JP6787117B2 - Negative electrode for non-aqueous electrolyte secondary battery - Google Patents
Negative electrode for non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP6787117B2 JP6787117B2 JP2016254829A JP2016254829A JP6787117B2 JP 6787117 B2 JP6787117 B2 JP 6787117B2 JP 2016254829 A JP2016254829 A JP 2016254829A JP 2016254829 A JP2016254829 A JP 2016254829A JP 6787117 B2 JP6787117 B2 JP 6787117B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- secondary battery
- negative electrode
- electrolyte secondary
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 23
- 239000011149 active material Substances 0.000 claims description 58
- 239000011230 binding agent Substances 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 14
- -1 carboxylic acid compound Chemical class 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 8
- 239000003431 cross linking reagent Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000012752 auxiliary agent Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229920002125 Sokalan® Polymers 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000004584 polyacrylic acid Substances 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 239000000783 alginic acid Substances 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 229960001126 alginic acid Drugs 0.000 claims description 2
- 150000004781 alginic acids Chemical group 0.000 claims description 2
- 150000001718 carbodiimides Chemical group 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 11
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 5
- 239000002134 carbon nanofiber Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 101100170542 Mus musculus Disp1 gene Proteins 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 206010040844 Skin exfoliation Diseases 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- WRVRNZNDLRUXSW-UHFFFAOYSA-N acetic acid;prop-2-enoic acid Chemical compound CC(O)=O.OC(=O)C=C WRVRNZNDLRUXSW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、非水電解質二次電池用負極に関するものである。より詳細には、サイクル特性を向上させうる非水電解質二次電池用負極に関するものである。 The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery capable of improving cycle characteristics.
近年、石油使用量や温室効果ガス削減、エネルギー基盤の更なる多様化や効率化を目指し、繰り返し充放電可能な二次電池として、非水電解質二次電池(例えば、Liイオン二次電池)に注目が集まっている。特に、電気自動車やハイブリッド電気自動車、燃料電池車への用途展開が見込まれている。電気自動車においては、航続距離の向上が要求され、今後、Liイオン二次電池の高エネルギー密度化が一層要求されていくことになる。
現状のLiイオン二次電池の負極に注目すると、黒鉛電極が一般に用いられている。黒鉛の理論容量は、372mAhg−1(活物質)である。これに対し、黒鉛を上回る容量を示す活物質として、SiやSnが近年注目されている。Siの理論容量は、4200mAhg−1(活物質)であり、Snは、990mAhg−1(活物質)である。しかしながら、Siは、黒鉛の約11倍の容量を持っているために、Li吸蔵や放出に伴う体積変化も大きくなる。例えば、Li吸蔵により体積は約3倍増加する。黒鉛と比べて、大容量を有する活物質(Si、Sn)を用いた電極は、充放電に伴う大きな体積変化から、電極の導電パスの切断や微粉化に伴う電極からの脱離、集電体と合剤層の剥離等の恐れがある。このことは、Liイオン二次電池の寿命特性を低下させる要因となる可能性がある。
In recent years, non-aqueous electrolyte secondary batteries (for example, Li-ion secondary batteries) have been used as secondary batteries that can be repeatedly charged and discharged with the aim of reducing oil consumption and greenhouse gases, and further diversifying and improving the efficiency of energy infrastructure. Attention is gathering. In particular, it is expected to be applied to electric vehicles, hybrid electric vehicles, and fuel cell vehicles. In electric vehicles, improvement in cruising range is required, and in the future, higher energy density of Li-ion secondary batteries will be further required.
Focusing on the negative electrode of the current Li-ion secondary battery, graphite electrodes are generally used. The theoretical capacity of graphite is 372 mAhg -1 (active material). On the other hand, Si and Sn have been attracting attention in recent years as active materials having a capacity higher than that of graphite. The theoretical capacity of Si is 4200 mAhg -1 (active material) and Sn is 990 mAhg -1 (active material). However, since Si has a capacity about 11 times that of graphite, the volume change due to occlusion and release of Li is also large. For example, Li storage increases the volume by about 3 times. Electrodes using active materials (Si, Sn), which have a larger capacity than graphite, undergo large volume changes due to charging and discharging, and desorption and current collection from the electrodes due to cutting of the conductive path of the electrodes and pulverization. There is a risk of peeling between the body and the mixture layer. This may cause a decrease in the life characteristics of the Li-ion secondary battery.
