. Can be reduced.

実施の形態1に係るTFT基板の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the TFT substrate which concerns on Embodiment 1. FIG. 実施の形態1に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 1. FIG. 実施の形態1に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 1. FIG. 実施の形態1に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 1. FIG. 実施の形態1に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 1. FIG. 実施の形態2に係るTFT基板の全体構成を模式的に示す平面図である。It is a top view which shows typically the whole structure of the TFT substrate which concerns on Embodiment 2. 実施の形態2に係るTFT基板の平面構成を概略的に示す平面図である。It is a top view which shows schematic the plane structure of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態2に係るTFT基板を備えた表示装置を模式的に示す斜視図である。It is a perspective view which shows typically the display device provided with the TFT substrate which concerns on Embodiment 2. FIG. 実施の形態3に係るTFT基板の画素部駆動回路の構成を模式的に示す図である。It is a figure which shows typically the structure of the pixel part drive circuit of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の平面構成を概略的に示す平面図である。It is a top view which shows schematic the plane structure of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3に係るTFT基板にLED素子を実装した構成を示す断面図である。It is sectional drawing which shows the structure which mounted the LED element on the TFT substrate which concerns on Embodiment 3. 実施の形態3に係るTFT基板を備えた表示装置を模式的に示す斜視図である。It is a perspective view which shows typically the display device provided with the TFT substrate which concerns on Embodiment 3. FIG. 実施の形態3の変形例1に係るTFT基板の画素部駆動回路の構成を模式的に示す図である。It is a figure which shows typically the structure of the pixel part drive circuit of the TFT substrate which concerns on the modification 1 of Embodiment 3. 実施の形態3の変形例1に係るTFT基板の構成を概略的に示す平面図である。It is a top view which shows schematic structure of the TFT substrate which concerns on modification 1 of Embodiment 3. 実施の形態3の変形例2に係るTFT基板の画素部駆動回路の構成を模式的に示す図である。It is a figure which shows typically the structure of the pixel part drive circuit of the TFT substrate which concerns on the modification 2 of Embodiment 3. 実施の形態3の変形例2に係るTFT基板の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the TFT substrate which concerns on the modification 2 of Embodiment 3. 信号発生回路の構成を示す図である。It is a figure which shows the structure of the signal generation circuit.

以下に説明する実施の形態におけるTFT基板は、表示素子として有機EL素子またはLED素子のような発光体を用いた自発光型表示装置用のアクティブマトリックス基板として用いることができるが、その他にも液晶表示装置(Liquid Crystal display;LCD)も含めた信号駆動回路を有するTFT基板にも適用することができる。 The TFT substrate according to the embodiment described below can be used as an active matrix substrate for a self-luminous display device using a light emitting body such as an organic EL element or an LED element as a display element, but other liquid crystals. It can also be applied to a TFT substrate having a signal drive circuit including a display device (Liquid Crystal display; LCD).

<実施の形態1>
<TFT基板の構成>
図1は、実施の形態1に係るTFT基板100の構成を概略的に示す断面図である。TFT基板100は、TFT101(第1の薄膜トランジスタ)およびTFT102(第2の薄膜トランジスタ)を備えている。図においては、TFT101が形成される第1のTFT部を図の右側に、TFT102が形成される第1のTFT部を図の左側に示している。TFT101およびTFT102は、透明絶縁性を有する同一の基板1、例えばガラス基板上に配設されている。
<Embodiment 1>
<Construction of TFT substrate>
FIG. 1 is a cross-sectional view schematically showing the configuration of the TFT substrate 100 according to the first embodiment. The TFT substrate 100 includes a TFT 101 (first thin film transistor) and a TFT 102 (second thin film transistor). In the figure, the first TFT portion on which the TFT 101 is formed is shown on the right side of the figure, and the first TFT portion on which the TFT 102 is formed is shown on the left side of the figure. The TFT 101 and the TFT 102 are arranged on the same substrate 1 having transparent insulation, for example, a glass substrate.

<第1のTFTの構成>
TFT101は、ボトムゲート逆スタガ構造でチャネルを保護する構成を採り、基板1上に、第1の導電膜で構成されるゲート電極2(第1のゲート電極)が設けられ、ゲート電極2を覆うように、第1の絶縁膜で構成されるゲート絶縁層5(第1のゲート絶縁層)が設けられている。そして、ゲート絶縁層5上のゲート電極2と重なる領域に、半導体膜で構成される半導体層9(第1の半導体層)が設けられている。さらに、ゲート絶縁層5上および半導体層9上に、第2の絶縁膜で構成される保護絶縁層11(第1の保護絶縁層)が設けられている。
<Structure of the first TFT>
The TFT 101 has a structure in which a bottom gate reverse stagger structure is used to protect the channel, and a gate electrode 2 (first gate electrode) composed of a first conductive film is provided on the substrate 1 to cover the gate electrode 2. As described above, the gate insulating layer 5 (first gate insulating layer) composed of the first insulating film is provided. A semiconductor layer 9 (first semiconductor layer) composed of a semiconductor film is provided in a region on the gate insulating layer 5 that overlaps with the gate electrode 2. Further, a protective insulating layer 11 (first protective insulating layer) composed of a second insulating film is provided on the gate insulating layer 5 and the semiconductor layer 9.

半導体層9と重なる領域の保護絶縁層11には、下層の半導体層9の表面が露出するように、それぞれ開口部13(第1の開口部)および開口部14(第2の開口部)が設けられている。 The protective insulating layer 11 in the region overlapping the semiconductor layer 9 has an opening 13 (first opening) and an opening 14 (second opening), respectively, so that the surface of the lower semiconductor layer 9 is exposed. It is provided.

開口部13は、半導体層9のソース領域となる表面を露出させるソース領域コンタクトホールであり、開口部14は、半導体層9のドレイン領域となる表面を露出させるドレイン領域コンタクトホールである。そして、保護絶縁層11上には、開口部13を通して半導体層9と接するように、第2の導電膜で構成されるソース電極15(第1のソース電極)が設けられ、開口部14を通して半導体層9と接するように、第2の導電膜で構成されるドレイン電極16(第1のドレイン電極)が設けられている。 The opening 13 is a source region contact hole that exposes the surface of the semiconductor layer 9 that is the source region, and the opening 14 is a drain region contact hole that exposes the surface of the semiconductor layer 9 that is the drain region. A source electrode 15 (first source electrode) composed of a second conductive film is provided on the protective insulating layer 11 so as to come into contact with the semiconductor layer 9 through the opening 13, and the semiconductor is provided through the opening 14. A drain electrode 16 (first drain electrode) composed of a second conductive film is provided so as to be in contact with the layer 9.

ソース電極15とドレイン電極16は、半導体層9と重なる領域内で互いに分離して設けられており、半導体層9においてソース電極15とドレイン電極16とで挟まれる離間領域が、TFT101のチャネル領域CL1(第1のチャネル領域)として規定される。 The source electrode 15 and the drain electrode 16 are provided separately from each other in the region overlapping the semiconductor layer 9, and the separated region sandwiched between the source electrode 15 and the drain electrode 16 in the semiconductor layer 9 is the channel region CL1 of the TFT 101. It is defined as (first channel region).

チャネル領域CL1上の保護絶縁層11は、半導体層9のチャネル領域CL1をプロセスダメージ等から保護するチャネル保護層(第1のチャネル保護層)として機能する。従って、TFT101は、特性および信頼性に優れたTFTとなる。 The protective insulating layer 11 on the channel region CL1 functions as a channel protection layer (first channel protection layer) that protects the channel region CL1 of the semiconductor layer 9 from process damage and the like. Therefore, the TFT 101 is a TFT having excellent characteristics and reliability.

<第2のTFTの構成>
TFT102は、トップゲート順スタガ構造でチャネルを保護する構成を採り、ガラス基板1上に、第1の導電膜で構成されるソース電極3(第2のソース電極)とドレイン電極4(第2のドレイン電極)が互いに分離して設けられ、その上に第1の絶縁膜で構成される保護絶縁層6(第2の保護絶縁層)が設けられている。保護絶縁層6には、ソース電極3の表面の一部を露出させる開口部7(第3の開口部)と、ドレイン電極4の表面の一部を露出させる開口部8(第4の開口部)が設けられている。
<Structure of second TFT>
The TFT 102 has a structure in which channels are protected by a top gate forward staggering structure, and a source electrode 3 (second source electrode) and a drain electrode 4 (second source electrode) composed of a first conductive film are placed on a glass substrate 1. Drain electrodes) are provided separately from each other, and a protective insulating layer 6 (second protective insulating layer) composed of a first insulating film is provided on the drain electrodes). The protective insulating layer 6 has an opening 7 (third opening) that exposes a part of the surface of the source electrode 3 and an opening 8 (fourth opening) that exposes a part of the surface of the drain electrode 4. ) Is provided.

保護絶縁層6上には、開口部7を通して下層のソース電極3と接するとともに、開口部8を通して下層のドレイン電極4と接するように、半導体膜で構成される半導体層10(第2の半導体層)が設けられている。下層のソース電極3およびドレイン電極4は、半導体層10と重なる領域内で互いに分離して設けられており、半導体層10においてソース電極3とドレイン電極4とで挟まれる離間領域が、TFT102のチャネル領域CL2(第2のチャネル領域)として規定される。 A semiconductor layer 10 (second semiconductor layer) formed of a semiconductor film is placed on the protective insulating layer 6 so as to be in contact with the lower source electrode 3 through the opening 7 and in contact with the lower drain electrode 4 through the opening 8. ) Is provided. The lower source electrode 3 and the drain electrode 4 are provided separately from each other in the region overlapping the semiconductor layer 10, and the separated region sandwiched between the source electrode 3 and the drain electrode 4 in the semiconductor layer 10 is the channel of the TFT 102. It is defined as region CL2 (second channel region).

そして、保護絶縁層6上および半導体層10上に、第2の絶縁膜で構成されるゲート絶縁層12(第2のゲート絶縁層)が設けられ、さらに半導体層10のチャネル領域CL2と重なる領域のゲート絶縁層12上に、第2の導電膜で構成されるゲート電極17(第2のゲート電極)が設けられている。 Then, a gate insulating layer 12 (second gate insulating layer) composed of a second insulating film is provided on the protective insulating layer 6 and the semiconductor layer 10, and further overlaps with the channel region CL2 of the semiconductor layer 10. A gate electrode 17 (second gate electrode) composed of a second conductive film is provided on the gate insulating layer 12 of the above.

チャネル領域CL2の保護絶縁層6は、半導体層10のチャネル領域CL2をプロセスダメージ等から保護するチャネル保護層(第2のチャネル保護層)として機能する。従って、TFT102は、特性および信頼性に優れたTFTとなる。 The protective insulating layer 6 of the channel region CL2 functions as a channel protection layer (second channel protection layer) that protects the channel region CL2 of the semiconductor layer 10 from process damage and the like. Therefore, the TFT 102 is a TFT having excellent characteristics and reliability.

さらに、ゲート電極17を、下層のソース電極3およびドレイン電極4と重ならないように配設することで、ゲート電極とソース電極、ドレイン電極との間で形成される寄生容量をなくすことができ、応答性に優れた特性を得ることができる。 Further, by disposing the gate electrode 17 so as not to overlap the source electrode 3 and the drain electrode 4 in the lower layer, it is possible to eliminate the parasitic capacitance formed between the gate electrode and the source electrode and the drain electrode. It is possible to obtain characteristics having excellent responsiveness.

以上説明したように、実施の形態1のTFT基板100によれば、ボトムゲート逆スタガ構造のチャネル保護型のTFT101と、トップゲート順スタガ構造のチャネル保護型のTFT102の異なる構造および特性を有するTFTを、同じ基板上に配設することができる。 As described above, according to the TFT substrate 100 of the first embodiment, the TFT 101 having the bottom gate reverse stagger structure and the channel protection type TFT 102 having the top gate forward stagger structure have different structures and characteristics. Can be arranged on the same substrate.

<TFT基板の製造方法>
以下、実施の形態1に係るTFT基板100の製造方法について、図2〜図5を用いて説明する。なお、製造の最終工程図は、図1に対応している。
<Manufacturing method of TFT substrate>
Hereinafter, the method for manufacturing the TFT substrate 100 according to the first embodiment will be described with reference to FIGS. 2 to 5. The final manufacturing process diagram corresponds to FIG.

<1回目の写真製版工程:図2>
まず、ガラス等の透明絶縁性を有する基板1を洗浄液または純水を用いて洗浄する。本実施の形態1では、厚さ0.5mmのガラス基板を基板1として用いた。そして、洗浄された基板1の一方の主面上に第1の導電膜を形成する。
<First photoengraving process: Fig. 2>
First, the substrate 1 having transparent insulation such as glass is washed with a cleaning liquid or pure water. In the first embodiment, a glass substrate having a thickness of 0.5 mm was used as the substrate 1. Then, the first conductive film is formed on one main surface of the washed substrate 1.

第1の導電膜としては、例えばクロム(Cr)、モリブデン(Mo)、チタン(Ti)、銅(Cu)、タンタル(Ta)、タングステン(W)、アルミニウム(Al)等の金属、またはこれらに他の元素を微量に添加した合金等を用いることができる。また、これらの金属または合金を2層以上含む積層構造としてもよい。これらの金属、合金を用いることによって、比抵抗値が50μΩcm以下の低抵抗な導電膜を得ることができる。 Examples of the first conductive film include metals such as chromium (Cr), molybdenum (Mo), titanium (Ti), copper (Cu), tantalum (Ta), tungsten (W), and aluminum (Al), or these. An alloy or the like to which a small amount of other elements is added can be used. Further, a laminated structure containing two or more layers of these metals or alloys may be used. By using these metals and alloys, a low resistance conductive film having a specific resistance value of 50 μΩcm or less can be obtained.

本実施の形態1では、第1の導電膜としてMoを使用し、Ar(アルゴン)ガスを用いたスパッタリング法でMo膜を200nmの厚さに形成した。その後、Mo膜上にフォトレジスト材を塗布し、1回目の写真製版工程でフォトレジストパターンを形成し、当該フォトレジストパターンをマスクにして、Mo膜をエッチングによりパターニングする。ここでは、リン酸(Phosphoric Acid)、酢酸(Acetic Acid)および硝酸(Nitric Acid)を含む溶液(PAN薬液)によるウエットエッチングを用いた。その後、フォトレジストパターンを除去することで、図2に示すように、基板1上に、TFT101のゲート電極2およびTFT102のソース電極3およびドレイン電極4が同時に形成される。 In the first embodiment, Mo was used as the first conductive film, and a Mo film was formed to a thickness of 200 nm by a sputtering method using Ar (argon) gas. Then, a photoresist material is applied onto the Mo film, a photoresist pattern is formed in the first photoplate-making step, and the Mo film is patterned by etching using the photoresist pattern as a mask. Here, wet etching with a solution (PAN chemical solution) containing phosphoric acid (Phosphoric Acid), acetic acid (Acetic Acid) and nitric acid (Nitric Acid) was used. After that, by removing the photoresist pattern, as shown in FIG. 2, the gate electrode 2 of the TFT 101, the source electrode 3 of the TFT 102, and the drain electrode 4 are simultaneously formed on the substrate 1.

<2回目の写真製版工程:図3>
次に、基板1の主面上の全体に第1の絶縁膜を形成する。本実施の形態1では、化学的気相成膜(Chemical Vapor Deposition;CVD)法を用いて、第1の絶縁膜として酸化シリコン膜(SiO膜)を形成した。ここでは、厚さ300nmのSiO膜を、約300℃の基板加熱条件下で形成した。なお、第1の絶縁膜は、SiO膜に限ることなく、他にも例えば窒化シリコン膜(SiN膜)を用いることができる。SiN膜もSiO膜と同様にCVD法で成膜することができる。また、SiO膜とSiN膜との積層膜としてもよい。
<Second photoengraving process: Fig. 3>
Next, the first insulating film is formed on the entire main surface of the substrate 1. In the first embodiment, a silicon oxide film (SiO film) is formed as a first insulating film by using a chemical vapor deposition (CVD) method. Here, a SiO film having a thickness of 300 nm was formed under substrate heating conditions of about 300 ° C. The first insulating film is not limited to the SiO film, and for example, a silicon nitride film (SiN film) can be used. The SiN film can also be formed by the CVD method in the same manner as the SiO film. Further, it may be a laminated film of a SiO film and a SiN film.

次に、2回目の写真製版工程で第1の絶縁膜であるSiO膜上にフォトレジストパターンを形成し、これをマスクとしてSiO膜をエッチングする。このエッチング工程では、フッ素(F)を含むガス、例えば六フッ化硫黄(SF)ガスまたは四フッ化炭素(CF)ガスを用いたドライエッチング法を用いることができる。Next, in the second photoplate making step, a photoresist pattern is formed on the SiO film which is the first insulating film, and the SiO film is etched using this as a mask. In this etching step, a dry etching method using a gas containing fluorine (F), for example, sulfur hexafluoride (SF 6 ) gas or carbon tetrafluoride (CF 4 ) gas can be used.

その後、フォトレジストパターンを除去することで、図3に示すように、TFT102において、ソース電極3の表面の一部を露出させる開口部7、およびドレイン電極4の表面の一部を露出させる開口部8がそれぞれ形成される。なお、第1のTFT部の第1の絶縁膜はゲート絶縁層5として機能し、第2のTFT部の第1の絶縁膜は、後の工程で形成される第2半導体層形成時に、第2半導体層をソース電極3およびドレイン電極4から受けるダメージから保護する保護絶縁層6(第2のチャネル保護層)として機能する。 After that, by removing the photoresist pattern, as shown in FIG. 3, in the TFT 102, an opening 7 that exposes a part of the surface of the source electrode 3 and an opening that exposes a part of the surface of the drain electrode 4 8 are formed respectively. The first insulating film of the first TFT portion functions as the gate insulating layer 5, and the first insulating film of the second TFT portion is used when the second semiconductor layer formed in a later step is formed. 2 It functions as a protective insulating layer 6 (second channel protective layer) that protects the semiconductor layer from damage received from the source electrode 3 and the drain electrode 4.

<3回目の写真製版工程:図4>
次に、第1の絶縁膜上に半導体膜を形成する。本実施の形態1では、半導体膜として酸化物半導体膜を形成する。具体的には、インジウム(In)とガリウム(Ga)と亜鉛(Zn)と酸素(O)を含む酸化物(InGaZnO)を用いる。ここでは、In:Ga:Zn:Oの原子組成比が1:1:1:4であるInGaZnOターゲットを用い、Arガスを用いたスパッタリング法で酸化物半導体膜(InGaZnO膜)を形成した。
<Third photoengraving process: Fig. 4>
Next, a semiconductor film is formed on the first insulating film. In the first embodiment, an oxide semiconductor film is formed as the semiconductor film. Specifically, an oxide (InGaZnO) containing indium (In), gallium (Ga), zinc (Zn) and oxygen (O) is used. Here, an oxide semiconductor film (InGaZnO film) was formed by a sputtering method using Ar gas using an InGaZnO target having an atomic composition ratio of In: Ga: Zn: O of 1: 1: 1: 4.

この場合、通常は、Oの原子組成比が化学量論組成よりも少なく、Oイオン欠乏状態(上記の例ではOの組成比が4未満)の酸化物膜となってしまう。従って、Arガスに酸素(O)ガスを混合させてスパッタリングすることが好ましい。本実施の形態1では、Arガスに対して分圧比で10%のOガスを添加した混合ガスを用いて、スパッタリングし、InGaZnO膜を50nmの厚さで形成した。InGaZnO膜は、アモルファス構造で形成される。アモルファス構造のInGaZnO膜は、一般的に結晶化温度が500℃超であり、常温では膜中の大部分がアモルファス構造のままで安定する。アモルファス構造は、一部が結晶化された微結晶構造や多結晶構造に比べて構造の均一性を高くすることができる。従って、基板が大型化した場合でも基板全体に特性のバラツキが小さい半導体膜を形成することができる利点がある。In this case, the atomic composition ratio of O is usually smaller than that of the stoichiometric composition, resulting in an oxide film in an O ion-deficient state (in the above example, the composition ratio of O is less than 4). Therefore, it is preferable to mix Ar gas with oxygen (O 2 ) gas and perform sputtering. In the first embodiment, an InGaZnO film was formed with a thickness of 50 nm by sputtering using a mixed gas in which O 2 gas having a partial pressure ratio of 10% was added to Ar gas. The InGaZnO film is formed with an amorphous structure. The InGaZnO film having an amorphous structure generally has a crystallization temperature of more than 500 ° C., and at room temperature, most of the film remains stable with an amorphous structure. The amorphous structure can have higher structural uniformity than a partially crystallized microcrystal structure or a polycrystalline structure. Therefore, even when the size of the substrate is increased, there is an advantage that a semiconductor film having a small variation in characteristics can be formed on the entire substrate.

次に、3回目の写真製版工程でInGaZnO膜上にフォトレジストパターンを形成し、これをマスクとしてInGaZnO膜をエッチングする。このエッチング工程では、シュウ酸(Oxalic Acid)薬液によるウエットエッチングを用いることができる。その後、フォトレジストパターンを除去することで、図4に示すように、第1のTFT部においては、ゲート絶縁層5上のゲート電極2と重なる領域に半導体層9が形成される。 Next, a photoresist pattern is formed on the InGaZnO film in the third photoplate-making step, and the InGaZnO film is etched using this as a mask. In this etching step, wet etching with an oxalic acid chemical solution can be used. After that, by removing the photoresist pattern, as shown in FIG. 4, in the first TFT portion, the semiconductor layer 9 is formed in the region overlapping the gate electrode 2 on the gate insulating layer 5.

また、第2のTFT部においては、保護絶縁層6上に半導体層10が形成される。半導体層10は、保護絶縁層6の開口部7を通して下層のソース電極3と接するとともに、保護絶縁層6の開口部8を通して下層のドレイン電極4と接するように形成される。ソース電極3およびドレイン電極4は、半導体層10と重なる領域内で互いに分離して離間領域を有するように形成されており、半導体層10において、この離間領域がTFT102のチャネル領域(第2のチャネル領域)CL2として規定される。 Further, in the second TFT portion, the semiconductor layer 10 is formed on the protective insulating layer 6. The semiconductor layer 10 is formed so as to be in contact with the source electrode 3 of the lower layer through the opening 7 of the protective insulating layer 6 and to be in contact with the drain electrode 4 of the lower layer through the opening 8 of the protective insulating layer 6. The source electrode 3 and the drain electrode 4 are formed so as to be separated from each other in a region overlapping the semiconductor layer 10 and have a separation region, and in the semiconductor layer 10, this separation region is a channel region (second channel) of the TFT 102. Region) CL2.

半導体層10の材料である酸化物半導体膜をスパッタリング法で形成する場合、下層にソース電極3およびドレイン電極4のような金属膜が露出していると、スパッタリング中に酸化物半導体が金属と反応し、還元(Oイオン欠乏)状態の特性が劣化した酸化物半導体膜が形成されてしまう場合がある。しかしながら、本実施の形態1のTFT102の場合は、開口部7および開口部8を除く基板1全体が保護絶縁層6で覆われているので、この影響を防止することができる。すなわち、チャネル領域CL2の保護絶縁層6は、半導体層10のチャネル保護層6(第2のチャネル保護層)として機能する。 When the oxide semiconductor film which is the material of the semiconductor layer 10 is formed by the sputtering method, if the metal film such as the source electrode 3 and the drain electrode 4 is exposed in the lower layer, the oxide semiconductor reacts with the metal during sputtering. However, an oxide semiconductor film having deteriorated characteristics in the reduced (O ion deficient) state may be formed. However, in the case of the TFT 102 of the first embodiment, since the entire substrate 1 excluding the opening 7 and the opening 8 is covered with the protective insulating layer 6, this influence can be prevented. That is, the protective insulating layer 6 of the channel region CL2 functions as the channel protective layer 6 (second channel protective layer) of the semiconductor layer 10.

その後、ガラス基板1を大気雰囲気下で400℃の温度で熱処理する。この熱処理によって半導体層9および半導体層10の非晶質のInGaZnO膜が構造緩和を起こし、半導体特性をさらに安定させることができる。なお、構造緩和とは、膜形成およびウエットエッチング等のプロセスダメージに起因する構成原子の格子欠陥を減らし、非晶質構造がより安定化する現象である。 Then, the glass substrate 1 is heat-treated at a temperature of 400 ° C. in an air atmosphere. By this heat treatment, the amorphous InGaZnO film of the semiconductor layer 9 and the semiconductor layer 10 causes structural relaxation, and the semiconductor characteristics can be further stabilized. The structural relaxation is a phenomenon in which lattice defects of constituent atoms due to process damage such as film formation and wet etching are reduced, and the amorphous structure is further stabilized.

