JP6801167B2 - Electrodes for non-aqueous electrolyte secondary batteries - Google Patents

Electrodes for non-aqueous electrolyte secondary batteries Download PDF

Info

Publication number
JP6801167B2
JP6801167B2 JP2015106321A JP2015106321A JP6801167B2 JP 6801167 B2 JP6801167 B2 JP 6801167B2 JP 2015106321 A JP2015106321 A JP 2015106321A JP 2015106321 A JP2015106321 A JP 2015106321A JP 6801167 B2 JP6801167 B2 JP 6801167B2
Authority
JP
Japan
Prior art keywords
active material
binder resin
polyacrylic acid
mass
million
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015106321A
Other languages
Japanese (ja)
Other versions
JP2016219370A (en
Inventor
加藤 茂幹
茂幹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2015106321A priority Critical patent/JP6801167B2/en
Publication of JP2016219370A publication Critical patent/JP2016219370A/en
Application granted granted Critical
Publication of JP6801167B2 publication Critical patent/JP6801167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用電極、より詳細には、サイクル特性を向上させることが可能な非水電解質二次電池用電極に関するものである。 The present invention relates to an electrode for a non-aqueous electrolyte secondary battery, and more specifically, an electrode for a non-aqueous electrolyte secondary battery capable of improving cycle characteristics.

近年、石油使用量や温室効果ガスの削減、エネルギー基盤のさらなる多様化や効率化を目指し、繰り返し充放電可能な二次電池として、Li(リチウム)イオン二次電池に注目が集まっている。特に、電気自動車や、ハイブリッド電気自動車及び燃料電池車への用途展開が見込まれている。電気自動車においては、航続距離の向上が要求され、今後、二次電池の高エネルギー密度化が一層要求されていくことになる。現状の負極に注目すると、黒鉛電極が一般に用いられている。黒鉛の理論容量は、372mAh/gである。これに対し、黒鉛を上回る容量を示す活物質として、SiやSnが近年注目されている。Siの理論容量は、4200mAh/gであり、Snの理論容量は、990mAh/gである。一方、Siは、黒鉛の約11倍の容量を持っているために、Liの吸蔵と放出に伴う体積変化も大きくなる。具体的には、Liの吸蔵により、体積が約4倍増加する。 In recent years, Li (lithium) ion secondary batteries have been attracting attention as rechargeable and dischargeable secondary batteries with the aim of reducing oil consumption and greenhouse gases, and further diversifying and improving the efficiency of energy infrastructure. In particular, it is expected to be applied to electric vehicles, hybrid electric vehicles and fuel cell vehicles. In electric vehicles, improvement in cruising range is required, and in the future, higher energy density of secondary batteries will be further required. Focusing on the current negative electrode, graphite electrodes are generally used. The theoretical capacity of graphite is 372 mAh / g. On the other hand, Si and Sn have been attracting attention in recent years as active materials having a capacity higher than that of graphite. The theoretical capacity of Si is 4200 mAh / g, and the theoretical capacity of Sn is 990 mAh / g. On the other hand, since Si has a capacity about 11 times that of graphite, the volume change due to occlusion and release of Li is also large. Specifically, the storage of Li increases the volume by about 4 times.

黒鉛と比べて、大容量を有する活物質を用いた電極は、充放電に伴う大きな体積変化から、電極の導電パスの切断や微粉化に伴う電極からの脱離、集電体と活物質層の剥離等のおそれがある。このことは、電池のサイクル特性を低下させる要因となる可能性がある。これに対し、特許文献1には、バインダ樹脂として、アルギン酸ナトリウムを用いることが開示されている。 Electrodes using active materials, which have a larger capacity than graphite, undergo large volume changes due to charging and discharging, desorption from the electrodes due to cutting of the conductive path of the electrodes and pulverization, current collectors and active material layers. There is a risk of peeling. This may be a factor that deteriorates the cycle characteristics of the battery. On the other hand, Patent Document 1 discloses that sodium alginate is used as the binder resin.

また、特許文献2には、アルギン酸ナトリウムが、従来用いられてきたバインダ樹脂であるPVdF(Poly Vinylidene diFluoride:ポリフッ化ビニリデン)や、CMC(Carboxy Methyl Cellulose:カルボキシメチルセルロース)とSBR(Styrene−Butadiene Rubber:スチレン・ブタジエンゴム)に比べ、サイクル特性に優れていると記載されている。また、特許文献2には、バインダ樹脂として用いるアルギン酸塩の粘度として、1%(W/V=Weight/Volume%)水溶液の20℃における粘度が、1000mPa・s以上2000mPa・s以下の範囲内のバインダ樹脂を用いることで、優れた出力特性を示すと記載されている。 Further, in Patent Document 2, sodium alginate is used as a binder resin conventionally used, such as PVdF (Poly Vinylidene diFluoride: polyvinylidene fluoride), CMC (Carboxy Metyl Cellulose: Carboxymethyl Cellulose) and SBR (Styrene-Budai). It is described that it has better cycle characteristics than styrene-butadiene rubber). Further, in Patent Document 2, as the viscosity of alginate used as a binder resin, the viscosity of a 1% (W / V = Weight / Volume%) aqueous solution at 20 ° C. is within the range of 1000 mPa · s or more and 2000 mPa · s or less. It is stated that the use of a binder resin exhibits excellent output characteristics.

WO2011−140150号公報WO2011-140150 特開2013−161832号公報Japanese Unexamined Patent Publication No. 2013-161832