これに対し、近年、種々の高分子バインダを適用することにより、電極構造の維持と寿命特性の改善が報告されている。例えば、カルボキシメチルセルロースやポリアミドイミド、ポリアクリル酸、アルギン酸ナトリウムが挙げられる。
特許文献1では、高分子量の架橋したポリアクリル酸ナトリウムを主バインダ、低分子量の無架橋アクリル酸を補助バインダとして用いている。主バインダが、構造維持を担い、補助バインダが活物質との接着性を担っている。このように、Liイオン二次電池の寿命特性を改善するために、バインダ特性の改善が有効であることが報告されている。一方で、電極構造を安定維持するためには、電極構造自体も体積変化への耐久性が必要である。
On the other hand, in recent years, it has been reported that the electrode structure is maintained and the life characteristics are improved by applying various polymer binders. For example, carboxymethyl cellulose, polyamide-imide, polyacrylic acid, sodium alginate can be mentioned.
In
寿命特性の改善について、本発明者は、鋭意検討したところ、負極の活物質層の複合弾性率および固さを適正な範囲に収めることで、充放電による合剤層の厚み変化を抑えることができ、合剤層の破壊を抑制できることを見出した。 As a result of diligent studies on the improvement of life characteristics, the present inventor has found that by keeping the composite elastic modulus and hardness of the active material layer of the negative electrode within an appropriate range, it is possible to suppress the change in the thickness of the mixture layer due to charge and discharge. It was found that it was possible to suppress the destruction of the mixture layer.
本発明は、上記のような点に着目したもので、寿命特性に優れた非水電解質二次電池用負極を提供することを目的とする。 The present invention focuses on the above points, and an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery having excellent life characteristics.
課題を解決するために、本発明の一態様は、集電体上に活物質層が形成された非水電解質二次電池用負極であって、活物質層は、活物質と導電助剤とバインダとを含んで構成され、上記活物質がSiOx(0<x≦1.5)であり、ナノインデンテーション測定による上記活物質層の複合弾性率が、2.5GPa以上、3.5GPa以下の範囲であることを特徴とする。 In order to solve the problem, one aspect of the present invention is a negative electrode for a non-aqueous electrolyte secondary battery in which an active material layer is formed on a current collector, and the active material layer is composed of an active material and a conductive auxiliary agent. It is composed of a binder and the active material is SiOx (0 <x ≦ 1.5), and the composite elastic coefficient of the active material layer by nanoindentation measurement is 2.5 GPa or more and 3.5 GPa or less. It is characterized by being a range.
本発明の一態様によれば、活物質層が上記の所定範囲の複合弾性率となっていることから、寿命特性に優れた非水電解質二次電池用負極を提供することが可能となる。 According to one aspect of the present invention, since the active material layer has a composite elastic modulus within the above-mentioned predetermined range, it is possible to provide a negative electrode for a non-aqueous electrolyte secondary battery having excellent life characteristics.
以下、本発明の実施形態について図面を参照して説明する。
なお、以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施形態が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造および装置が略図で示されている。
図1は、本実施形態にかかる非水電解質二次電池用負極1(以下、単に「負極1」とも呼ぶ)の要部断面を模式的に示す説明図である。図1に示すように、負極1は、集電体2上に、活物質層3が積層された構造である。図1では、活物質層3が1層の場合を例示しているが2層以上であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
It should be noted that the following detailed description describes many specific details to provide a complete understanding of embodiments of the present invention. However, it will be clear that one or more embodiments can be implemented without such specific details. Other well-known structures and devices are shown schematic to simplify the drawings.
FIG. 1 is an explanatory diagram schematically showing a cross section of a main part of a
<集電体>
集電体2は、箔状や板状の形状からなる。集電体2の材料としては、導電性を有する材料であれば特に限定はされず、例えば、ステンレス、ニッケル、アルミニウム、鉄、チタン、銅、パラジウム、金および白金などの金属材料を用いることができる。
<活物質層>
以下、活物質層3の構成について説明する。
本実施形態の活物質層3は、少なくともバインダと、活物質と、導電助剤とを主剤として含んでいる。本実施形態にかかる活物質層3は、これらの材料を溶媒と混合することにより形成した電極スラリを、集電体2上に塗工・乾燥することで、集電体2上に形成される。
<Current collector>
The
<Active material layer>
Hereinafter, the structure of the active material layer 3 will be described.