非晶質のInGaZnO膜に上記の構造緩和を起こさせるための熱処理の温度は、少なくとも300℃以上であることが好ましい。一方、500℃を超えると膜全体で結晶化が始まり半導体特性が大きく変化し、例えばキャリア密度増大により導体化してしまう。従って、ここでは少なくともガラス基板1を300℃以上500℃以下の温度で熱処理することが好ましい。なお、このような熱処理は、製造工程の最後に実施するようにしてもよい。 The temperature of the heat treatment for causing the above-mentioned structural relaxation of the amorphous InGaZnO film is preferably at least 300 ° C. or higher. On the other hand, when the temperature exceeds 500 ° C., crystallization starts in the entire film and the semiconductor characteristics change significantly, and for example, it becomes a conductor due to an increase in carrier density. Therefore, here, it is preferable to heat-treat at least the glass substrate 1 at a temperature of 300 ° C. or higher and 500 ° C. or lower. In addition, such a heat treatment may be carried out at the end of the manufacturing process.

<4回目の写真製版工程:図5>
次に、基板1の主面上の全体に第2の絶縁膜を形成する。本実施の形態1では、第2の絶縁膜として、CVD法で厚さ300nmのSiO膜を約200℃の基板加熱条件下で形成した。なお、第2の絶縁膜は、SiO膜に限ることなく、他にも例えばSiN膜を用いることができる。また、SiO膜とSiN膜との積層膜としてもよい。
<Fourth photoengraving process: Fig. 5>
Next, a second insulating film is formed on the entire main surface of the substrate 1. In the first embodiment, as the second insulating film, a SiO film having a thickness of 300 nm was formed by a CVD method under a substrate heating condition of about 200 ° C. The second insulating film is not limited to the SiO film, and for example, a SiN film can be used. Further, it may be a laminated film of a SiO film and a SiN film.

次に、4回目の写真製版工程で第2の絶縁膜であるSiO膜上にフォトレジストパターンを形成し、これをマスクとしてSiO膜をエッチングする。このエッチング工程では、SFガスまたはCFガスを用いたドライエッチング法を用いることができる。Next, in the fourth photoplate making step, a photoresist pattern is formed on the SiO film which is the second insulating film, and the SiO film is etched using this as a mask. In this etching step, a dry etching method using SF 6 gas or CF 4 gas can be used.

その後、フォトレジストパターンを除去することで、図5に示すように、第1のTFT部の第2の絶縁膜に、半導体層9の表面の一部を露出させる開口部13および開口部14が形成される。第1のTFT部の第2の絶縁膜は、後の工程で形成されるソース電極15およびドレイン電極16からの加工プロセスダメージを防止する保護絶縁層11(第1のチャネル保護層)として機能する。また、第2のTFT部の第2の絶縁膜は、ゲート絶縁層12として機能する。 After that, by removing the photoresist pattern, as shown in FIG. 5, the opening 13 and the opening 14 that expose a part of the surface of the semiconductor layer 9 are formed on the second insulating film of the first TFT portion. It is formed. The second insulating film of the first TFT portion functions as a protective insulating layer 11 (first channel protective layer) for preventing processing process damage from the source electrode 15 and the drain electrode 16 formed in a later step. .. Further, the second insulating film of the second TFT portion functions as the gate insulating layer 12.

<5回目の写真製版工程:図1>
次に、第2の絶縁膜上に第2の導電膜を形成する。第2の導電膜としては、第1の導電膜と同じように、例えばCr、Mo、Ti、Cu、Ta、W、Al等の金属、またはこれらに他の元素を微量に添加した合金等を用いることができる。また、これらの金属または合金を2層以上含む積層構造としてもよい。これらの金属または合金を用いることによって、比抵抗値が50μΩcm以下の低抵抗な導電膜を得ることができる。
<Fifth photoengraving process: Fig. 1>
Next, a second conductive film is formed on the second insulating film. As the second conductive film, as in the case of the first conductive film, for example, a metal such as Cr, Mo, Ti, Cu, Ta, W, Al, or an alloy obtained by adding a small amount of other elements to these is used. Can be used. Further, a laminated structure containing two or more layers of these metals or alloys may be used. By using these metals or alloys, a low resistance conductive film having a specific resistance value of 50 μΩcm or less can be obtained.

本実施の形態1では、第2の導電膜としてMo膜を用い、Arガスを用いたスパッタリング法でMo膜を200nmの厚さに形成した。その後、Mo膜上にフォトレジスト材を塗布し、5回目の写真製版工程でフォトレジストパターンを形成し、当該フォトレジストパターンをマスクにして、Mo膜をエッチングによりパターニングする。ここでは、PAN薬液によるウエットエッチングを用いた。その後、フォトレジストパターンを除去することで、図1に示すように、基板1上に、TFT101のソース電極15およびドレイン電極16が形成され、同時にTFT102のゲート電極17が形成される。 In the first embodiment, a Mo film was used as the second conductive film, and the Mo film was formed to a thickness of 200 nm by a sputtering method using Ar gas. Then, a photoresist material is applied onto the Mo film, a photoresist pattern is formed in the fifth photoplate-making step, and the Mo film is patterned by etching using the photoresist pattern as a mask. Here, wet etching with a PAN chemical solution was used. After that, by removing the photoresist pattern, as shown in FIG. 1, the source electrode 15 and the drain electrode 16 of the TFT 101 are formed on the substrate 1, and at the same time, the gate electrode 17 of the TFT 102 is formed.

TFT101のソース電極15は、開口部13を通して半導体層9と接するように形成される。また、ドレイン電極16は、開口部14を通して半導体層9と接するように形成される。ソース電極15とドレイン電極16は、半導体層9と重なる領域内で互いに分離して設けられており、半導体層9においてソース電極15とドレイン電極16とで挟まれる離間領域が、TFT101のチャネル領域CL1として規定されている。 The source electrode 15 of the TFT 101 is formed so as to be in contact with the semiconductor layer 9 through the opening 13. Further, the drain electrode 16 is formed so as to be in contact with the semiconductor layer 9 through the opening 14. The source electrode 15 and the drain electrode 16 are provided separately from each other in the region overlapping the semiconductor layer 9, and the separated region sandwiched between the source electrode 15 and the drain electrode 16 in the semiconductor layer 9 is the channel region CL1 of the TFT 101. Is specified as.

一般的に酸化物半導体膜は薬液耐性に乏しく、半導体層9の材料であるInGaZnO膜は、第2の導電膜のウエットエッチングに用いられるPAN薬液にも容易に溶けてしまう。しかしながら、TFT101では、開口部13および開口部14を除くガラス基板1の全面が絶縁膜で構成される保護絶縁層11で覆われており、特に半導体層9のチャネル領域CL1上では保護絶縁層11はチャネル保護層(エッチングストッパ;ES)として機能する。従って、プロセスダメージのない信頼性の高いTFTを得ることができる。 Generally, the oxide semiconductor film has poor chemical resistance, and the InGaZnO film, which is the material of the semiconductor layer 9, is easily dissolved in the PAN chemical solution used for wet etching of the second conductive film. However, in the TFT 101, the entire surface of the glass substrate 1 excluding the opening 13 and the opening 14 is covered with the protective insulating layer 11 formed of an insulating film, and the protective insulating layer 11 is particularly provided on the channel region CL1 of the semiconductor layer 9. Functions as a channel protection layer (etching stopper; ES). Therefore, a highly reliable TFT without process damage can be obtained.

TFT102のゲート電極17は、下層の第2半導体層のチャネル領域CL2と重なるように形成される。また下層のソース電極3およびドレイン電極4と重ならないように形成することで、ゲート電極17とソース電極3およびドレイン電極4との間で形成される寄生容量をなくすことができ、応答性に優れた高速応答のTFTを得ることができる。さらに、半導体層10のチャネル領域CL2は、保護絶縁層6で保護されているので、TFT101と同様に、プロセスダメージのない信頼性の高いTFTを得ることができる。 The gate electrode 17 of the TFT 102 is formed so as to overlap the channel region CL2 of the lower second semiconductor layer. Further, by forming the source electrode 3 and the drain electrode 4 in the lower layer so as not to overlap with each other, it is possible to eliminate the parasitic capacitance formed between the gate electrode 17 and the source electrode 3 and the drain electrode 4, and the response is excellent. A high-speed response TFT can be obtained. Further, since the channel region CL2 of the semiconductor layer 10 is protected by the protective insulating layer 6, a highly reliable TFT without process damage can be obtained as in the case of the TFT 101.

以上のように、本実施の形態1に係るTFT基板100は、第1のTFTと第2のTFTとが、互いにゲート電極とソース電極およびドレイン電極との位置(上下層)関係は異なるものの、両者の半導体層が同一の半導体層で構成され、かつそれぞれの電極を含めた各層の構造が共通化できるように構成されている。従って、動作安定性および信頼性に優れるボトムゲート逆スタガ構造でチャネル保護型の第1のTFTと、信頼性に優れるとともに電極間の寄生容量が小さく応答性に優れたトップゲート順スタガ構造でチャネル保護型の第2のTFTとの、異なる構造および特性を有するTFTを、5回の写真製版工程を用いて生産性よく低コストで製造することができる。 As described above, in the TFT substrate 100 according to the first embodiment, the first TFT and the second TFT have different positional (upper and lower layers) relationships between the gate electrode, the source electrode, and the drain electrode. Both semiconductor layers are composed of the same semiconductor layer, and the structure of each layer including the respective electrodes can be made common. Therefore, the channel is a channel-protected first TFT with a bottom gate reverse staggered structure that is excellent in operational stability and reliability, and a top gate forward staggered structure that is excellent in reliability and has a small parasitic capacitance between electrodes and is excellent in responsiveness. A TFT having a structure and characteristics different from that of the protective type second TFT can be manufactured with high productivity and low cost by using five photoplate-making steps.

また、各層の構造を共通化しているので、例えば、TFT101のゲート電極2とTFT102のソース電極3もしくはドレイン電極4のいずれかと、を接続するようにTFT101とTFT102とを組み合わせたTFT回路を形成する場合には、ゲート電極2とソース電極3もしくはドレイン電極4を連続した一体パターンとすることで、例えば、両者を別体で形成し、コンタクトホールを介して電気的に接続した構成に比べると、TFT102からTFT101への信号の伝達不良による欠陥の発生率を低く抑えることができる。さらに、ゲート電極2とドレイン電極4に限らず、ゲート電極17とソース電極15もしくはドレイン電極16のいずれかを接続する場合でも、これらを連続した一体パターンとすることで同じ効果を得ることができる。 Further, since the structure of each layer is standardized, for example, a TFT circuit in which the TFT 101 and the TFT 102 are combined is formed so as to connect the gate electrode 2 of the TFT 101 and either the source electrode 3 or the drain electrode 4 of the TFT 102. In this case, by forming the gate electrode 2 and the source electrode 3 or the drain electrode 4 into a continuous integrated pattern, for example, as compared with a configuration in which both are formed separately and electrically connected via a contact hole, The occurrence rate of defects due to poor signal transmission from the TFT 102 to the TFT 101 can be suppressed low. Further, not only the gate electrode 2 and the drain electrode 4 but also the gate electrode 17 and either the source electrode 15 or the drain electrode 16 are connected, the same effect can be obtained by forming them in a continuous integrated pattern. ..

<実施の形態2>
<装置構成>
図6は、実施の形態2に係るTFT基板110の全体構成を模式的に示す平面図である。図6に示すように、TFT基板110は、基板1上に少なくともTFT101、TFT102および画素領域PXを含む画素がマトリックス状に配列された表示領域150と、表示領域150に隣接する額縁領域160とに大きく分けられる。画素領域PXには例えば有機系の材料で構成されるEL素子44(エレクトロルミネッセンス素子)が配設されており、有機ELディスプレイを備えた自発光型表示装置用のTFT基板として好適に用いることができる。なお、図6において、TFT基板110の輪郭形状は四角形で示されているが、これに限ることはなく例えば円形または楕円形のような曲線を含む形状であってもよい。また、TFT基板110は、平坦に限ることはなく湾曲していてもよい。
<Embodiment 2>
<Device configuration>
FIG. 6 is a plan view schematically showing the overall configuration of the TFT substrate 110 according to the second embodiment. As shown in FIG. 6, the TFT substrate 110 has a display region 150 in which pixels including at least the TFT 101, the TFT 102, and the pixel region PX are arranged in a matrix on the substrate 1, and a frame region 160 adjacent to the display region 150. It can be roughly divided. For example, an EL element 44 (electroluminescence element) made of an organic material is arranged in the pixel region PX, and can be suitably used as a TFT substrate for a self-luminous display device provided with an organic EL display. it can. Although the contour shape of the TFT substrate 110 is shown as a quadrangle in FIG. 6, the contour shape is not limited to this, and may be a shape including a curved line such as a circle or an ellipse. Further, the TFT substrate 110 is not limited to being flat and may be curved.

図6に示すように、表示領域150には、複数のゲート配線32と複数のソース配線34とが互いに直交するように交差して配設され、ゲート配線32とソース配線34で規定される領域に画素が設けられ、画素内には画素の駆動のための画素部駆動回路ELC1が設けられている。また、表示領域150には、複数の駆動電流配線36(第1の配線)が、複数のソース配線34と隣接して平行に配設されている。 As shown in FIG. 6, in the display area 150, a plurality of gate wirings 32 and a plurality of source wirings 34 are arranged so as to intersect each other so as to be orthogonal to each other, and are defined by the gate wiring 32 and the source wiring 34. Is provided with a pixel, and a pixel unit drive circuit ELC1 for driving the pixel is provided in the pixel. Further, in the display area 150, a plurality of drive current wirings 36 (first wirings) are arranged adjacent to and parallel to the plurality of source wirings 34.

画素部駆動回路ELC1は、ゲート配線32とソース配線34との交差部に設けられたTFT102と、ゲート配線32と駆動電流配線36との交差部に設けたれたTFT101とを有している。TFT102のゲート電極17はゲート配線32と電気的に接続され、TFT102のソース電極3はソース配線34と電気的に接続されている。TFT102は、ゲート配線とソース配線の信号に対応して表示画素を選択するための選択TFTとして機能する。 The pixel unit drive circuit ELC1 has a TFT 102 provided at the intersection of the gate wiring 32 and the source wiring 34, and a TFT 101 provided at the intersection of the gate wiring 32 and the drive current wiring 36. The gate electrode 17 of the TFT 102 is electrically connected to the gate wiring 32, and the source electrode 3 of the TFT 102 is electrically connected to the source wiring 34. The TFT 102 functions as a selection TFT for selecting display pixels corresponding to the signals of the gate wiring and the source wiring.

TFT101のゲート電極2は、TFT102のドレイン電極4と電気的に接続される。また、TFT101のソース電極15は駆動電流配線36と電気的に接続され、ドレイン電極16はEL素子44を駆動させるためのアノード電極41と電気的に接続されている。EL素子44のカソード電極45は接地電位に接続されている。 The gate electrode 2 of the TFT 101 is electrically connected to the drain electrode 4 of the TFT 102. Further, the source electrode 15 of the TFT 101 is electrically connected to the drive current wiring 36, and the drain electrode 16 is electrically connected to the anode electrode 41 for driving the EL element 44. The cathode electrode 45 of the EL element 44 is connected to the ground potential.

また、TFT101には、ゲート電極2とドレイン電極16との間に接続された保持容量CsAが設けられている。TFT102のドレイン電極4から出力された選択信号が保持容量CsAに書き込まれると、書き込まれた電圧によってTFT101が動作して、駆動電流配線36からの信号電流が、駆動電流としてTFT101からアノード電極41を通してEL素子44に供給され、EL素子44が発光する。 Further, the TFT 101 is provided with a holding capacity CsA connected between the gate electrode 2 and the drain electrode 16. When the selection signal output from the drain electrode 4 of the TFT 102 is written to the holding capacitance CsA, the TFT 101 operates according to the written voltage, and the signal current from the drive current wiring 36 is used as the drive current from the TFT 101 through the anode electrode 41. It is supplied to the EL element 44, and the EL element 44 emits light.

額縁領域160には、ゲート配線32に信号電圧を与える走査信号駆動回路170が、ゲート配線32の端部に設けられたゲート端子33に接続され、また、ソース配線34および駆動電流配線36に駆動信号を与える表示信号駆動回路180が、ソース配線34の端部および駆動電流配線36の端部にそれぞれ設けられたソース端子35(第2のソース端子)およびソース端子37(第1のソース端子)に接続されて配設されている。また、基板1の四隅には、位置合わせのためのアライメントマークAMが設けられている。 In the frame region 160, a scanning signal drive circuit 170 that applies a signal voltage to the gate wiring 32 is connected to a gate terminal 33 provided at the end of the gate wiring 32, and is also driven by the source wiring 34 and the drive current wiring 36. The display signal drive circuit 180 that gives a signal is provided at the end of the source wiring 34 and the end of the drive current wiring 36, respectively, at the source terminal 35 (second source terminal) and the source terminal 37 (first source terminal). It is connected to and arranged in. Further, alignment marks AM for alignment are provided at the four corners of the substrate 1.

なお、本実施の形態2では、TFT基板110上の額縁領域160に走査信号駆動回路170および表示信号駆動回路180を配設するようにしたが、これらをTFT基板110上に配設せずに、外部の駆動IC(Integrated Circuit)を、TAB(Tape Automated Bonding)方式またはCOG(Chip On Glass)方式等でTFT基板110上のゲート端子33上、ソース端子35上およびソース端子37上に実装するようにしてもよい。 In the second embodiment, the scanning signal drive circuit 170 and the display signal drive circuit 180 are arranged in the frame region 160 on the TFT substrate 110, but these are not arranged on the TFT substrate 110. , An external drive IC (Integrated Circuit) is mounted on the gate terminal 33, the source terminal 35, and the source terminal 37 on the TFT substrate 110 by the TAB (Tape Automated Bonding) method or the COG (Chip On Glass) method. You may do so.

次に、図7および図8を参照して、本実施の形態2に係るTFT基板110のより詳細な構成について説明する。図7は、TFT基板110の表示領域150(図6)に設けられたTFT101、TFT102、保持容量CsAおよび画素領域PXを含む画素の平面構成を示す部分平面図であり、図8は、画素の断面構成を示す部分断面図である。 Next, a more detailed configuration of the TFT substrate 110 according to the second embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a partial plan view showing a planar configuration of pixels including the TFT 101, TFT 102, holding capacity CsA, and pixel region PX provided in the display region 150 (FIG. 6) of the TFT substrate 110, and FIG. 8 is a partial plan view of the pixels. It is a partial cross-sectional view which shows the cross-sectional structure.

図7におけるX1−X2線は、TFT101、TFT102および保持容量CsAに渡り、Y1−Y2線は、TFT101のドレイン電極16から画素領域PXに渡るように設けられており、X1−X2線での矢示方向断面図およびY1−Y2線での矢示方向断面図を、それぞれ図8の左側および右側に示す。 The X1-X2 line in FIG. 7 is provided so as to extend over the TFT 101, the TFT 102 and the holding capacitance CsA, and the Y1-Y2 line extends from the drain electrode 16 of the TFT 101 to the pixel region PX. The cross-sectional view in the direction shown and the cross-sectional view taken along the line Y1-Y2 are shown on the left side and the right side of FIG. 8, respectively.

なお、本実施の形態2のTFT101およびTFT102は、実施の形態1のTFT101およびTFT102と基本的に同じ構成であるため、これらと同じ構成要素には同一符号を付し、重複する説明は省略する。 Since the TFT 101 and the TFT 102 of the second embodiment basically have the same configuration as the TFT 101 and the TFT 102 of the first embodiment, the same components are designated by the same reference numerals, and redundant description will be omitted. ..

TFT基板110は透明絶縁性の基板1の一方の主面上に各種の要素が配設されている。基板1は、例えばガラス、プラスチックまたは樹脂等の透明かつ絶縁性の材料で構成される。なお、基板1の平面形状は、図6に例示した四角形に限定されるものではない。 In the TFT substrate 110, various elements are arranged on one main surface of the transparent insulating substrate 1. The substrate 1 is made of a transparent and insulating material such as glass, plastic or resin. The planar shape of the substrate 1 is not limited to the quadrangle illustrated in FIG.

図8のX1−X2線に沿った断面図に示すように、基板1上の第1のTFT部には、第1の導電膜で構成されるゲート電極2(第1のゲート電極)および駆動電流配線36(第1の配線)が設けられ、これらを覆うように第1の絶縁膜で構成されるゲート絶縁層5(第1のゲート絶縁層)が設けられている。 As shown in the cross-sectional view taken along the line X1-X2 of FIG. 8, the first TFT portion on the substrate 1 includes a gate electrode 2 (first gate electrode) composed of a first conductive film and a drive. A current wiring 36 (first wiring) is provided, and a gate insulating layer 5 (first gate insulating layer) composed of a first insulating film is provided so as to cover the current wiring 36 (first wiring).

また、第2のTFT部には、ソース電極3(第2のソース電極)およびドレイン電極4(第2のドレイン電極)が設けられ、これらを覆うように第1の絶縁膜で構成される保護絶縁層6(第2の保護絶縁層)が設けられている。保護絶縁層6には、ソース電極3の表面の一部を露出させる開口部7(第3の開口部)と、ドレイン電極4の表面の一部を露出させる開口部8(第4の開口部)が設けられている。 Further, the second TFT portion is provided with a source electrode 3 (second source electrode) and a drain electrode 4 (second drain electrode), and is protected by a first insulating film so as to cover them. An insulating layer 6 (second protective insulating layer) is provided. The protective insulating layer 6 has an opening 7 (third opening) that exposes a part of the surface of the source electrode 3 and an opening 8 (fourth opening) that exposes a part of the surface of the drain electrode 4. ) Is provided.

また、図7に示されるように、平面視で、TFT101のゲート電極2とTFT102のドレイン電極4は、連続した一体パターンで設けられている。駆動電流配線36は縦方向(Y方向)に延在するように配設され、ソース配線34が駆動電流配線36と隣接するように縦方向に平行して延在するように配設されている。TFT102のソース電極3は、ソース配線34の一部分である。すなわち、ソース配線34は、第1の導電膜で構成され、ソース配線34におけるTFT102側に延在する部分がソース電極3となっている。ソース電極3が設けられた部分は、ソース配線34の他の部分よりも幅が広くなっている。 Further, as shown in FIG. 7, in a plan view, the gate electrode 2 of the TFT 101 and the drain electrode 4 of the TFT 102 are provided in a continuous integrated pattern. The drive current wiring 36 is arranged so as to extend in the vertical direction (Y direction), and the source wiring 34 is arranged so as to extend in parallel in the vertical direction so as to be adjacent to the drive current wiring 36. .. The source electrode 3 of the TFT 102 is a part of the source wiring 34. That is, the source wiring 34 is composed of the first conductive film, and the portion of the source wiring 34 extending toward the TFT 102 is the source electrode 3. The portion provided with the source electrode 3 is wider than the other portion of the source wiring 34.

図8のX1−X2線に沿った断面図に示すように、第1のTFT部のゲート絶縁層5上に、半導体膜で構成される半導体層9(第1の半導体層)が設けられている。また、第2のTFT部の保護絶縁層6上に、半導体膜で構成される半導体層10(第2の半導体層)が設けられている。半導体層10は、開口部7を通して下層のソース電極3に接するとともに、開口部8を通して下層のドレイン電極4に接している。 As shown in the cross-sectional view taken along the line X1-X2 of FIG. 8, a semiconductor layer 9 (first semiconductor layer) composed of a semiconductor film is provided on the gate insulating layer 5 of the first TFT portion. There is. Further, a semiconductor layer 10 (second semiconductor layer) composed of a semiconductor film is provided on the protective insulating layer 6 of the second TFT portion. The semiconductor layer 10 is in contact with the source electrode 3 of the lower layer through the opening 7, and is in contact with the drain electrode 4 of the lower layer through the opening 8.

また、図7に示されるように、平面視で、TFT101の半導体層9は、ゲート電極2と重なる領域に島状のパターンで配設されている。また、TFT102のソース電極3とドレイン電極4とは、互いに対向して分離されて配設されており、半導体層10は、互いに分離されたソース電極3とドレイン電極4とに跨るように島状のパターンで配設されている。 Further, as shown in FIG. 7, in a plan view, the semiconductor layer 9 of the TFT 101 is arranged in an island-like pattern in a region overlapping the gate electrode 2. Further, the source electrode 3 and the drain electrode 4 of the TFT 102 are separated and arranged so as to face each other, and the semiconductor layer 10 has an island shape so as to straddle the source electrode 3 and the drain electrode 4 separated from each other. It is arranged in the pattern of.