しかしながら、バインダ樹脂として、先行文献にもあるように、PVdFなどのフッ素系バインダ樹脂は、活物質との分子間力が弱いため接着力を得られにくい傾向があり、補強のために増量すると電気的抵抗が大きくなってしまい不利に働いてしまう。また、CMCなどの水溶性バインダ樹脂においては、溶媒が水であるため活物質や導電材が不均一分散になりがちとなり密着性に乏しくサイクル性に劣り、電池性能に影響を与えてしまう。また、SBRは、強い接着力は得られるものの、ブタジエンの二重結合が酸化されやすいため、サイクル特定には不利である。またバインダ樹脂にアルギン酸ナトリウムを用いることでは、サイクル特性の向上が認められるものの、依然として、サイクル充放電に伴う
継続的なSEI(Solid Electrolyte Interface:電気伝導性及びイオン伝導性が少ない電解液・電極間物質)生成に伴うサイクル維持率が低下するという問題が生じる。本発明は、このような問題点を解決しようとするものであり、優れた出力特性及びサイクル特性を有する非水電解質二次電池用電極を提供することを目的とする。
However, as a binder resin, as described in the prior literature, a fluorine-based binder resin such as PVdF tends to have a weak intermolecular force with an active material, so that it tends to be difficult to obtain an adhesive force. Target resistance increases and it works against you. Further, in a water-soluble binder resin such as CMC, since the solvent is water, the active material and the conductive material tend to be non-uniformly dispersed, the adhesion is poor, the cycle performance is poor, and the battery performance is affected. Further, although SBR can obtain a strong adhesive force, it is disadvantageous for cycle identification because the double bond of butadiene is easily oxidized. In addition, although the use of sodium alginate in the binder resin improves the cycle characteristics, the continuous SEI (Solid Electrolyte Interface: between the electrolyte and the electrode, which has low electrical conductivity and ionic conductivity) due to cycle charging and discharging is still observed. The problem arises that the cycle maintenance rate associated with the production of the substance) decreases. An object of the present invention is to solve such a problem, and an object of the present invention is to provide an electrode for a non-aqueous electrolyte secondary battery having excellent output characteristics and cycle characteristics.

本発明者は、サイクル特性のさらなる向上を狙い、鋭意検討を行なった結果、バインダ樹脂として、ある分子量域に限ったアクリル系樹脂やその塩を用いることで、活物質などの表面にバインダ樹脂を一部被覆した層を備えたり、そこに気相法炭素繊維を含有させたり、また混合する順序なども検討などすることにより、サイクル特性も向上させることが可能となることを見出し、本発明を得た。 As a result of diligent studies aimed at further improving the cycle characteristics, the present inventor used an acrylic resin limited to a certain molecular weight range or a salt thereof as the binder resin to apply the binder resin to the surface of the active material or the like. We have found that it is possible to improve the cycle characteristics by providing a partially coated layer, containing vapor-phase carbon fibers therein, and examining the mixing order, etc. Obtained.

本発明の請求項1に係る発明は、集電体の表面に、電極形成用組成物を含む塗膜が形成された非水電解質二次電池用電極であって、前記電極形成用組成物は、活物質、導電助剤、バインダ樹脂を含み、前記活物質は、SiOx(xは1.5以下)を含み、前記導電助剤はアセチレンブラックと気相法炭素繊維とを含み、アセチレンブラックの質量は前記活物質に対して12〜20質量%の範囲で、気相法炭素繊維の質量は前記活物質に対して2〜6質量%の範囲で、前記バインダ樹脂は、重量平均分子量が20万以上100万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩と、重量平均分子量が500万以上1000万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩とを少なくとも含み、前記バインダ樹脂の質量は前記活物質に対して10〜25質量%の範囲であることを特徴とする非水電解質二次電池用電極である。 The invention according to claim 1 of the present invention is an electrode for a non-aqueous electrolyte secondary battery in which a coating film containing an electrode-forming composition is formed on the surface of a current collector, and the electrode-forming composition is , Active material, conductive auxiliary agent, binder resin, the active material contains SiOx (x is 1.5 or less), the conductive auxiliary agent contains acetylene black and vapor phase carbon fiber, and the acetylene black. The mass is in the range of 12 to 20% by mass with respect to the active material, the mass of the vapor phase carbon fiber is in the range of 2 to 6% by mass with respect to the active material, and the binder resin has a weight average molecular weight of 20. The binder resin containing at least a polyacrylic acid or polyacrylic acid salt in the range of 10,000 or more and less than 1 million and a polyacrylic acid or polyacrylic acid salt having a weight average molecular weight in the range of 5 million or more and less than 10 million. The electrode for a non-aqueous electrolyte secondary battery is characterized in that the mass is in the range of 10 to 25% by mass with respect to the active material.

本発明の請求項2に係る発明は、前記バインダ樹脂は、重量平均分子量が20万以上100万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩と、重量平均分子量が500万以上1000万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩とを混合することを特徴とする請求項1に記載の非水電解質二次電池用電極である。 In the invention according to claim 2 of the present invention, the binder resin comprises a polyacrylic acid or polyacrylic acid salt having a weight average molecular weight in the range of 200,000 or more and less than 1 million, and a weight average molecular weight of 5 million or more and less than 10 million. The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode is mixed with polyacrylic acid or polyacrylate in the range of.

本発明の請求項3に係る発明は、記バインダ樹脂が架橋していることを特徴とする請求項1または2に記載の非水電解質二次電池用電極である。 The invention according to claim 3 of the present invention is a non-aqueous electrolyte secondary battery according to claim 1 or 2 before fang inductor resin is characterized in that it is crosslinked.

本発明によれば、集電体の表面を、活物質、導電助剤、バインダ樹脂で形成された非水電解質二次電池用電極において、バインダ樹脂に重量平均分子量が20〜1000万の範囲にあるポリアクリル酸、ポリアクリル酸塩の少なくとも一つ以上から選ぶことによって強固なバインダ樹脂網を形成することができ、リチウムイオンの挿入/離脱時の膨張収縮を抑制することができる。また、活物質としてSiOxを含有することで、リチウムイオンの挿入/離脱時の膨張収縮を小さくする効果があり、このSiOxと前記バインダ樹脂との相乗効果により、サイクル特性の容量維持率を高く保つことができる。 According to the present invention, in a non-aqueous electrolyte secondary battery electrode formed of an active material, a conductive auxiliary agent, and a binder resin on the surface of the current collector, the weight average molecular weight of the binder resin is in the range of 200 to 10 million. A strong binder resin network can be formed by selecting from at least one of a certain polyacrylic acid and polyacrylic acid salt, and expansion and contraction at the time of insertion / removal of lithium ions can be suppressed. Further, by containing SiOx as an active material, there is an effect of reducing expansion and contraction at the time of insertion / detachment of lithium ions, and the synergistic effect of this SiOx and the binder resin keeps the capacity retention rate of cycle characteristics high. be able to.

本発明の第一実施形態の電極が備える活物質層の構成を示す模式図である。It is a schematic diagram which shows the structure of the active material layer provided in the electrode of the 1st Embodiment of this invention.

