JP2016219370A - Electrode for nonaqueous electrolyte secondary battery - Google Patents

Electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016219370A
JP2016219370A JP2015106321A JP2015106321A JP2016219370A JP 2016219370 A JP2016219370 A JP 2016219370A JP 2015106321 A JP2015106321 A JP 2015106321A JP 2015106321 A JP2015106321 A JP 2015106321A JP 2016219370 A JP2016219370 A JP 2016219370A
Authority
JP
Japan
Prior art keywords
active material
mass
electrode
binder resin
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015106321A
Other languages
Japanese (ja)
Other versions
JP6801167B2 (en
Inventor
加藤 茂幹
Shigemoto Kato
茂幹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2015106321A priority Critical patent/JP6801167B2/en
Publication of JP2016219370A publication Critical patent/JP2016219370A/en
Application granted granted Critical
Publication of JP6801167B2 publication Critical patent/JP6801167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a nonaqueous electrolyte secondary battery, which has superior output and cycle characteristics.SOLUTION: An electrode for a nonaqueous electrolyte secondary battery comprises: a current collector; and a coating film including a composition for electrode formation and formed on the surface of the current collector, provided that the composition contains an active material 1, a conductive assistant, a binder resin 2, and a diluted solvent. The conductive assistant contains acetylene black and vapor-grown carbon fiber 3; the mass of the acetylene black is in a range of 12-20 mass% to that of the active material 1; the mass of the vapor grown carbon fiber 3 is in a range of 2-6 mass% to that of the active material 1; and the mass of the binder resin 2 is in a range of 10-25 mass% to that of the active material 1.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用電極、より詳細には、サイクル特性を向上させることが可能な非水電解質二次電池用電極に関するものである。   The present invention relates to a nonaqueous electrolyte secondary battery electrode, and more particularly to a nonaqueous electrolyte secondary battery electrode capable of improving cycle characteristics.

近年、石油使用量や温室効果ガスの削減、エネルギー基盤のさらなる多様化や効率化を目指し、繰り返し充放電可能な二次電池として、Li(リチウム)イオン二次電池に注目が集まっている。特に、電気自動車や、ハイブリッド電気自動車及び燃料電池車への用途展開が見込まれている。電気自動車においては、航続距離の向上が要求され、今後、二次電池の高エネルギー密度化が一層要求されていくことになる。現状の負極に注目すると、黒鉛電極が一般に用いられている。黒鉛の理論容量は、372mAh/gである。これに対し、黒鉛を上回る容量を示す活物質として、SiやSnが近年注目されている。Siの理論容量は、4200mAh/gであり、Snの理論容量は、990mAh/gである。一方、Siは、黒鉛の約11倍の容量を持っているために、Liの吸蔵と放出に伴う体積変化も大きくなる。具体的には、Liの吸蔵により、体積が約4倍増加する。   In recent years, attention has been focused on Li (lithium) ion secondary batteries as secondary batteries that can be repeatedly charged and discharged with the aim of reducing the amount of oil used and greenhouse gases, and further diversifying and improving the efficiency of the energy base. In particular, application development to electric vehicles, hybrid electric vehicles, and fuel cell vehicles is expected. In an electric vehicle, an improvement in the cruising distance is required, and a higher energy density of the secondary battery will be further required in the future. When attention is paid to the current negative electrode, a graphite electrode is generally used. The theoretical capacity of graphite is 372 mAh / g. On the other hand, Si and Sn have attracted attention in recent years as an active material having a capacity exceeding that of graphite. The theoretical capacity of Si is 4200 mAh / g, and the theoretical capacity of Sn is 990 mAh / g. On the other hand, since Si has a capacity about 11 times that of graphite, the volume change associated with insertion and extraction of Li increases. Specifically, the volume increases by about 4 times due to the occlusion of Li.

黒鉛と比べて、大容量を有する活物質を用いた電極は、充放電に伴う大きな体積変化から、電極の導電パスの切断や微粉化に伴う電極からの脱離、集電体と活物質層の剥離等のおそれがある。このことは、電池のサイクル特性を低下させる要因となる可能性がある。これに対し、特許文献1には、バインダ樹脂として、アルギン酸ナトリウムを用いることが開示されている。   Compared with graphite, an electrode using an active material having a large capacity has a large volume change accompanying charging / discharging, detachment from the electrode due to cutting or pulverization of the conductive path of the electrode, current collector and active material layer There is a risk of peeling. This can be a factor that degrades the cycle characteristics of the battery. On the other hand, Patent Document 1 discloses using sodium alginate as a binder resin.

また、特許文献2には、アルギン酸ナトリウムが、従来用いられてきたバインダ樹脂であるPVdF(Poly Vinylidene diFluoride:ポリフッ化ビニリデン)や、CMC(Carboxy Methyl Cellulose:カルボキシメチルセルロース)とSBR(Styrene−Butadiene Rubber:スチレン・ブタジエンゴム)に比べ、サイクル特性に優れていると記載されている。また、特許文献2には、バインダ樹脂として用いるアルギン酸塩の粘度として、1%(W/V=Weight/Volume%)水溶液の20℃における粘度が、1000mPa・s以上2000mPa・s以下の範囲内のバインダ樹脂を用いることで、優れた出力特性を示すと記載されている。   Patent Document 2 discloses that sodium alginate is a binder resin that has been conventionally used, such as PVdF (Poly Vinylidene diFluoride), CMC (Carboxy Methyl Cellulose: Carboxymethyl Cellulose) and SBR (Styrene-Butadiene: It is described that it has excellent cycle characteristics compared to (styrene-butadiene rubber). Patent Document 2 discloses that the viscosity of an alginate used as a binder resin is 1% (W / V = Weight / Volume%) aqueous solution having a viscosity at 20 ° C. of 1000 mPa · s to 2000 mPa · s. It is described that excellent output characteristics are exhibited by using a binder resin.