上述した第1の絶縁膜および半導体膜を覆うように、第2の絶縁膜が設けられ、図8のX1−X2線に沿った断面図に示すように、第1のTFT部の第2の絶縁膜には、下層の半導体層9の表面の一部が露出するように、それぞれ開口部13(第1の開口部)および開口部14(第2の開口部)が設けられている。開口部13は、半導体層9のソース領域(第1のソース領域)となる表面を露出させるコンタクトホールであり、開口部14は、半導体層9のドレイン領域(第1のドレイン領域)となる表面を露出させるコンタクトホールである。半導体層9と重なる領域において、第2の絶縁膜の開口部13と開口部14との間の領域は、半導体層9をプロセスダメージから保護するための保護絶縁層11として機能する。また、第2のTFT部の半導体層10上の第2の絶縁膜は、TFT102のゲート絶縁層12として機能する。 A second insulating film is provided so as to cover the first insulating film and the semiconductor film described above, and as shown in the cross-sectional view taken along the line X1-X2 of FIG. 8, the second TFT portion of the first TFT portion is provided. The insulating film is provided with an opening 13 (first opening) and an opening 14 (second opening), respectively, so that a part of the surface of the lower semiconductor layer 9 is exposed. The opening 13 is a contact hole that exposes a surface serving as a source region (first source region) of the semiconductor layer 9, and the opening 14 is a surface serving as a drain region (first drain region) of the semiconductor layer 9. It is a contact hole that exposes. In the region overlapping the semiconductor layer 9, the region between the opening 13 and the opening 14 of the second insulating film functions as a protective insulating layer 11 for protecting the semiconductor layer 9 from process damage. Further, the second insulating film on the semiconductor layer 10 of the second TFT portion functions as the gate insulating layer 12 of the TFT 102.

また、第1のTFT部の保護絶縁層11を含む第2の絶縁膜上には、開口部13を通して半導体層9と接するように、第2の導電膜で構成されるソース電極15(第1のソース電極)が設けられ、さらに開口部14を通して半導体層9と接するように、第2の導電膜で構成されるドレイン電極16(第1のドレイン電極)が設けられている。 Further, on the second insulating film including the protective insulating layer 11 of the first TFT portion, the source electrode 15 (first) composed of the second conductive film so as to be in contact with the semiconductor layer 9 through the opening 13. A drain electrode 16 (first drain electrode) composed of a second conductive film is provided so as to come into contact with the semiconductor layer 9 through the opening 14).

ソース電極15は、駆動電流配線36に重なる領域まで延在しており、駆動電流配線36の表面の一部を露出させるように第1の絶縁膜と第2の絶縁膜を貫通して設けられた開口部30を通して駆動電流配線36に接続されている。また、ドレイン電極16は、TFT102のドレイン電極4と連続した一体パターンで設けられたTFT101のゲート電極2と重なる領域まで延在するよう配設されている。そして、TFT102の半導体層10と重なる領域のゲート絶縁層12上には、第2の導電膜で構成されるゲート電極17(第2のゲート電極)が設けられている。 The source electrode 15 extends to a region overlapping the drive current wiring 36, and is provided so as to penetrate the first insulating film and the second insulating film so as to expose a part of the surface of the drive current wiring 36. It is connected to the drive current wiring 36 through the opening 30. Further, the drain electrode 16 is arranged so as to extend to a region overlapping the gate electrode 2 of the TFT 101 provided in an integral pattern continuous with the drain electrode 4 of the TFT 102. A gate electrode 17 (second gate electrode) composed of a second conductive film is provided on the gate insulating layer 12 in a region overlapping the semiconductor layer 10 of the TFT 102.

また、図7に示されるように、平面視で、TFT101のドレイン電極16は、半導体層10と重ならない領域で、ゲート電極2およびTFT102のドレイン電極4のパターンと重なって、これらよりもY方向の幅が広くなるように配設されている。そしてドレイン電極16とゲート電極2が重なる領域によって保持容量CsAが形成される。 Further, as shown in FIG. 7, in a plan view, the drain electrode 16 of the TFT 101 overlaps with the pattern of the gate electrode 2 and the drain electrode 4 of the TFT 102 in a region not overlapping with the semiconductor layer 10, and is in the Y direction from these. Is arranged so that the width of the is wide. Then, the holding capacity CsA is formed by the region where the drain electrode 16 and the gate electrode 2 overlap.

また、図7に示されるように、平面視で、TFT102のゲート電極17は、ソース電極3とドレイン電極4とが互いに対向するように分離された領域において、半導体層10と重なるように配設されている。また、ゲート電極17は、ソース電極3およびドレイン電極4とは重ならないように配設されており、これらの重なりによる寄生容量が形成されないように構成されている。そして、ゲート電極17から延在するゲート配線32が、ソース配線34および駆動電流配線36と直交するように横方向(X方向)に延在して設けられている。 Further, as shown in FIG. 7, in a plan view, the gate electrode 17 of the TFT 102 is arranged so as to overlap the semiconductor layer 10 in a region where the source electrode 3 and the drain electrode 4 are separated so as to face each other. Has been done. Further, the gate electrode 17 is arranged so as not to overlap the source electrode 3 and the drain electrode 4, and is configured so that a parasitic capacitance due to the overlap thereof is not formed. The gate wiring 32 extending from the gate electrode 17 is provided so as to extend in the lateral direction (X direction) so as to be orthogonal to the source wiring 34 and the drive current wiring 36.

図8のX1−X2線に沿った断面図またはY1−Y2線に沿った断面図に示すように、第1のTFT部のソース電極15とドレイン電極16、および第2のTFT部のゲート電極17とゲート配線32を覆うように、基板1全面に第3の絶縁膜で構成される保護絶縁層18(第3の保護絶縁層)が設けられている。保護絶縁層18には、第1のTFT部のドレイン電極16の表面の一部を露出させるように開口部40(第5の開口部)が設けられている。そして、保護絶縁層18上に、開口部40を通してドレイン電極16に接続されるとともに画素領域PXまで延在するように、第4の導電膜で構成されるアノード電極41が設けられている。 As shown in the cross-sectional view taken along the line X1-X2 or the cross-sectional view taken along the line Y1-Y2 in FIG. 8, the source electrode 15 and the drain electrode 16 of the first TFT section, and the gate electrode of the second TFT section. A protective insulating layer 18 (third protective insulating layer) composed of a third insulating film is provided on the entire surface of the substrate 1 so as to cover the 17 and the gate wiring 32. The protective insulating layer 18 is provided with an opening 40 (fifth opening) so as to expose a part of the surface of the drain electrode 16 of the first TFT portion. An anode electrode 41 composed of a fourth conductive film is provided on the protective insulating layer 18 so as to be connected to the drain electrode 16 through the opening 40 and extend to the pixel region PX.

さらに、アノード電極41上および保護絶縁層18上には、第4の絶縁膜で構成されるバンク層42が設けられている。画素領域PXではアノード電極41の表面が露出するようにバンク層42にはバンク開口部43が設けられ、バンク開口部43のアノード電極41上には画素発光体として機能するEL素子44が設けられている。 Further, a bank layer 42 composed of a fourth insulating film is provided on the anode electrode 41 and the protective insulating layer 18. In the pixel region PX, a bank opening 43 is provided in the bank layer 42 so that the surface of the anode electrode 41 is exposed, and an EL element 44 that functions as a pixel emitter is provided on the anode electrode 41 of the bank opening 43. ing.

また、図7に示されるように、画素領域PXは、平面視で、ゲート配線32、ソース配線34および駆動電流配線36によって囲まれた領域で規定されている。アノード電極41は、ドレイン電極16と重なる領域に設けられた開口部40と重なる領域から、画素領域PXまで延在するように設けられている。図7では、アノード電極41はソース配線34または駆動電流配線36と重ならないように配設されているが、一部が重なるように配設されていてもよい。また、バンク層42に設けられるバンク開口部43は、アノード電極41と重なる領域でアノード電極41からはみ出さないように配設されるとともに、隣り合うバンク開口部43がバンク層42によって隔離(分離)され、互いに独立した態様で配設されている。そしてEL素子44が、バンク開口部43の領域全面にアノード電極41からはみ出さないように配設されている。 Further, as shown in FIG. 7, the pixel region PX is defined by a region surrounded by the gate wiring 32, the source wiring 34, and the drive current wiring 36 in a plan view. The anode electrode 41 is provided so as to extend from the region overlapping the opening 40 provided in the region overlapping the drain electrode 16 to the pixel region PX. In FIG. 7, the anode electrode 41 is arranged so as not to overlap with the source wiring 34 or the drive current wiring 36, but may be arranged so as to partially overlap. Further, the bank opening 43 provided in the bank layer 42 is arranged so as not to protrude from the anode electrode 41 in a region overlapping the anode electrode 41, and the adjacent bank openings 43 are separated (separated) by the bank layer 42. ), And are arranged in an manner independent of each other. The EL element 44 is arranged on the entire region of the bank opening 43 so as not to protrude from the anode electrode 41.

実施の形態2において、EL素子44は、例えば有機系材料で構成される有機EL素子が用いられる。有機EL素子の構成としては、アノード電極41の直上にホール輸送層、有機EL層および電子輸送層が順に積層された3層構造とすることができる。さらにその直上に、アノード電極41の対極となる図示されないカソード電極が設けられる。アノード電極41とカソード電極との間の電位差によりEL素子44に電流が供給され、EL素子44が発光する。発光した光は、例えばガラスで構成される基板1を通して下方に放射されて画像が表示される。 In the second embodiment, as the EL element 44, for example, an organic EL element composed of an organic material is used. The organic EL element may have a three-layer structure in which a hole transport layer, an organic EL layer, and an electron transport layer are laminated in this order directly above the anode electrode 41. Further, directly above it, a cathode electrode (not shown) which is the opposite electrode of the anode electrode 41 is provided. A current is supplied to the EL element 44 due to the potential difference between the anode electrode 41 and the cathode electrode, and the EL element 44 emits light. The emitted light is radiated downward through, for example, a substrate 1 made of glass, and an image is displayed.

本実施の形態2に係るTFT基板110は以上のように構成されるが、EL素子44を含むTFT基板110には、さらにEL素子44を水分および不純物から遮断するための封止層が設けられ、さらにTFT基板110と対向するように対向基板が設けられ、有機EL素子を用いた自発光型表示装置用のTFT基板として好適に用いることができる。 The TFT substrate 110 according to the second embodiment is configured as described above, and the TFT substrate 110 including the EL element 44 is further provided with a sealing layer for blocking the EL element 44 from moisture and impurities. Further, a facing substrate is provided so as to face the TFT substrate 110, and the TFT substrate can be suitably used as a TFT substrate for a self-luminous display device using an organic EL element.

<製造方法>
次に、本実施の形態2に係るTFT基板110の製造方法について、図9〜図24を用いて説明する。なお、図9〜図24では、図7を最終工程図とする平面図と、図8を最終工程図とする断面図とを交互に示しており、断面図においては、図8のX1−X2線に沿った断面図およびY1−Y2線に沿った断面図を、それぞれ図の左側および右側に示す。
<Manufacturing method>
Next, the method of manufacturing the TFT substrate 110 according to the second embodiment will be described with reference to FIGS. 9 to 24. In addition, in FIGS. 9 to 24, a plan view with FIG. 7 as a final process diagram and a sectional view with FIG. 8 as a final process diagram are alternately shown. In the sectional view, X1-X2 of FIG. 8 is shown. A cross-sectional view along the line and a cross-sectional view along the Y1-Y2 line are shown on the left and right sides of the figure, respectively.

<1回目の写真製版工程:図9、図10>
まず、基板1を洗浄液または純水を用いて洗浄する。本実施の形態2では、厚さ0.5mmのガラス基板を基板1として用いた。そして、洗浄された基板1の一方の主面上に、第1の導電膜を成膜する。
<First photoengraving process: Fig. 9, Fig. 10>
First, the substrate 1 is cleaned with a cleaning liquid or pure water. In the second embodiment, a glass substrate having a thickness of 0.5 mm was used as the substrate 1. Then, a first conductive film is formed on one main surface of the washed substrate 1.

第1の導電膜としては、Arガスを用いたスパッタリング法でMo膜を200nmの厚さに形成した。その後、Mo膜上にフォトレジスト材を塗布し、1回目の写真製版工程でフォトレジストパターンを形成し、当該フォトレジストパターンをマスクにして、Mo膜をPAN薬液を用いたウエットエッチングによりパターニングする。その後、フォトレジストパターンを除去することによって、図9および図10に示すように、基板1上に、TFT101のゲート電極2、TFT102のソース電極3、ドレイン電極4、ソース配線34および駆動電流配線36が同時に形成される。 As the first conductive film, a Mo film was formed to a thickness of 200 nm by a sputtering method using Ar gas. Then, a photoresist material is applied onto the Mo film, a photoresist pattern is formed in the first photoplate-making step, and the Mo film is patterned by wet etching using a PAN chemical solution using the photoresist pattern as a mask. Then, by removing the photoresist pattern, as shown in FIGS. 9 and 10, the gate electrode 2 of the TFT 101, the source electrode 3 of the TFT 102, the drain electrode 4, the source wiring 34, and the drive current wiring 36 are placed on the substrate 1. Are formed at the same time.

また、図9に示されるように、平面視で、ゲート電極2とドレイン電極4は、連続した一体パターンで形成されている。また、ソース配線34と駆動電流配線36は隣接するように縦方向(Y方向)に平行して延在するように形成されている。なお、ソース電極3は、ソース配線34の一部分であり、ソース配線34の他の部分よりも幅が広くなっている部分がソース電極3として形成されている。 Further, as shown in FIG. 9, in a plan view, the gate electrode 2 and the drain electrode 4 are formed in a continuous integrated pattern. Further, the source wiring 34 and the drive current wiring 36 are formed so as to extend in parallel in the vertical direction (Y direction) so as to be adjacent to each other. The source electrode 3 is a part of the source wiring 34, and a portion having a width wider than the other parts of the source wiring 34 is formed as the source electrode 3.

<2回目の写真製版工程:図11、図12>
次に、基板1の主面上の全体に第1の絶縁膜を形成する。本実施の形態2では、第1の絶縁膜として、CVD法を用いて厚さ300nmのSiO膜を、約300℃の基板加熱条件下で形成した。なお、第1の絶縁膜は、SiO膜に限ることなく、他にも例えばSiN膜を用いることができる。SiN膜もSiO膜と同様にCVD法で成膜することができる。また、SiO膜とSiN膜との積層膜としてもよい。
<Second photoengraving process: Fig. 11, Fig. 12>
Next, the first insulating film is formed on the entire main surface of the substrate 1. In the second embodiment, as the first insulating film, a SiO film having a thickness of 300 nm was formed by a CVD method under the substrate heating condition of about 300 ° C. The first insulating film is not limited to the SiO film, and for example, a SiN film can be used. The SiN film can also be formed by the CVD method in the same manner as the SiO film. Further, it may be a laminated film of a SiO film and a SiN film.

次に、2回目の写真製版工程で第1の絶縁膜であるSiO膜上にフォトレジストパターンを形成し、これをマスクとしてSiO膜をエッチングする。このエッチング工程では、SFガスまたはCFガスを用いたドライエッチング法を用いることができる。Next, in the second photoplate making step, a photoresist pattern is formed on the SiO film which is the first insulating film, and the SiO film is etched using this as a mask. In this etching step, a dry etching method using SF 6 gas or CF 4 gas can be used.

その後、フォトレジストパターンを除去することで、図11および図12に示すように、第2のTFT部において、ソース電極3の表面の一部を露出させる開口部7、およびドレイン電極4の表面の一部を露出させる開口部8が、それぞれ形成される。図12に示すように、第1のTFT部の第1の絶縁膜はゲート絶縁層5として機能し、第2のTFT部の第1の絶縁膜は、後の工程で形成される第2の半導体層形成時に、第2の半導体層をソース電極3およびドレイン電極4から受けるダメージから保護する保護絶縁層6として機能する。 After that, by removing the photoresist pattern, as shown in FIGS. 11 and 12, in the second TFT portion, the opening 7 that exposes a part of the surface of the source electrode 3 and the surface of the drain electrode 4 Each of the openings 8 that exposes a part is formed. As shown in FIG. 12, the first insulating film of the first TFT portion functions as the gate insulating layer 5, and the first insulating film of the second TFT portion is the second insulating film formed in a later step. When the semiconductor layer is formed, it functions as a protective insulating layer 6 that protects the second semiconductor layer from damage received from the source electrode 3 and the drain electrode 4.

<3回目の写真製版工程:図13、図14>
次に、第1の絶縁膜上に半導体膜を形成する。本実施の形態2では、半導体膜として酸化物半導体膜を形成する。具体的にはIn:Ga:Zn:Oの原子組成比が1:1:1:4であるInGaZnOターゲットを用い、Arガスに分圧比10%のOガスを添加した混合ガスを用いたスパッタリング法で酸化物半導体膜であるInGaZnO膜を50nmの厚さで形成した。
<Third photoengraving process: FIGS. 13 and 14>
Next, a semiconductor film is formed on the first insulating film. In the second embodiment, an oxide semiconductor film is formed as the semiconductor film. Specifically, sputtering using an InGaZnO target having an atomic composition ratio of In: Ga: Zn: O of 1: 1: 1: 4 and using a mixed gas in which an O 2 gas having a partial pressure ratio of 10% is added to Ar gas. By the method, an InGaZnO film, which is an oxide semiconductor film, was formed with a thickness of 50 nm.

このとき、InGaZnO膜は、アモルファス構造で形成される。アモルファス構造のInGaZnO膜は、一般的に結晶化温度が500℃超であり、常温では膜中の大部分がアモルファス構造のままで安定する。アモルファス構造は、一部が結晶化された微結晶構造および多結晶構造に比べて構造の均一性を高くすることができる。従って、基板が大型化した場合でも基板全体に特性のバラツキが小さい半導体膜を形成することができる利点がある。すなわち、大型の表示装置に用いるTFT基板を大型の表示装置に用いた場合であっても、TFT特性の面内バラツキを小さくすることができるので、表示ムラを防止することができる。 At this time, the InGaZnO film is formed with an amorphous structure. The InGaZnO film having an amorphous structure generally has a crystallization temperature of more than 500 ° C., and at room temperature, most of the film remains stable with an amorphous structure. The amorphous structure can have higher structural uniformity than the partially crystallized microcrystal structure and polycrystalline structure. Therefore, even when the size of the substrate is increased, there is an advantage that a semiconductor film having a small variation in characteristics can be formed on the entire substrate. That is, even when the TFT substrate used for a large-sized display device is used for a large-sized display device, the in-plane variation of the TFT characteristics can be reduced, so that display unevenness can be prevented.

次に、3回目の写真製版工程でInGaZnO膜上にフォトレジストパターンを形成し、これをマスクとしてInGaZnO膜をエッチングする。このエッチング工程では、シュウ酸薬液によるウエットエッチングを用いることができる。その後、フォトレジストパターンを除去することで、図13および図14に示すように、第1のTFT部においてゲート絶縁層5上のゲート電極2と重なる領域に半導体層9が島状のパターンで形成される。 Next, a photoresist pattern is formed on the InGaZnO film in the third photoplate-making step, and the InGaZnO film is etched using this as a mask. In this etching step, wet etching with an oxalic acid chemical solution can be used. After that, by removing the photoresist pattern, as shown in FIGS. 13 and 14, the semiconductor layer 9 is formed in an island-like pattern in the region overlapping the gate electrode 2 on the gate insulating layer 5 in the first TFT portion. Will be done.

また、第2のTFT部において、保護絶縁層6上に半導体層10が形成される。半導体層10は、保護絶縁層6の開口部7を通して下層のソース電極3と接するとともに、保護絶縁層6の開口部8を通して下層のドレイン電極4と接するように形成される。図13に示されるように、平面視で、ソース電極3およびドレイン電極4は、半導体層10と重なる領域内で互いに分離して離間領域を有するように形成されており、半導体層10において、この離間領域がTFT102のチャネル領域CL2(図14)として規定される。 Further, in the second TFT portion, the semiconductor layer 10 is formed on the protective insulating layer 6. The semiconductor layer 10 is formed so as to be in contact with the source electrode 3 of the lower layer through the opening 7 of the protective insulating layer 6 and to be in contact with the drain electrode 4 of the lower layer through the opening 8 of the protective insulating layer 6. As shown in FIG. 13, in a plan view, the source electrode 3 and the drain electrode 4 are formed so as to be separated from each other in a region overlapping the semiconductor layer 10 and have a separated region, and in the semiconductor layer 10, this is formed. The separation region is defined as the channel region CL2 (FIG. 14) of the TFT 102.

半導体層10の材料である酸化物半導体膜をスパッタリング法で形成する場合、下層にソース電極3およびドレイン電極4のような金属膜が露出していると、スパッタリング中に酸化物半導体が金属と反応し、還元(Oイオン欠乏)状態の特性が劣化した酸化物半導体膜が形成されてしまう場合がある。しかしながら、本実施の形態2のTFT102では、開口部7および開口部8を除くTFT102の全体が保護絶縁層6で覆われているので、この影響を防止することができる。すなわち、チャネル領域CL2の保護絶縁層6は、半導体層10のチャネル保護層6として機能する。 When the oxide semiconductor film which is the material of the semiconductor layer 10 is formed by the sputtering method, if the metal film such as the source electrode 3 and the drain electrode 4 is exposed in the lower layer, the oxide semiconductor reacts with the metal during sputtering. However, an oxide semiconductor film having deteriorated characteristics in the reduced (O ion deficient) state may be formed. However, in the TFT 102 of the second embodiment, since the entire TFT 102 excluding the opening 7 and the opening 8 is covered with the protective insulating layer 6, this influence can be prevented. That is, the protective insulating layer 6 of the channel region CL2 functions as the channel protective layer 6 of the semiconductor layer 10.

その後、基板1を大気雰囲気下で400℃の温度で熱処理する。この熱処理によって半導体層9および半導体層10の非晶質のInGaZnO膜が構造緩和を起こし、半導体特性をさらに安定させることができる。非晶質InGaZnO膜に上記の構造緩和を起こさせるための熱処理の温度は、少なくとも300℃以上であることが好ましい。一方、500℃を超えると膜全体で結晶化が始まり半導体特性が大きく変化し、例えばキャリア密度増大により導体化してしまう。従って、ここでは少なくとも基板1を300℃以上500℃以下の温度で熱処理することが好ましい。なお、このような熱処理は、製造工程の最後に実施するようにしてもよい。 Then, the substrate 1 is heat-treated at a temperature of 400 ° C. in an air atmosphere. By this heat treatment, the amorphous InGaZnO film of the semiconductor layer 9 and the semiconductor layer 10 causes structural relaxation, and the semiconductor characteristics can be further stabilized. The temperature of the heat treatment for causing the above-mentioned structural relaxation of the amorphous InGaZnO film is preferably at least 300 ° C. or higher. On the other hand, when the temperature exceeds 500 ° C., crystallization starts in the entire film and the semiconductor characteristics change significantly, and for example, it becomes a conductor due to an increase in carrier density. Therefore, here, it is preferable to heat-treat at least the substrate 1 at a temperature of 300 ° C. or higher and 500 ° C. or lower. In addition, such a heat treatment may be carried out at the end of the manufacturing process.

<4回目の写真製版工程:図15、図16>
次に、基板1の主面上の全体に第2の絶縁膜を形成する。本実施の形態2では、第2の絶縁膜として、CVD法で厚さ300nmのSiO膜を約200℃の基板加熱条件下で形成した。なお、第2の絶縁膜は、SiO膜に限ることなく、他にも例えばSiN膜を用いることができる。また、SiO膜とSiN膜との積層膜としてもよい。
<Fourth photoengraving process: FIGS. 15 and 16>
Next, a second insulating film is formed on the entire main surface of the substrate 1. In the second embodiment, as the second insulating film, a SiO film having a thickness of 300 nm was formed by a CVD method under a substrate heating condition of about 200 ° C. The second insulating film is not limited to the SiO film, and for example, a SiN film can be used. Further, it may be a laminated film of a SiO film and a SiN film.

次に、4回目の写真製版工程で第2の絶縁膜であるSiO膜上にフォトレジストパターンを形成し、これをマスクとしてSiO膜をエッチングする。このエッチング工程では、SFガスまたはCFガスを用いたドライエッチング法を用いることができる。Next, in the fourth photoplate making step, a photoresist pattern is formed on the SiO film which is the second insulating film, and the SiO film is etched using this as a mask. In this etching step, a dry etching method using SF 6 gas or CF 4 gas can be used.

その後、フォトレジストパターンを除去することで、図15および図16に示すように、第1のTFT部の第2の絶縁膜に、半導体層9の表面の一部を露出させる開口部13および開口部14が形成される。第1のTFT部の第2の絶縁膜は、後の工程で形成されるソース電極15およびドレイン電極16からの加工プロセスダメージを防止する保護絶縁層11として機能する。 After that, by removing the photoresist pattern, as shown in FIGS. 15 and 16, the opening 13 and the opening that expose a part of the surface of the semiconductor layer 9 to the second insulating film of the first TFT portion. The portion 14 is formed. The second insulating film of the first TFT portion functions as a protective insulating layer 11 for preventing processing process damage from the source electrode 15 and the drain electrode 16 formed in a later step.

また、第2のTFT部の第2の絶縁膜は、TFT102のゲート絶縁層12として機能する。さらに、駆動電流配線36の表面の一部を露出させるように、第1の絶縁膜および第2の絶縁膜を貫通する開口部30が形成される。 Further, the second insulating film of the second TFT portion functions as the gate insulating layer 12 of the TFT 102. Further, an opening 30 penetrating the first insulating film and the second insulating film is formed so as to expose a part of the surface of the drive current wiring 36.