The active material layer 3 of the present embodiment contains at least a binder, an active material, and a conductive auxiliary agent as main agents. The active material layer 3 according to the present embodiment is formed on the
(バインダ)
バインダは、エチレン性不飽和カルボン酸化合物を繰り返し単位として含み、かつ、架橋されている高分子であることが好ましい。
具体的には、本実施形態のバインダとしては、エチレン性不飽和カルボン酸化合物よりなる高分子として、例えば、ポリアクリル酸、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、アクリル酸酢酸ビニル重合体等のナトリウム塩、リチウム塩、カリウム塩、マグネシウム塩、カルシウム塩、アンモニウム塩等が望ましい。特に、後述するように寿命特性を向上させる点で、ポリアクリル酸ナトリウムが望ましい。さらに、これらのエチレン性不飽和カルボン酸化合物よりなる高分子は、架橋剤により架橋処理を施しても良い。架橋剤は、カルボン酸と反応する水系架橋剤であれば、特に制限がないが、室温下、数分で反応させることができる、カルボジイミド系化合物やアジリジン系化合物が望ましく用いられる。特に、アジリジン系化合物が望ましい。
(Binder)
The binder preferably contains an ethylenically unsaturated carboxylic acid compound as a repeating unit and is a crosslinked polymer.
Specifically, as the binder of the present embodiment, as a polymer composed of an ethylenically unsaturated carboxylic acid compound, for example, polyacrylic acid, maleic acid maleic acid copolymer, styrene acrylate copolymer, acetic acid acrylate. Sodium salts such as vinyl polymers, lithium salts, potassium salts, magnesium salts, calcium salts, ammonium salts and the like are desirable. In particular, sodium polyacrylate is desirable from the viewpoint of improving the life characteristics as described later. Further, the polymer composed of these ethylenically unsaturated carboxylic acid compounds may be subjected to a cross-linking treatment with a cross-linking agent. The cross-linking agent is not particularly limited as long as it is an aqueous cross-linking agent that reacts with a carboxylic acid, but a carbodiimide-based compound or an aziridine-based compound that can react in a few minutes at room temperature is preferably used. In particular, an aziridine compound is desirable.
また、補助バインダとして、活物質との接着および、集電体との接着を補助するものとして、分子量1万以下のポリカルボン酸を用いてもよい。ポリカルボン酸は、カルボン酸基を有する繰り返し単位を含む高分子であれば、特に制限されないが、例えば、アルギン酸、ポリアクリル酸、アクリル酸マレイン酸共重合体、カルボキシメチルセルロース等が望ましい。特に、アクリル酸マレイン酸共重合体が望ましい。 Further, as an auxiliary binder, a polycarboxylic acid having a molecular weight of 10,000 or less may be used as an auxiliary binder for adhering to the active material and adhering to the current collector. The polycarboxylic acid is not particularly limited as long as it is a polymer containing a repeating unit having a carboxylic acid group, but for example, alginic acid, polyacrylic acid, maleic acid maleic acid copolymer, carboxymethyl cellulose and the like are desirable. In particular, a maleic anhydride copolymer is desirable.
(活物質)
本実施形態の活物質としては、Liを可逆的に吸蔵及び放出できるものであれば、特に制限がなく、公知のものも使用できるがLiと合金化する材料を使用することが望ましい。特に、黒鉛よりも容量が大きい材料であれば、本実施形態の効果が顕著に得られる。
Liと合金化する材料としては、Si、Ge、Sn、Pb、Al、Ag、Zn、Hg、及びAuからなる群から選択された1つ以上の合金を使用できる。好ましくは、SiOxである。このとき、xは、0より大きく且つ1.5以下であることが好ましい。xが1.5より大きい場合、十分なLiの吸蔵及び放出量を確保することができない。また、このような活物質のみならず、黒鉛も活物質として加えてもよい。xは、より好ましくは、0<x≦0.5の範囲である。
(Active material)
The active material of the present embodiment is not particularly limited as long as it can reversibly occlude and release Li, and known materials can be used, but it is desirable to use a material that alloys with Li. In particular, if the material has a larger capacity than graphite, the effect of the present embodiment can be remarkably obtained.