WO2011−140150号公報WO2011-140150 Publication 特開2013−161832号公報JP 2013-161832 A

しかしながら、バインダ樹脂として、先行文献にもあるように、PVdFなどのフッ素系バインダ樹脂は、活物質との分子間力が弱いため接着力を得られにくい傾向があり、補強のために増量すると電気的抵抗が大きくなってしまい不利に働いてしまう。また、CMCなどの水溶性バインダ樹脂においては、溶媒が水であるため活物質や導電材が不均一分散になりがちとなり密着性に乏しくサイクル性に劣り、電池性能に影響を与えてしまう。また、SBRは、強い接着力は得られるものの、ブタジエンの二重結合が酸化されやすいため、サイクル特定には不利である。またバインダ樹脂にアルギン酸ナトリウムを用いることでは、サイクル特性の向上が認められるものの、依然として、サイクル充放電に伴う
継続的なSEI(Solid Electrolyte Interface:電気伝導性及びイオン伝導性が少ない電解液・電極間物質)生成に伴うサイクル維持率が低下するという問題が生じる。本発明は、このような問題点を解決しようとするものであり、優れた出力特性及びサイクル特性を有する非水電解質二次電池用電極を提供することを目的とする。
However, as described in the prior art, as a binder resin, a fluorine-based binder resin such as PVdF has a tendency that it is difficult to obtain an adhesive force due to a weak intermolecular force with an active material. The resistance increases and it works disadvantageously. In addition, in a water-soluble binder resin such as CMC, since the solvent is water, the active material and the conductive material tend to be non-uniformly dispersed, resulting in poor adhesion and poor cycleability, which affects battery performance. In addition, although SBR can provide a strong adhesive force, the double bond of butadiene is easily oxidized, which is disadvantageous for cycle identification. In addition, when sodium alginate is used as the binder resin, the cycle characteristics are improved, but the continuous SEI (Solid Electrolyte Interface) associated with the cycle charge / discharge is still between the electrolyte and the electrode with low electrical conductivity and ion conductivity. The problem is that the cycle maintenance rate accompanying the (substance) generation decreases. The present invention is intended to solve such problems, and an object thereof is to provide a nonaqueous electrolyte secondary battery electrode having excellent output characteristics and cycle characteristics.

本発明者は、サイクル特性のさらなる向上を狙い、鋭意検討を行なった結果、バインダ樹脂として、ある分子量域に限ったアクリル系樹脂やその塩を用いることで、活物質などの表面にバインダ樹脂を一部被覆した層を備えたり、そこに気相法炭素繊維を含有させたり、また混合する順序なども検討などすることにより、サイクル特性も向上させることが可能となることを見出し、本発明を得た。   As a result of intensive studies aimed at further improving the cycle characteristics, the present inventor used a binder resin on the surface of an active material or the like by using an acrylic resin or a salt thereof limited to a certain molecular weight region as the binder resin. It has been found that the cycle characteristics can be improved by providing a partially coated layer, incorporating vapor grown carbon fiber therein, and studying the mixing order. Obtained.

本発明の請求項1に係る発明は、集電体の表面を、活物質、導電助剤、バインダ樹脂、希釈溶剤を含有する電極形成用組成物からなる塗膜が形成された非水電解質二次電池用電極であって、
前記導電助剤はアセチレンブラックと気相法炭素繊維とを含み、
アセチレンブラックの質量は前記活物質に対して12〜20質量%の範囲で、
気相法炭素繊維の質量は前記活物質に対して2〜6質量%の範囲で、
バインダ樹脂の質量は前記活物質に対して10〜25質量%の範囲であることを特徴とする非水電解質二次電池用電極である。
In the invention according to claim 1 of the present invention, the surface of the current collector is a non-aqueous electrolyte 2 in which a coating film made of an electrode forming composition containing an active material, a conductive additive, a binder resin, and a diluent solvent is formed. A secondary battery electrode,
The conductive auxiliary agent includes acetylene black and vapor grown carbon fiber,
The mass of acetylene black is in the range of 12 to 20% by mass relative to the active material,
The mass of the vapor grown carbon fiber is in the range of 2 to 6% by mass with respect to the active material,
The binder resin is an electrode for a nonaqueous electrolyte secondary battery, wherein the mass of the binder resin is in the range of 10 to 25% by mass with respect to the active material.

請求項2は、前記活物質は、SiOx(xは1.5以下)を含むことを特徴とする請求項1に記載の非水電解質二次電池用電極である。   A second aspect of the present invention is the electrode for a non-aqueous electrolyte secondary battery according to the first aspect, wherein the active material contains SiOx (x is 1.5 or less).

請求項3は、前記バインダ樹脂は、重量平均分子量が20〜1000万の範囲にあるポリアクリル酸、ポリアクリル酸塩の少なくとも一つ以上から選ばれることを特徴とする請求項1または2に記載の非水電解質二次電池用電極である。   3. The binder resin according to claim 1 or 2, wherein the binder resin is selected from at least one of polyacrylic acid and polyacrylate having a weight average molecular weight in the range of 20 to 10 million. This is an electrode for a non-aqueous electrolyte secondary battery.

請求項4は、前記バインダ樹脂は、重量平均分子量が100万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩と、重量平均分子量が500万以上の範囲にあるポリアクリル酸またはポリアクリル酸塩との混合からなることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用電極である。   According to a fourth aspect of the present invention, the binder resin includes a polyacrylic acid or polyacrylate having a weight average molecular weight of less than 1 million and a polyacrylic acid or polyacrylate having a weight average molecular weight of 5 million or more. The electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the electrode is a mixture of

請求項5は、前記塗膜を構成するバインダ樹脂が架橋していることを特徴とする請求項1〜4のいずれかに記載の非水電解質二次電池用電極である。   A fifth aspect of the present invention is the electrode for a nonaqueous electrolyte secondary battery according to any one of the first to fourth aspects, wherein the binder resin constituting the coating film is crosslinked.

本発明によれば、集電体の表面を、活物質、導電助剤、バインダ樹脂で形成された非水電解質二次電池用電極において、バインダ樹脂に重量平均分子量が20〜1000万の範囲にあるポリアクリル酸、ポリアクリル酸塩の少なくとも一つ以上から選ぶことによって強固なバインダ樹脂網を形成することができ、リチウムイオンの挿入/離脱時の膨張収縮を抑制することができる。また、活物質としてSiOxを含有することで、リチウムイオンの挿入/離脱時の膨張収縮を小さくする効果があり、このSiOxと前記バインダ樹脂との相乗効果により、サイクル特性の容量維持率を高く保つことができる。   According to the present invention, the surface of the current collector is a nonaqueous electrolyte secondary battery electrode formed of an active material, a conductive additive, and a binder resin, and the binder resin has a weight average molecular weight in the range of 20 to 10 million. By selecting from at least one of polyacrylic acid and polyacrylic acid salt, a strong binder resin network can be formed, and expansion / contraction upon insertion / extraction of lithium ions can be suppressed. In addition, by containing SiOx as an active material, there is an effect of reducing expansion and contraction at the time of lithium ion insertion / extraction, and the capacity retention rate of cycle characteristics is kept high by the synergistic effect of this SiOx and the binder resin. be able to.

本発明の第一実施形態の電極が備える活物質層の構成を示す模式図である。It is a schematic diagram which shows the structure of the active material layer with which the electrode of 1st embodiment of this invention is provided.

以下、本発明の実施形態について図を基に具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

本発明は集電体の表面を、活物質、導電助剤、バインダ樹脂、希釈溶剤を含有する電極形成用組成物からなる塗膜が形成された非水電解質二次電池用電極である。具体的には、図1に示すように、活物質1の表面がバインダ樹脂2と、アセチレンブラックと気相法炭素繊維3とを含む導電助剤で被覆された状態で、集電体に電極形成用組成物を塗布、乾燥して形成されることを特徴とする非水電解質二次電池用電極である。   The present invention is an electrode for a nonaqueous electrolyte secondary battery in which a coating film made of an electrode forming composition containing an active material, a conductive auxiliary agent, a binder resin, and a diluent solvent is formed on the surface of a current collector. Specifically, as shown in FIG. 1, an electrode is applied to the current collector in a state where the surface of the active material 1 is coated with a conductive additive containing a binder resin 2, acetylene black, and vapor grown carbon fiber 3. An electrode for a nonaqueous electrolyte secondary battery, which is formed by applying and drying a forming composition.