以下、本発明の実施形態について図を基に具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

本発明は集電体の表面を、活物質、導電助剤、バインダ樹脂、希釈溶剤を含有する電極形成用組成物からなる塗膜が形成された非水電解質二次電池用電極である。具体的には、図1に示すように、活物質1の表面がバインダ樹脂2と、アセチレンブラックと気相法炭素繊維3とを含む導電助剤で被覆された状態で、集電体に電極形成用組成物を塗布、乾燥して形成されることを特徴とする非水電解質二次電池用電極である。 The present invention is an electrode for a non-aqueous electrolyte secondary battery in which a coating film composed of an electrode-forming composition containing an active material, a conductive auxiliary agent, a binder resin, and a diluting solvent is formed on the surface of a current collector. Specifically, as shown in FIG. 1, the surface of the active material 1 is coated with the conductive auxiliary agent containing the binder resin 2, acetylene black, and the vapor phase carbon fiber 3, and the electrode is attached to the current collector. It is an electrode for a non-aqueous electrolyte secondary battery, which is formed by applying a forming composition and drying it.

本発明に用いられる集電体は特に限定するものではなく、例えば公知の銅箔を用いることができる。 The current collector used in the present invention is not particularly limited, and for example, a known copper foil can be used.

活物質1としては公知の材料、例えばグラファイトなどの炭素系材料を用いることができるが、SiOxを含むことが好ましい。Siは初期の容量は高いが、リチウムイオンの挿入/離脱に伴う膨張収縮が大きく、サイクル特性の低下に問題がある。これに対して、SiOxはSiに比べて初期の容量は少し劣るが、サイクルに伴う容量維持率が高い傾向にあるため好ましい。すなわち、SiOxはリチウムイオンの挿入/離脱時の膨張収縮が他の活物質に比べて小さいため、後述するバインダ樹脂との相乗効果でサイクルに伴う容量維持率を高めることができる。 As the active material 1, a known material, for example, a carbon-based material such as graphite can be used, but it is preferable that the active material 1 contains SiOx. Although Si has a high initial capacity, it has a large expansion and contraction due to the insertion / removal of lithium ions, and has a problem of deterioration of cycle characteristics. On the other hand, SiOx is a little inferior to Si in the initial capacity, but is preferable because the capacity retention rate with the cycle tends to be high. That is, since SiOx has a smaller expansion and contraction at the time of insertion / removal of lithium ions than other active materials, the capacity retention rate associated with the cycle can be increased by the synergistic effect with the binder resin described later.

また、SiOxは、粒径が小さいほど、容量とサイクル維持率が高くなる。一方、充放電に伴うSiOxの凝集が進むので、活物質としてSiOxにグラファイト(黒鉛)を加えても良い。この場合、黒鉛上にSiOxのナノ粒子を担持させることで、SiOx粒子の凝集を抑えることが可能となる。 Further, the smaller the particle size of SiOx, the higher the capacity and cycle retention rate. On the other hand, since the aggregation of SiOx progresses with charging and discharging, graphite may be added to SiOx as an active material. In this case, by supporting the SiOx nanoparticles on the graphite, it is possible to suppress the aggregation of the SiOx particles.

導電助剤は、アセチレンブラックと気相法炭素繊維3を含み、アセチレンブラックの質量比は、活物質1の質量に対して12〜20質量%の範囲内が好ましい。12質量%未満の場合は、充放電に伴う電極の体積変動により導電パスが切断され、サイクル維持率が低下してしまう。また、20質量%を超えると、活物質層内の全粒子の表面積が増加するため、結着に必要なバインダ樹脂量の増加が必要となり、結果としてサイクル維持率の低下を招く。このような不具合を防止する為に、効率的に3次元的にネットワークを構築しやすい気相法炭素繊維3を混合する必要がある。 The conductive auxiliary agent contains acetylene black and the vapor phase carbon fiber 3, and the mass ratio of acetylene black is preferably in the range of 12 to 20% by mass with respect to the mass of the active material 1. If it is less than 12% by mass, the conductive path is cut due to the volume fluctuation of the electrode due to charging and discharging, and the cycle maintenance rate is lowered. On the other hand, if it exceeds 20% by mass, the surface area of all the particles in the active material layer increases, so that it is necessary to increase the amount of binder resin required for binding, and as a result, the cycle maintenance rate is lowered. In order to prevent such a problem, it is necessary to mix the vapor phase carbon fiber 3 which makes it easy to efficiently and three-dimensionally construct a network.

気相法炭素繊維3とはカーボンナノファイバー(CNF)やカーボンナノチューブ(CNT)に代表される気相から生成される繊維状炭素であり、平均繊維径が数十〜数百ナオオーダーで、平均繊維長が数十ミクロン以下のものが好ましい。このような気相法炭素繊維3はバインダ樹脂との共存により3次元的にネットワークを構築することができ、これによりチウムイオンの挿入/離脱に伴う膨張収縮を緩和する効果がある。 Gas phase method carbon fiber 3 is fibrous carbon produced from a gas phase represented by carbon nanofibers (CNFs) and carbon nanotubes (CNTs), and has an average fiber diameter of several tens to several hundreds of nao orders. Fiber lengths of several tens of microns or less are preferable. Such a vapor phase carbon fiber 3 can form a three-dimensional network by coexisting with the binder resin, which has an effect of alleviating expansion and contraction due to insertion / detachment of tium ions.

気相法炭素繊維3の質量比は、活物質1の質量に対して2〜6質量%の範囲内が好ましい。2質量%未満の場合、気相法炭素繊維3の相対的な量が少なく3次元ネットワーク効果を得ることができない。また、分散の際の攪拌接触回数が多く気相成長部分が欠損などするためネットワーク形成しにくいなどのためである。さらに、気相法炭素繊維3の質量比が、活物質1の質量に対して6質量%よりも多い場合は、アセチレンブラックを多く加えた場合と同様の理由によりサイクル維持率などの性能が低下したり、塗料粘度が高く、スジを引き多く塗工しにくかったりするためである。 The mass ratio of the vapor phase carbon fiber 3 is preferably in the range of 2 to 6% by mass with respect to the mass of the active material 1. If it is less than 2% by mass, the relative amount of the vapor phase carbon fiber 3 is small and the three-dimensional network effect cannot be obtained. In addition, it is difficult to form a network because the number of stirring contacts during dispersion is large and the vapor phase growth portion is lost. Further, when the mass ratio of the vapor phase carbon fiber 3 is more than 6% by mass with respect to the mass of the active material 1, the performance such as the cycle maintenance rate deteriorates for the same reason as when a large amount of acetylene black is added. This is because the paint has a high viscosity and many streaks are drawn, making it difficult to apply.