As the material to be alloyed with Li, one or more alloys selected from the group consisting of Si, Ge, Sn, Pb, Al, Ag, Zn, Hg, and Au can be used. Preferably, it is SiOx. At this time, x is preferably larger than 0 and 1.5 or less. When x is larger than 1.5, a sufficient amount of Li storage and release cannot be secured. Moreover, not only such an active material but also graphite may be added as an active material. x is more preferably in the range of 0 <x ≦ 0.5.
(導電助剤)
導電助剤としては、カーボンブラックや天然黒鉛、人造黒鉛、さらには、酸化チタンや酸化ルテニウム等の金属酸化物、金属ファイバー等を使用できる。なかでもストラクチャー構造を呈するカーボンブラックが好ましく、特にその一種であるファーネスブラックやケッチェンブラック、アセチレンブラック(AB)が望ましい。なお、カーボンブラックと、その他の導電剤、例えば、気相成長炭素繊維(VGCF)との混合系も好ましい。
(Conductive aid)
As the conductive auxiliary agent, carbon black, natural graphite, artificial graphite, metal oxides such as titanium oxide and ruthenium oxide, metal fibers and the like can be used. Of these, carbon black, which exhibits a structural structure, is preferable, and one of them, furnace black, ketjen black, and acetylene black (AB) are particularly desirable. A mixed system of carbon black and other conductive agent, for example, vapor-grown carbon fiber (VGCF) is also preferable.
非水電解質二次電池に用いる電解液の溶媒としては、ジメチルカーボネート、ジエチルカーボネート等の低粘度の鎖状炭酸エステル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の高誘電率の環状炭酸エステル、γ‐ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホラン、及びこれらの混合溶媒等を挙げることができる。
電解液に含まれる電解質としては、特に制限がなく、公知のものも使用できるがLiClO4、LiBF4、LiAsF6、LiPF6、LiCF3SO3、LiN(CF3SO2)2、LiI、LiAlCl4等及びそれらの混合物等を使用できる。好ましくは、LiBF4、LiPF6のうちの1種または2種以上を混合したリチウム塩がよい。
As the solvent of the electrolytic solution used for the non-aqueous electrolyte secondary battery, a low-viscosity chain carbonate such as dimethyl carbonate and diethyl carbonate, a cyclic carbonate having a high dielectric constant such as ethylene carbonate, propylene carbonate and butylene carbonate, and γ- Butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, 1,3-dioxolane, methyl acetate, methyl propionate, vinylene carbonate, dimethylformamide, sulfolane, and a mixed solvent thereof and the like can be mentioned.
The electrolyte contained in the electrolytic solution is not particularly limited, and known ones can be used, but LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiI, LiAlCl. 4 mag and a mixture thereof can be used. Preferably, a lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.
上記材料からなる活物質層3は、ナノインデンテーション測定による複合弾性率が、2.5GPa以上、3.5GPa以下の範囲であることが好ましい。
このような範囲の複合弾性率の活物質層3を採用することで、活物質層3の膨張が適度に行われ、内部応力による活物質層3の崩壊を抑制できるとともに、膨張後の収縮も適度に行われ、膜厚変化を最小化できる。
また、活物質層3の硬さが、ナノインデンテーション測定で、0.030GPa以上、0.050GPa以下の範囲であることが好ましい。
活物質層3の硬さを上記の範囲に規定することで、活物質層3の膨張に伴う内部応力が、合剤層全体に分散し、局所的な応力集中を避けることができるようになる。
The active material layer 3 made of the above material preferably has a composite elastic modulus in the range of 2.5 GPa or more and 3.5 GPa or less as measured by nanoindentation.
By adopting the active material layer 3 having a composite elastic modulus in such a range, the active material layer 3 is appropriately expanded, the collapse of the active material layer 3 due to internal stress can be suppressed, and the contraction after expansion is also performed. It is done moderately and the change in film thickness can be minimized.
Further, the hardness of the active material layer 3 is preferably in the range of 0.030 GPa or more and 0.050 GPa or less as measured by nanoindentation.
By defining the hardness of the active material layer 3 in the above range, the internal stress due to the expansion of the active material layer 3 is dispersed throughout the mixture layer, and local stress concentration can be avoided. ..