本発明に用いられる集電体は特に限定するものではなく、例えば公知の銅箔を用いることができる。   The current collector used in the present invention is not particularly limited, and for example, a known copper foil can be used.

活物質1としては公知の材料、例えばグラファイトなどの炭素系材料を用いることができるが、SiOxを含むことが好ましい。Siは初期の容量は高いが、リチウムイオンの挿入/離脱に伴う膨張収縮が大きく、サイクル特性の低下に問題がある。これに対して、SiOxはSiに比べて初期の容量は少し劣るが、サイクルに伴う容量維持率が高い傾向にあるため好ましい。すなわち、SiOxはリチウムイオンの挿入/離脱時の膨張収縮が他の活物質に比べて小さいため、後述するバインダ樹脂との相乗効果でサイクルに伴う容量維持率を高めることができる。   The active material 1 may be a known material, for example, a carbon-based material such as graphite, but preferably contains SiOx. Although Si has a high initial capacity, it has a large expansion / contraction caused by insertion / extraction of lithium ions, and there is a problem in deterioration of cycle characteristics. In contrast, SiOx is preferred because it has a slightly lower initial capacity than Si, but tends to have a higher capacity retention rate associated with the cycle. That is, since SiOx has a smaller expansion / contraction during insertion / extraction of lithium ions than other active materials, the capacity maintenance rate accompanying the cycle can be increased by a synergistic effect with the binder resin described later.

また、SiOxは、粒径が小さいほど、容量とサイクル維持率が高くなる。一方、充放電に伴うSiOxの凝集が進むので、活物質としてSiOxにグラファイト(黒鉛)を加えても良い。この場合、黒鉛上にSiOxのナノ粒子を担持させることで、SiOx粒子の凝集を抑えることが可能となる。   Moreover, the capacity | capacitance and a cycle maintenance factor become high, so that SiOx is small in a particle size. On the other hand, since aggregation of SiOx accompanying charge / discharge proceeds, graphite (graphite) may be added to SiOx as an active material. In this case, it is possible to suppress aggregation of SiOx particles by supporting SiOx nanoparticles on graphite.

導電助剤は、アセチレンブラックと気相法炭素繊維3を含み、アセチレンブラックの質量比は、活物質1の質量に対して12〜20質量%の範囲内が好ましい。12質量%未満の場合は、充放電に伴う電極の体積変動により導電パスが切断され、サイクル維持率が低下してしまう。また、20質量%を超えると、活物質層内の全粒子の表面積が増加するため、結着に必要なバインダ樹脂量の増加が必要となり、結果としてサイクル維持率の低下を招く。このような不具合を防止する為に、効率的に3次元的にネットワークを構築しやすい気相法炭素繊維3を混合する必要がある。   The conductive auxiliary agent includes acetylene black and vapor grown carbon fiber 3, and the mass ratio of acetylene black is preferably in the range of 12 to 20% by mass with respect to the mass of active material 1. When the amount is less than 12% by mass, the conductive path is cut due to the volume change of the electrode accompanying charging and discharging, and the cycle maintenance ratio is lowered. On the other hand, if it exceeds 20% by mass, the surface area of all the particles in the active material layer increases, so that it is necessary to increase the amount of binder resin necessary for binding, resulting in a decrease in cycle retention. In order to prevent such a problem, it is necessary to mix the vapor grown carbon fiber 3 that can efficiently construct a three-dimensional network.

気相法炭素繊維3とはカーボンナノファイバー(CNF)やカーボンナノチューブ(CNT)に代表される気相から生成される繊維状炭素であり、平均繊維径が数十〜数百ナオオーダーで、平均繊維長が数十ミクロン以下のものが好ましい。このような気相法炭素繊維3はバインダ樹脂との共存により3次元的にネットワークを構築することができ、これによりチウムイオンの挿入/離脱に伴う膨張収縮を緩和する効果がある。   The vapor grown carbon fiber 3 is fibrous carbon generated from the vapor phase represented by carbon nanofiber (CNF) and carbon nanotube (CNT), and the average fiber diameter is on the order of several tens to several hundreds Nao. The fiber length is preferably several tens of microns or less. Such a vapor grown carbon fiber 3 can form a three-dimensional network by coexistence with a binder resin, and has the effect of relaxing expansion and contraction associated with insertion / extraction of thium ions.

気相法炭素繊維3の質量比は、活物質1の質量に対して2〜6質量%の範囲内が好ましい。2質量%未満の場合、気相法炭素繊維3の相対的な量が少なく3次元ネットワーク効果を得ることができない。また、分散の際の攪拌接触回数が多く気相成長部分が欠損などするためネットワーク形成しにくいなどのためである。さらに、気相法炭素繊維3の質量比が、活物質1の質量に対して6質量%よりも多い場合は、アセチレンブラックを多く加えた場合と同様の理由によりサイクル維持率などの性能が低下したり、塗料粘度が高く、スジを引き多く塗工しにくかったりするためである。   The mass ratio of the vapor grown carbon fiber 3 is preferably in the range of 2 to 6% by mass with respect to the mass of the active material 1. When the amount is less than 2% by mass, the relative amount of vapor grown carbon fiber 3 is small and a three-dimensional network effect cannot be obtained. Another reason is that it is difficult to form a network because the number of stirring contacts during dispersion is large and the vapor phase growth part is lost. Further, when the mass ratio of the vapor grown carbon fiber 3 is more than 6% by mass with respect to the mass of the active material 1, the performance such as the cycle maintenance rate is lowered for the same reason as when a large amount of acetylene black is added. This is because the viscosity of the paint is high and it is difficult to apply a lot of streaks.

本発明の特徴の一つであるバインダ樹脂2の質量比は、活物質1の質量に対して10質量%以上25質量%以下の範囲内である。これは、バインダ樹脂2の質量比が、活物質1の質量に対して15質量%よりも少ないと、塗膜の抵抗値は下がるものの凝集や柔軟性に欠けてしまいサイクル維持率が低くなるためである。さらに、バインダ樹脂2の質量比が
、活物質1の質量に対して25質量%よりも多いと、電極質量あたりの容量が低下したり、塗膜の電気抵抗が大きくなりロスとなるためである。
The mass ratio of the binder resin 2, which is one of the features of the present invention, is in the range of 10% by mass to 25% by mass with respect to the mass of the active material 1. This is because when the mass ratio of the binder resin 2 is less than 15% by mass with respect to the mass of the active material 1, the resistance value of the coating film is lowered but lacks aggregation and flexibility, resulting in a low cycle maintenance rate. It is. Furthermore, when the mass ratio of the binder resin 2 is more than 25% by mass with respect to the mass of the active material 1, the capacity per electrode mass is reduced, or the electric resistance of the coating film is increased, resulting in a loss. .