本発明の特徴の一つであるバインダ樹脂2の質量比は、活物質1の質量に対して10質量%以上25質量%以下の範囲内である。これは、バインダ樹脂2の質量比が、活物質1の質量に対して15質量%よりも少ないと、塗膜の抵抗値は下がるものの凝集や柔軟性に欠けてしまいサイクル維持率が低くなるためである。さらに、バインダ樹脂2の質量比が
、活物質1の質量に対して25質量%よりも多いと、電極質量あたりの容量が低下したり、塗膜の電気抵抗が大きくなりロスとなるためである。
The mass ratio of the binder resin 2, which is one of the features of the present invention, is in the range of 10% by mass or more and 25% by mass or less with respect to the mass of the active material 1. This is because if the mass ratio of the binder resin 2 is less than 15% by mass with respect to the mass of the active material 1, the resistance value of the coating film decreases, but the aggregation and flexibility are lacking, and the cycle maintenance rate becomes low. Is. Further, if the mass ratio of the binder resin 2 is more than 25% by mass with respect to the mass of the active material 1, the capacity per electrode mass decreases, and the electric resistance of the coating film increases, resulting in loss. ..

特に、バインダ樹脂2としては、アクリル系樹脂が好ましく、例えば、ポリアクリル酸、ポリアクリル酸塩(例えばポリアクリル酸ナトリウム塩など)等が挙げられる。これらは従来用いられているCMCに比べ、1繰り返し単位あたりのカルボン酸基の割合が多く、このために活物質1のSiOxの表面にアクリル酸系樹脂を局在化(一部被覆)させたり、アクリル酸系樹脂を混合した場合、良好なイオン伝導性膜を形成することが可能となる。 In particular, as the binder resin 2, an acrylic resin is preferable, and examples thereof include polyacrylic acid and polyacrylic acid salt (for example, sodium polyacrylate). These have a higher ratio of carboxylic acid groups per repeating unit than the conventionally used CMC, and for this reason, the acrylic acid resin is localized (partially coated) on the surface of SiOx of the active material 1. When an acrylic acid-based resin is mixed, a good ionic conductive film can be formed.

さらに、先に説明した導電助剤へ気相法炭素繊維3を加えることで、被覆層が機械的に補強されるため、充放電を繰り返しても、クラックが生じにくい被覆層を形成することが可能となる。すなわち、活物質1の表面にアクリル系樹脂で被覆したり、混合した部分に、気相法炭素繊維3を含有や付着させる。これにより、気相法炭素繊維3を含有したポリカルボン酸被覆Si系の活物質1と、この活物質1を用いる非水電解質二次電池用電極を提供することが可能となるため、サイクル特性を向上させることが可能な非水電解質二次電池用電極を提供することが可能となる。 Further, since the coating layer is mechanically reinforced by adding the vapor phase carbon fiber 3 to the conductive auxiliary agent described above, it is possible to form a coating layer in which cracks are unlikely to occur even if charging and discharging are repeated. It will be possible. That is, the surface of the active material 1 is coated with an acrylic resin, or the vapor phase carbon fiber 3 is contained or adhered to the mixed portion. This makes it possible to provide a polycarboxylic acid-coated Si-based active material 1 containing the vapor phase carbon fiber 3 and an electrode for a non-aqueous electrolyte secondary battery using the active material 1, and thus has cycle characteristics. It becomes possible to provide an electrode for a non-aqueous electrolyte secondary battery capable of improving the above.

また、アクリル系樹脂にポリアクリル酸あるいはポリアクリル酸塩を用いることで、容易に酸状態が得られることから、バインダ樹脂自体電子の行き来に柔軟である。さらに、このアクリル酸系樹脂の重量平均分子量を20〜1000万とすることで、安定性と柔軟性を共生させることができるのである。重量平均分子量20万未満であると、活物質や導電助剤に馴染み、被覆などしやすい反面、充放電の膨張収縮における柔軟性に欠けてしまう。また、重量平均分子量が1000万を超えてしまうと、塗膜の膨張収縮には柔軟に対応できるものの、活物質や導電助剤への均一に散在できず、局在化することで密着性などが落ちてしまう。好ましくは、重量平均分子量20〜100万のアクリル系樹脂と500〜1000万のアクリル系樹脂を混合することにより、前述した安定化がさらに増すのである。特に、低分子量側のアクリル酸系樹脂は、比較的高ヤング率で硬く脆いが、高分子量側のアクリル酸系樹脂は、低ヤング率で剛性が高い。 Further, by using polyacrylic acid or polyacrylic acid salt as the acrylic resin, an acid state can be easily obtained, so that the binder resin itself is flexible in the exchange of electrons. Furthermore, by setting the weight average molecular weight of this acrylic acid-based resin to 200 to 10 million, stability and flexibility can coexist. If the weight average molecular weight is less than 200,000, it becomes familiar with active materials and conductive auxiliaries and is easy to coat, but lacks flexibility in expansion and contraction of charge and discharge. In addition, when the weight average molecular weight exceeds 10 million, the coating film can flexibly respond to expansion and contraction, but cannot be uniformly scattered on the active material and the conductive auxiliary agent, and localization causes adhesion and the like. Will fall. Preferably, by mixing an acrylic resin having a weight average molecular weight of 200 to 1 million and an acrylic resin having a weight average molecular weight of 5 to 10 million, the above-mentioned stabilization is further increased. In particular, the acrylic acid-based resin on the low molecular weight side is hard and brittle with a relatively high Young's modulus, while the acrylic acid-based resin on the high molecular weight side has a low Young's modulus and high rigidity.

さらに、その塗料作製の際に、先に低い分子量側のバインダ樹脂を活物質や導電助剤混合することにより、粉体類表面にバインダ樹脂が存在することで、その後に分散させる高い分子量側のバインダ樹脂とも良混合分散させることができるのである。また、場合によっては、上記のように塗料を作製する際、バインダ樹脂を架橋させることで、柔軟性を持ったリジットな膜が得られ、充放電サイクルにおける膨張収縮も吸収しつつ、膜構造変化を最小限することができるのである。また、カルボン酸の絶対量を増やし、酸塩基の脱水反応などを促進させたり、酸価を高め膜の導電性を高める上での二価以上の多価カルボン酸との共重合や混合することも可能である。 Further, when the paint is prepared, the binder resin on the low molecular weight side is mixed with the active material or the conductive auxiliary agent first, so that the binder resin is present on the surface of the powders, and then the binder resin on the high molecular weight side is dispersed. It can also be mixed and dispersed well with the binder resin. Further, in some cases, when the paint is produced as described above, the binder resin is crosslinked to obtain a flexible rigid film, and the film structure changes while absorbing expansion and contraction in the charge / discharge cycle. Can be minimized. In addition, copolymerization or mixing with a divalent or higher polyvalent carboxylic acid for increasing the absolute amount of carboxylic acid, promoting the dehydration reaction of acid-base, increasing the acid value and increasing the conductivity of the film. Is also possible.