(本実施形態の効果)
本実施形態に係る発明は、以下の効果を奏する。
(1)本実施形態に係る非水電解質二次電池用負極1は、集電体2上に活物質層3が形成された非水電解質二次電池用負極であって、活物質層3は、活物質が、SiOx(0<x≦1.5)であり、導電助剤とバインダを含んで構成されており、ナノインデンテーション測定による活物質層3の複合弾性率が、2.5〜3.5GPaの範囲である。
このような構成によれば、活物質層3の膨張が適度に行われ、内部応力による活物質層3の崩壊を抑制できるとともに、膨張後の収縮も適度に行われ、膜厚変化を最小化できる。
(Effect of this embodiment)
The invention according to the present embodiment has the following effects.
(1) The
According to such a configuration, the active material layer 3 is appropriately expanded, the collapse of the active material layer 3 due to internal stress can be suppressed, and the contraction after expansion is also appropriately performed to minimize the change in film thickness. it can.
(2)本実施形態に係る非水電解質二次電池用負極1では、活物質層3の硬さが、ナノインデンテーション測定で、0.030〜0.050GPaの範囲である。
このような構成によれば、活物質層3の膨張に伴う内部応力が、合剤層全体に分散し、局所的な応力集中を避けることができる。
(3)本実施形態に係る非水電解質二次電池用負極1では、バインダは、エチレン性不飽和カルボン酸化合物を繰り返し単位として含み、かつ、架橋されている高分子である。
このような構成によれば、請求項1および2で示した複合弾性率および硬さの活物質層3において、バインダのカルボン酸基が集電体2および活物質と強固に結着し、架橋構造によって、内部応力負荷にも耐えうることができるので、最も膜厚変化の小さい活物質層を与える。
(2) In the
According to such a configuration, the internal stress accompanying the expansion of the active material layer 3 is dispersed in the entire mixture layer, and local stress concentration can be avoided.
(3) In the
According to such a configuration, in the active material layer 3 having the composite elastic modulus and hardness shown in
以下、本発明を実施例によりさらに詳しく説明するが本発明は、実施例により何ら限定されるものではない。
(実施例1)
ポリアクリル酸ナトリウム(日本触媒社製)24.63gを水471.66gに加えて、ディスパで攪拌して高分子溶液を作製した。その高分子溶液に、アジリジン化合物(PZ−33)の10%水溶液3.71gを加えて、室温下、20分間攪拌してポリアクリル酸ナトリウム水溶液を作製した。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to any examples.
(Example 1)
24.63 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd.) was added to 471.66 g of water and stirred with a dispa to prepare a polymer solution. 3.71 g of a 10% aqueous solution of an aziridine compound (PZ-33) was added to the polymer solution, and the mixture was stirred at room temperature for 20 minutes to prepare an aqueous sodium polyacrylate solution.
続いて、作製したポリアクリル酸ナトリウム水溶液33.53gに、Si(平均粒径200nm)5.88gおよびAB 1.18g、VGCF 1.18g、ポリアクリル酸マレイン酸共重合体50%水溶液0.18g、水8.06gを加えて攪拌した。続いて、フィルミックスで本分散し、電極スラリを得た。
得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、0.71mg/cm2の目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、予備乾燥した。これを密度が、0.4g/cm3になるようプレスした。最後に、105℃で5時間、減圧乾燥を行い、電極を得た。
Subsequently, in 33.53 g of the prepared sodium polyacrylate aqueous solution, 5.88 g of Si (average particle size 200 nm), 1.18 g of AB, 1.18 g of VGCF, and 0.18 g of a 50% aqueous solution of maleic acid maleic acid copolymer. , 8.06 g of water was added and stirred. Subsequently, this dispersion was carried out with a fill mix to obtain an electrode slurry.
The obtained slurry was applied to a current collector. A copper foil having a thickness of 12 μm was used as the current collector. The slurry was applied with a doctor blade so as to have a basis weight of 0.71 mg / cm 2 . Subsequently, it was pre-dried at 80 ° C. for 30 minutes. This was pressed so that the density was 0.4 g / cm 3 . Finally, it was dried under reduced pressure at 105 ° C. for 5 hours to obtain an electrode.