特に、バインダ樹脂2としては、アクリル系樹脂が好ましく、例えば、ポリアクリル酸、ポリアクリル酸塩(例えばポリアクリル酸ナトリウム塩など)等が挙げられる。これらは従来用いられているCMCに比べ、1繰り返し単位あたりのカルボン酸基の割合が多く、このために活物質1のSiOxの表面にアクリル酸系樹脂を局在化(一部被覆)させたり、アクリル酸系樹脂を混合した場合、良好なイオン伝導性膜を形成することが可能となる。   In particular, the binder resin 2 is preferably an acrylic resin, and examples thereof include polyacrylic acid and polyacrylic acid salts (for example, polyacrylic acid sodium salt). These have a higher proportion of carboxylic acid groups per repeating unit than conventional CMCs. For this reason, an acrylic resin is localized (partially covered) on the surface of SiOx of the active material 1. When an acrylic resin is mixed, a good ion conductive film can be formed.

さらに、先に説明した導電助剤へ気相法炭素繊維3を加えることで、被覆層が機械的に補強されるため、充放電を繰り返しても、クラックが生じにくい被覆層を形成することが可能となる。すなわち、活物質1の表面にアクリル系樹脂で被覆したり、混合した部分に、気相法炭素繊維3を含有や付着させる。これにより、気相法炭素繊維3を含有したポリカルボン酸被覆Si系の活物質1と、この活物質1を用いる非水電解質二次電池用電極を提供することが可能となるため、サイクル特性を向上させることが可能な非水電解質二次電池用電極を提供することが可能となる。   Furthermore, since the coating layer is mechanically reinforced by adding the vapor grown carbon fiber 3 to the conductive aid described above, it is possible to form a coating layer that does not easily crack even after repeated charge and discharge. It becomes possible. That is, the surface of the active material 1 is coated with an acrylic resin, or the vapor grown carbon fiber 3 is contained or adhered to the mixed portion. As a result, it becomes possible to provide a polycarboxylic acid-coated Si-based active material 1 containing vapor grown carbon fiber 3 and a non-aqueous electrolyte secondary battery electrode using this active material 1. It becomes possible to provide the electrode for nonaqueous electrolyte secondary batteries which can improve this.

また、アクリル系樹脂にポリアクリル酸あるいはポリアクリル酸塩を用いることで、容易に酸状態が得られることから、バインダ樹脂自体電子の行き来に柔軟である。さらに、このアクリル酸系樹脂の重量平均分子量を20〜1000万とすることで、安定性と柔軟性を共生させることができるのである。重量平均分子量20万未満であると、活物質や導電助剤に馴染み、被覆などしやすい反面、充放電の膨張収縮における柔軟性に欠けてしまう。また、重量平均分子量が1000万を超えてしまうと、塗膜の膨張収縮には柔軟に対応できるものの、活物質や導電助剤への均一に散在できず、局在化することで密着性などが落ちてしまう。好ましくは、重量平均分子量20〜100万のアクリル系樹脂と500〜1000万のアクリル系樹脂を混合することにより、前述した安定化がさらに増すのである。特に、低分子量側のアクリル酸系樹脂は、比較的高ヤング率で硬く脆いが、高分子量側のアクリル酸系樹脂は、低ヤング率で剛性が高い。   Further, by using polyacrylic acid or polyacrylic acid salt as the acrylic resin, the acid state can be easily obtained, so that the binder resin itself is flexible in the travel of electrons. Furthermore, stability and a softness | flexibility can be made to coexist by making the weight average molecular weight of this acrylic resin into 20-10 million. When the weight average molecular weight is less than 200,000, the material is familiar with the active material and the conductive additive, and is easy to coat, but lacks flexibility in charge and discharge expansion and contraction. In addition, if the weight average molecular weight exceeds 10 million, it can flexibly cope with the expansion and contraction of the coating film, but it cannot be evenly dispersed in the active material and the conductive auxiliary agent, and can be localized to adhere. Will fall. Preferably, the above-mentioned stabilization is further increased by mixing an acrylic resin having a weight average molecular weight of 200 to 1,000,000 and an acrylic resin having 5 to 10 million. In particular, the acrylic resin on the low molecular weight side is hard and brittle with a relatively high Young's modulus, whereas the acrylic resin on the high molecular weight side has a low Young's modulus and high rigidity.

さらに、その塗料作製の際に、先に低い分子量側のバインダ樹脂を活物質や導電助剤混合することにより、粉体類表面にバインダ樹脂が存在することで、その後に分散させる高い分子量側のバインダ樹脂とも良混合分散させることができるのである。また、場合によっては、上記のように塗料を作製する際、バインダ樹脂を架橋させることで、柔軟性を持ったリジットな膜が得られ、充放電サイクルにおける膨張収縮も吸収しつつ、膜構造変化を最小限することができるのである。また、カルボン酸の絶対量を増やし、酸塩基の脱水反応などを促進させたり、酸価を高め膜の導電性を高める上での二価以上の多価カルボン酸との共重合や混合することも可能である。   Furthermore, when the coating material is prepared, the binder resin on the surface of the powder is present by mixing the low molecular weight binder resin with the active material and the conductive auxiliary agent first. The binder resin can be well mixed and dispersed. In some cases, when preparing the coating as described above, the binder resin is cross-linked to obtain a flexible and rigid film, and the film structure changes while absorbing expansion and contraction in the charge / discharge cycle. Can be minimized. Also, increase the absolute amount of carboxylic acid, promote the dehydration reaction of acid-base, etc., copolymerize and mix with divalent or higher polyvalent carboxylic acid to increase the acid value and increase the conductivity of the film Is also possible.

非水電解質二次電池に用いる電解液の溶媒には、ジメチルカーボネート、ジエチルカーボネート等、低粘度の鎖状炭酸エステルと、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等、高誘電率の環状炭酸エステル、γ‐ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホラン及びこれらの混合溶媒等を用いることが可能である。   The solvent of the electrolyte used for the non-aqueous electrolyte secondary battery includes low-viscosity chain carbonates such as dimethyl carbonate and diethyl carbonate, and cyclic carbonates having a high dielectric constant such as ethylene carbonate, propylene carbonate, and butylene carbonate, γ -Butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, methyl propionate, vinylene carbonate, dimethylformamide, sulfolane, and mixed solvents thereof can be used. is there.

電解液に含まれる電解質には、特に制限がなく、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiI、LiAlCl等、及び、それらの混合物等を用いることが可能である。好ましくは、LiBF、LiPFのうちの1種または2種以上を混合したリチウム塩がよい。 The electrolyte contained in the electrolytic solution is not particularly limited, and LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiI, LiAlCl 4 , and the like. Mixtures and the like can be used. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

以下、本発明を実施例によりさらに詳しく説明するが、本発明は、実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited by an Example.