<5回目の写真製版工程:図17、図18>
次に、第2の絶縁膜上に第2の導電膜を形成する。本実施の形態2では、第2の導電膜としてArガスを用いたスパッタリング法でMo膜を200nmの厚さに形成した。その後、Mo膜上にフォトレジスト材を塗布し、5回目の写真製版工程でフォトレジストパターンを形成し、当該フォトレジストパターンをマスクにして、Mo膜をPAN薬液を用いたウエットエッチングによりパターニングする。その後、フォトレジストパターンを除去することによって、図17および図18に示すように、TFT101のソース電極15およびドレイン電極16が形成され、同時にTFT102のゲート電極17が形成される。
<Fifth photoengraving process: Fig. 17, Fig. 18>
Next, a second conductive film is formed on the second insulating film. In the second embodiment, the Mo film was formed to a thickness of 200 nm by a sputtering method using Ar gas as the second conductive film. Then, a photoresist material is applied onto the Mo film, a photoresist pattern is formed in the fifth photoplate-making step, and the Mo film is patterned by wet etching using a PAN chemical solution using the photoresist pattern as a mask. After that, by removing the photoresist pattern, the source electrode 15 and the drain electrode 16 of the TFT 101 are formed, and at the same time, the gate electrode 17 of the TFT 102 is formed, as shown in FIGS. 17 and 18.

TFT101のソース電極15は、開口部13を通して半導体層9と接するように形成される。またドレイン電極16は、開口部14を通して半導体層9と接するように形成される。ソース電極15とドレイン電極16は、半導体層9と重なる領域内で互いに分離して形成されており、半導体層9におけるソース電極15とドレイン電極16とで挟まれる離間領域が、TFT101のチャネル領域CL1として規定される。 The source electrode 15 of the TFT 101 is formed so as to be in contact with the semiconductor layer 9 through the opening 13. Further, the drain electrode 16 is formed so as to be in contact with the semiconductor layer 9 through the opening 14. The source electrode 15 and the drain electrode 16 are formed separately from each other in a region overlapping the semiconductor layer 9, and the separated region sandwiched between the source electrode 15 and the drain electrode 16 in the semiconductor layer 9 is the channel region CL1 of the TFT 101. Is defined as.

一般的に酸化物半導体膜は薬液耐性に乏しく、半導体層9の材料であるInGaZnO膜は、第2の導電膜のウエットエッチングに用いられるPAN薬液にも容易に溶けてしまう。しかしながら、TFT101では、開口部13および開口部14を除く基板1の全面が第2の絶縁膜で構成される保護絶縁層11で覆われているので、特に半導体層9のチャネル領域CL1上ではチャネル保護層(エッチングストッパ;ES層)として機能する。従って、プロセスダメージのない信頼性の高いTFTを得ることができる。 Generally, the oxide semiconductor film has poor chemical resistance, and the InGaZnO film, which is the material of the semiconductor layer 9, is easily dissolved in the PAN chemical solution used for wet etching of the second conductive film. However, in the TFT 101, since the entire surface of the substrate 1 excluding the opening 13 and the opening 14 is covered with the protective insulating layer 11 formed of the second insulating film, the channel is particularly on the channel region CL1 of the semiconductor layer 9. It functions as a protective layer (etching stopper; ES layer). Therefore, a highly reliable TFT without process damage can be obtained.

ソース電極15は、駆動電流配線36に重なる領域まで延在しており、開口部30を通して駆動電流配線36に接続されている。また、ドレイン電極16は、TFT102のドレイン電極4と連続した一体パターンで設けられたTFT101のゲート電極2と重なる領域まで延在するように形成されている。 The source electrode 15 extends to a region overlapping the drive current wiring 36 and is connected to the drive current wiring 36 through the opening 30. Further, the drain electrode 16 is formed so as to extend to a region overlapping the gate electrode 2 of the TFT 101 provided in an integral pattern continuous with the drain electrode 4 of the TFT 102.

図17に示されるように、平面視で、TFT101のドレイン電極16は、半導体層10と重ならない領域で、ゲート電極2およびTFT102のドレイン電極4のパターンと重なって、これらよりもY方向の幅が広くなるように形成されている。ドレイン電極16とゲート電極2が重なる領域によって保持容量CsAが形成される。 As shown in FIG. 17, in a plan view, the drain electrode 16 of the TFT 101 overlaps the pattern of the gate electrode 2 and the drain electrode 4 of the TFT 102 in a region that does not overlap with the semiconductor layer 10, and is wider in the Y direction than these. Is formed to be wide. The holding capacity CsA is formed by the region where the drain electrode 16 and the gate electrode 2 overlap.

そして、ゲート電極17から延在するゲート配線32が、ソース配線34および駆動電流配線36と直交するように横方向(X方向)に延在されて形成されている。 The gate wiring 32 extending from the gate electrode 17 is formed so as to extend in the lateral direction (X direction) so as to be orthogonal to the source wiring 34 and the drive current wiring 36.

また、図18に示されるように、第2のTFT部のゲート電極17は、ソース電極3とドレイン電極4とが互いに対向して分離された領域において、下層の半導体層10のチャネル領域CL2と重なるように形成されている。また、ゲート電極17は、ソース電極3およびドレイン電極とは重ならないように形成されており、これらの重なりによる寄生容量が形成されないように構成されている。これにより、応答性に優れたTFTを得ることができる。さらに、半導体層10のチャネル領域CL2は、保護絶縁層6で保護されているので、TFT101と同様に、プロセスダメージのない信頼性の高いTFTを得ることができる。 Further, as shown in FIG. 18, the gate electrode 17 of the second TFT portion is separated from the channel region CL2 of the lower semiconductor layer 10 in the region where the source electrode 3 and the drain electrode 4 are separated from each other. It is formed so as to overlap. Further, the gate electrode 17 is formed so as not to overlap with the source electrode 3 and the drain electrode, and is configured so as not to form a parasitic capacitance due to their overlap. As a result, a TFT having excellent responsiveness can be obtained. Further, since the channel region CL2 of the semiconductor layer 10 is protected by the protective insulating layer 6, a highly reliable TFT without process damage can be obtained as in the case of the TFT 101.

<6回目の写真製版工程:図19、図20>
次に、基板1の主面上の全体に第3の絶縁膜を形成する。本実施の形態2では、第3の絶縁膜として、樹脂系の塗布膜を用いる。具体的には感光性を有する透明アクリル樹脂膜を、スピンコート法を用いて塗布形成した。このような透明アクリル樹脂膜を形成することにより、下層の電極パターンの段差および絶縁膜の開口部パターンの段差等に起因する基板表面の凹凸形状をほぼ平坦にすることができる。
<Sixth photoengraving process: Fig. 19, Fig. 20>
Next, a third insulating film is formed on the entire main surface of the substrate 1. In the second embodiment, a resin-based coating film is used as the third insulating film. Specifically, a photosensitive transparent acrylic resin film was applied and formed by using a spin coating method. By forming such a transparent acrylic resin film, the uneven shape of the substrate surface due to the step difference of the electrode pattern of the lower layer and the step difference of the opening pattern of the insulating film can be made substantially flat.

本実施の形態2では、透明アクリル樹脂膜の膜厚が最も薄くなる部分で厚さが1.5μmになるように塗布形成した。また、第3の絶縁膜として透明アクリル樹脂膜を塗布形成する前に、例えばCVD法でSiO膜またはSiN膜を形成するようにしてもよい。なお、樹脂系の塗布膜は、アクリル系以外にも、SOG(Spin-On Glass)系、エポキシ系、ポリイミド系、あるいはポリオレフィン系の樹脂膜を用いることができる。 In the second embodiment, the transparent acrylic resin film is coated and formed so that the thickness is 1.5 μm at the portion where the film thickness is the thinnest. Further, a SiO film or a SiN film may be formed by, for example, a CVD method before the transparent acrylic resin film is applied and formed as the third insulating film. As the resin-based coating film, an SOG (Spin-On Glass) -based, epoxy-based, polyimide-based, or polyolefin-based resin film can be used in addition to the acrylic-based coating film.

その後、6回目の写真製版工程で透明アクリル系樹脂を露光し、現像することによって、図19および図20に示すように、保持容量CsAが形成された領域の保護絶縁層18に、第1のTFT部のドレイン電極16の表面の一部が露出されるように開口部40が形成される。下層にSiO膜またはSiN膜が形成されている場合には、開口部40が形成された保護絶縁層18(透明アクリル系樹脂)をマスクにして、SFガスまたはCFガスを用いたドライエッチング法を用いてSiO膜またはSiN膜をエッチングすることにより、ドレイン電極16の表面の一部を露出させて開口部40を形成する。Then, by exposing and developing the transparent acrylic resin in the sixth photoengraving step, as shown in FIGS. 19 and 20, the protective insulating layer 18 in the region where the holding capacity CsA was formed was subjected to the first. The opening 40 is formed so that a part of the surface of the drain electrode 16 of the TFT portion is exposed. When a SiO film or SiN film is formed on the lower layer, dry etching using SF 6 gas or CF 4 gas using the protective insulating layer 18 (transparent acrylic resin) on which the opening 40 is formed as a mask. By etching the SiO film or SiN film using the method, a part of the surface of the drain electrode 16 is exposed to form the opening 40.

<7回目の写真製版工程:図21、図22>
次に、開口部40を含む保護絶縁層18上に、第4の導電膜を形成する。本実施の形態2では、第4の導電膜として、透明性を有するITO膜(酸化インジウムInと酸化すずSnOとを含む酸化物導電膜)を用いる。具体的には、InとSnOとの混合比が90:10(重量%)のITO膜をスパッタリング法で形成する。ITO膜は一般的に、常温中では結晶質(多結晶)構造が安定であるが、ここではArガスに水素(H)を含むガス、例えば、水素(H)ガスまたは水蒸気(HO)などを混合したガスを用いてスパッタリングを行い、厚さ100nmのITO膜をアモルファス状態(アモルファスITO膜)で形成した。
<7th photoengraving process: Fig. 21, Fig. 22>
Next, a fourth conductive film is formed on the protective insulating layer 18 including the opening 40. In the second embodiment, as the fourth conductive film, a transparent ITO film (an oxide conductive film containing indium oxide In 2 O 3 and tin oxide Sn O 2 ) is used. Specifically, an ITO film having a mixing ratio of In 2 O 3 and Sn O 2 of 90:10 (% by weight) is formed by a sputtering method. The ITO film generally has a stable crystalline (polycrystalline) structure at room temperature, but here, a gas containing hydrogen (H) in Ar gas, for example, hydrogen (H 2 ) gas or water vapor (H 2 O). ) And the like were subjected to sputtering to form an ITO film having a thickness of 100 nm in an amorphous state (amorphous ITO film).

その後、7回目の写真製版工程でアモルファスITO膜上にフォトレジストパターンを形成し、これをマスクとしてアモルファスITO膜をエッチングする。このエッチング工程では、シュウ酸薬液によるウエットエッチングを用いることができる。その後、フォトレジストパターンを除去することで、図21および図22に示すように、透明性を有するITO膜で構成されるアノード電極41が形成される。アノード電極41は、保持容量CsAにおいて、保護絶縁層18の開口部40を通して下層のドレイン電極16に接続されるとともに、画素領域PXまで延在するように形成されている。 Then, in the seventh photoplate making step, a photoresist pattern is formed on the amorphous ITO film, and the amorphous ITO film is etched using this as a mask. In this etching step, wet etching with an oxalic acid chemical solution can be used. After that, by removing the photoresist pattern, as shown in FIGS. 21 and 22, the anode electrode 41 made of a transparent ITO film is formed. The anode electrode 41 is formed so as to be connected to the drain electrode 16 of the lower layer through the opening 40 of the protective insulating layer 18 and extend to the pixel region PX in the holding capacity CsA.

図21に示されるように、平面視で、画素領域PXは、ゲート配線32、ソース配線34および駆動電流配線36によって囲まれた領域で規定されている。アノード電極41は、ドレイン電極16と重なる領域に設けられた開口部40と重なる領域から、画素領域PXまで延在するように形成される。本実施の形態2では、アノード電極41はソース配線34または駆動電流配線36と重ならないように形成したが、一部が重なるような態様で形成してもよい。本実施の形態2において第4の導電膜として形成したアモルファスITO膜は、結晶粒界がないために膜表面の平坦性を極めて高くすることができる。これにより、アノード電極41から面内均一性の高い電流信号をEL素子44(図7)に供給することができるので、EL素子44の面内全体からムラの少ない均一な発光をさせることができる。 As shown in FIG. 21, in plan view, the pixel region PX is defined by the region surrounded by the gate wiring 32, the source wiring 34, and the drive current wiring 36. The anode electrode 41 is formed so as to extend from a region overlapping the opening 40 provided in the region overlapping the drain electrode 16 to the pixel region PX. In the second embodiment, the anode electrode 41 is formed so as not to overlap with the source wiring 34 or the drive current wiring 36, but may be formed so as to partially overlap. Since the amorphous ITO film formed as the fourth conductive film in the second embodiment has no crystal grain boundaries, the flatness of the film surface can be made extremely high. As a result, a current signal having high in-plane uniformity can be supplied from the anode electrode 41 to the EL element 44 (FIG. 7), so that uniform light emission with little unevenness can be generated from the entire in-plane of the EL element 44. ..

<8回目の写真製版工程:図23、図24>
次に、基板1の主面上の全体に、バンク層42となる第4の絶縁膜を形成する。本実施の形態2では、第4の絶縁膜として、樹脂系の塗布膜を用いる。具体的には感光性を有する透明アクリル樹脂膜を、スピンコート法を用いて厚さが1.5μmとなるように塗布形成した。なお、アクリル系以外にも、SOG系、エポキシ系、ポリイミド系、あるいはポリオレフィン系の樹脂膜を用いることができる。特にポリイミド系樹脂膜は吸着水分が少ないため、この後の工程で形成されるEL素子の特性および信頼性に影響を及ぼすことがないために好ましい。
<8th photoengraving process: Fig. 23, Fig. 24>
Next, a fourth insulating film to be the bank layer 42 is formed on the entire main surface of the substrate 1. In the second embodiment, a resin-based coating film is used as the fourth insulating film. Specifically, a photosensitive transparent acrylic resin film was applied and formed so as to have a thickness of 1.5 μm by a spin coating method. In addition to the acrylic type, SOG type, epoxy type, polyimide type, or polyolefin type resin films can be used. In particular, the polyimide resin film is preferable because it has a small amount of adsorbed water and does not affect the characteristics and reliability of the EL element formed in the subsequent steps.

その後、8回目の写真製版工程で透明アクリル系樹脂を露光し、現像することによって、図23および図24に示すように、画素領域PXにアノード電極41の表面が露出されるバンク開口部43を有するバンク層42が形成される。バンク開口部43は、アノード電極41上の画素表示領域、すなわち、この後の工程でEL素子44が形成される領域のみに形成され、互いに隣り合うバンク開口部43どうしは、バンク層42によって互いに隔離された態様となる。 Then, in the eighth photoengraving step, the transparent acrylic resin is exposed and developed to provide a bank opening 43 in which the surface of the anode electrode 41 is exposed in the pixel region PX, as shown in FIGS. 23 and 24. The bank layer 42 having the bank layer 42 is formed. The bank openings 43 are formed only in the pixel display region on the anode electrode 41, that is, the region where the EL element 44 is formed in the subsequent step, and the bank openings 43 adjacent to each other are formed by the bank layer 42. It is an isolated aspect.

次に、最終工程で、バンク開口部43の領域内に、アノード電極41と接するようにEL素子44を形成することで、図7および図8に示す構成を得る。本実施の形態2では、EL素子44のEL層として有機系の有機EL材料を用いる。具体的にはインクジェットによる印刷法を用いてホール輸送層、有機EL層、電子輸送層をこの順に積層してEL層を形成した。インクジェットによる印刷法によれば、バンク開口部43の凹領域内のみにEL層を選択的に形成することができるので、写真製版工程を用いることなくEL素子44を形成することができる。 Next, in the final step, the EL element 44 is formed in the region of the bank opening 43 so as to be in contact with the anode electrode 41, thereby obtaining the configurations shown in FIGS. 7 and 8. In the second embodiment, an organic organic EL material is used as the EL layer of the EL element 44. Specifically, an EL layer was formed by laminating a hole transport layer, an organic EL layer, and an electron transport layer in this order using a printing method using an inkjet. According to the printing method by an inkjet, the EL layer can be selectively formed only in the concave region of the bank opening 43, so that the EL element 44 can be formed without using the photoengraving process.

ホール輸送層としては公知のトリアリールアミン類、芳香族ヒドラゾン類、芳香族置換ピラゾリン類、スチルベン類等の有機系材料から幅広く選択することができ、例えばN,N’−ジフェニル−N,N−ビス(3−メチルフェニル)−1,1‘−ジフェニル−4,4’−ジアミン等のトリフェニルアミン系(TPD)等を用いて1nm〜200nmの任意の厚さで形成する。 The whole transport layer can be widely selected from known organic materials such as triarylamines, aromatic hydrazones, aromatic-substituted pyrazolines, and stillbens, and can be selected from, for example, N, N'-diphenyl-N, N-. It is formed to an arbitrary thickness of 1 nm to 200 nm using a triphenylamine system (TPD) such as bis (3-methylphenyl) -1,1'-diphenyl-4,4'-diamine.

有機EL層としては公知のジシアノメチレンピラン誘導体(R色発光)、クマリン系(G色発光)、キナクリドン系(G色発光)、テトラフェニルブタジエン系(B色発光)、ジスチリルベンゼン系(B色発光)等の材料が1nm〜200nmの任意の厚さで形成される。電子輸送層としては公知のオキサジアゾール誘導体、トリアゾール誘導体、クマリン誘導体等から選ばれる材料を用いて0.1nm〜200nmの任意の厚さで形成する。 Known organic EL layers include dicyanomethylenepyrane derivative (R color emission), coumarin type (G color emission), quinacridone type (G color emission), tetraphenylbutadiene type (B color emission), and distyrylbenzene type (B color emission). A material such as (emission) is formed with an arbitrary thickness of 1 nm to 200 nm. The electron transport layer is formed with an arbitrary thickness of 0.1 nm to 200 nm using a material selected from known oxadiazole derivatives, triazole derivatives, coumarin derivatives and the like.

EL層は、印刷法の他にも蒸着法を用いて形成することができる。蒸着法の場合は、基板1の表面に、例えばバンク開口部43と同じ開口パターンを有する金属マスクを付けたマスク蒸着法を用いることによって、写真製版工程を用いることなくEL素子44を形成することができる。 The EL layer can be formed by using a vapor deposition method in addition to the printing method. In the case of the vapor deposition method, the EL element 44 is formed by using, for example, a mask vapor deposition method in which a metal mask having the same opening pattern as the bank opening 43 is attached to the surface of the substrate 1 without using a photoplate making process. Can be done.

以上説明した工程を経て本実施の形態2に係るTFT基板110が完成される。図25に示すように、完成されたTFT基板110上には、アノード電極41の対向電極となるカソード電極45が形成される。さらに必要に応じてさらにEL素子44を含むTFT基板110を水分および不純物から遮断するための封止層46が形成され、さらにTFT基板110と対向するように対向基板47が貼り合わされ、有機EL素子を用いた有機ELディスプレイを備えた自発光型表示装置300が完成する。 The TFT substrate 110 according to the second embodiment is completed through the steps described above. As shown in FIG. 25, a cathode electrode 45, which is a counter electrode of the anode electrode 41, is formed on the completed TFT substrate 110. Further, if necessary, a sealing layer 46 for blocking the TFT substrate 110 including the EL element 44 from moisture and impurities is further formed, and the opposing substrate 47 is further bonded so as to face the TFT substrate 110, so that the organic EL element is formed. A self-luminous display device 300 equipped with an organic EL display using the above is completed.

自発光型表示装置300は、表示欠陥が少なく、高開口率で明るい表示品質の表示装置を低コストで実現することができる。 The self-luminous display device 300 can realize a display device with a high aperture ratio and bright display quality with few display defects at low cost.

なお、本実施の形態2に係るTFT基板110を備える自発光型表示装置300は、EL素子の発光光ELLをTFT基板110を通して下方(対向基板47とは反対側)に発光させて表示を行うボトムエミッション型の自発光型表示装置となる。ただし、ボトムエミッション型に限らず、EL素子の発光光ELLをTFT基板110の上方(対向基板47側)に発光させて表示を行うトップエミッション型の自発光型表示装置とすることも可能である。この場合は、上述した7回目の写真製版工程において、アノード電極41の材料となる第4の導電膜を、透明性を有するITO膜の代わりに、高い反射率を有する銀(Ag)系またはAl系の金属膜で形成する。なお、金属膜上にITO膜を形成するようにしてもよい。これにより、有機EL素子からの発光光ELLをアノード電極41で反射させて上方に発光させることができるので、トップエミッション型の自発光型表示装置を得ることができる。 The self-luminous display device 300 including the TFT substrate 110 according to the second embodiment emits the emitted light ELL of the EL element downward (opposite to the opposing substrate 47) through the TFT substrate 110 for display. It will be a bottom emission type self-luminous display device. However, the display is not limited to the bottom emission type, and it is also possible to use a top emission type self-luminous display device that emits light from the emission light ELL of the EL element above the TFT substrate 110 (opposite substrate 47 side) for display. .. In this case, in the seventh photoplate-making step described above, the fourth conductive film used as the material for the anode electrode 41 is replaced with a transparent ITO film, which is silver (Ag) -based or Al having high reflectance. It is formed of a system metal film. The ITO film may be formed on the metal film. As a result, the emitted light ELL from the organic EL element can be reflected by the anode electrode 41 to emit light upward, so that a top-emission type self-luminous display device can be obtained.

本実施の形態2に係るTFT基板110において、TFT102は、ゲート配線32およびソース配線34と電気的に接続されており、ゲート配線32とソース配線34の信号に応じて表示画素を選択するための選択TFTとして機能する。 In the TFT substrate 110 according to the second embodiment, the TFT 102 is electrically connected to the gate wiring 32 and the source wiring 34, and is used to select display pixels according to the signals of the gate wiring 32 and the source wiring 34. Functions as a selective TFT.

TFT102のゲート電極17と、ソース電極3およびドレイン電極4とは、互いに寄生容量が形成されないように構成されているので、応答性に優れたTFTを得ることができる。 Since the gate electrode 17 of the TFT 102, the source electrode 3 and the drain electrode 4 are configured so that parasitic capacitances are not formed on each other, a TFT having excellent responsiveness can be obtained.

さらに半導体層10のチャネル領域CL2は、保護絶縁層6で保護されているので、プロセスダメージのない信頼性の高いTFTを得ることができる。従って、選択TFTとして高い性能を発揮させることができる。 Further, since the channel region CL2 of the semiconductor layer 10 is protected by the protective insulating layer 6, a highly reliable TFT without process damage can be obtained. Therefore, high performance can be exhibited as a selective TFT.

一方、TFT101は、TFT102のドレイン電極4、駆動電流配線36およびEL素子44と電気的に接続されており、EL素子44の画素駆動TFTとして機能する。TFT102のドレイン電極4から出力された選択信号が保持容量CsAに書き込まれると、書き込まれた電圧によってTFT101が動作して、駆動電流配線36からの信号電流が、駆動電流としてEL素子44に供給され、EL素子44が発光する。 On the other hand, the TFT 101 is electrically connected to the drain electrode 4, the drive current wiring 36, and the EL element 44 of the TFT 102, and functions as a pixel drive TFT of the EL element 44. When the selection signal output from the drain electrode 4 of the TFT 102 is written to the holding capacitance CsA, the TFT 101 operates according to the written voltage, and the signal current from the drive current wiring 36 is supplied to the EL element 44 as a drive current. , EL element 44 emits light.

TFT101のチャネル領域CL1は、保護絶縁層11で保護されているので、信頼性が高く、EL素子44に安定的に信号電流を供給することができるので、EL素子44を安定的に発光させ、高品質の画像表示をすることができる。 Since the channel region CL1 of the TFT 101 is protected by the protective insulating layer 11, the reliability is high and the signal current can be stably supplied to the EL element 44, so that the EL element 44 can emit light stably. High quality image display is possible.

また、本実施の形態2に係るTFT基板110によれば、TFT102のドレイン電極4とTFT101のゲート電極2とを同じ第1の導電膜の連続パターンで形成して一体としているので、例えば、両者を別体で形成し、コンタクトホールを介して電気的に接続した構成に比べると、TFT102からTFT101への信号の伝達不良による表示欠陥の発生率を低く抑えることができる。 Further, according to the TFT substrate 110 according to the second embodiment, the drain electrode 4 of the TFT 102 and the gate electrode 2 of the TFT 101 are formed and integrated in the same continuous pattern of the first conductive film. Is formed as a separate body, and the occurrence rate of display defects due to poor signal transmission from the TFT 102 to the TFT 101 can be suppressed as compared with a configuration in which the above is formed separately and electrically connected via a contact hole.