(比較例1)
ポリアクリル酸ナトリウム(日本触媒社製)24.63gを水471.66gに加えて、ディスパで攪拌して高分子溶液を作製した。その高分子溶液に、アジリジン化合物(PZ−33)の10%水溶液3.71gを加えて、室温下、20分間攪拌してポリアクリル酸ナトリウム水溶液を作製した。
続いて、作製したポリアクリル酸ナトリウム水溶液33.53gに、Si(平均粒径200nm)5.88gおよびAB 1.18g、VGCF 1.18g、ポリアクリル酸マレイン酸共重合体50%水溶液0.18g、水8.06gを加えて攪拌した。続いて、フィルミックスで本分散し、電極スラリを得た。
得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、0.71mg/cm2の目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、予備乾燥した。これを密度が、1.5g/cm3になるようプレスした。最後に、105℃で5時間、減圧乾燥を行い、電極を得た。
(Comparative Example 1)
24.63 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd.) was added to 471.66 g of water and stirred with a dispa to prepare a polymer solution. 3.71 g of a 10% aqueous solution of an aziridine compound (PZ-33) was added to the polymer solution, and the mixture was stirred at room temperature for 20 minutes to prepare an aqueous sodium polyacrylate solution.
Subsequently, in 33.53 g of the prepared sodium polyacrylate aqueous solution, 5.88 g of Si (average particle size 200 nm), 1.18 g of AB, 1.18 g of VGCF, and 0.18 g of a 50% aqueous solution of maleic acid maleic acid copolymer. , 8.06 g of water was added and stirred. Subsequently, this dispersion was carried out with a fill mix to obtain an electrode slurry.
The obtained slurry was applied to a current collector. A copper foil having a thickness of 12 μm was used as the current collector. The slurry was applied with a doctor blade so as to have a basis weight of 0.71 mg / cm 2 . Subsequently, it was pre-dried at 80 ° C. for 30 minutes. This was pressed so that the density was 1.5 g / cm 3 . Finally, it was dried under reduced pressure at 105 ° C. for 5 hours to obtain an electrode.
(比較例2)
ポリアクリル酸ナトリウム(日本触媒社製)25.00gを水475.00gに加え、ディスパで攪拌してポリアクリル酸ナトリウム水溶液を作製した。
続いて、作製したポリアクリル酸ナトリウム水溶液33.53gに、Si(平均粒径200nm)5.88gおよびAB 1.18g、VGCF 1.18g、ポリアクリル酸マレイン酸共重合体50%水溶液0.18g、水8.06gを加えて攪拌した。続いて、フィルミックスで本分散し、電極スラリを得た。
(Comparative Example 2)
25.00 g of sodium polyacrylate (manufactured by Nippon Shokubai Co., Ltd.) was added to 475.00 g of water and stirred with a dispa to prepare an aqueous sodium polyacrylate solution.
Subsequently, in 33.53 g of the prepared sodium polyacrylate aqueous solution, 5.88 g of Si (average particle size 200 nm), 1.18 g of AB, 1.18 g of VGCF, and 0.18 g of a 50% aqueous solution of maleic acid maleic acid copolymer. , 8.06 g of water was added and stirred. Subsequently, this dispersion was carried out with a fill mix to obtain an electrode slurry.
得られたスラリを集電体に塗布した。集電体は、厚さ12μmの銅箔を使用した。スラリは、0.71mg/cm2の目付量になるように、ドクターブレードにて塗布した。続いて、80℃で30分間、予備乾燥した。これを密度が、0.4g/cm3になるようプレスした。最後に、105℃で5時間、減圧乾燥を行い、電極を得た。
(ナノインデンテーション測定による評価)
得られた電極をステージに固定し、連続剛性測定(MTS Systems特許技術)を各5回行った。その後、測定データを解析し、複合弾性率および硬さの深さ方向分布を得た。装置は、MTS Systems社製、Indenter XPを用い、使用圧子は、Berkovich(三角錐形)を用いた。
The obtained slurry was applied to a current collector. A copper foil having a thickness of 12 μm was used as the current collector. The slurry was applied with a doctor blade so as to have a basis weight of 0.71 mg / cm 2 . Subsequently, it was pre-dried at 80 ° C. for 30 minutes. This was pressed so that the density was 0.4 g / cm 3 . Finally, it was dried under reduced pressure at 105 ° C. for 5 hours to obtain an electrode.