<実施例1>
バインダ樹脂として、120gのPVdFのNMP(N−methylpyrrolidone、N−メチル−2−ピロリドン)溶液(クレハ社製、#7208)に、24gのアセチレンブラック(AB:Acetylene Black、電気化学工業社製、HS−100)と、41gのNMPを加え、ハイビスミックスにて、10分間攪拌した。
続いて、活物質として、144gのNCM(ニッケル・マンガン・コバルト三元系材料、日本化学産業製)と、337gのLMO(マンガン酸リチウム Type−F、三井金属鉱業製)を加えて10分間攪拌した。インクが固練り状態であることを確認し、さらに、10分間混練した。その後、NV(固形分比率)が60%になるように、NMPを加えて希釈して、正極スラリを得た。
<Example 1>
As a binder resin, 120 g of PVdF in NMP (N-methylpyrrolidone, N-methyl-2-pyrrolidone) solution (manufactured by Kureha, # 7208), 24 g of acetylene black (AB: Acetylene Black, manufactured by Denki Kagaku Kogyo, HS −100) and 41 g of NMP were added, and the mixture was stirred with Hibismix for 10 minutes.
Subsequently, 144 g of NCM (nickel / manganese / cobalt ternary material, manufactured by Nippon Kagaku Sangyo) and 337 g of LMO (lithium manganate Type-F, manufactured by Mitsui Mining & Smelting) were added as active materials and stirred for 10 minutes. did. After confirming that the ink was in a kneaded state, it was further kneaded for 10 minutes. Then, NMP was added and diluted so that NV (solid content ratio) might be 60%, and the positive electrode slurry was obtained.

さらに、得られた正極スラリを集電体に塗布した。集電体としては、厚さ15μmのAl箔を使用した。正極スラリは、18.8mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、120℃熱風で10分乾燥した後、密度が、2.5g/cmになるようにプレスして正極を得た。 Further, the obtained positive electrode slurry was applied to a current collector. As the current collector, an Al foil having a thickness of 15 μm was used. The positive electrode slurry was applied with a doctor blade so as to have a basis weight of 18.8 mg / cm 2 . Then, after drying with 120 degreeC hot air for 10 minutes, it pressed so that a density might be set to 2.5 g / cm < 3 >, and the positive electrode was obtained.

次に、負極側として、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(昭和電工社製:VGCF)と、1.62gのポリアクリル酸(日本触媒社製:重量平均分子量:100万)と49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。 Next, as the negative electrode side, the active material, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium Co., Ltd.), 2.16 g of graphite (Gr: Graphite, high rate SMG for SBR, Hitachi Chemical) Selected weight, 1.07 g of acetylene black, 0.27 g of vapor grown carbon fiber (Showa Denko KK: VGCF), 1.62 g of polyacrylic acid (made by Nippon Shokubai Co., Ltd .: weight) In addition to water with an average molecular weight of 1 million) and 49.50 g, the mixture pre-dispersed with a disperser (manufactured by SMT) is main-dispersed with Filmix (registered trademark) (manufactured by Primics) to form a negative electrode slurry Obtained. And the obtained negative electrode slurry was apply | coated to the electrical power collector. The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Then, after drying with 80 degreeC hot air for 10 minutes, it pressed so that a density might be set to 1.2 g / cm < 3 >, and the negative electrode was obtained.

<実施例2>
正極側については、実施例1と同様に作製した。
負極側は途中まで同様の作製方法となるが、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、0.30gのポリアクリル酸(日本触媒社製:重量平均分子量:80万)に49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散したのち、1.32gのアクリル酸ナトリウム塩(日本触媒製:重量平均分子量:500万)を加え再分散し、その液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Example 2>
About the positive electrode side, it produced similarly to Example 1. FIG.
On the negative electrode side, a similar production method is used, but the active material, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium) and 2.16 g of graphite (Gr: Graphite, SBR) High-rate SMG, manufactured by Hitachi Chemical Co., Ltd., weighed 1.07 g of acetylene black, 0.27 g of vapor grown carbon fiber (VGCF), and 0.30 g of polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd .: In addition to 49.50 g of water (weight average molecular weight: 800,000) and pre-dispersed with a disperser (manufactured by SMT), 1.32 g of sodium acrylate (manufactured by Nippon Shokubai: weight average molecular weight: 5 million) In addition, the mixture was redispersed, and the liquid was main-dispersed with Filmix (registered trademark) (manufactured by Primex) to obtain a negative electrode slurry. And the obtained negative electrode slurry was apply | coated to the electrical power collector. The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Then, after drying with 80 degreeC hot air for 10 minutes, it pressed so that a density might be set to 1.2 g / cm < 3 >, and the negative electrode was obtained.

<実施例3>
正極側については、実施例1と同様に作製した。
負極側は途中まで同様の作製方法となるが、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、0.3gのアクリル酸とマレイン酸の共重合体(日本触媒社製:重量平均分子量:80万)に49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散し、そのあとに、1.32gのアクリル酸ナトリウム塩(日本触媒製:重量平均分子量:500万)を加え再分散した、た混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Example 3>
About the positive electrode side, it produced similarly to Example 1. FIG.
On the negative electrode side, a similar production method is used, but the active material, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium) and 2.16 g of graphite (Gr: Graphite, SBR) High-rate SMG, manufactured by Hitachi Chemical Co., Ltd.), 1.07 g of acetylene black, 0.27 g of vapor grown carbon fiber (VGCF), 0.3 g of acrylic acid and maleic acid copolymer In addition to 49.50 g of water (manufactured by Nippon Shokubai Co., Ltd .: weight average molecular weight: 800,000), pre-dispersed with a disperser (manufactured by SMT), followed by 1.32 g of sodium acrylate (manufactured by Nippon Shokubai) : The weight average molecular weight: 5 million) was added and re-dispersed, and this mixture was main-dispersed with Filmix (registered trademark) (manufactured by Primex) to obtain a negative electrode slurry. And the obtained negative electrode slurry was apply | coated to the electrical power collector. The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Then, after drying with 80 degreeC hot air for 10 minutes, it pressed so that a density might be set to 1.2 g / cm < 3 >, and the negative electrode was obtained.