さらに連続して一体化されたゲート電極2およびドレイン電極4を保持容量CsAの容量電極として用いることができるため、米国特許第9721973号公報のFig.7のような電荷蓄積部にコンタクトホールが形成されている構成と比べると、はるかに面積効率よく保持容量CsAを形成することができるので、TFT回路の形成領域を小さくすることができ、画素領域PXの開口率を向上させることができる。これにより、基板1を通してEL素子44を下方に発光させて表示を行うボトムエミッション型の自発光型表示装置の場合でも、明るく高品質の画像表示をすることができる。 Further, since the continuously integrated gate electrode 2 and drain electrode 4 can be used as a capacitance electrode having a holding capacitance of CsA, Fig. 9721973, US Pat. No. Compared with the configuration in which the contact hole is formed in the charge storage portion such as No. 7, the holding capacity CsA can be formed much more efficiently in the area, so that the formation region of the TFT circuit can be reduced and the pixel region can be reduced. The aperture ratio of the PX can be improved. As a result, even in the case of a bottom emission type self-luminous display device in which the EL element 44 emits light downward through the substrate 1 for display, bright and high-quality image display can be performed.

<実施の形態3>
以上説明した実施の形態2では、TFT基板上に配設されるアノード電極上に、直接に有機EL層を作り込む自発光型表示装置用のTFT基板の構成例を示したが、実施の形態3では、TFT基板上にLED素子(LEDチップ)を実装して、画像表示を行う方式の自発光型表示装置(LEDディスプレイ)用のTFT基板の構成例を示す。
<Embodiment 3>
In the second embodiment described above, a configuration example of a TFT substrate for a self-luminous display device in which an organic EL layer is directly formed on an anode electrode arranged on the TFT substrate has been shown. Section 3 shows a configuration example of a TFT substrate for a self-luminous display device (LED display) in which an LED element (LED chip) is mounted on the TFT substrate to display an image.

以下、図26〜図28を用いて、本実施の形態3に係るTFT基板120の構成について説明する。なお、実施の形態1および実施の形態2と同じ構成要素には同一符号を付け、重複する説明は省略する。 Hereinafter, the configuration of the TFT substrate 120 according to the third embodiment will be described with reference to FIGS. 26 to 28. The same components as those in the first and second embodiments are designated by the same reference numerals, and duplicate description will be omitted.

図26は、本実施の形態3に係るTFT基板120の画素の画素部駆動回路LEDC1の構成を示す図である。図27は、TFT基板120に設けられたTFT101、TFT102、保持容量CsAおよび画素領域PXを含む画素の平面構成を示す部分平面図であり、図28は、画素の断面構成を示す部分断面図である。 FIG. 26 is a diagram showing a configuration of a pixel portion drive circuit LEDC1 for pixels of the TFT substrate 120 according to the third embodiment. FIG. 27 is a partial plan view showing the planar configuration of the pixels including the TFT 101, TFT 102, the holding capacity CsA, and the pixel region PX provided on the TFT substrate 120, and FIG. 28 is a partial sectional view showing the cross-sectional configuration of the pixels. is there.

図27におけるX1−X2線は、TFT101、TFT102、保持容量CsAおよびLED素子実装部を含む画素領域PXに渡り、Y1−Y2線は、TFT101のソース電極15から駆動電流配線部に渡るように設けられており、X1−X2線での矢示方向断面図およびY1−Y2線での矢示方向断面図を、それぞれ図28の左側および右側に示す。 The X1-X2 wire in FIG. 27 extends over the pixel region PX including the TFT 101, the TFT 102, the holding capacity CsA, and the LED element mounting portion, and the Y1-Y2 wire is provided so as to extend from the source electrode 15 of the TFT 101 to the drive current wiring portion. The cross-sectional view in the arrow direction along the X1-X2 line and the cross-sectional view in the arrow direction along the Y1-Y2 line are shown on the left and right sides of FIG. 28, respectively.

本実施の形態3では、TFT基板120の個々の画素にLED素子を実装して自発光型表示装置を構成する。従って、図6に示した実施の形態2の画素部駆動回路ELC1とは異なり、図26に示すように、TFT基板120上にはアノード電極61(第1の電極)とカソード電極63(第2の電極)とが設けられ、LED素子200(発光ダイオード素子)が、アノード電極61およびカソード電極63に接続されて配設されている。 In the third embodiment, an LED element is mounted on each pixel of the TFT substrate 120 to form a self-luminous display device. Therefore, unlike the pixel unit drive circuit ELC1 of the second embodiment shown in FIG. 6, as shown in FIG. 26, the anode electrode 61 (first electrode) and the cathode electrode 63 (second electrode) are on the TFT substrate 120. The electrode) is provided, and the LED element 200 (light emitting diode element) is arranged so as to be connected to the anode electrode 61 and the cathode electrode 63.

また、図26および図27に示されるように、TFT基板120は、基板上に複数のゲート配線32と、複数のソース配線34とが互いに直交するように交差して配設され、ゲート配線32とソース配線34との交差部にはTFT102が設けられている。TFT102のゲート電極17はゲート配線32と電気的に接続され、TFT102のソース電極3はソース配線34と電気的に接続されている。TFT102は、ゲート配線32とソース配線34の信号に対応して表示画素を選択するための選択TFTとして機能する。 Further, as shown in FIGS. 26 and 27, the TFT substrate 120 is arranged on the substrate so that a plurality of gate wirings 32 and a plurality of source wirings 34 intersect each other so as to be orthogonal to each other, and the gate wirings 32 are arranged. A TFT 102 is provided at the intersection of the source wiring 34 and the source wiring 34. The gate electrode 17 of the TFT 102 is electrically connected to the gate wiring 32, and the source electrode 3 of the TFT 102 is electrically connected to the source wiring 34. The TFT 102 functions as a selection TFT for selecting display pixels corresponding to the signals of the gate wiring 32 and the source wiring 34.

さらに、複数の駆動電流配線36が、複数のソース配線34と隣接して平行に配設され、ゲート配線32と駆動電流配線36との交差部にはTFT101が設けられている。TFT101のゲート電極2はTFT102のドレイン電極4と電気的に接続されている。TFT101のソース電極15は、駆動電流配線36と電気的に接続され、ドレイン電極16はLED素子200を駆動させるためのアノード電極61と電気的に接続される。また、複数のカソード電極配線62(第2の配線)が、複数のゲート配線32と隣接して平行に配設され、カソード電極配線62と電気的に接続されたカソード電極63がLED素子200に接続されている。 Further, a plurality of drive current wirings 36 are arranged in parallel adjacent to the plurality of source wirings 34, and a TFT 101 is provided at the intersection of the gate wiring 32 and the drive current wiring 36. The gate electrode 2 of the TFT 101 is electrically connected to the drain electrode 4 of the TFT 102. The source electrode 15 of the TFT 101 is electrically connected to the drive current wiring 36, and the drain electrode 16 is electrically connected to the anode electrode 61 for driving the LED element 200. Further, a plurality of cathode electrode wirings 62 (second wirings) are arranged adjacent to and parallel to the plurality of gate wirings 32, and the cathode electrodes 63 electrically connected to the cathode electrode wirings 62 are connected to the LED element 200. It is connected.

さらにTFT101には、ゲート電極2とドレイン電極16との間に接続された保持容量CsAが設けられている。TFT102のドレイン電極4から出力された選択信号が保持容量CsAに書き込まれると、書き込まれた電圧によってTFT101が動作して、駆動電流配線36からの信号電流が、アノード電極61とカソード電極63との電位差によってLED素子200に供給され、LED素子200が発光する。 Further, the TFT 101 is provided with a holding capacity CsA connected between the gate electrode 2 and the drain electrode 16. When the selection signal output from the drain electrode 4 of the TFT 102 is written to the holding capacitance CsA, the TFT 101 operates according to the written voltage, and the signal current from the drive current wiring 36 is transferred to the anode electrode 61 and the cathode electrode 63. It is supplied to the LED element 200 by the potential difference, and the LED element 200 emits light.

図28のX1−X2線に沿った断面図およびY1−Y2線に沿った断面図に示すように、基板1上のTFT101には、第1の導電膜で構成されるゲート電極2および駆動電流配線36が設けられ、これらを覆うように第1の絶縁膜で構成されるゲート絶縁層5が設けられている。またTFT102には、ソース電極3およびドレイン電極4が設けられ、これらを覆うように第1の絶縁膜で構成される保護絶縁層6が設けられている。保護絶縁層6には、ソース電極3の表面の一部を露出させる開口部7と、ドレイン電極4の表面の一部を露出させる開口部8が設けられている。 As shown in the cross-sectional view taken along the line X1-X2 and the cross-sectional view taken along the line Y1-Y2 in FIG. 28, the TFT 101 on the substrate 1 has a gate electrode 2 composed of a first conductive film and a driving current. Wiring 36 is provided, and a gate insulating layer 5 composed of a first insulating film is provided so as to cover the wiring 36. Further, the TFT 102 is provided with a source electrode 3 and a drain electrode 4, and is provided with a protective insulating layer 6 formed of a first insulating film so as to cover them. The protective insulating layer 6 is provided with an opening 7 for exposing a part of the surface of the source electrode 3 and an opening 8 for exposing a part of the surface of the drain electrode 4.

図27に示されるように、平面視で、TFT101のゲート電極2とTFT102のドレイン電極4は、連続した一体パターンとして設けられている。駆動電流配線36は縦方向(Y方向)に延在するように配設され、ソース配線34が駆動電流配線36と隣接するように縦方向(Y方向)に平行して延在するように配設されている。TFT102のソース電極3は、ソース配線34の一部分である。すなわち、ソース配線34は、第1の導電膜で構成され、ソース配線34におけるTFT102側に延在する部分がソース電極3となっている。ソース電極3が設けられた部分は、ソース配線34の他の部分よりも幅が広くなっている。 As shown in FIG. 27, in a plan view, the gate electrode 2 of the TFT 101 and the drain electrode 4 of the TFT 102 are provided as a continuous integrated pattern. The drive current wiring 36 is arranged so as to extend in the vertical direction (Y direction), and the source wiring 34 is arranged so as to extend parallel to the vertical direction (Y direction) so as to be adjacent to the drive current wiring 36. It is installed. The source electrode 3 of the TFT 102 is a part of the source wiring 34. That is, the source wiring 34 is composed of the first conductive film, and the portion of the source wiring 34 extending toward the TFT 102 is the source electrode 3. The portion provided with the source electrode 3 is wider than the other portion of the source wiring 34.

また、図28のX1−X2線に沿った断面図およびY1−Y2線に沿った断面図に示すように、TFT101のゲート絶縁層5上に、半導体膜で構成される半導体層9が設けられている。またTFT102の保護絶縁層6上に、半導体膜で構成される半導体層10が設けられている。半導体層10は、開口部7を通して下層のソース電極3と接するとともに、開口部8を通して下層のドレイン電極4と接している。 Further, as shown in the cross-sectional view taken along the line X1-X2 and the cross-sectional view taken along the line Y1-Y2 in FIG. 28, a semiconductor layer 9 composed of a semiconductor film is provided on the gate insulating layer 5 of the TFT 101. ing. Further, a semiconductor layer 10 made of a semiconductor film is provided on the protective insulating layer 6 of the TFT 102. The semiconductor layer 10 is in contact with the source electrode 3 of the lower layer through the opening 7, and is in contact with the drain electrode 4 of the lower layer through the opening 8.

図27に示されるように、平面視で、TFT101の半導体層9は、ゲート電極2と重なる領域に島状のパターンで配設されている。また、のTFT102のソース電極3とドレイン電極4とは、互いに対向して分離されて配設されており、半導体層10は、互いに分離されたソース電極3とドレイン電極4とに跨るように島状のパターンで配設されている。 As shown in FIG. 27, in a plan view, the semiconductor layer 9 of the TFT 101 is arranged in an island-like pattern in a region overlapping the gate electrode 2. Further, the source electrode 3 and the drain electrode 4 of the TFT 102 of the TFT 102 are separated and arranged so as to face each other, and the semiconductor layer 10 is an island so as to straddle the source electrode 3 and the drain electrode 4 separated from each other. It is arranged in a similar pattern.

上述した第1の絶縁膜および半導体膜を覆うように、第2の絶縁膜が設けられ、図28のX1−X2線に沿った断面図およびY1−Y2線に沿った断面図に示すように、TFT101の第2の絶縁膜には、下層の半導体層9の表面の一部が露出するように、それぞれ開口部13および開口部14が設けられている。 A second insulating film is provided so as to cover the first insulating film and the semiconductor film described above, and as shown in the cross-sectional view taken along the line X1-X2 and the cross-sectional view taken along the line Y1-Y2 in FIG. 28. The second insulating film of the TFT 101 is provided with an opening 13 and an opening 14, respectively, so that a part of the surface of the lower semiconductor layer 9 is exposed.

半導体層9と重なる領域において、第2の絶縁膜の開口部13と開口部14との間の領域は、半導体層9をプロセスダメージから保護するための保護絶縁層11として機能する。また、TFT102の半導体層10上の第2の絶縁膜は、TFT102のゲート絶縁層12として機能する。 In the region overlapping the semiconductor layer 9, the region between the opening 13 and the opening 14 of the second insulating film functions as a protective insulating layer 11 for protecting the semiconductor layer 9 from process damage. Further, the second insulating film on the semiconductor layer 10 of the TFT 102 functions as the gate insulating layer 12 of the TFT 102.

また、TFT101の保護絶縁層11を含む第2の絶縁膜上には、開口部13を通して半導体層9と接するように、第2の導電膜で構成されるソース電極15が設けられ、さらに開口部14を通して半導体層9と接するように、第2の導電膜で構成されるドレイン電極16が設けられている。また、画素領域PXの第2の絶縁膜上には、第2の導電膜で構成されるカソード電極配線62が設けられている。 Further, on the second insulating film including the protective insulating layer 11 of the TFT 101, a source electrode 15 composed of a second conductive film is provided so as to be in contact with the semiconductor layer 9 through the opening 13, and the opening is further provided. A drain electrode 16 composed of a second conductive film is provided so as to come into contact with the semiconductor layer 9 through 14. Further, a cathode electrode wiring 62 composed of a second conductive film is provided on the second insulating film of the pixel region PX.

ソース電極15は、駆動電流配線36に重なる領域まで延在しており、駆動電流配線36の表面の一部を露出させるように第1の絶縁膜と第2の絶縁膜を貫通するように設けられた開口部30を通して駆動電流配線36に接続されている。また、ドレイン電極16は、TFT102部のドレイン電極4と連続した一体パターンで設けられたTFT101のゲート電極2と重なる領域まで延在するように配設されている。そして、TFT102の半導体層10と重なる領域のゲート絶縁層12上には、第2の導電膜で構成されるゲート電極17が設けられている。 The source electrode 15 extends to a region overlapping the drive current wiring 36, and is provided so as to penetrate the first insulating film and the second insulating film so as to expose a part of the surface of the drive current wiring 36. It is connected to the drive current wiring 36 through the opening 30. Further, the drain electrode 16 is arranged so as to extend to a region overlapping the gate electrode 2 of the TFT 101 provided in an integral pattern continuous with the drain electrode 4 of the TFT 102 portion. A gate electrode 17 composed of a second conductive film is provided on the gate insulating layer 12 in a region overlapping the semiconductor layer 10 of the TFT 102.

図27に示されるように、平面視で、TFT101のドレイン電極16は、半導体層9と重なる領域からはみ出した領域で、ゲート電極2およびTFT102のドレイン電極4のパターンと広く重なるような形状で配設されている。そしてドレイン電極16とゲート電極2が重なる領域によって保持容量CsAが形成される。 As shown in FIG. 27, in a plan view, the drain electrode 16 of the TFT 101 is arranged so as to be a region protruding from the region overlapping the semiconductor layer 9 and widely overlapping the pattern of the gate electrode 2 and the drain electrode 4 of the TFT 102. It is installed. Then, the holding capacity CsA is formed by the region where the drain electrode 16 and the gate electrode 2 overlap.

また、図27に示されるように、平面視で、TFT102のゲート電極17は、ソース電極3とドレイン電極4とが互いに対向して分離された領域において、半導体層10と重なるように配設されている。また、ゲート電極17は、ソース電極3およびドレイン電極4とは重ならないように配設されており、これらの重なりによる寄生容量が形成されないように構成されている。そして、ゲート電極17から延在するゲート配線32が、ソース配線34および駆動電流配線36と直交するように横方向(X方向)に延在するように設けられている。また、カソード電極配線62は、TFT101およびTFT102とは反対側の画素領域PXに、ゲート配線32と隣接するように横方向に平行して延在するように配設されている。 Further, as shown in FIG. 27, the gate electrode 17 of the TFT 102 is arranged so as to overlap the semiconductor layer 10 in a region where the source electrode 3 and the drain electrode 4 are separated from each other in a plan view. ing. Further, the gate electrode 17 is arranged so as not to overlap the source electrode 3 and the drain electrode 4, and is configured so that a parasitic capacitance due to the overlap thereof is not formed. The gate wiring 32 extending from the gate electrode 17 is provided so as to extend in the lateral direction (X direction) so as to be orthogonal to the source wiring 34 and the drive current wiring 36. Further, the cathode electrode wiring 62 is arranged so as to extend in parallel in the lateral direction so as to be adjacent to the gate wiring 32 in the pixel region PX on the opposite side of the TFT 101 and the TFT 102.

また、図28のX1−X2線に沿った断面図およびY1−Y2線に沿った断面図に示すように、TFT101のソース電極15とドレイン電極16、およびTFT102のゲート電極17とゲート配線32を覆うように、基板1全面に第3の絶縁膜で構成される保護絶縁層18が設けられている。保護絶縁層18には、FT101部のドレイン電極16の表面の一部を露出させるように開口部48(第5の開口部)が設けられ、カソード電極配線62の表面の一部を露出させるように開口部49(第6の開口部)が設けられている。 Further, as shown in the cross-sectional view taken along the line X1-X2 and the cross-sectional view taken along the line Y1-Y2 in FIG. 28, the source electrode 15 and the drain electrode 16 of the TFT 101, and the gate electrode 17 and the gate wiring 32 of the TFT 102 are provided. A protective insulating layer 18 composed of a third insulating film is provided on the entire surface of the substrate 1 so as to cover it. The protective insulating layer 18 is provided with an opening 48 (fifth opening) so as to expose a part of the surface of the drain electrode 16 of the FT101 portion so as to expose a part of the surface of the cathode electrode wiring 62. Is provided with an opening 49 (sixth opening).

そして、画素領域PXの保護絶縁層18上に、開口部48を通してドレイン電極16と接続されるように、第5の導電膜で構成されるアノード電極61(第1の電極)が配設される。また、開口部49を通してカソード電極配線62と接続されるように、第5の導電膜で構成されるカソード電極63(第2の電極)が配設されている。 Then, an anode electrode 61 (first electrode) composed of a fifth conductive film is arranged on the protective insulating layer 18 of the pixel region PX so as to be connected to the drain electrode 16 through the opening 48. .. Further, a cathode electrode 63 (second electrode) composed of a fifth conductive film is arranged so as to be connected to the cathode electrode wiring 62 through the opening 49.

さらに、アノード電極61上およびカソード電極63上を含む保護絶縁層18上に、第5の絶縁膜で構成される保護絶縁層50が設けられている。画素領域PXの保護絶縁層50には、下層のアノード電極61の表面が露出されるようにアノード電極開口部51、および下層のカソード電極63の表面が露出されるようにカソード電極開口部52が設けられている。なお、保護絶縁層50は設けなくてもよい。 Further, a protective insulating layer 50 composed of a fifth insulating film is provided on the protective insulating layer 18 including the anode electrode 61 and the cathode electrode 63. In the protective insulating layer 50 of the pixel region PX, an anode electrode opening 51 is provided so that the surface of the lower anode electrode 61 is exposed, and a cathode electrode opening 52 is provided so that the surface of the lower cathode electrode 63 is exposed. It is provided. The protective insulating layer 50 may not be provided.

図27に示されるように、平面視で、画素領域PXはゲート配線32、ソース配線34および駆動電流配線36によって囲まれた領域で規定されている。アノード電極61は、ドレイン電極16と重なる領域に設けられた開口部48と重なる領域から、画素領域PXの下方の領域まで延在するように設けられている。また、カソード電極63は、カソード電極配線62と重なる領域に設けられた開口部49と重なる領域から、画素領域PXの上方の領域まで延在するように設けられている。アノード電極61とカソード電極63は、画素領域PXにおいて、互いに分離して平面視で対向した態様で配設される。アノード電極開口部51およびカソード電極開口部52は、それぞれ下層のアノード電極61およびカソード電極63が露出されるように、平面視で互いに対向した態様で配設されている。 As shown in FIG. 27, in plan view, the pixel region PX is defined by the region surrounded by the gate wiring 32, the source wiring 34, and the drive current wiring 36. The anode electrode 61 is provided so as to extend from a region overlapping the opening 48 provided in the region overlapping the drain electrode 16 to a region below the pixel region PX. Further, the cathode electrode 63 is provided so as to extend from a region overlapping the opening 49 provided in the region overlapping the cathode electrode wiring 62 to a region above the pixel region PX. The anode electrode 61 and the cathode electrode 63 are arranged in the pixel region PX in a manner in which they are separated from each other and face each other in a plan view. The anode electrode opening 51 and the cathode electrode opening 52 are arranged so as to face each other in a plan view so that the lower layer anode electrode 61 and the cathode electrode 63 are exposed, respectively.

本実施の形態3に係るTFT基板120は、以上のように構成され、TFT基板120上には、マトリックス状に配置された各画素領域PXのアノード電極61およびカソード電極63に対応するように、LED素子のアノード電極端子およびカソード電極端子がそれぞれ接続されるように複数個実装され(図示せず)、各LED素子を発光させて画像表示を行う方式の自発光型表示装置(LEDディスプレイ)用のTFT基板として好適に用いることができる。 The TFT substrate 120 according to the third embodiment is configured as described above, and is arranged on the TFT substrate 120 so as to correspond to the anode electrode 61 and the cathode electrode 63 of each pixel region PX arranged in a matrix. For a self-luminous display device (LED display) in which a plurality of LED element anode electrode terminals and cathode electrode terminals are mounted so as to be connected to each other (not shown), and each LED element is made to emit light to display an image. Can be suitably used as a TFT substrate of.

<製造方法>
次に、本実施の形態3に係るTFT基板120の製造方法について、図29〜図43を用いて説明する。なお、図29〜図43では、図27を最終工程図とする平面図と、図28を最終工程図とする断面図とを交互に示しており、断面図においては、図28のX1−X2線に沿った断面図およびY1−Y2線に沿った断面図を、それぞれ図の左側および右側に示す。
<Manufacturing method>
Next, the method of manufacturing the TFT substrate 120 according to the third embodiment will be described with reference to FIGS. 29 to 43. In addition, in FIGS. 29 to 43, a plan view having FIG. 27 as a final process diagram and a sectional view having FIG. 28 as a final process diagram are alternately shown. In the sectional view, X1-X2 of FIG. 28 is shown. A cross-sectional view along the line and a cross-sectional view along the Y1-Y2 line are shown on the left and right sides of the figure, respectively.

<1回目の写真製版工程:図29、図30>
まず、基板1を洗浄液または純水を用いて洗浄する。本実施の形態3では、厚さ0.5mmのガラス基板を基板1として用いた。そして、洗浄された基板1の一方の主面上に、第1の導電膜を形成する。
<First photoengraving process: Fig. 29, Fig. 30>
First, the substrate 1 is cleaned with a cleaning liquid or pure water. In the third embodiment, a glass substrate having a thickness of 0.5 mm was used as the substrate 1. Then, a first conductive film is formed on one main surface of the washed substrate 1.

本実施の形態3では、第1の導電膜としてArガスを用いたスパッタリング法でMo膜を200nmの厚さに成膜した。その後、Mo膜上にフォトレジスト材を塗布し、1回目の写真製版工程でフォトレジストパターンを形成し、当該フォトレジストパターンをマスクにして、Mo膜をPAN薬液を用いたウエットエッチングによりパターニングする。その後、フォトレジストパターンを除去することによって、図29および図30に示すように、基板1上に、TFT101のゲート電極2、およびTFT102のソース電極3およびドレイン電極4、さらにソース配線34および駆動電流配線36が同時に形成される。 In the third embodiment, a Mo film was formed to a thickness of 200 nm by a sputtering method using Ar gas as the first conductive film. Then, a photoresist material is applied onto the Mo film, a photoresist pattern is formed in the first photoplate-making step, and the Mo film is patterned by wet etching using a PAN chemical solution using the photoresist pattern as a mask. Then, by removing the photoresist pattern, as shown in FIGS. 29 and 30, the gate electrode 2 of the TFT 101, the source electrode 3 and the drain electrode 4 of the TFT 102, and the source wiring 34 and the drive current are further mounted on the substrate 1. Wiring 36 is formed at the same time.