(Evaluation by nanoindentation measurement)
The obtained electrodes were fixed to the stage, and continuous rigidity measurement (MTS Systems patented technology) was performed 5 times each. Then, the measured data was analyzed to obtain the composite elastic modulus and the distribution of hardness in the depth direction. An Indenter XP manufactured by MTS Systems Corporation was used as the apparatus, and Berkovich (trigonal pyramidal shape) was used as the indenter used.
(セル作製と充放電評価)
得られた電極とLi箔を用いてコインセルを作製し、実施例1および比較例1、2の充放電評価を行なった。充電2100mA/g、放電2100mA/gで、0.03-1.0 Vの電圧範囲で繰り返し充放電を10回繰り返した。その後、コインセルを解体し、電極の膜厚を測定した。コインセルは2032型を使用した。電極は、直径15mmの円板に打ち抜き、Li箔は、直径16mmの円板に打ち抜いて用いた。コインセルは、電極およびLi箔、セパレータ(旭化成社、ハイポア ND525)を基本構成とした。電解液は、フルオロエチレンカーボネート(FEC) 10wt%を含むエチレンカーボネート(EC)とジエチルカーボネート(DMC)の3:7(v/v)の混合溶液に、LiPF6を1Mとなるように加えたものを使用した。
(Cell preparation and charge / discharge evaluation)
A coin cell was produced using the obtained electrode and Li foil, and charge / discharge evaluation of Example 1 and Comparative Examples 1 and 2 was performed. Charging and discharging were repeated 10 times in a voltage range of 0.03-1.0 V at 2100 mA / g for charging and 2100 mA / g for discharging. Then, the coin cell was disassembled and the film thickness of the electrode was measured. A 2032 type coin cell was used. The electrode was punched into a disk having a diameter of 15 mm, and the Li foil was punched into a disk having a diameter of 16 mm. The basic configuration of the coin cell was an electrode, Li foil, and a separator (Asahi Kasei Corporation, Hypore ND525). The electrolytic solution is a mixed solution of ethylene carbonate (EC) containing 10 wt% of fluoroethylene carbonate (FEC) and diethyl carbonate (DMC) in a ratio of 3: 7 (v / v), to which LiPF6 is added so as to be 1 M. used.
評価結果を表1に示す。 The evaluation results are shown in Table 1.
表1では、電極のナノインデンテーション測定を実施した。また、膜厚変化の評価は、電池評価前の活物質層の膜厚に対し、1回充放電後の膜厚を測定し、膜厚増加率が15%未満であるものを○、15%以上のものを×として評価した。
接触深さは、およそ1.57nmとした。実施例1の電極は、複合弾性率が2.6GPaであり、硬さが0.037GPaであった。比較例1は、複合弾性率が4.0GPaであり、硬さが0.060GPaであった。比較例2は、複合弾性率が1.9GPaであり、硬さが0.028GPaであった。
In Table 1, nanoindentation measurements of the electrodes were performed. In the evaluation of the film thickness change, the film thickness after one charge / discharge is measured with respect to the film thickness of the active material layer before the battery evaluation, and those having a film thickness increase rate of less than 15% are ○ and 15%. The above items were evaluated as x.
The contact depth was approximately 1.57 nm. The electrode of Example 1 had a composite elastic modulus of 2.6 GPa and a hardness of 0.037 GPa. In Comparative Example 1, the composite elastic modulus was 4.0 GPa and the hardness was 0.060 GPa. In Comparative Example 2, the composite elastic modulus was 1.9 GPa and the hardness was 0.028 GPa.
実施例1は、ほぼ膜厚が変化しなかった。
一方、比較例1および比較例2の膜厚は大きく変化した。特に、比較例1は、クラックが電極表面に多く観察され、一部集電体から剥がれていた。実施例1と比較し、比較例1は、より硬い活物質層を備える。このことから、複合弾性率および硬さの数値が高すぎると、活物質層の体積変化による内部応力によって、活物質層が崩壊してしまうことが明らかとなった。
また、比較例2は、実施例1と比較し、柔らかい活物質層を備える。クラックや集電体からの剥がれの箇所は、比較例1より少ないものの、膜厚増加は最も大きかった。このことから、複合弾性率および硬さの数値が低すぎると、活物質層の体積膨張後の収縮が不十分であり、実施例1および比較例2と比べ、活物質層が膨張したままになることが明らかとなった。
In Example 1, the film thickness did not change.