<比較例1>
正極側は、実施例1と同様に作製した。
負極側は、活物質として、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr、SBR用ハイレートSMG、日立化成社製)と、1.07gのアセチレンブラック(AB)と、0.27gの気相法炭素繊維(VGCF)と、0.68gのポリアクリル酸(日本触媒社製:重量平均分子量100万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液をフィルミックス(プライミクス社製)で本分散し、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。負極スラリは、1.40mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。上記のように得られた電極を用いて、コインセルを作成し、本発明例と同様のサイクル評価を行った。
<Comparative Example 1>
The positive electrode side was produced in the same manner as in Example 1.
On the negative electrode side, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium) and 2.16 g of graphite (Gr, high rate SMG for SBR, manufactured by Hitachi Chemical Co., Ltd.) 49.50 g of 1.07 g of acetylene black (AB), 0.27 g of vapor grown carbon fiber (VGCF), and 0.68 g of polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd .: weight average molecular weight 1 million). In addition to the above water, the mixed liquid pre-dispersed with a disperser (manufactured by SMT) was main-dispersed with a fill mix (manufactured by Primics) to obtain a negative electrode slurry. And the obtained negative electrode slurry was apply | coated to the electrical power collector. The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.40 mg / cm 2 . Then, after drying at 80 degreeC for 30 minutes, it pressed so that a density might be 1.2 g / cm < 3 >, and the negative electrode was obtained. Using the electrode obtained as described above, a coin cell was prepared, and a cycle evaluation similar to that of the example of the present invention was performed.

<比較例2>
正極側は、実施例1と同様に作製した。
負極側は、活物質として、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr、SBR用ハイレートSMG、日立化成社製)と、1.07gのアセチレンブラック(AB)と、0.27gの気相法炭素繊維(VGCF)と2.27gのポリアクリル酸(日本触媒社製:重量平均分子量:100万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液をフィルミックス(プライミクス社製)で本分散し、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。負極スラリは、1.40mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。上記のように得られた電極を用いて、コインセルを作成し、本発明例と同様のサイクル評価を行った。
<Comparative example 2>
The positive electrode side was produced in the same manner as in Example 1.
On the negative electrode side, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium) and 2.16 g of graphite (Gr, high rate SMG for SBR, manufactured by Hitachi Chemical Co., Ltd.) 49.50 g of 1.07 g of acetylene black (AB), 0.27 g of vapor grown carbon fiber (VGCF) and 2.27 g of polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd .: weight average molecular weight: 1,000,000) In addition to the above water, the mixed liquid pre-dispersed with a disperser (manufactured by SMT) was main-dispersed with a fill mix (manufactured by Primics) to obtain a negative electrode slurry. And the obtained negative electrode slurry was apply | coated to the electrical power collector. The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.40 mg / cm 2 . Then, after drying at 80 degreeC for 30 minutes, it pressed so that a density might be 1.2 g / cm < 3 >, and the negative electrode was obtained. Using the electrode obtained as described above, a coin cell was prepared, and a cycle evaluation similar to that of the example of the present invention was performed.

<比較例3>
正極側は、実施例1と同様に作製した。
次に、負極側として、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、1.62gのポリアクリル酸(日本触媒社製:重量平均分子量:5万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。
集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Comparative Example 3>
The positive electrode side was produced in the same manner as in Example 1.
Next, as the negative electrode side, the active material, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium Co., Ltd.), 2.16 g of graphite (Gr: Graphite, high rate SMG for SBR, Hitachi Chemical) Selected weight, 1.07 g of acetylene black, 0.27 g of vapor grown carbon fiber (VGCF), 1.62 g of polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd .: weight average molecular weight: 50,000) ) Was added to 49.50 g of water and the pre-dispersed liquid mixture with a disperser (manufactured by SMT) was main-dispersed with Filmix (registered trademark) (manufactured by Primix) to obtain a negative electrode slurry. And the obtained negative electrode slurry was apply | coated to the electrical power collector.
The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Then, after drying with 80 degreeC hot air for 10 minutes, it pressed so that a density might be set to 1.2 g / cm < 3 >, and the negative electrode was obtained.

<比較例4>
正極側は、実施例1と同様に作製した。
次に、負極側として、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、1.62gのポリアクリル酸(日本触媒社製:重量平均分子量:1500万)を、49.50gの水に加え、ディスパーサー(SMT社製)でプレ分散した混合液を、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Comparative example 4>
The positive electrode side was produced in the same manner as in Example 1.
Next, as the negative electrode side, the active material, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium Co., Ltd.), 2.16 g of graphite (Gr: Graphite, high rate SMG for SBR, Hitachi Chemical) Selected weight, 1.07 g of acetylene black, 0.27 g of vapor grown carbon fiber (VGCF), and 1.62 g of polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd .: weight average molecular weight: 15 million) ) Was added to 49.50 g of water and the pre-dispersed liquid mixture with a disperser (manufactured by SMT) was main-dispersed with Filmix (registered trademark) (manufactured by Primix) to obtain a negative electrode slurry. And the obtained negative electrode slurry was apply | coated to the electrical power collector. The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Then, after drying with 80 degreeC hot air for 10 minutes, it pressed so that a density might be set to 1.2 g / cm < 3 >, and the negative electrode was obtained.

<比較例5>
正極側は、実施例1と同様に作製した。
負極側は途中まで同様の作製方法となるが、活物質、5.39gのメジアン径(d50)が6.6μmのSiO(大阪チタニウム社製)と、2.16gのグラファイト(Gr:Graphite、SBR用ハイレートSMG、日立化成社製)を選定秤量、そこに1.07gのアセチレンブラックと、0.27gの気相法炭素繊維(VGCF)と、1.32gのアクリル酸ナトリウム塩(日本触媒製:重量平均分子量:500万)に9.50gの水に加えプレ分散したのち、0.3gのアクリル酸とマレイン酸の共重合体(日本触媒社製:重量平均分子量:80万)を加えさらに再分散し、さらに、混合分散したものについて、フィルミックス(登録商標)(プライミクス社製)で本分散して、負極スラリを得た。そして、得られた負極スラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。また、負極スラリは、1.32mg/cmの目付量になるように、ドクターブレードにて塗布した。続いて、80℃熱風で10分乾燥した後、密度が、1.2g/cmになるようにプレスして負極を得た。
<Comparative Example 5>
The positive electrode side was produced in the same manner as in Example 1.
On the negative electrode side, a similar production method is used, but the active material, 5.39 g of median diameter (d50) of 6.6 μm SiO (manufactured by Osaka Titanium) and 2.16 g of graphite (Gr: Graphite, SBR) High-rate SMG, manufactured by Hitachi Chemical Co., Ltd., weighed 1.07 g of acetylene black, 0.27 g of vapor grown carbon fiber (VGCF), and 1.32 g of sodium acrylate (manufactured by Nippon Shokubai Co., Ltd .: (Weight-average molecular weight: 5 million) and 9.50 g of water and pre-dispersed, then 0.3 g of a copolymer of acrylic acid and maleic acid (manufactured by Nippon Shokubai Co., Ltd .: weight-average molecular weight: 800,000) is added again. Dispersed, and further mixed and dispersed, was finally dispersed with Filmix (registered trademark) (manufactured by Primex) to obtain a negative electrode slurry. And the obtained negative electrode slurry was apply | coated to the electrical power collector. The current collector was a copper foil having a thickness of 12 μm. The negative electrode slurry was applied with a doctor blade so as to have a basis weight of 1.32 mg / cm 2 . Then, after drying with 80 degreeC hot air for 10 minutes, it pressed so that a density might be set to 1.2 g / cm < 3 >, and the negative electrode was obtained.