図29に示されるように、平面視で、ゲート電極2とドレイン電極4は、連続した一体パターンで形成されている。また、ソース配線34と駆動電流配線36は隣接するように縦方向(Y方向)に平行して延在するように形成されている。なお、ソース電極3は、ソース配線34の一部分である。すなわち、ソース配線34は、第1の導電膜で構成され、ソース配線34におけるTFT102側に延在する部分がソース電極3となっている。ソース電極3が設けられた部分は、ソース配線34の他の部分よりも幅が広くなっている。 As shown in FIG. 29, the gate electrode 2 and the drain electrode 4 are formed in a continuous integrated pattern in a plan view. Further, the source wiring 34 and the drive current wiring 36 are formed so as to extend in parallel in the vertical direction (Y direction) so as to be adjacent to each other. The source electrode 3 is a part of the source wiring 34. That is, the source wiring 34 is composed of the first conductive film, and the portion of the source wiring 34 extending toward the TFT 102 is the source electrode 3. The portion provided with the source electrode 3 is wider than the other portion of the source wiring 34.

<2回目の写真製版工程:図31、図32>
次に、基板1の主面上の全体に第1の絶縁膜を形成する。本実施の形態3では、第1の絶縁膜として、CVD法を用いて厚さ300nmのSiO膜を、約300℃の基板加熱条件下で形成した。なお、第1の絶縁膜は、SiO膜に限ることなく、他にも例えばSiN膜を用いることができる。SiN膜もSiO膜と同様にCVD法で形成することができる。また、SiO膜とSiN膜との積層膜としてもよい。
<Second photoengraving process: Fig. 31, Fig. 32>
Next, the first insulating film is formed on the entire main surface of the substrate 1. In the third embodiment, as the first insulating film, a SiO film having a thickness of 300 nm was formed by a CVD method under the substrate heating condition of about 300 ° C. The first insulating film is not limited to the SiO film, and for example, a SiN film can be used. The SiN film can also be formed by the CVD method in the same manner as the SiO film. Further, it may be a laminated film of a SiO film and a SiN film.

次に、2回目の写真製版工程で第1の絶縁膜であるSiO膜上にフォトレジストパターンを形成し、これをマスクとしてSiO膜をエッチングする。このエッチング工程では、SFガスまたはCFガスを用いたドライエッチング法を用いることができる。Next, in the second photoplate making step, a photoresist pattern is formed on the SiO film which is the first insulating film, and the SiO film is etched using this as a mask. In this etching step, a dry etching method using SF 6 gas or CF 4 gas can be used.

その後、フォトレジストパターンを除去することで、図31および図32に示すように、第2のTFT部において、ソース電極3の表面の一部を露出させる開口部7、およびドレイン電極4の表面の一部を露出させる開口部8がそれぞれ形成される。図32に示すように、第1のTFT部の第1の絶縁膜はゲート絶縁層5として機能し、第2のTFT部の第1の絶縁膜は、後の工程で形成される第2半導体層形成時に、第2半導体層をソース電極3およびドレイン電極4から受けるダメージから守る保護絶縁層6(第2のチャネル保護層)として機能する。 After that, by removing the photoresist pattern, as shown in FIGS. 31 and 32, in the second TFT portion, the opening 7 that exposes a part of the surface of the source electrode 3 and the surface of the drain electrode 4 Each of the openings 8 that exposes a part is formed. As shown in FIG. 32, the first insulating film of the first TFT portion functions as the gate insulating layer 5, and the first insulating film of the second TFT portion is the second semiconductor formed in a later step. During layer formation, it functions as a protective insulating layer 6 (second channel protective layer) that protects the second semiconductor layer from damage received from the source electrode 3 and the drain electrode 4.

<3回目の写真製版工程:図33、図34>
次に、第1の絶縁膜上に半導体膜を形成する。本実施の形態3では、半導体膜として酸化物半導体膜を形成する。具体的にはIn:Ga:Zn:Oの原子組成比が1:1:1:4であるInGaZnOターゲットを用い、Arガスに分圧比10%のOガスを添加した混合ガスを用いたスパッタリング法で酸化物半導体膜であるInGaZnO膜を50nmの厚さで形成した。
<Third photoengraving process: Fig. 33, Fig. 34>
Next, a semiconductor film is formed on the first insulating film. In the third embodiment, an oxide semiconductor film is formed as the semiconductor film. Specifically, sputtering using an InGaZnO target having an atomic composition ratio of In: Ga: Zn: O of 1: 1: 1: 4 and using a mixed gas in which an O 2 gas having a partial pressure ratio of 10% is added to Ar gas. By the method, an InGaZnO film, which is an oxide semiconductor film, was formed with a thickness of 50 nm.

このとき、InGaZnO膜は、アモルファス構造で形成される。アモルファス構造のInGaZnO膜は、一般的に結晶化温度が500℃超であり、常温では膜中の大部分がアモルファス構造のままで安定する。アモルファス構造は、一部が結晶化された微結晶構造や多結晶構造に比べて構造の均一性を高くすることができる。従って、基板が大型化した場合でも基板全体に特性のバラツキが小さい半導体膜を形成することができる利点がある。すなわち、大型の表示装置に用いるTFT基板を大型の表示装置に用いた場合であっても、TFT特性の面内バラツキを小さくすることができるので、表示ムラを防止することができる。 At this time, the InGaZnO film is formed with an amorphous structure. The InGaZnO film having an amorphous structure generally has a crystallization temperature of more than 500 ° C., and at room temperature, most of the film remains stable with an amorphous structure. The amorphous structure can have higher structural uniformity than a partially crystallized microcrystal structure or a polycrystalline structure. Therefore, even when the size of the substrate is increased, there is an advantage that a semiconductor film having a small variation in characteristics can be formed on the entire substrate. That is, even when the TFT substrate used for a large-sized display device is used for a large-sized display device, the in-plane variation of the TFT characteristics can be reduced, so that display unevenness can be prevented.

3回目の写真製版工程でInGaZnO膜上にフォトレジストパターンを形成し、これをマスクとしてInGaZnO膜をエッチングする。このエッチング工程では、シュウ酸薬液によるウエットエッチングを用いることができる。その後、フォトレジストパターンを除去することで、図33および図34に示すように、第1のTFT部においてゲート絶縁層5上のゲート電極2と重なる領域に半導体層9が島状のパターンで形成される。 In the third photoengraving step, a photoresist pattern is formed on the InGaZNO film, and the InGaZnO film is etched using this as a mask. In this etching step, wet etching with an oxalic acid chemical solution can be used. After that, by removing the photoresist pattern, as shown in FIGS. 33 and 34, the semiconductor layer 9 is formed in an island-like pattern in the region overlapping the gate electrode 2 on the gate insulating layer 5 in the first TFT portion. Will be done.

また、第2のTFT部において、保護絶縁層6上に半導体層10が形成される。半導体層10は、保護絶縁層6の開口部7を通して下層のソース電極3と接するとともに、保護絶縁層6の開口部8を通して下層のドレイン電極4と接するように形成される。平面視で、ソース電極3およびドレイン電極4は、半導体層10と重なる領域内で互いに分離して離間領域を有するように形成されており、半導体層10において、この離間領域がTFT102のチャネル領域CL2として規定される。 Further, in the second TFT portion, the semiconductor layer 10 is formed on the protective insulating layer 6. The semiconductor layer 10 is formed so as to be in contact with the source electrode 3 of the lower layer through the opening 7 of the protective insulating layer 6 and to be in contact with the drain electrode 4 of the lower layer through the opening 8 of the protective insulating layer 6. In a plan view, the source electrode 3 and the drain electrode 4 are formed so as to be separated from each other in a region overlapping the semiconductor layer 10 and have a separated region, and in the semiconductor layer 10, this separated region is the channel region CL2 of the TFT 102. Is defined as.

半導体層10の材料である酸化物半導体膜をスパッタリング法で形成する場合、下層にソース電極3およびドレイン電極4のような金属膜が露出していると、スパッタリング中に酸化物半導体が金属と反応し、還元(Oイオン欠乏)状態の特性が劣化した酸化物半導体膜が形成されてしまう場合がある。しかしながら、本実施の形態3のTFT102では、開口部7および開口部8を除くTFT102の全体が保護絶縁層6で覆われているので、この影響を防止することができる。すなわち、チャネル領域CL2の保護絶縁層6は、半導体層10のチャネル保護層6として機能する。 When the oxide semiconductor film which is the material of the semiconductor layer 10 is formed by the sputtering method, if the metal film such as the source electrode 3 and the drain electrode 4 is exposed in the lower layer, the oxide semiconductor reacts with the metal during sputtering. However, an oxide semiconductor film having deteriorated characteristics in the reduced (O ion deficient) state may be formed. However, in the TFT 102 of the third embodiment, since the entire TFT 102 excluding the opening 7 and the opening 8 is covered with the protective insulating layer 6, this influence can be prevented. That is, the protective insulating layer 6 of the channel region CL2 functions as the channel protective layer 6 of the semiconductor layer 10.

その後、基板1を大気雰囲気下で400℃の温度で熱処理する。この熱処理によって半導体層9および半導体層10の非晶質のInGaZnO膜が構造緩和を起こし、半導体特性をさらに安定させることができる。非晶質InGaZnO膜に上記の構造緩和を起こさせるための熱処理の温度は、少なくとも300℃以上であることが好ましい。一方、500℃を超えると膜全体で結晶化が始まり半導体特性が大きく変化し、例えばキャリア密度増大による導体化してしまう。従って、ここでは少なくとも基板1を300℃以上500℃以下の温度で熱処理することが好ましい。なお、このような熱処理は、製造工程の最後に実施するようにしてもよい。 Then, the substrate 1 is heat-treated at a temperature of 400 ° C. in an air atmosphere. By this heat treatment, the amorphous InGaZnO film of the semiconductor layer 9 and the semiconductor layer 10 causes structural relaxation, and the semiconductor characteristics can be further stabilized. The temperature of the heat treatment for causing the above-mentioned structural relaxation of the amorphous InGaZnO film is preferably at least 300 ° C. or higher. On the other hand, when the temperature exceeds 500 ° C., crystallization starts in the entire film and the semiconductor characteristics change significantly, for example, it becomes a conductor due to an increase in carrier density. Therefore, here, it is preferable to heat-treat at least the substrate 1 at a temperature of 300 ° C. or higher and 500 ° C. or lower. In addition, such a heat treatment may be carried out at the end of the manufacturing process.

<4回目の写真製版工程:図35、図36>
次に、基板1の主面上の全体に第2の絶縁膜を形成する。本実施の形態3では、第2の絶縁膜として、CVD法で厚さ300nmのSiO膜を約200℃の基板加熱条件下で形成した。なお、第2の絶縁膜は、SiO膜に限ることなく、他にも例えばSiN膜を用いることができる。また、SiO膜とSiN膜との積層膜としてもよい。
<Fourth photoengraving process: Fig. 35, Fig. 36>
Next, a second insulating film is formed on the entire main surface of the substrate 1. In the third embodiment, as the second insulating film, a SiO film having a thickness of 300 nm was formed by a CVD method under a substrate heating condition of about 200 ° C. The second insulating film is not limited to the SiO film, and for example, a SiN film can be used. Further, it may be a laminated film of a SiO film and a SiN film.

次に、4回目の写真製版工程で第2の絶縁膜であるSiO膜上にフォトレジストパターンを形成し、これをマスクとしてSiO膜をエッチングする。このエッチング工程では、SFガスまたはCFガスを用いたドライエッチング法を用いることができる。Next, in the fourth photoplate making step, a photoresist pattern is formed on the SiO film which is the second insulating film, and the SiO film is etched using this as a mask. In this etching step, a dry etching method using SF 6 gas or CF 4 gas can be used.

その後、フォトレジストパターンを除去することで、図35および図36に示すように、第1のTFT部の第2の絶縁膜に、半導体層9の表面の一部を露出させる開口部13および開口部14が形成される。第1のTFT部の第2の絶縁膜は、後の工程で形成されるソース電極15およびドレイン電極16からの加工プロセスダメージを防止する保護絶縁層11として機能する。また、第2のTFT部の第2の絶縁膜は、TFT102のゲート絶縁層12として機能する。さらに、駆動電流配線36の表面の一部を露出させるように、第1の絶縁膜および第2の絶縁膜に開口部30が形成される。 After that, by removing the photoresist pattern, as shown in FIGS. 35 and 36, the opening 13 and the opening that expose a part of the surface of the semiconductor layer 9 to the second insulating film of the first TFT portion. The portion 14 is formed. The second insulating film of the first TFT portion functions as a protective insulating layer 11 for preventing processing process damage from the source electrode 15 and the drain electrode 16 formed in a later step. Further, the second insulating film of the second TFT portion functions as the gate insulating layer 12 of the TFT 102. Further, an opening 30 is formed in the first insulating film and the second insulating film so as to expose a part of the surface of the drive current wiring 36.

<5回目の写真製版工程:図37、図38>
次に、第2の絶縁膜上に第2の導電膜を形成する。本実施の形態3では、第2の導電膜としてArガスを用いたスパッタリング法でMo膜を200nmの厚さに形成した。その後、Mo膜上にフォトレジスト材を塗布し、5回目の写真製版工程でフォトレジストパターンを形成し、当該フォトレジストパターンをマスクにして、Mo膜をPAN薬液を用いたウエットエッチングによりパターニングする。その後、フォトレジストパターンを除去することで、図37および図38に示すように、TFT101のソース電極15およびドレイン電極16が形成され、同時にTFT102のゲート電極17が形成される。また画素領域PXの絶縁膜上には、導電膜で構成されるカソード電極配線62が形成される。
<Fifth photoengraving process: Fig. 37, Fig. 38>
Next, a second conductive film is formed on the second insulating film. In the third embodiment, the Mo film was formed to a thickness of 200 nm by a sputtering method using Ar gas as the second conductive film. Then, a photoresist material is applied onto the Mo film, a photoresist pattern is formed in the fifth photoplate-making step, and the Mo film is patterned by wet etching using a PAN chemical solution using the photoresist pattern as a mask. After that, by removing the photoresist pattern, as shown in FIGS. 37 and 38, the source electrode 15 and the drain electrode 16 of the TFT 101 are formed, and at the same time, the gate electrode 17 of the TFT 102 is formed. Further, a cathode electrode wiring 62 composed of a conductive film is formed on the insulating film of the pixel region PX.

TFT101のソース電極15は、開口部13を通して半導体層9と接するように形成されている。また、ドレイン電極16は、開口部14を通して半導体層9と接するように形成されている。ソース電極15とドレイン電極16は、半導体層9と重なる領域内で互いに分離して形成されており、半導体層9においてソース電極15とドレイン電極16とで挟まれる離間領域が、TFT101のチャネル領域CL1として規定されている。 The source electrode 15 of the TFT 101 is formed so as to be in contact with the semiconductor layer 9 through the opening 13. Further, the drain electrode 16 is formed so as to be in contact with the semiconductor layer 9 through the opening 14. The source electrode 15 and the drain electrode 16 are formed separately from each other in a region overlapping the semiconductor layer 9, and the separated region sandwiched between the source electrode 15 and the drain electrode 16 in the semiconductor layer 9 is the channel region CL1 of the TFT 101. Is specified as.

一般的に酸化物半導体膜は薬液耐性に乏しく、半導体層9の材料であるInGaZnO膜は、第2の導電膜のウエットエッチングに用いられるPAN薬液にも容易に溶けてしまう。しかしながら、TFT101では、開口部13および開口部14を除く基板1の全面が第2の絶縁膜で構成される保護絶縁層11で覆われているので、特に半導体層9のチャネル領域CL1上ではチャネル保護層(エッチングストッパ;ES層)として機能する。従って、プロセスダメージのない信頼性の高いTFTを得ることができる。 Generally, the oxide semiconductor film has poor chemical resistance, and the InGaZnO film, which is the material of the semiconductor layer 9, is easily dissolved in the PAN chemical solution used for wet etching of the second conductive film. However, in the TFT 101, since the entire surface of the substrate 1 excluding the opening 13 and the opening 14 is covered with the protective insulating layer 11 formed of the second insulating film, the channel is particularly on the channel region CL1 of the semiconductor layer 9. It functions as a protective layer (etching stopper; ES layer). Therefore, a highly reliable TFT without process damage can be obtained.

ソース電極15は、駆動電流配線36に重なる領域まで延在しており、開口部30を通して駆動電流配線36に接続されている。また、ドレイン電極16は、TFT102のドレイン電極4と連続した一体パターンで設けられたTFT101のゲート電極2と重なる領域まで延在して形成されている。平面視で、TFT101のドレイン電極16は、半導体層10と重なる領域からはみ出した領域で、ゲート電極2およびTFT102のドレイン電極4のパターンと広く重なるような形状で配設されている。そしてドレイン電極16とゲート電極2が重なる領域によって保持容量CsAが形成される。また、平面視で、カソード電極配線62は、TFT101およびTFT102とは反対側の画素領域PXに、ゲート配線32と隣接するように横方向(X方向)に平行して延在するように形成されている。 The source electrode 15 extends to a region overlapping the drive current wiring 36 and is connected to the drive current wiring 36 through the opening 30. Further, the drain electrode 16 is formed so as to extend to a region overlapping the gate electrode 2 of the TFT 101 provided in an integral pattern continuous with the drain electrode 4 of the TFT 102. In a plan view, the drain electrode 16 of the TFT 101 is arranged so as to be a region protruding from the region overlapping the semiconductor layer 10 and widely overlapping the patterns of the gate electrode 2 and the drain electrode 4 of the TFT 102. Then, the holding capacity CsA is formed by the region where the drain electrode 16 and the gate electrode 2 overlap. Further, in a plan view, the cathode electrode wiring 62 is formed so as to extend in the pixel region PX on the opposite side of the TFT 101 and the TFT 102 so as to be adjacent to the gate wiring 32 and parallel to the lateral direction (X direction). ing.

TFT102のゲート電極17は、ソース電極3とドレイン電極4とが互いに対向するように分離された領域において、下層の半導体層10のチャネル領域CL2と重なるように形成されている。また平面視で、ゲート電極17は、ソース電極3およびドレイン電極とは重ならないように形成されており、これらの重なりによる寄生容量が形成されないように構成されている。これにより、高速応答性に優れたTFTを得ることができる。さらに、半導体層10のチャネル領域CL2は、保護絶縁層6で保護されているので、TFT101と同様に、プロセスダメージのない信頼性の高いTFTを得ることができる。そして、ゲート電極17から延在するゲート配線32が、ソース配線34および駆動電流配線36と直交するように横方向(X方向)に延在するように形成されている。 The gate electrode 17 of the TFT 102 is formed so as to overlap the channel region CL2 of the lower semiconductor layer 10 in a region where the source electrode 3 and the drain electrode 4 are separated so as to face each other. Further, in a plan view, the gate electrode 17 is formed so as not to overlap the source electrode 3 and the drain electrode, and is configured so that a parasitic capacitance due to the overlap thereof is not formed. As a result, a TFT having excellent high-speed response can be obtained. Further, since the channel region CL2 of the semiconductor layer 10 is protected by the protective insulating layer 6, a highly reliable TFT without process damage can be obtained as in the case of the TFT 101. The gate wiring 32 extending from the gate electrode 17 is formed so as to extend in the lateral direction (X direction) so as to be orthogonal to the source wiring 34 and the drive current wiring 36.

<6回目の写真製版工程:図39、図40>
次に、基板1の主面上の全体に、保護絶縁層18となる第3の絶縁膜を形成する。本実施の形態3では、第3の絶縁膜として、感光性を有する透明アクリル樹脂膜を、スピンコート法を用いて塗布形成した。このような透明アクリル樹脂膜を形成することにより、下層の電極パターンの段差および絶縁膜の開口部パターンの段差等に起因する基板表面の凹凸形状をほぼ平坦にすることができる。
<Sixth photoengraving process: Fig. 39, Fig. 40>
Next, a third insulating film to be the protective insulating layer 18 is formed on the entire main surface of the substrate 1. In the third embodiment, a photosensitive transparent acrylic resin film is applied and formed as a third insulating film by a spin coating method. By forming such a transparent acrylic resin film, the uneven shape of the substrate surface due to the step difference of the electrode pattern of the lower layer and the step difference of the opening pattern of the insulating film can be made substantially flat.

本実施の形態3では、透明アクリル樹脂膜の膜厚が最も薄くなる部分で厚さが1.5μmになるように塗布形成した。また、保護絶縁層18として、透明アクリル樹脂膜を塗布形成する前に、例えばCVD法でSiO膜またはSiN膜を形成するようにしてもよい。なお、樹脂系の塗布膜は、アクリル系以外にも、SOG系、エポキシ系、ポリイミド系、あるいはポリオレフィン系の樹脂膜を用いることができる。 In the third embodiment, the transparent acrylic resin film is coated and formed so that the thickness is 1.5 μm at the portion where the film thickness is the thinnest. Further, as the protective insulating layer 18, a SiO film or a SiN film may be formed by, for example, a CVD method before the transparent acrylic resin film is applied and formed. As the resin-based coating film, an SOG-based, epoxy-based, polyimide-based, or polyolefin-based resin film can be used in addition to the acrylic-based coating film.

その後、6回目の写真製版工程で透明アクリル系樹脂を露光し、現像することによって、図39および図40に示すように、保持容量CsAが形成された領域の保護絶縁層18に、TFT101のドレイン電極16の表面の一部が露出されるように開口部48が形成される。また、カソード電極配線62と重なる領域の保護絶縁層18に、カソード電極配線62の表面の一部が露出されるように開口部49が形成される。なお、有機アクリル樹脂膜の下層にSiO膜またはSiN膜が形成されている場合には、開口部48および開口部49が形成された透明アクリル系樹脂をマスクにして、SFガスまたはCFガスを用いたドライエッチング法を用いてSiO膜またはSiN膜をエッチングすることで、ドレイン電極16およびカソード電極配線62の表面の一部を露出させて、開口部48および開口部49を形成する。Then, by exposing and developing the transparent acrylic resin in the sixth photoengraving step, as shown in FIGS. 39 and 40, the drain of the TFT 101 is formed on the protective insulating layer 18 in the region where the holding capacity CsA is formed. The opening 48 is formed so that a part of the surface of the electrode 16 is exposed. Further, an opening 49 is formed in the protective insulating layer 18 in the region overlapping the cathode electrode wiring 62 so that a part of the surface of the cathode electrode wiring 62 is exposed. When a SiO film or SiN film is formed under the organic acrylic resin film, SF 6 gas or CF 4 gas is used as a mask with the transparent acrylic resin having the openings 48 and 49 formed therein. By etching the SiO film or SiN film using the dry etching method using the above, a part of the surface of the drain electrode 16 and the cathode electrode wiring 62 is exposed to form the opening 48 and the opening 49.

<7回目の写真製版工程:図41、図42>
次に、開口部48および開口部49を含む第3保護絶縁層上に、第5の導電膜を形成する。本実施の形態3では、第5の導電膜として、透明性を有するITO膜を用いる。ITO膜は一般的に、常温中では結晶質(多結晶)構造が安定であるが、ここではArガスに水素(H)を含むガス、例えば、水素(H)ガスまたは水蒸気(HO)などを混合したガスを用いてスパッタリングを行い、厚さ100nmのITO膜をアモルファス状態(アモルファスITO膜)で形成した。
<7th photoengraving process: Fig. 41, Fig. 42>
Next, a fifth conductive film is formed on the third protective insulating layer including the opening 48 and the opening 49. In the third embodiment, a transparent ITO film is used as the fifth conductive film. The ITO film generally has a stable crystalline (polycrystalline) structure at room temperature, but here, a gas containing hydrogen (H) in Ar gas, for example, hydrogen (H 2 ) gas or water vapor (H 2 O). ) And the like were subjected to sputtering to form an ITO film having a thickness of 100 nm in an amorphous state (amorphous ITO film).

その後、7回目の写真製版工程でアモルファスITO膜上にフォトレジストパターンを形成し、これをマスクとしてアモルファスITO膜をエッチングする。このエッチング工程では、シュウ酸薬液によるウエットエッチングを用いることができる。その後、フォトレジストパターンを除去することで、図41および図42に示すように、透明性を有するITO膜で構成されるアノード電極61およびカソード電極63が形成される。平面視で、アノード電極61は、ドレイン電極16と重なる領域に設けられた開口部48と重なる領域から、画素領域PXの下方の領域まで延在するように設けられている。また、カソード電極63は、カソード電極配線62と重なる領域に設けられた開口部49と重なる領域から、画素領域PXの上方の領域まで延在するように設けられている。アノード電極61とカソード電極63は、画素領域PXにおいて、互いに分離して平面視で対向した態様で配設される。 Then, in the seventh photoplate making step, a photoresist pattern is formed on the amorphous ITO film, and the amorphous ITO film is etched using this as a mask. In this etching step, wet etching with an oxalic acid chemical solution can be used. After that, by removing the photoresist pattern, as shown in FIGS. 41 and 42, the anode electrode 61 and the cathode electrode 63 made of a transparent ITO film are formed. In a plan view, the anode electrode 61 is provided so as to extend from a region overlapping the opening 48 provided in the region overlapping the drain electrode 16 to a region below the pixel region PX. Further, the cathode electrode 63 is provided so as to extend from a region overlapping the opening 49 provided in the region overlapping the cathode electrode wiring 62 to a region above the pixel region PX. The anode electrode 61 and the cathode electrode 63 are arranged in the pixel region PX in a manner in which they are separated from each other and face each other in a plan view.