非水電解質二次電池に用いる電解液の溶媒には、ジメチルカーボネート、ジエチルカーボネート等、低粘度の鎖状炭酸エステルと、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等、高誘電率の環状炭酸エステル、γ‐ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホラン及びこれらの混合溶媒等を用いることが可能である。 Solvents of the electrolytic solution used for the non-aqueous electrolyte secondary battery include low-viscosity chain carbonates such as dimethyl carbonate and diethyl carbonate, and cyclic carbonates having a high dielectric constant such as ethylene carbonate, propylene carbonate and butylene carbonate, and γ. -Butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, 1,3-dioxolane, methyl acetate, methyl propionate, vinylene carbonate, dimethylformamide, sulfolane and a mixed solvent thereof can be used. is there.

電解液に含まれる電解質には、特に制限がなく、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiI、LiAlCl等、及び、それらの混合物等を用いることが可能である。好ましくは、LiBF、LiPFのうちの1種または2種以上を混合したリチウム塩がよい。 The electrolyte contained in the electrolytic solution is not particularly limited, and LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiI, LiAlCl 4, etc., and their It is possible to use a mixture or the like. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

以下、本発明を実施例によりさらに詳しく説明するが、本発明は、実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.

<実施例1>
バインダ樹脂として、120gのPVdFのNMP(N−methylpyrrolidone、N−メチル−2−ピロリドン)溶液(クレハ社製、#7208)に、24gのアセチレンブラック(AB:Acetylene Black、電気化学工業社製、HS−100)と、41gのNMPを加え、ハイビスミックスにて、10分間攪拌した。
続いて、活物質として、144gのNCM(ニッケル・マンガン・コバルト三元系材料、日本化学産業製)と、337gのLMO(マンガン酸リチウム Type−F、三井金属鉱業製)を加えて10分間攪拌した。インクが固練り状態であることを確認し、さらに、10分間混練した。その後、NV(固形分比率)が60%になるように、NMPを加えて希釈して、正極スラリを得た。
<Example 1>
As a binder resin, 120 g of PVdF in an NMP (N-methylpyrrolidone, N-methyl-2-pyrrolidone) solution (Kureha, # 7208) and 24 g of acetylene black (AB: Acetylene Black, Denki Kagaku Kogyo, HS). -100) and 41 g of NMP were added, and the mixture was stirred with a hibis mix for 10 minutes.
Subsequently, 144 g of NCM (nickel / manganese / cobalt ternary material, manufactured by Nihon Kagaku Sangyo) and 337 g of LMO (lithium manganate Type-F, manufactured by Mitsui Mining & Smelting Co., Ltd.) were added as active materials and stirred for 10 minutes. did. It was confirmed that the ink was in a solidified state, and the ink was further kneaded for 10 minutes. Then, NMP was added and diluted so that NV (solid content ratio) became 60%, and a positive electrode slurry was obtained.

さらに、得られた正極スラリを集電体に塗布した。集電体としては、厚さ15μmのAl箔を使用した。正極スラリは、18.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、120℃熱風で10分乾燥した後、密度が、2.5g/cmになるようにプレスして正極を得た。 Further, the obtained positive electrode slurry was applied to the current collector. As the current collector, an Al foil having a thickness of 15 μm was used. The positive electrode slurry was applied with a doctor blade so as to have a basis weight of 18.8 mg / cm 2 . Subsequently, after drying with hot air at 120 ° C. for 10 minutes, a positive electrode was obtained by pressing so that the density was 2.5 g / cm 3 .

次に、負極側として、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(昭和電工社製:VGCF)と、1.62gのポリアクリル酸(日本触媒社製:重量平均分子量:100万)と49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。 Next, as the negative electrode side, SiO (manufactured by Osaka Titanium Co., Ltd.) having an active material of 5.39 g and a median diameter (d50) of 6.6 μm, and graphite (Gr: Graphite, high-rate SMG for SBR, Hitachi Chemical) of 2.16 g. Weighed 1.07 g of acetylene black, 0.27 g of vapor phase carbon fiber (Showa Denko: VGCF), and 1.62 g of polyacrylic acid (Nippon Catalyst: Weight). In addition to (average molecular weight: 1 million) and 49.50 g of water, the mixed solution pre-dispersed with a disperser (manufactured by SMT) is fully dispersed with Philmix (registered trademark) (manufactured by Primix) to form a negative electrode slurry. Obtained. Then, the obtained negative electrode slurry was applied to the current collector. A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Subsequently, after drying with hot air at 80 ° C. for 10 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 .

<実施例2>
正極側については、実施例1と同様に作製した。
負極側は途中まで同様の作製方法となるが、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、0.30gのポリアクリル酸(日本触媒社製:重量平均分子量:80万)に49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散したのち、1.32gのアクリル酸ナトリウム塩(日本触媒製:重量平均分子量:500万)を加え再分散し、その液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Example 2>
The positive electrode side was produced in the same manner as in Example 1.
The same method is used for the negative electrode side halfway, but the active material is 5.39 g of SiO (manufactured by Osaka Titanium) with a median diameter (d50) of 6.6 μm and 2.16 g of graphite (Gr: Graphite, SBR). High-rate SMG for use, manufactured by Hitachi Kasei Co., Ltd.) Weighed, 1.07 g of acetylene black, 0.27 g of vapor phase carbon fiber (VGCF), and 0.30 g of polyacrylic acid (manufactured by Nippon Catalyst Co., Ltd .: Add 49.50 g of water to 49.50 g of water (weight average molecular weight: 800,000), pre-disperse with a disperser (manufactured by SMT), and then add 1.32 g of sodium acrylate (manufactured by Nippon Catalyst: weight average molecular weight: 5 million). In addition, it was redispersed, and the liquid was mainly dispersed with Fillmix (registered trademark) (manufactured by Primix) to obtain a negative electrode slurry. Then, the obtained negative electrode slurry was applied to the current collector. A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Subsequently, after drying with hot air at 80 ° C. for 10 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 .