実施例1〜3および比較例1〜5に用いた負極(非水電解質二次電池用電極)形成用組成物における、活物質、導電助剤、バインダ樹脂に関する条件を下記表1に示す。   The conditions relating to the active material, the conductive additive, and the binder resin in the negative electrode (nonaqueous electrolyte secondary battery electrode) forming compositions used in Examples 1 to 3 and Comparative Examples 1 to 5 are shown in Table 1 below.

Figure 2016219370
Figure 2016219370

<コインセルの作製>
実施例1〜3及び比較例1〜5で得られた負極と正極を用いてコインセルを作製した。
コインセルは2032型を使用し、負極は直径15mm、正極は直径13.5mmの円板にそれぞれ打ち抜いた電極とセパレータ(セルガード社製:型番2200)を基本構成とした。なお、電解液は、2wt%のVC(Vinylene Carbonate、ビニレンカーボネート)を含むエチレンカーボネート(EC)とジエチルカーボネート(DMC)を、3:7(v/v)比率で混合した溶液に、LiPF6を1Molとなるように加えたものを使用した。
<サイクルテスト>
上記で作製したコインセルに対して、以下の充放電条件でサイクルテストを行った。
充電:366mAg/(活物質重量)、放電:1829mAg/(活物質重量)で、3V〜4.25Vの電圧範囲で、繰り返し充放電を100回繰り返した。評価結果を下記表
2に示す。
<Production of coin cell>
Coin cells were produced using the negative electrodes and positive electrodes obtained in Examples 1 to 3 and Comparative Examples 1 to 5.
The coin cell was a 2032 type, and the basic configuration was an electrode and a separator (manufactured by Cellguard: Model No. 2200) punched into a disk having a diameter of 15 mm and a positive electrode having a diameter of 13.5 mm, respectively. The electrolytic solution was prepared by mixing 1 mol of LiPF6 into a solution obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DMC) containing 2 wt% of VC (Vinylene Carbonate, vinylene carbonate) at a ratio of 3: 7 (v / v). What was added so that it might become was used.
<Cycle test>
A cycle test was performed on the coin cell produced above under the following charge / discharge conditions.
Charging: 366 mAg / (active material weight), discharging: 1829 mAg / (active material weight), charging and discharging were repeated 100 times in a voltage range of 3 V to 4.25 V. The evaluation results are shown in Table 2 below.

Figure 2016219370
Figure 2016219370

<比較結果>
実施例1〜3で得られた本発明品は、初期容量、特にサイクルテスト後の容量維持率においてはいずれも80%以上の良好な結果を示した。一方、比較例1〜5で得られた比較例品は、特にサイクルテスト後の容量維持率においてはいずれも60〜80%の範囲であり、実用性に問題があるレベルの結果を示した。中でも実施例3の本発明品は、
初期容量とサイクルテスト後の容量維持率において最良の値を示した。このことから、特に、導電材として、アセチレンブラックや気相法炭素繊維を含み、バインダ樹脂の混合比率、バインダ樹脂の重量平均分子量などが最適化されていることが確認でき、本発明が適正であることが確認された。
<Comparison result>
The products of the present invention obtained in Examples 1 to 3 showed good results of 80% or more in the initial capacity, particularly the capacity retention rate after the cycle test. On the other hand, the comparative products obtained in Comparative Examples 1 to 5 were in the range of 60 to 80%, especially in the capacity retention ratio after the cycle test, and showed a result of a level having a problem in practicality. Among them, the product of the present invention of Example 3 is
The best values were shown in the initial capacity and the capacity maintenance ratio after the cycle test. From this, it can be confirmed that the conductive material contains acetylene black and vapor grown carbon fiber, and the mixing ratio of the binder resin, the weight average molecular weight of the binder resin, etc. are optimized, and the present invention is appropriate. It was confirmed that there was.

また、実施例1〜実施例3において、SEMでサイクル前の電極表面を観察したところ、図1のように、活物質の表面がバインダ樹脂で覆われているとともに、気相法炭素繊維3とバインダ樹脂2が混合しているのが確認できた。このことから、図1の形状が、サイクルに伴うSEIの継続的な生成を抑制し、サイクル維持率が向上したものと考えられる。   Further, in Example 1 to Example 3, when the surface of the electrode before the cycle was observed by SEM, the surface of the active material was covered with a binder resin as shown in FIG. It was confirmed that the binder resin 2 was mixed. From this, it is considered that the shape of FIG. 1 suppresses the continuous generation of SEI accompanying the cycle and improves the cycle maintenance rate.

本発明によって得られる非水電解質二次電池用電極は、各種携帯用電子機器の電源、また、高エネルギー密度が求められる電気自動車等の駆動用蓄電池、さらに、ソーラーエネルギーや風力発電等の各種エネルギーの蓄電装置、または、家庭用電気器具の蓄電源等の電極に用いられる。   The electrode for a non-aqueous electrolyte secondary battery obtained by the present invention is a power source for various portable electronic devices, a storage battery for driving an electric vehicle or the like that requires a high energy density, and various energy such as solar energy and wind power generation. It is used for an electrode of a power storage device or a storage power source of a household electric appliance.

1…活物質、2…バインダ樹脂、3…気相法炭素繊維   DESCRIPTION OF SYMBOLS 1 ... Active material, 2 ... Binder resin, 3 ... Vapor grown carbon fiber

Claims (5)