<8回目の写真製版工程:図27、図28>
次に、基板1の主面上の全体に、保護絶縁層50となる第5の絶縁膜を形成する。本実施の形態3では、第5の絶縁膜として、感光性を有する透明アクリル樹脂膜を、スピンコート法を用いて厚さが1.5μmとなるように塗布形成した。なお、アクリル系以外にも、SOG系、エポキシ系、ポリイミド系、あるいはポリオレフィン系の樹脂膜を用いることができる。
<8th photoengraving process: Fig. 27, Fig. 28>
Next, a fifth insulating film to be the protective insulating layer 50 is formed on the entire main surface of the substrate 1. In the third embodiment, as the fifth insulating film, a photosensitive transparent acrylic resin film is coated and formed so as to have a thickness of 1.5 μm by a spin coating method. In addition to the acrylic type, SOG type, epoxy type, polyimide type, or polyolefin type resin films can be used.

その後、8回目の写真製版工程で透明アクリル系樹脂を露光し、現像することによって、図27および図28に示すように、画素領域PXにアノード電極61の表面が露出されるようにアノード電極開口部51が形成され、カソード電極63の表面が露出されるようにカソード電極開口部52が形成される。平面視で、アノード電極開口部51およびカソード電極開口部52は、互いに対向するように形成されている。以上により、8回の写真製版工程で本実施の形態3に係るTFT基板120が完成する。なお、第5の絶縁膜の形成を省略することも可能である。この場合は、7回の写真製版工程で本実施の形態3に係るTFT基板120を完成させることができる。 Then, by exposing and developing the transparent acrylic resin in the eighth photoengraving step, the anode electrode is opened so that the surface of the anode electrode 61 is exposed in the pixel region PX as shown in FIGS. 27 and 28. The portion 51 is formed, and the cathode electrode opening 52 is formed so that the surface of the cathode electrode 63 is exposed. In a plan view, the anode electrode opening 51 and the cathode electrode opening 52 are formed so as to face each other. As described above, the TFT substrate 120 according to the third embodiment is completed in eight photoengraving steps. It is also possible to omit the formation of the fifth insulating film. In this case, the TFT substrate 120 according to the third embodiment can be completed in seven photoplate-making steps.

さらに、図43に示すように、完成されたTFT基板120上には、画素領域PXのアノード電極61およびカソード電極63に対応して、LED素子200のアノード電極端子201および下部電極端子202がそれぞれ接続されるように実装される。 Further, as shown in FIG. 43, on the completed TFT substrate 120, the anode electrode terminal 201 and the lower electrode terminal 202 of the LED element 200 correspond to the anode electrode 61 and the cathode electrode 63 of the pixel region PX, respectively. Implemented to be connected.

図44に示すように、LED素子200が実装されたTFT基板120上には、必要に応じて対向基板47が貼り合わせられ、LED素子を用いたLEDディスプレイを備えた自発光型表示装置310が完成する。 As shown in FIG. 44, a facing substrate 47 is attached to the TFT substrate 120 on which the LED element 200 is mounted, if necessary, and a self-luminous display device 310 provided with an LED display using the LED element is provided. Complete.

自発光型表示装置310は、表示欠陥が少なく、高開口率で明るい表示品質の表示装置を低コストで実現することができる。 The self-luminous display device 310 can realize a display device with a high aperture ratio and bright display quality with few display defects at low cost.

LEDディスプレイを備えた自発光型表示装置310は、有機ELディスプレイを備えた実施の形態2の自発光型表示装置に比べると、より低消費電力で、視野角が広く、さらにコントラスト比が高い高品質な画像表示を実現することができる。 The self-luminous display device 310 provided with an LED display has lower power consumption, a wider viewing angle, and a higher contrast ratio than the self-luminous display device of the second embodiment provided with an organic EL display. A high-quality image display can be realized.

本実施の形態3に係るTFT基板120によると、TFT102は、ゲート配線32およびソース配線34と電気的に接続されており、ゲート配線32とソース配線34の信号に応じて表示画素を選択するための選択TFTとして機能する。 According to the TFT substrate 120 according to the third embodiment, the TFT 102 is electrically connected to the gate wiring 32 and the source wiring 34, and the display pixels are selected according to the signals of the gate wiring 32 and the source wiring 34. Functions as a selection TFT of.

TFT102のゲート電極17と、ソース電極3およびドレイン電極4とは、互いに寄生容量が形成されないように構成されているので、応答性に優れたTFTを得ることができる。 Since the gate electrode 17 of the TFT 102, the source electrode 3 and the drain electrode 4 are configured so that parasitic capacitances are not formed on each other, a TFT having excellent responsiveness can be obtained.

さらに半導体層10のチャネル領域CL2は、保護絶縁層6で保護されているので、プロセスダメージのない信頼性の高いTFTを得ることができる。従って、選択TFTとして高い性能を発揮させることができる。 Further, since the channel region CL2 of the semiconductor layer 10 is protected by the protective insulating layer 6, a highly reliable TFT without process damage can be obtained. Therefore, high performance can be exhibited as a selective TFT.

また、TFT101は、TFT102のドレイン電極4、駆動電流配線36およびLED素子200と電気的に接続されており、LED素子200の画素駆動TFTとして機能する。TFT102の第2ドレイン電極4から出力された選択信号が保持容量CsAに書き込まれると、書き込まれた電圧によってTFT101が動作して、駆動電流配線36からの信号電流がLED素子200に供給され、LED素子200が発光する。 Further, the TFT 101 is electrically connected to the drain electrode 4, the drive current wiring 36, and the LED element 200 of the TFT 102, and functions as a pixel drive TFT of the LED element 200. When the selection signal output from the second drain electrode 4 of the TFT 102 is written to the holding capacitance CsA, the TFT 101 operates according to the written voltage, the signal current from the drive current wiring 36 is supplied to the LED element 200, and the LED The element 200 emits light.

TFT101のチャネル領域CL1は、保護絶縁層11で保護されているので、信頼性が高く、LED素子200に安定的に信号電流を供給することができ、LED素子200を安定的に発光させ、高品質の画像表示をすることができる。 Since the channel region CL1 of the TFT 101 is protected by the protective insulating layer 11, the reliability is high, the signal current can be stably supplied to the LED element 200, the LED element 200 is made to emit light stably, and the value is high. It is possible to display quality images.

本実施の形態3に係るTFT基板120によれば、TFT102のドレイン電極4とTFT101のゲート電極2とを同じ第1の導電膜の連続パターンで形成して一体としているので、例えば、両者を別体で形成し、コンタクトホールを介して電気的に接続した構成に比べると、TFT102からTFT101への信号の伝達不良による表示欠陥の発生率を低く抑えることができる。 According to the TFT substrate 120 according to the third embodiment, the drain electrode 4 of the TFT 102 and the gate electrode 2 of the TFT 101 are formed and integrated in the same continuous pattern of the first conductive film. Therefore, for example, they are separated from each other. Compared with a configuration in which the body is formed and electrically connected via a contact hole, the occurrence rate of display defects due to poor signal transmission from the TFT 102 to the TFT 101 can be suppressed to a low rate.

さらに連続して一体化されたゲート電極2およびドレイン電極4を保持容量CsAの容量電極として用いることができるため、米国特許第9721973号公報のFig.7のような電荷蓄積部にコンタクトホールが形成されている構成と比べると、はるかに面積効率よく保持容量CsAを形成することができるので、TFT回路の形成領域を小さくすることができ、画素領域PXの開口率を向上させることができる。 Further, since the continuously integrated gate electrode 2 and drain electrode 4 can be used as a capacitance electrode having a holding capacitance of CsA, Fig. 9721973, US Pat. No. Compared with the configuration in which the contact hole is formed in the charge storage portion such as No. 7, the holding capacity CsA can be formed much more efficiently in the area, so that the formation region of the TFT circuit can be reduced and the pixel region can be reduced. The aperture ratio of the PX can be improved.

LED素子をTFT基板に実装して動作させる場合は、TFT基板の各画素領域にアノード電極とカソード電極とを配設する必要がある。本実施の形態3に係るTFT基板120によれば、カソード電極63を、第5の導電膜を用いてアノード電極61と同時に形成することができる。さらに、カソード電極63に信号電流を供給するカソード電極配線62を、第2の導電膜を用いて、TFT101のドレイン電極16等と同時に形成することができる。従って、LED素子を備えた自発光型表示装置(LEDディスプレイ)用のTFT基板を、工程を増やすことなく、低コストで製造できる。 When the LED element is mounted on the TFT substrate and operated, it is necessary to dispose the anode electrode and the cathode electrode in each pixel region of the TFT substrate. According to the TFT substrate 120 according to the third embodiment, the cathode electrode 63 can be formed at the same time as the anode electrode 61 by using the fifth conductive film. Further, the cathode electrode wiring 62 that supplies the signal current to the cathode electrode 63 can be formed at the same time as the drain electrode 16 and the like of the TFT 101 by using the second conductive film. Therefore, a TFT substrate for a self-luminous display device (LED display) equipped with an LED element can be manufactured at low cost without increasing the number of steps.

<変形例1>
次に、実施の形態3の変形例1について説明する。実施の形態3の変形例1は、実施の形態3の保持容量CsAの構成を変えたものである。以下、図45および図46を用いて、実施の形態3の変形例1に係るTFT基板130の構成について説明する。なお、実施の形態3のTFT基板120と同じ構成要素には同一符号を付け、重複する説明は省略する。
<Modification example 1>
Next, a modification 1 of the third embodiment will be described. The first modification of the third embodiment is a modification of the configuration of the holding capacity CsA of the third embodiment. Hereinafter, the configuration of the TFT substrate 130 according to the first modification of the third embodiment will be described with reference to FIGS. 45 and 46. The same components as those of the TFT substrate 120 of the third embodiment are designated by the same reference numerals, and redundant description will be omitted.

図45は、実施の形態3の変形例1に係るTFT基板130の画素の画素部駆動回路LEDC2の構成を示す図である。図46は、TFT基板130に設けられたTFT101、TFT102、保持容量CsAおよび画素領域PXを含む画素の平面構成を示す部分平面図である。 FIG. 45 is a diagram showing the configuration of the pixel portion drive circuit LEDC2 of the pixels of the TFT substrate 130 according to the first modification of the third embodiment. FIG. 46 is a partial plan view showing a planar configuration of pixels including the TFT 101, the TFT 102, the holding capacity CsA, and the pixel region PX provided on the TFT substrate 130.

図26に示したように、実施の形態3のTFT基板120では、保持容量CsAがTFT101のゲート電極2とドレイン電極16との間に接続された構成であった。これに対して、図45に示すように、実施の形態3の変形例1のTFT基板130では、保持容量CsBがTFT101のゲート電極2とソース電極15との間に接続された構成となっている。この場合も、TFT102のドレイン電極4から出力された選択信号が保持容量CsBに書き込まれると、書き込まれた電圧によってTFT101が動作して、駆動電流配線36からの信号電流が、アノード電極61とカソード電極63との電位差によってLED素子200に供給され、LED素子200が発光する。 As shown in FIG. 26, the TFT substrate 120 of the third embodiment has a configuration in which the holding capacity CsA is connected between the gate electrode 2 and the drain electrode 16 of the TFT 101. On the other hand, as shown in FIG. 45, the TFT substrate 130 of the first modification of the third embodiment has a configuration in which the holding capacity CsB is connected between the gate electrode 2 of the TFT 101 and the source electrode 15. There is. Also in this case, when the selection signal output from the drain electrode 4 of the TFT 102 is written to the holding capacitance CsB, the TFT 101 operates according to the written voltage, and the signal current from the drive current wiring 36 is transferred to the anode electrode 61 and the cathode. It is supplied to the LED element 200 by the potential difference from the electrode 63, and the LED element 200 emits light.

保持容量CsBは、第1の導電膜で構成され、TFT102のドレイン電極4と連続した一体パターンで配設されるTFT101のゲート電極2とで構成される容量電極のパターン形状と、第2の導電膜で構成されるTFT101のソース電極15およびドレイン電極16のパターン形状を変えることで構成することができる。 The holding capacitance CsB has a pattern shape of a capacitance electrode composed of a first conductive film and composed of a drain electrode 4 of the TFT 102 and a gate electrode 2 of the TFT 101 arranged in a continuous integrated pattern, and a second conductivity. It can be configured by changing the pattern shape of the source electrode 15 and the drain electrode 16 of the TFT 101 made of a film.

すなわち、図46に示されるように、平面視で、ソース電極15が半導体層9と重なる領域からはみ出した領域で、ゲート電極2とドレイン電極4との一体パターンで構成される容量電極と重なるように延在して配設されている。これにより、ソース電極15とゲート電極2が重なる領域によって保持容量CsBが形成される。なお、容量電極とソース電極15との間には、ゲート絶縁層5を構成する第1の絶縁膜と保護絶縁層11を構成する第2の絶縁膜とが積層されて設けられている。また、実施の形態2の保持容量CsAの構成についても、上述した保持容量CsBに変えても良いことは言うまでもない。 That is, as shown in FIG. 46, in a plan view, the source electrode 15 protrudes from the region where the semiconductor layer 9 overlaps, and overlaps the capacitive electrode formed of the integrated pattern of the gate electrode 2 and the drain electrode 4. It is arranged extending to. As a result, the holding capacitance CsB is formed by the region where the source electrode 15 and the gate electrode 2 overlap. A first insulating film forming the gate insulating layer 5 and a second insulating film forming the protective insulating layer 11 are laminated and provided between the capacitance electrode and the source electrode 15. Needless to say, the configuration of the holding capacity CsA of the second embodiment may be changed to the holding capacity CsB described above.

<変形例2>
次に、実施の形態3の変形例2について説明する。実施の形態3の変形例2は、実施の形態3の保持容量CsAの構成を変えたものである。以下、図47および図48を用いて、実施の形態3の変形例2に係るTFT基板140の構成についてに説明する。なお、実施の形態3のTFT基板120と同じ構成要素には同一符号を付け、重複する説明は省略する。
<Modification 2>
Next, a modification 2 of the third embodiment will be described. The second modification of the third embodiment is a modification of the configuration of the holding capacity CsA of the third embodiment. Hereinafter, the configuration of the TFT substrate 140 according to the second modification of the third embodiment will be described with reference to FIGS. 47 and 48. The same components as those of the TFT substrate 120 of the third embodiment are designated by the same reference numerals, and redundant description will be omitted.

図47は、実施の形態3の変形例2に係るTFT基板140の画素の画素部駆動回路LEDC3の構成を示す図である。図48は、TFT基板140に設けられたTFT101、TFT102、保持容量CsABおよび画素領域PXを含む画素の平面構成を示す部分平面図である。 FIG. 47 is a diagram showing the configuration of the pixel portion drive circuit LEDC3 of the pixels of the TFT substrate 140 according to the second modification of the third embodiment. FIG. 48 is a partial plan view showing a planar configuration of pixels including TFT 101, TFT 102, holding capacitance CsAB, and pixel region PX provided on the TFT substrate 140.

図26に示したように、実施の形態3のTFT基板120では、保持容量CsAがTFT101のゲート電極2とドレイン電極16との間に接続された構成であった。これに対して、図47に示すように、実施の形態3の変形例2のTFT基板140では、保持容量CsABがTFT101のゲート電極2とソース電極15との間、およびTFT101のゲート電極2とドレイン電極16との間に並列で接続された構成となっている。この場合も、TFT102のドレイン電極4から出力された選択信号が保持容量CsABに書き込まれると、書き込まれた電圧によってTFT101が動作して、駆動電流配線36からの信号電流が、アノード電極61とカソード電極63との電位差によってLED素子200に供給され、LED素子200が発光する。 As shown in FIG. 26, the TFT substrate 120 of the third embodiment has a configuration in which the holding capacity CsA is connected between the gate electrode 2 and the drain electrode 16 of the TFT 101. On the other hand, as shown in FIG. 47, in the TFT substrate 140 of the second modification of the third embodiment, the holding capacity CsAB is between the gate electrode 2 of the TFT 101 and the source electrode 15, and the gate electrode 2 of the TFT 101. It is configured to be connected in parallel with the drain electrode 16. Also in this case, when the selection signal output from the drain electrode 4 of the TFT 102 is written to the holding capacitance CsAB, the TFT 101 operates according to the written voltage, and the signal current from the drive current wiring 36 is transferred to the anode electrode 61 and the cathode. It is supplied to the LED element 200 by the potential difference from the electrode 63, and the LED element 200 emits light.

保持容量CsABは、第1の導電膜で構成されたTFT102のドレイン電極4と連続した一体パターンで配設されるTFT101のゲート電極2とで構成される容量電極のパターン形状と、第2の導電膜で構成されるTFT101のソース電極15およびドレイン電極16のパターン形状を変えることで構成することができる。 The holding capacitance CsAB has a pattern shape of a capacitance electrode composed of a drain electrode 4 of the TFT 102 composed of the first conductive film and a gate electrode 2 of the TFT 101 arranged in a continuous integrated pattern, and a second conductivity. It can be configured by changing the pattern shape of the source electrode 15 and the drain electrode 16 of the TFT 101 made of a film.

すなわち、図48に示されるように、平面視で、ドレイン電極16が半導体層9と重なる領域からはみ出した領域で、ゲート電極2とドレイン電極4との一体パターンで構成される容量電極と重なるように延在して配設されている。これにより、ドレイン電極16と容量電極が重なる領域によって保持容量CsA(第1の保持容量)が形成される。なお、容量電極とドレイン電極16との間には、ゲート絶縁層5を構成する第1の絶縁膜と保護絶縁層11を構成する第2の絶縁膜とが積層されて設けられている。 That is, as shown in FIG. 48, in a plan view, the drain electrode 16 protrudes from the region where the semiconductor layer 9 overlaps, and overlaps with the capacitance electrode formed of the integrated pattern of the gate electrode 2 and the drain electrode 4. It is arranged extending to. As a result, the holding capacity CsA (first holding capacity) is formed by the region where the drain electrode 16 and the capacitance electrode overlap. A first insulating film forming the gate insulating layer 5 and a second insulating film forming the protective insulating layer 11 are laminated and provided between the capacitance electrode and the drain electrode 16.

さらに、平面視で、ソース電極15が半導体層9と重なる領域からはみ出した領域で、ゲート電極2とドレイン電極4との一体パターンで構成される容量電極と重なるように延在して配設されている。これにより、ソース電極15と容量電極が重なる領域によって保持容量CsB(第2の保持容量)が形成される。なお、容量電極とソース電極15との間にも、ゲート絶縁層5を構成する第1の絶縁膜と保護絶縁層11を構成する第2の絶縁膜とが積層されて設けられている。 Further, in a plan view, the source electrode 15 is a region protruding from the region overlapping the semiconductor layer 9, and is arranged so as to extend so as to overlap the capacitive electrode formed of an integrated pattern of the gate electrode 2 and the drain electrode 4. ing. As a result, the holding capacity CsB (second holding capacity) is formed by the region where the source electrode 15 and the capacitance electrode overlap. A first insulating film forming the gate insulating layer 5 and a second insulating film forming the protective insulating layer 11 are laminated and provided between the capacitance electrode and the source electrode 15.

並列に接続された保持容量CsAと保持容量CsBによって、保持容量CsABが構成される。また、実施の形態2の保持容量CsAの構成についても、上述した保持容量CsABに変えても良いことは言うまでもない。 The holding capacity CsAB is composed of the holding capacity CsA and the holding capacity CsB connected in parallel. Needless to say, the configuration of the holding capacity CsA of the second embodiment may be changed to the holding capacity CsAB described above.

以上説明した実施の形態3の変形例1のTFT基板130、および変形例2のTFT基板140においても、実施の形態3のTFT基板120と同様の効果を得ることができる。 The TFT substrate 130 of the first modification of the third embodiment and the TFT substrate 140 of the second modification described above can also obtain the same effect as the TFT substrate 120 of the third embodiment.

また、上記の変形例1および変形例2は、LED素子200を用いた実施の形態3に限らず、EL素子44を用いた実施の形態2のTFT基板110にも適用することが可能であり、同様の効果を得ることができる。 Further, the above-mentioned modifications 1 and 2 can be applied not only to the third embodiment using the LED element 200 but also to the TFT substrate 110 of the second embodiment using the EL element 44. , The same effect can be obtained.

<他の適用例>
以上説明した実施の形態2および実施の形態3では、TFT101およびTFT102の構成を、自発光型表示装置用のTFT基板の画素駆動回路に適用した例を示したが、本開示の適用例は、これらに限られるものではない。
<Other application examples>
In the second embodiment and the third embodiment described above, an example in which the configurations of the TFT 101 and the TFT 102 are applied to the pixel drive circuit of the TFT substrate for the self-luminous display device is shown, but the application example of the present disclosure is: It is not limited to these.

例えば、図6に示した実施の形態2に係るTFT基板110の額縁領域160に設けられる走査信号駆動回路170には、図示されない複数の信号発生回路が含まれているが、この信号発生回路にTFT101およびTFT102の構成を適用することができる。 For example, the scanning signal drive circuit 170 provided in the frame region 160 of the TFT substrate 110 according to the second embodiment shown in FIG. 6 includes a plurality of signal generation circuits (not shown). The configurations of TFT 101 and TFT 102 can be applied.

図49には、TFT101およびTFT102を適用した信号発生回路GSCの構成を示す。図49に示されるように信号発生回路GSCは、クロック信号CLKが駆動トランジスタ103のソース電極に供給される。駆動トランジスタ103のドレイン電極は、駆動トランジスタ104のソース電極に接続され、駆動トランジスタ104のドレイン電極には接地電位VSSが与えられる。駆動トランジスタ103および104間の接続ノードN1は、保持容量C1を介して駆動トランジスタ103のゲート電極および駆動トランジスタ105のドレイン電極に接続されている。駆動トランジスタ105のソース電極には電源電位VDDが供給される。駆動トランジスタ103および104間の接続ノードN1は、信号発生回路GSCの出力ノードであり、ここから対応するゲート配線32に走査信号が供給される。 FIG. 49 shows the configuration of the signal generation circuit GSC to which the TFT 101 and the TFT 102 are applied. As shown in FIG. 49, in the signal generation circuit GSC, the clock signal CLK is supplied to the source electrode of the drive transistor 103. The drain electrode of the drive transistor 103 is connected to the source electrode of the drive transistor 104, and the ground potential VSS is given to the drain electrode of the drive transistor 104. The connection node N1 between the drive transistors 103 and 104 is connected to the gate electrode of the drive transistor 103 and the drain electrode of the drive transistor 105 via the holding capacitance C1. The power supply potential VDD is supplied to the source electrode of the drive transistor 105. The connection node N1 between the drive transistors 103 and 104 is an output node of the signal generation circuit GSC, from which a scan signal is supplied to the corresponding gate wiring 32.

駆動トランジスタ105のゲート電極に供給される駆動信号によって、駆動トランジスタ105がオンすると、駆動トランジスタ103がオンされてクロック信号CLKが接続ノードN1から出力される。他方、駆動トランジスタ104のゲート電極に供給される駆動信号によって駆動トランジスタ104がオンすると、接続ノードN1の電位は接地電位VSSに固定される。 When the drive transistor 105 is turned on by the drive signal supplied to the gate electrode of the drive transistor 105, the drive transistor 103 is turned on and the clock signal CLK is output from the connection node N1. On the other hand, when the drive transistor 104 is turned on by the drive signal supplied to the gate electrode of the drive transistor 104, the potential of the connection node N1 is fixed to the ground potential VSS.

ここで、信号発生回路GSCの構成要素である駆動トランジスタ103および105の構成は、実施の形態2および実施の形態3およびその変形例のTFT101およびTFT102と同じ構成とすることができるため、これらの構成を適宜変形することによって、実施の形態2および実施の形態3およびその変形例と同様の効果を得ることができる。これらの信号発生回路GSCの構成は、自発光型表示装置用だけではなく、液晶(Liquid Crystal)を利用した液晶表示装置用のTFT基板にも好適に用いることが可能である。 Here, since the configurations of the drive transistors 103 and 105, which are the components of the signal generation circuit GSC, can be the same as those of the TFTs 101 and 102 of the second embodiment, the third embodiment, and the modifications thereof. By appropriately modifying the configuration, the same effects as those of the second embodiment, the third embodiment, and the modified examples thereof can be obtained. The configuration of these signal generation circuits GSC can be suitably used not only for a self-luminous display device but also for a TFT substrate for a liquid crystal display device using a liquid crystal (Liquid Crystal).