<実施例3>
正極側については、実施例1と同様に作製した。
負極側は途中まで同様の作製方法となるが、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、0.3gのアクリル酸とマレイン酸の共重合体(日本触媒社製:重量平均分子量:80万)に49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散し、そのあとに、1.32gのアクリル酸ナトリウム塩(日本触媒製:重量平均分子量:500万)を加え再分散した、た混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Example 3>
The positive electrode side was produced in the same manner as in Example 1.
The same method is used for the negative side, but the active material is 5.39 g of SiO (manufactured by Osaka Titanium) with a median diameter (d50) of 6.6 μm and 2.16 g of graphite (Gr: Graphite, SBR). High-rate SMG for use, manufactured by Hitachi Kasei Co., Ltd.) was selected and weighed, and 1.07 g of acetylene black, 0.27 g of vapor phase carbon fiber (VGCF), and 0.3 g of a copolymer of acrylic acid and maleic acid were selected. (Made by Nippon Catalyst: Weight average molecular weight: 800,000), add 49.50 g of water, pre-disperse with a disperser (manufactured by SMT), and then 1.32 g of sodium acrylic acid salt (manufactured by Nippon Catalyst). : Weight average molecular weight: 5 million) was added and redispersed, and the mixed solution was main-dispersed with Fillmix (registered trademark) (manufactured by Primix) to obtain a negative electrode slurry. Then, the obtained negative electrode slurry was applied to the current collector. A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Subsequently, after drying with hot air at 80 ° C. for 10 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 .

<比較例1>
正極側は、実施例1と同様に作製した。
負極側は、活物質として、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr、SBR用ハイレートSMG、日立化成社製)と、1.07gのアセチレンブラック(AB)と、0.27gの気相法炭素繊維(VGCF)と、0.68gのポリアクリル酸(日本触媒社製:重量平均分子量100万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液をフィルミックス(プライミクス社製)で本分散し、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。負極スラリは、1.40mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。上記のように得られた電極を用いて、コインセルを作成し、本発明例と同様のサイクル評価を行った。
<Comparative example 1>
The positive electrode side was produced in the same manner as in Example 1.
On the negative electrode side, as active materials, 5.39 g of SiO (manufactured by Osaka Titanium) with a median diameter (d50) of 6.6 μm and 2.16 g of graphite (Gr, high-rate SMG for SBR, manufactured by Hitachi Kasei). , 1.07 g of acetylene black (AB), 0.27 g of vapor phase carbon fiber (VGCF), and 0.68 g of polyacrylic acid (manufactured by Nippon Catalyst Co., Ltd .: weight average molecular weight 1 million), 49.50 g. The mixed solution pre-dispersed with a disperser (manufactured by SMT) was mainly dispersed with a fill mix (manufactured by Primex) in addition to the water of No. Then, the obtained negative electrode slurry was applied to the current collector. A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.40 mg / cm 2 . Subsequently, after drying at 80 ° C. for 30 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 . A coin cell was prepared using the electrodes obtained as described above, and a cycle evaluation similar to that of the example of the present invention was performed.

<比較例2>
正極側は、実施例1と同様に作製した。
負極側は、活物質として、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr、SBR用ハイレートSMG、日立化成社製)と、1.07gのアセチレンブラック(AB)と、0.27gの気相法炭素繊維(VGCF)と2.27gのポリアクリル酸(日本触媒社製:重量平均分子量:100万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液をフィルミックス(プライミクス社製)で本分散し、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。負極スラリは、1.40mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。上記のように得られた電極を用いて、コインセルを作成し、本発明例と同様のサイクル評価を行った。
<Comparative example 2>
The positive electrode side was produced in the same manner as in Example 1.
On the negative electrode side, as active materials, 5.39 g of SiO (manufactured by Osaka Titanium) with a median diameter (d50) of 6.6 μm and 2.16 g of graphite (Gr, high-rate SMG for SBR, manufactured by Hitachi Kasei). , 1.07 g of acetylene black (AB), 0.27 g of vapor phase carbon fiber (VGCF) and 2.27 g of polyacrylic acid (manufactured by Nippon Catalyst Co., Ltd .: weight average molecular weight: 1 million), 49.50 g. The mixed solution pre-dispersed with a disperser (manufactured by SMT) was mainly dispersed with a fill mix (manufactured by Primex) in addition to the water of No. Then, the obtained negative electrode slurry was applied to the current collector. A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.40 mg / cm 2 . Subsequently, after drying at 80 ° C. for 30 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 . A coin cell was prepared using the electrodes obtained as described above, and a cycle evaluation similar to that of the example of the present invention was performed.

<比較例3>
正極側は、実施例1と同様に作製した。
次に、負極側として、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、1.62gのポリアクリル酸(日本触媒社製:重量平均分子量:5万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。
集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Comparative example 3>
The positive electrode side was produced in the same manner as in Example 1.
Next, as the negative electrode side, SiO (manufactured by Osaka Titanium Co., Ltd.) having an active material of 5.39 g and a median diameter (d50) of 6.6 μm, and graphite (Gr: Graphite, high-rate SMG for SBR, Hitachi Chemical) of 2.16 g. Weighed 1.07 g of acetylene black, 0.27 g of vapor phase carbon fiber (VGCF), and 1.62 g of polyacrylic acid (manufactured by Nippon Catalyst Co., Ltd .: weight average molecular weight: 50,000). ) Was added to 49.50 g of water, and the mixed solution pre-dispersed with a disperser (manufactured by SMT) was mainly dispersed with Fillmix (registered trademark) (manufactured by Primix) to obtain a negative electrode slurry. Then, the obtained negative electrode slurry was applied to the current collector.
A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Subsequently, after drying with hot air at 80 ° C. for 10 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 .

<比較例4>
正極側は、実施例1と同様に作製した。
次に、負極側として、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、1.62gのポリアクリル酸(日本触媒社製:重量平均分子量:1500万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Comparative example 4>
The positive electrode side was produced in the same manner as in Example 1.
Next, as the negative electrode side, SiO (manufactured by Osaka Titanium Co., Ltd.) having an active material of 5.39 g and a median diameter (d50) of 6.6 μm, and graphite (Gr: Graphite, high-rate SMG for SBR, Hitachi Chemical) of 2.16 g. Weighed 1.07 g of acetylene black, 0.27 g of vapor phase carbon fiber (VGCF), and 1.62 g of polyacrylic acid (manufactured by Nippon Catalyst Co., Ltd .: weight average molecular weight: 15 million). ) Was added to 49.50 g of water, and the mixed solution pre-dispersed with a disperser (manufactured by SMT) was mainly dispersed with Fillmix (registered trademark) (manufactured by Primix) to obtain a negative electrode slurry. Then, the obtained negative electrode slurry was applied to the current collector. A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Subsequently, after drying with hot air at 80 ° C. for 10 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 .