集電体の表面を、活物質、導電助剤、バインダ樹脂、希釈溶剤を含有する電極形成用組成物からなる塗膜が形成された非水電解質二次電池用電極であって、
前記導電助剤はアセチレンブラックと気相法炭素繊維とを含み、
アセチレンブラックの質量は前記活物質に対して12〜20質量%の範囲で、
気相法炭素繊維の質量は前記活物質に対して2〜6質量%の範囲で、
バインダ樹脂の質量は前記活物質に対して10〜25質量%の範囲であることを特徴とする非水電解質二次電池用電極。
The surface of the current collector is an electrode for a nonaqueous electrolyte secondary battery in which a coating film made of an electrode forming composition containing an active material, a conductive additive, a binder resin, and a diluent solvent is formed,
The conductive auxiliary agent includes acetylene black and vapor grown carbon fiber,
The mass of acetylene black is in the range of 12 to 20% by mass relative to the active material,
The mass of the vapor grown carbon fiber is in the range of 2 to 6% by mass with respect to the active material,
The electrode for a non-aqueous electrolyte secondary battery, wherein the mass of the binder resin is in the range of 10 to 25 mass% with respect to the active material.
前記活物質は、SiOx(xは1.5以下)を含むことを特徴とする請求項1に記載の非水電解質二次電池用電極。   The electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the active material contains SiOx (x is 1.5 or less). 前記バインダ樹脂は、重量平均分子量が20〜1000万の範囲にあるポリアクリル酸、ポリアクリル酸塩の少なくとも一つ以上から選ばれることを特徴とする請求項1または2に記載の非水電解質二次電池用電極。   3. The non-aqueous electrolyte according to claim 1, wherein the binder resin is selected from at least one of polyacrylic acid and polyacrylic acid salt having a weight average molecular weight in the range of 200 to 10 million. Secondary battery electrode. 前記バインダ樹脂は、重量平均分子量が100万未満の範囲にあるポリアクリル酸またはポリアクリル酸塩と、重量平均分子量が500万以上の範囲にあるポリアクリル酸またはポリアクリル酸塩との混合からなることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池用電極。   The binder resin comprises a mixture of polyacrylic acid or polyacrylate having a weight average molecular weight of less than 1 million and polyacrylic acid or polyacrylate having a weight average molecular weight of 5 million or more. The electrode for nonaqueous electrolyte secondary batteries according to any one of claims 1 to 3. 前記塗膜を構成するバインダ樹脂が架橋していることを特徴とする請求項1〜4のいずれかに記載の非水電解質二次電池用電極。   The electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein a binder resin constituting the coating film is crosslinked.
JP2015106321A 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries Active JP6801167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106321A JP6801167B2 (en) 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106321A JP6801167B2 (en) 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries

Publications (2)

Publication Number Publication Date
JP2016219370A true JP2016219370A (en) 2016-12-22
JP6801167B2 JP6801167B2 (en) 2020-12-16

Family

ID=57581445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106321A Active JP6801167B2 (en) 2015-05-26 2015-05-26 Electrodes for non-aqueous electrolyte secondary batteries

Country Status (1)

Country Link
JP (1) JP6801167B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073237A (en) * 2015-10-05 2017-04-13 積水化学工業株式会社 Electrode, lithium ion secondary battery, manufacturing method of electrode, and manufacturing method of lithium ion secondary battery
WO2019225705A1 (en) * 2018-05-23 2019-11-28 東亞合成株式会社 Composition for secondary battery electrode mixture layer, and secondary battery electrode
WO2020026420A1 (en) * 2018-08-02 2020-02-06 凸版印刷株式会社 Negative electrode binder for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2020066734A1 (en) * 2018-09-28 2020-04-02 松本油脂製薬株式会社 Slurry composition for secondary battery negative electrode, dispersant composition for secondary battery negative electrode slurry, negative electrode for secondary battery, and secondary battery
US11495785B2 (en) 2017-04-06 2022-11-08 Lg Energy Solution, Ltd. Negative electrode for secondary battery and method for producing same
US11735713B2 (en) 2017-04-06 2023-08-22 Lg Energy Solution, Ltd. Negative electrode for secondary battery, and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
JP2008117761A (en) * 2006-10-11 2008-05-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2009252348A (en) * 2008-04-01 2009-10-29 Panasonic Corp Nonaqueous electrolyte battery
JP2010097761A (en) * 2008-10-15 2010-04-30 Denso Corp Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2011018575A (en) * 2009-07-09 2011-01-27 Mie Univ Negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014120459A (en) * 2012-12-19 2014-06-30 Samsung Sdi Co Ltd Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery
JP2014139914A (en) * 2012-08-21 2014-07-31 Sekisui Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015510666A (en) * 2012-01-30 2015-04-09 ネクソン リミテッドNexeon Limited Si / C electroactive material composition
JP2015088450A (en) * 2013-09-26 2015-05-07 積水化学工業株式会社 Lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
JP2008117761A (en) * 2006-10-11 2008-05-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2009252348A (en) * 2008-04-01 2009-10-29 Panasonic Corp Nonaqueous electrolyte battery
JP2010097761A (en) * 2008-10-15 2010-04-30 Denso Corp Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2011018575A (en) * 2009-07-09 2011-01-27 Mie Univ Negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2015510666A (en) * 2012-01-30 2015-04-09 ネクソン リミテッドNexeon Limited Si / C electroactive material composition
JP2014139914A (en) * 2012-08-21 2014-07-31 Sekisui Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014120459A (en) * 2012-12-19 2014-06-30 Samsung Sdi Co Ltd Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery
JP2015088450A (en) * 2013-09-26 2015-05-07 積水化学工業株式会社 Lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073237A (en) * 2015-10-05 2017-04-13 積水化学工業株式会社 Electrode, lithium ion secondary battery, manufacturing method of electrode, and manufacturing method of lithium ion secondary battery
US11495785B2 (en) 2017-04-06 2022-11-08 Lg Energy Solution, Ltd. Negative electrode for secondary battery and method for producing same
US11735713B2 (en) 2017-04-06 2023-08-22 Lg Energy Solution, Ltd. Negative electrode for secondary battery, and method for producing same
WO2019225705A1 (en) * 2018-05-23 2019-11-28 東亞合成株式会社 Composition for secondary battery electrode mixture layer, and secondary battery electrode
JPWO2019225705A1 (en) * 2018-05-23 2021-07-01 東亞合成株式会社 Composition for secondary battery electrode mixture layer and secondary battery electrode
WO2020026420A1 (en) * 2018-08-02 2020-02-06 凸版印刷株式会社 Negative electrode binder for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2020066734A1 (en) * 2018-09-28 2020-04-02 松本油脂製薬株式会社 Slurry composition for secondary battery negative electrode, dispersant composition for secondary battery negative electrode slurry, negative electrode for secondary battery, and secondary battery
JPWO2020066734A1 (en) * 2018-09-28 2021-01-07 松本油脂製薬株式会社 Slurry composition for secondary battery negative electrode, dispersant composition for secondary battery negative electrode slurry, negative electrode for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JP6801167B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
TWI549338B (en) Anode active material for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the same
JPWO2016035289A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP6801167B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
US10074855B2 (en) Electrode for lithium secondary battery and lithium secondary battery comprising the same
WO2016121585A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150067049A (en) Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2011023221A (en) Lithium ion secondary battery
JP2012178327A (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery
JP6965991B2 (en) Carbon Conductive Additive for Lithium Ion Batteries
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
WO2015046517A1 (en) Electrode for secondary batteries, and secondary battery
WO2017216822A1 (en) Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte
JP6809453B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
KR20190114151A (en) Lithium secondary battery and manufacturing method thereof
JP2011070802A (en) Nonaqueous electrolyte secondary battery
JP6583263B2 (en) Nonaqueous electrolyte secondary battery electrode
JP6634757B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2019215961A (en) Non-aqueous electrolyte for secondary battery including specific additive and secondary battery using the same
JP2019523973A (en) Method for producing an electrode for an electrochemical storage device
CN115152048A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10529976B2 (en) Electrode for a non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2018106935A (en) Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20200095182A (en) Composition for foaming negative electrode active material layer of lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2013051061A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250