さらに、本開示は、表示装置用のTFT基板に限らず、他にも例えば同様のトランジスタの構成を有するシフトレジスタ回路を備えた半導体装置にも適用することが可能であり、これらの開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形することも可能である。 Further, the present disclosure is not limited to the TFT substrate for the display device, and can be applied to other semiconductor devices including, for example, a shift register circuit having a similar transistor configuration, and the scope of these disclosures. Within, each embodiment can be freely combined, and each embodiment can be appropriately modified.

以上説明した実施の形態1〜3およびその変形例においては、半導体層9および半導体層10を構成する半導体膜として、In、GaおよびZnを含むInGaZnO系の酸化物半導体を適用した構成を説明した。一般的に半導体層に金属膜または合金膜で構成されるソース電極およびドレイン電極を接続する場合、例えばa−Si半導体膜では接続界面にオーミックコンタクト層、例えばリン(P)をドープした低抵抗Si膜を設ける必要があった。 In the first to third embodiments described above and modifications thereof, a configuration in which an InGaZnO-based oxide semiconductor containing In, Ga and Zn is applied as the semiconductor film constituting the semiconductor layer 9 and the semiconductor layer 10 has been described. .. Generally, when a source electrode and a drain electrode composed of a metal film or an alloy film are connected to a semiconductor layer, for example, in an a-Si semiconductor film, an ohmic contact layer, for example, phosphorus (P)-doped low resistance Si is doped in the connection interface. It was necessary to provide a film.

一方、酸化物半導体膜は、金属膜および合金膜との直接的な電気接続が可能である。このため、本開示のように、ソース電極15およびドレイン電極16が半導体層9の上面(表面)に設けられるTFT101と、ソース電極3およびドレイン電極4が半導体層10の下面(裏面)に設けられるTFT102とが同時に配設されるような構成の場合は、半導体層として酸化物半導体膜を用いるのが好ましい。 On the other hand, the oxide semiconductor film can be directly electrically connected to the metal film and the alloy film. Therefore, as in the present disclosure, the TFT 101 in which the source electrode 15 and the drain electrode 16 are provided on the upper surface (front surface) of the semiconductor layer 9 and the source electrode 3 and the drain electrode 4 are provided on the lower surface (back surface) of the semiconductor layer 10. In the case of a configuration in which the TFT 102 and the TFT 102 are arranged at the same time, it is preferable to use an oxide semiconductor film as the semiconductor layer.

酸化物半導体材料としては、InGaZnO酸化物半導体に限ることはなく、例えば、In、Ga、Znを適宜組み合わせた酸化物半導体であるIn−O、Ga−O、Zn−O、In−Zn−O、In−Ga−OおよびGa−Zn−Oなどの金属酸化物を用いることができる。また、これらの金属酸化物以外にも、例えばハフニウム(Hf)、すず(Sn)、イットリウム(Y)、アルミニウム(Al)等の酸化物を適宜組み合わせた酸化物半導体を適用することも可能である。 The oxide semiconductor material is not limited to InGaZnO oxide semiconductor, for example, In—O, Ga—O, Zn—O, In—Zn—O, which are oxide semiconductors in which In, Ga, and Zn are appropriately combined. , In-Ga-O and Ga-Zn-O and other metal oxides can be used. In addition to these metal oxides, it is also possible to apply an oxide semiconductor in which oxides such as hafnium (Hf), tin (Sn), yttrium (Y), and aluminum (Al) are appropriately combined. ..

また、酸化物半導体に限らず、13族のAl、Ga、Inから選ばれる元素と15族の窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)から選ばれる元素とを組み合わせた、いわゆるIII−V族の化合物半導体、例えば、Ga−As、Ga−P、In−P、In−Sb、In−As、Al−N、Ga−N、Al−Ga−Nあるいはこれらに他の元素を添加した半導体材料を用いてもよい。 Further, not limited to oxide semiconductors, elements selected from Group 13 Al, Ga, and In and elements selected from Group 15 nitrogen (N), phosphorus (P), arsenic (As), and antimony (Sb) can be used. Combined so-called Group III-V compound semiconductors, such as Ga-As, Ga-P, In-P, In-Sb, In-As, Al-N, Ga-N, Al-Ga-N or these. A semiconductor material to which other elements have been added may be used.

さらに、14族の半導体元素である炭素(C)を用いたカーボンナノチューブおよびグラフェン、およびこれらにSiおよびGe元素を組み合わせた半導体材料を用いることも可能である。 Further, it is also possible to use carbon nanotubes and graphene using carbon (C) which is a semiconductor element of Group 14, and a semiconductor material in which Si and Ge elements are combined with these.

以上のような半導体材料を半導体層9および半導体層10に用いた場合でも、実施の形態1〜3およびその変形例で説明した本開示の効果を得ることが可能である。特に酸化物半導体、化合物半導体または炭素系半導体のようにプロセスダメージの影響を大きく受けると考えられる材料の場合には大きな効果を得ることができる。 Even when the above-mentioned semiconductor materials are used for the semiconductor layer 9 and the semiconductor layer 10, the effects of the present disclosure described in the first to third embodiments and the modified examples thereof can be obtained. In particular, a large effect can be obtained in the case of a material that is considered to be greatly affected by process damage, such as an oxide semiconductor, a compound semiconductor, or a carbon-based semiconductor.

上記した説明は、すべての局面において、例示であって、この開示がそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。 The above description is exemplary in all aspects and this disclosure is not limited thereto. It is understood that a myriad of variants not illustrated can be envisioned without departing from the scope of this disclosure.

なお、本開示は、その開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present disclosure, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the disclosure.

Claims (9)

基板と、
前記基板上に設けられた、ボトムゲート型の第1の薄膜トランジスタと、
トップゲート型の第2の薄膜トランジスタと、を少なくとも備え、
前記第1の薄膜トランジスタは、
前記基板上に設けられた第1のゲート電極と、
前記第1のゲート電極上に設けられた第1のゲート絶縁層と、
前記第1のゲート絶縁層上に設けられた第1の半導体層と、
前記第1の半導体層上に設けられた第1の保護絶縁層と、
前記第1の保護絶縁層を貫通する第1の開口部および第2の開口部を通して前記第1の半導体層にそれぞれ接する、第1のソース電極および第1のドレイン電極と、を有し、
前記第2の薄膜トランジスタは、
前記基板上に設けられた第2のソース電極および第2のドレイン電極と、
前記第2のソース電極および前記第2のドレイン電極上に設けられた第2の保護絶縁層と、
前記第2の保護絶縁層上に設けられ、それぞれ前記第2の保護絶縁層を貫通する第3の開口部および第4の開口部を通して、前記第2のソース電極および前記第2のドレイン電極に接する第2の半導体層と、
前記第2の半導体層上に設けられた第2のゲート絶縁層と、
前記第2のゲート絶縁層上に設けられた第2のゲート電極と、を有し、
少なくとも前記第1の薄膜トランジスタおよび前記第2の薄膜トランジスタを有した画素が前記基板上にマトリックス状に配置され、
前記画素は、
エレクトロルミネッセンス素子と、
互いに直交するソース配線およびゲート配線と、
前記ソース配線と平行し、前記エレクトロルミネッセンス素子に前記第1の薄膜トランジスタを介して駆動電流を供給する駆動電流配線と、
前記第1のソース電極、前記第1のドレイン電極および前記第2のゲート電極上に設けられた第3の保護絶縁層と、
前記第3の保護絶縁層上に設けられ、前記第3の保護絶縁層を貫通する第5の開口部を通して、前記第1のドレイン電極と接するアノード電極と、を備え、
前記エレクトロルミネッセンス素子は、前記アノード電極上に設けられ、
前記第1のゲート電極、前記第2のソース電極、前記第2のドレイン電極、前記ソース配線および前記駆動電流配線は、同層で同じ第1の導電膜で形成され、
前記第2のソース電極は前記ソース配線の一部として形成され、
前記第1のゲート電極と前記第2のドレイン電極は、連続した一体パターンで構成され、保持容量を形成する容量電極として機能し、
前記第1のゲート絶縁層および前記第2の保護絶縁層は、同層で同じ第1の絶縁膜で形成され、
前記第1の半導体層および前記第2の半導体層は、同層で同じ半導体膜で形成され、
前記第1の保護絶縁層および前記第2のゲート絶縁層は、同層で同じ第2の絶縁膜で形成され、
前記第1のソース電極、前記第1のドレイン電極、前記第2のゲート電極および前記ゲート配線は、同層で同じ第2の導電膜で形成され、
前記第2のゲート電極は前記ゲート配線から延在して形成され、
前記第1のソース電極と前記駆動電流配線は電気的に接続される、薄膜トランジスタ基板。
With the board
A bottom gate type first thin film transistor provided on the substrate,
At least equipped with a top gate type second thin film transistor,
The first thin film transistor
The first gate electrode provided on the substrate and
The first gate insulating layer provided on the first gate electrode and
The first semiconductor layer provided on the first gate insulating layer and
The first protective insulating layer provided on the first semiconductor layer and
It has a first source electrode and a first drain electrode that are in contact with the first semiconductor layer through a first opening and a second opening that penetrate the first protective insulating layer, respectively.
The second thin film transistor
A second source electrode and a second drain electrode provided on the substrate,
A second protective insulating layer provided on the second source electrode and the second drain electrode,
Through the third opening and the fourth opening provided on the second protective insulating layer and penetrating the second protective insulating layer, the second source electrode and the second drain electrode are formed. The second semiconductor layer in contact with
A second gate insulating layer provided on the second semiconductor layer and
It has a second gate electrode provided on the second gate insulating layer, and has.
Pixels having at least the first thin film transistor and the second thin film transistor are arranged in a matrix on the substrate.
The pixel is
With electroluminescence elements
Source wiring and gate wiring that are orthogonal to each other,
A drive current wiring that is parallel to the source wiring and supplies a drive current to the electroluminescence element via the first thin film transistor.
A third protective insulating layer provided on the first source electrode, the first drain electrode, and the second gate electrode.
An anode electrode provided on the third protective insulating layer and in contact with the first drain electrode through a fifth opening penetrating the third protective insulating layer is provided.
The electroluminescence element is provided on the anode electrode and is provided.
Said first gate electrode, the second source electrode, the second drain electrode, the source wiring and the drive current line is formed by the same first conductive film in the same layer,
The second source electrode is formed as part of the source wiring.
The first gate electrode and the second drain electrode are formed of a continuous integrated pattern and function as a capacitance electrode that forms a holding capacitance.
The first gate insulating layer and the second protective insulating layer are formed of the same first insulating film in the same layer.
The first semiconductor layer and the second semiconductor layer are formed of the same semiconductor film in the same layer.
The first protective insulating layer and the second gate insulating layer are formed of the same second insulating film in the same layer.
The first source electrode, the first drain electrode, the second gate electrode, and the gate wiring are formed of the same second conductive film in the same layer.
The second gate electrode is formed so as to extend from the gate wiring.
A thin film transistor substrate in which the first source electrode and the drive current wiring are electrically connected.
基板と、
前記基板上に設けられた、ボトムゲート型の第1の薄膜トランジスタと、
トップゲート型の第2の薄膜トランジスタと、を少なくとも備え、
前記第1の薄膜トランジスタは、
前記基板上に設けられた第1のゲート電極と、
前記第1のゲート電極上に設けられた第1のゲート絶縁層と、
前記第1のゲート絶縁層上に設けられた第1の半導体層と、
前記第1の半導体層上に設けられた第1の保護絶縁層と、
前記第1の保護絶縁層を貫通する第1の開口部および第2の開口部を通して前記第1の半導体層にそれぞれ接する、第1のソース電極および第1のドレイン電極と、を有し、
前記第2の薄膜トランジスタは、
前記基板上に設けられた第2のソース電極および第2のドレイン電極と、
前記第2のソース電極および前記第2のドレイン電極上に設けられた第2の保護絶縁層と、
前記第2の保護絶縁層上に設けられ、それぞれ前記第2の保護絶縁層を貫通する第3の開口部および第4の開口部を通して、前記第2のソース電極および前記第2のドレイン電極に接する第2の半導体層と、
前記第2の半導体層上に設けられた第2のゲート絶縁層と、
前記第2のゲート絶縁層上に設けられた第2のゲート電極と、を有し、
少なくとも前記第1の薄膜トランジスタおよび前記第2の薄膜トランジスタを有した画素が前記基板上にマトリックス状に配置され、
前記画素は、
発光ダイオード素子と、
互いに直交するソース配線およびゲート配線と、
前記ソース配線と平行し、前記発光ダイオード素子に前記第1の薄膜トランジスタを介して電気的に接続される第1の配線と、
前記ゲート配線と平行し、前記発光ダイオード素子に電気的に接続される第2の配線と、
前記第1のソース電極、前記第1のドレイン電極および前記第2のゲート電極上に設けられた第3の保護絶縁層と、
前記第3の保護絶縁層上に設けられ、それぞれ前記第3の保護絶縁層を貫通する第5の開口部および第6の開口部を通して、前記第1のドレイン電極および前記第2の配線と接する第1の電極および第2の電極と、を備え、
前記発光ダイオード素子は、前記第1および第2の電極上に設けられ、
前記第1のゲート電極、前記第2のソース電極、前記第2のドレイン電極、前記ソース配線および前記第1の配線は、同層で同じ第1の導電膜で形成され、
前記第2のソース電極は前記ソース配線の一部として形成され、
前記第1のゲート電極と前記第2のドレイン電極は、連続した一体パターンで構成され、保持容量を形成する容量電極として機能し、
前記第1のゲート絶縁層および前記第2の保護絶縁層は、同層で同じ第1の絶縁膜で形成され、
前記第1の半導体層および前記第2の半導体層は、同層で同じ半導体膜で形成され、
前記第1の保護絶縁層および前記第2のゲート絶縁層は、同層で同じ第2の絶縁膜で形成され、
前記第1のソース電極、前記第1のドレイン電極、前記第2のゲート電極、前記ゲート配線および前記第2の配線は、同層で同じ第2の導電膜で形成され、
前記第2のゲート電極は前記ゲート配線から延在して形成され、
前記第1のソース電極と前記第1の配線は電気的に接続される、薄膜トランジスタ基板。
With the board
A bottom gate type first thin film transistor provided on the substrate,
At least equipped with a top gate type second thin film transistor,
The first thin film transistor
The first gate electrode provided on the substrate and
The first gate insulating layer provided on the first gate electrode and
The first semiconductor layer provided on the first gate insulating layer and
The first protective insulating layer provided on the first semiconductor layer and
It has a first source electrode and a first drain electrode that are in contact with the first semiconductor layer through a first opening and a second opening that penetrate the first protective insulating layer, respectively.
The second thin film transistor
A second source electrode and a second drain electrode provided on the substrate,
A second protective insulating layer provided on the second source electrode and the second drain electrode,
Through the third opening and the fourth opening provided on the second protective insulating layer and penetrating the second protective insulating layer, the second source electrode and the second drain electrode are formed. The second semiconductor layer in contact with
A second gate insulating layer provided on the second semiconductor layer and
It has a second gate electrode provided on the second gate insulating layer, and has.
Pixels having at least the first thin film transistor and the second thin film transistor are arranged in a matrix on the substrate.
The pixel is
Light emitting diode element and
Source wiring and gate wiring that are orthogonal to each other,
A first wiring parallel to the source wiring and electrically connected to the light emitting diode element via the first thin film transistor.
A second wiring parallel to the gate wiring and electrically connected to the light emitting diode element,
A third protective insulating layer provided on the first source electrode, the first drain electrode, and the second gate electrode.
It is provided on the third protective insulating layer, and is in contact with the first drain electrode and the second wiring through a fifth opening and a sixth opening that penetrate the third protective insulating layer, respectively. With a first electrode and a second electrode,
The light emitting diode element is provided on the first and second electrodes.
Said first gate electrode, the second source electrode, the second drain electrode, the source wiring and the first wiring are formed on the same first conductive film in the same layer,
The second source electrode is formed as part of the source wiring.
The first gate electrode and the second drain electrode are formed of a continuous integrated pattern and function as a capacitance electrode that forms a holding capacitance.
The first gate insulating layer and the second protective insulating layer are formed of the same first insulating film in the same layer.
The first semiconductor layer and the second semiconductor layer are formed of the same semiconductor film in the same layer.
The first protective insulating layer and the second gate insulating layer are formed of the same second insulating film in the same layer.
The first source electrode, the first drain electrode, the second gate electrode, the gate wiring, and the second wiring are formed of the same second conductive film in the same layer.
The second gate electrode is formed so as to extend from the gate wiring.
A thin film transistor substrate in which the first source electrode and the first wiring are electrically connected.
前記第2のゲート電極は、
平面視で、前記第2のソース電極および前記第2のドレイン電極と重ならないように設けられる、請求項1または請求項2記載の薄膜トランジスタ基板。
The second gate electrode is
The thin film transistor substrate according to claim 1 or 2, which is provided so as not to overlap the second source electrode and the second drain electrode in a plan view.
前記半導体膜は、金属酸化物を含む酸化物半導体膜で構成される、請求項1から請求項3の何れか1項に記載の薄膜トランジスタ基板。 The thin film transistor substrate according to any one of claims 1 to 3, wherein the semiconductor film is composed of an oxide semiconductor film containing a metal oxide. 前記第1のドレイン電極は、前記容量電極の上方に前記第2の絶縁膜を介して設けられ、
前記保持容量は、
前記容量電極と前記第1のドレイン電極との間に形成される、請求項1または請求項2記載の薄膜トランジスタ基板。
The first drain electrode is provided above the capacitance electrode via the second insulating film.
The holding capacity is
The thin film transistor substrate according to claim 1 or 2, which is formed between the capacitance electrode and the first drain electrode.
前記第1のソース電極は、前記容量電極の上方に前記第2の絶縁膜を介して設けられ、
前記保持容量は、
前記容量電極と前記第1のソース電極との間に形成される、請求項1または請求項2記載の薄膜トランジスタ基板。
The first source electrode is provided above the capacitive electrode via the second insulating film.
The holding capacity is
The thin film transistor substrate according to claim 1 or 2, which is formed between the capacitance electrode and the first source electrode.
前記第1のドレイン電極は、前記容量電極の上方に前記第2のゲート絶縁層を介して設けられ、
前記第1のソース電極は、前記容量電極の上方に前記第2のゲート絶縁層を介して設けられ、
前記保持容量は、
前記容量電極と前記第1のドレイン電極との間に形成される第1の保持容量と、
前記容量電極と前記第1のソース電極との間に形成される第2の保持容量と、を含む、請求項1または請求項2記載の薄膜トランジスタ基板。
The first drain electrode is provided above the capacitance electrode via the second gate insulating layer.
The first source electrode is provided above the capacitive electrode via the second gate insulating layer.
The holding capacity is
A first holding capacitance formed between the capacitance electrode and the first drain electrode,
The thin film transistor substrate according to claim 1 or 2, comprising a second holding capacitance formed between the capacitive electrode and the first source electrode.
前記第1の保護絶縁層は、
前記第1の薄膜トランジスタの前記第1の開口部と前記第2の開口部との間において、前記第1の半導体層の第1のチャネル領域を保護する第1のチャネル保護層として機能し、
前記第2の保護絶縁層は、
前記第2の薄膜トランジスタの前記第3の開口部と前記第4の開口部との間において、前記第2の半導体層の第2のチャネル領域を保護する第2のチャネル保護層として機能する、請求項1または請求項2記載の薄膜トランジスタ基板。
The first protective insulating layer is
Between the first opening and the second opening of the first thin film transistor, it functions as a first channel protection layer that protects the first channel region of the first semiconductor layer.
The second protective insulating layer is
A claim that functions as a second channel protection layer that protects a second channel region of the second semiconductor layer between the third opening and the fourth opening of the second thin film transistor. The thin film transistor substrate according to claim 1 or 2.
請求項1または請求項2記載の薄膜トランジスタ基板を備えた表示装置。 A display device including the thin film transistor substrate according to claim 1 or 2.
JP2020536705A 2020-02-18 2020-02-18 Thin film transistor substrate and display device Active JP6806956B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006233 WO2021166067A1 (en) 2020-02-18 2020-02-18 Thin film transistor substrate and display device

Publications (2)

Publication Number Publication Date
JP6806956B1 true JP6806956B1 (en) 2021-01-06
JPWO2021166067A1 JPWO2021166067A1 (en) 2021-08-26

Family

ID=73992978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020536705A Active JP6806956B1 (en) 2020-02-18 2020-02-18 Thin film transistor substrate and display device

Country Status (2)

Country Link
JP (1) JP6806956B1 (en)
WO (1) WO2021166067A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437359B2 (en) 2021-08-30 2024-02-22 シャープディスプレイテクノロジー株式会社 Active matrix substrate and its manufacturing method
WO2023148852A1 (en) * 2022-02-02 2023-08-10 シャープディスプレイテクノロジー株式会社 Display device and production method for display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102214A (en) * 2006-10-17 2008-05-01 Toshiba Matsushita Display Technology Co Ltd Active matrix type display device
JP2010016126A (en) * 2008-07-02 2010-01-21 Fujifilm Corp Thin film field effect transistor, fabrication process therefor, and display device using the same
US20100019996A1 (en) * 2008-07-24 2010-01-28 Chun-Gi You Display substrate and method of manufacturing the same
JP2011023695A (en) * 2009-07-15 2011-02-03 Samsung Mobile Display Co Ltd Organic electroluminescence display device and method of manufacturing the same
WO2011142147A1 (en) * 2010-05-13 2011-11-17 シャープ株式会社 Circuit board and display device
JP2012049556A (en) * 2011-10-14 2012-03-08 Sony Corp Thin film transistor and manufacturing method therefor, and electronic apparatus
JP2014059531A (en) * 2012-09-19 2014-04-03 Toshiba Corp Display device
JP2019216236A (en) * 2019-05-15 2019-12-19 堺ディスプレイプロダクト株式会社 Organic el display device and manufacturing method of the organic el display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008102214A (en) * 2006-10-17 2008-05-01 Toshiba Matsushita Display Technology Co Ltd Active matrix type display device
JP2010016126A (en) * 2008-07-02 2010-01-21 Fujifilm Corp Thin film field effect transistor, fabrication process therefor, and display device using the same
US20100019996A1 (en) * 2008-07-24 2010-01-28 Chun-Gi You Display substrate and method of manufacturing the same
JP2011023695A (en) * 2009-07-15 2011-02-03 Samsung Mobile Display Co Ltd Organic electroluminescence display device and method of manufacturing the same
WO2011142147A1 (en) * 2010-05-13 2011-11-17 シャープ株式会社 Circuit board and display device
JP2012049556A (en) * 2011-10-14 2012-03-08 Sony Corp Thin film transistor and manufacturing method therefor, and electronic apparatus
JP2014059531A (en) * 2012-09-19 2014-04-03 Toshiba Corp Display device
JP2019216236A (en) * 2019-05-15 2019-12-19 堺ディスプレイプロダクト株式会社 Organic el display device and manufacturing method of the organic el display device

Also Published As

Publication number Publication date
WO2021166067A1 (en) 2021-08-26
JPWO2021166067A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP7418862B2 (en) Display device with touch detection function and manufacturing method thereof
KR102526110B1 (en) Display apparatus and method of manufacturing display apparatus
JP6262276B2 (en) Oxide thin film transistor and method for manufacturing the same
US7696518B2 (en) Flat panel display with anode electrode layer as power supply layer and fabrication method thereof
USRE48032E1 (en) Thin-film semiconductor substrate, light-emitting panel, and method of manufacturing the thin-film semiconductor substrate
US6998770B2 (en) Organic electroluminescent device and fabricating method thereof
US20160240604A1 (en) Organic light emitting display devices and methods of manufacturing organic light emitting display devices
US7311577B2 (en) Organic electroluminescent device with pixel regions and dummy pixel regions and method or fabricating the same
KR101155903B1 (en) Organic light emitting diode display and method for manufacturing the same
KR101878187B1 (en) Organic light emitting display and fabricating method thereof
US8378946B2 (en) Display device
US11839110B2 (en) Organic light-emitting display device
KR101878186B1 (en) Organic light emitting display and fabricating method thereof
US11495652B2 (en) Organic light emitting diode display device and method of manufacturing organic light emitting diode display device
JP6806956B1 (en) Thin film transistor substrate and display device
WO2021062640A1 (en) Electronic base plate and manufacturing method therefor, and display panel
KR20150011868A (en) Organic light emiiting diode device and method of fabricating the same
US20080197354A1 (en) Thin film transistor, an organic light emitting device including the same, and a manufacturing method thereof
WO2020059027A1 (en) Display device
KR101429908B1 (en) Organic electroluminescence device
KR101475313B1 (en) Method of fabricating array substrate
WO2020208704A1 (en) Display device and manufacturing method
JP2022085303A (en) Thin film transistor substrate and self-light-emitting device
KR20130027023A (en) Display device, thin film transistor used in the display device, and method for manufacturing the thin film transistor
US20240021695A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200629

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250