<比較例5>
正極側は、実施例1と同様に作製した。
負極側は途中まで同様の作製方法となるが、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、1.32gのアクリル酸ナトリウム塩(日本触媒製:重量平均分子量:500万)に9.50gの水に加えプレ分散したのち、0.3gのアクリル酸とマレイン酸の共重合体(日本触媒社製:重量平均分子量:80万)を加えさらに再分散し、さらに、混合分散したものについて、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Comparative example 5>
The positive electrode side was produced in the same manner as in Example 1.
The same method is used for the negative side, but the active material is 5.39 g of SiO (manufactured by Osaka Titanium) with a median diameter (d50) of 6.6 μm and 2.16 g of graphite (Gr: Graphite, SBR). High-rate SMG for use, manufactured by Hitachi Kasei Co., Ltd.) Weighed, 1.07 g of acetylene black, 0.27 g of vapor phase carbon fiber (VGCF), and 1.32 g of sodium acrylate (manufactured by Nippon Catalyst: Co., Ltd .: (Weight average molecular weight: 5 million) is pre-dispersed by adding 9.50 g of water, and then 0.3 g of a copolymer of acrylic acid and maleic acid (manufactured by Nippon Catalyst Co., Ltd .: weight average molecular weight: 800,000) is added and re-dispersed. The dispersed product was further dispersed and further dispersed by Fillmix (registered trademark) (manufactured by Primix Co., Ltd.) to obtain a negative electrode slurry. Then, the obtained negative electrode slurry was applied to the current collector. A copper foil having a thickness of 12 μm was used as the current collector. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Subsequently, after drying with hot air at 80 ° C. for 10 minutes, a negative electrode was obtained by pressing so that the density was 1.2 g / cm 3 .

実施例1〜3および比較例1〜5に用いた負極(非水電解質二次電池用電極)形成用組成物における、活物質、導電助剤、バインダ樹脂に関する条件を下記表1に示す。 The conditions for the active material, the conductive auxiliary agent, and the binder resin in the negative electrode (electrode for non-aqueous electrolyte secondary battery) forming composition used in Examples 1 to 3 and Comparative Examples 1 to 5 are shown in Table 1 below.

Figure 0006801167
Figure 0006801167

<コインセルの作製>
実施例1〜3及び比較例1〜5で得られた負極と正極を用いてコインセルを作製した。
コインセルは2032型を使用し、負極は直径15mm、正極は直径13.5mmの円板にそれぞれ打ち抜いた電極とセパレータ(セルガード社製:型番2200)を基本構成とした。なお、電解液は、2wt%のVC(Vinylene Carbonate、ビニレンカーボネート)を含むエチレンカーボネート(EC)とジエチルカーボネート(DMC)を、3:7(v/v)比率で混合した溶液に、LiPF6を1Molとなるように加えたものを使用した。
<サイクルテスト>
上記で作製したコインセルに対して、以下の充放電条件でサイクルテストを行った。
充電:366mAg/(活物質重量)、放電:1829mAg/(活物質重量)で、3V〜4.25Vの電圧範囲で、繰り返し充放電を100回繰り返した。評価結果を下記表
2に示す。
<Making coin cells>
A coin cell was produced using the negative electrode and the positive electrode obtained in Examples 1 to 3 and Comparative Examples 1 to 5.
A 2032 type coin cell was used, and the negative electrode had an electrode and a separator (manufactured by Cellguard: model number 2200) punched into a disk having a diameter of 15 mm and a positive electrode having a diameter of 13.5 mm. As the electrolytic solution, 1 Mol of LiPF6 was mixed with a solution of ethylene carbonate (EC) containing 2 wt% VC (Vinylene Carbonate) and diethyl carbonate (DMC) at a ratio of 3: 7 (v / v). I used the one added so that.
<Cycle test>
The coin cell produced above was subjected to a cycle test under the following charge / discharge conditions.
Charging: 366 mAg / (active material weight), discharging: 1829 mAg / (active material weight), and charging / discharging was repeated 100 times in a voltage range of 3 V to 4.25 V. The evaluation results are shown in Table 2 below.

Figure 0006801167
Figure 0006801167

<比較結果>
実施例1〜3で得られた本発明品は、初期容量、特にサイクルテスト後の容量維持率においてはいずれも80%以上の良好な結果を示した。一方、比較例1〜5で得られた比較例品は、特にサイクルテスト後の容量維持率においてはいずれも60〜80%の範囲であり、実用性に問題があるレベルの結果を示した。中でも実施例3の本発明品は、
初期容量とサイクルテスト後の容量維持率において最良の値を示した。このことから、特に、導電材として、アセチレンブラックや気相法炭素繊維を含み、バインダ樹脂の混合比率、バインダ樹脂の重量平均分子量などが最適化されていることが確認でき、本発明が適正であることが確認された。
<Comparison result>
The products of the present invention obtained in Examples 1 to 3 showed good results of 80% or more in the initial capacity, particularly the capacity retention rate after the cycle test. On the other hand, the comparative example products obtained in Comparative Examples 1 to 5 were all in the range of 60 to 80%, especially in the capacity retention rate after the cycle test, and showed a level of practicality problematic results. Among them, the product of the present invention of Example 3 is
The best values were shown for the initial capacity and the capacity retention rate after the cycle test. From this, it can be confirmed that the conductive material contains acetylene black and vapor phase carbon fiber, the mixing ratio of the binder resin, the weight average molecular weight of the binder resin, etc. are optimized, and the present invention is appropriate. It was confirmed that there was.

また、実施例1〜実施例3において、SEMでサイクル前の電極表面を観察したところ、図1のように、活物質の表面がバインダ樹脂で覆われているとともに、気相法炭素繊維3とバインダ樹脂2が混合しているのが確認できた。このことから、図1の形状が、サイクルに伴うSEIの継続的な生成を抑制し、サイクル維持率が向上したものと考えられる。 Further, in Examples 1 to 3, when the electrode surface before the cycle was observed by SEM, as shown in FIG. 1, the surface of the active material was covered with the binder resin, and the vapor phase method carbon fiber 3 was obtained. It was confirmed that the binder resin 2 was mixed. From this, it is considered that the shape of FIG. 1 suppresses the continuous generation of SEI with the cycle and the cycle maintenance rate is improved.

本発明によって得られる非水電解質二次電池用電極は、各種携帯用電子機器の電源、また、高エネルギー密度が求められる電気自動車等の駆動用蓄電池、さらに、ソーラーエネルギーや風力発電等の各種エネルギーの蓄電装置、または、家庭用電気器具の蓄電源等の電極に用いられる。 The electrodes for non-aqueous electrolyte secondary batteries obtained by the present invention are power sources for various portable electronic devices, storage batteries for driving electric vehicles and the like that require high energy density, and various energies such as solar energy and wind power generation. It is used as an electrode for a power storage device or a storage power source for household electric appliances.

1…活物質、2…バインダ樹脂、3…気相法炭素繊維 1 ... Active material, 2 ... Binder resin, 3 ... Vapor phase carbon fiber

Claims (3)

集電体の表面に、電極形成用組成物を含む塗膜が形成された非水電解質二次電池用電極であって、
前記電極形成用組成物は、活物質、導電助剤、バインダ樹脂を含み、
前記活物質は、SiOx(xは1.5以下)を含み、
前記導電助剤はアセチレンブラックと気相法炭素繊維とを含み、アセチレンブラックの質量は前記活物質に対して12〜20質量%の範囲で、気相法炭素繊維の質量は前記活物質に対して2〜6質量%の範囲で、
前記バインダ樹脂は、重量平均分子量が20万以上100万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩と、重量平均分子量が500万以上1000万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩とを少なくとも含み、前記バインダ樹脂の質量は前記活物質に対して10〜25質量%の範囲であることを特徴とする非水電解質二次電池用電極。
An electrode for a non-aqueous electrolyte secondary battery in which a coating film containing an electrode-forming composition is formed on the surface of a current collector .
The electrode-forming composition contains an active material, a conductive additive, and a binder resin.
The active material contains SiOx (x is 1.5 or less).
The conductive auxiliary agent contains acetylene black and vapor phase carbon fiber, and the mass of acetylene black is in the range of 12 to 20% by mass with respect to the active material, and the mass of the vapor phase carbon fiber is with respect to the active material. In the range of 2 to 6% by mass
The binder resin includes polyacrylic acid or polyacrylic acid salt having a weight average molecular weight in the range of 200,000 or more and less than 1 million, and polyacrylic acid or polyacrylic acid having a weight average molecular weight in the range of 5 million or more and less than 10 million. An electrode for a non-aqueous electrolyte secondary battery, which contains at least a salt and has a molecular weight of the binder resin in the range of 10 to 25% by mass with respect to the active material.
前記バインダ樹脂は、重量平均分子量が20万以上100万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩と、重量平均分子量が500万以上1000万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩とを混合することを特徴とする請求項1に記載の非水電解質二次電池用電極。 The binder resin includes polyacrylic acid or polyacrylic acid salt having a weight average molecular weight in the range of 200,000 or more and less than 1 million, and polyacrylic acid or polyacrylic acid having a weight average molecular weight in the range of 5 million or more and less than 10 million. The electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode is mixed with a salt. 記バインダ樹脂が架橋していることを特徴とする請求項1または2に記載の非水電解質二次電池用電極。
The non-aqueous electrolyte secondary battery according to claim 1 or 2 before fang inductor resin is characterized in that it is crosslinked.
JP2015106321A 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries Active JP6801167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106321A JP6801167B2 (en) 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106321A JP6801167B2 (en) 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JP2016219370A JP2016219370A (en) 2016-12-22
JP6801167B2 true JP6801167B2 (en) 2020-12-16

Family

ID=57581445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106321A Active JP6801167B2 (en) 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
JP (1) JP6801167B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645792B2 (en) * 2015-10-05 2020-02-14 積水化学工業株式会社 Electrode, lithium ion secondary battery, method for manufacturing electrode, and method for manufacturing lithium ion secondary battery
KR102248865B1 (en) 2017-04-06 2021-05-06 주식회사 엘지화학 Anode for secondary battery and method for manufacturing the same
KR102248864B1 (en) 2017-04-06 2021-05-06 주식회사 엘지화학 Anode for secondary battery and method for manufacturing the same
JP7480703B2 (en) * 2018-05-23 2024-05-10 東亞合成株式会社 Composition for secondary battery electrode mixture layer and secondary battery electrode
WO2020026420A1 (en) * 2018-08-02 2020-02-06 凸版印刷株式会社 Negative electrode binder for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
CN112840481A (en) * 2018-09-28 2021-05-25 松本油脂制药株式会社 Slurry composition for secondary battery negative electrode, dispersant composition for secondary battery negative electrode slurry, secondary battery negative electrode, and secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
JP5313479B2 (en) * 2006-10-11 2013-10-09 パナソニック株式会社 Non-aqueous electrolyte battery
JP2009252348A (en) * 2008-04-01 2009-10-29 Panasonic Corp Nonaqueous electrolyte battery
JP2010097761A (en) * 2008-10-15 2010-04-30 Denso Corp Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5456392B2 (en) * 2009-07-09 2014-03-26 国立大学法人三重大学 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery
KR20140128379A (en) * 2012-01-30 2014-11-05 넥세온 엘티디 Composition of si/c electro active material
JP6097643B2 (en) * 2012-08-21 2017-03-15 積水化学工業株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6267423B2 (en) * 2012-12-19 2018-01-24 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery
JP6302322B2 (en) * 2013-09-26 2018-03-28 積水化学工業株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2016219370A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6801167B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP6685940B2 (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
TWI549338B (en) Anode active material for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the same
JPWO2016035289A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7281570B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2011023221A (en) Lithium ion secondary battery
JP4852824B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6863331B2 (en) Non-aqueous electrolyte secondary battery
JP2020527290A (en) Carbon Conductive Additive for Lithium Ion Batteries
JP6809453B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP5365668B2 (en) Lithium secondary battery and method for producing negative electrode thereof
JP2008282550A (en) Anode for lithium secondary battery and lithium secondary cell using the same
KR20080036255A (en) Mixed cathode material for lithium secondary battery and high power lithium secondary battery employed with the same
JP6641538B1 (en) Carbon material, conductive assistant, electrode for power storage device, and power storage device
JP6931491B2 (en) How to manufacture electrodes for electrochemical power storage devices
JP6787117B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP6583263B2 (en) Nonaqueous electrolyte secondary battery electrode
KR101115390B1 (en) Mixed Cathode Material for Lithium Secondary Battery and High Power Lithium Secondary Battery Employed with the Same
JP6634757B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2021182484A (en) Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6961939B2 (en) Negative electrode agent for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
TWI673908B (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20200095182A (en) Composition for foaming negative electrode active material layer of lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2021182483A (en) Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250