On the other hand, the film thicknesses of Comparative Example 1 and Comparative Example 2 changed significantly. In particular, in Comparative Example 1, many cracks were observed on the electrode surface, and some of them were peeled off from the current collector. Compared with Example 1, Comparative Example 1 comprises a harder active material layer. From this, it was clarified that if the values of the composite elastic modulus and the hardness are too high, the active material layer collapses due to the internal stress due to the volume change of the active material layer.
Further, Comparative Example 2 is provided with a soft active material layer as compared with Example 1. Although the number of cracks and peeling points from the current collector was smaller than that in Comparative Example 1, the increase in film thickness was the largest. From this, if the values of the composite elastic modulus and the hardness are too low, the contraction of the active material layer after the volume expansion is insufficient, and the active material layer remains expanded as compared with Example 1 and Comparative Example 2. It became clear that
本発明に係る非水電解質二次電池用負極は、各種携帯用電子機器の電源、また、高エネルギー密度が求められる電気自動車等の駆動用蓄電池、さらに、ソーラーエネルギーや風力発電等の各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源等の電極に用いられる。 The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is a power source for various portable electronic devices, a storage battery for driving an electric vehicle or the like that requires high energy density, and various energies such as solar energy and wind power generation. It is used as an electrode for a power storage device or a storage power source for household electric appliances.
1 非水電解質二次電池用負極
2 集電体
3 活物質層
1 Negative electrode for non-aqueous electrolyte
Claims (6)
活物質層は、活物質と導電助剤とバインダとを含んで構成され、
上記活物質がSiOx(0<x≦1.5)であり、
ナノインデンテーション測定による上記活物質層の複合弾性率が、2.5GPa以上、3.5GPa以下の範囲であり、
上記バインダは、エチレン性不飽和カルボン酸化合物を繰り返し単位として含み、かつ、架橋剤を用いて架橋されている高分子であり、
上記架橋剤は、上記カルボン酸と反応する水系架橋剤であることを特徴とする非水電解質二次電池用負極。 A negative electrode for a non-aqueous electrolyte secondary battery in which an active material layer is formed on a current collector.
The active material layer is composed of an active material, a conductive auxiliary agent, and a binder.
The active material is SiOx (0 <x ≦ 1.5).
The composite elastic modulus of the active material layer measured by nanoindentation is in the range of 2.5 GPa or more and 3.5 GPa or less .
The binder is a polymer containing an ethylenically unsaturated carboxylic acid compound as a repeating unit and crosslinked using a crosslinking agent.
The crosslinking agent, a negative electrode for a nonaqueous electrolyte secondary battery, wherein the water-based crosslinking agent der Rukoto of reacting with the carboxylic acid.
上記補助バインダは、分子量1万以下のポリカルボン酸であることを特徴とする請求項1から請求項3のいずれか1項に記載した非水電解質二次電池用負極。The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the auxiliary binder is a polycarboxylic acid having a molecular weight of 10,000 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254829A JP6787117B2 (en) | 2016-12-28 | 2016-12-28 | Negative electrode for non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254829A JP6787117B2 (en) | 2016-12-28 | 2016-12-28 | Negative electrode for non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018107060A JP2018107060A (en) | 2018-07-05 |
JP6787117B2 true JP6787117B2 (en) | 2020-11-18 |
Family
ID=62788149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016254829A Expired - Fee Related JP6787117B2 (en) | 2016-12-28 | 2016-12-28 | Negative electrode for non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6787117B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7196783B2 (en) * | 2019-06-24 | 2022-12-27 | トヨタ自動車株式会社 | All-solid-state battery and all-solid-state battery system |
CN116845176A (en) * | 2022-03-24 | 2023-10-03 | 比亚迪股份有限公司 | Electrode plate, lithium battery and power vehicle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013137942A (en) * | 2011-12-28 | 2013-07-11 | Panasonic Corp | Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same |
JP6256466B2 (en) * | 2013-06-12 | 2018-01-10 | Tdk株式会社 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same |
-
2016
- 2016-12-28 JP JP2016254829A patent/JP6787117B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2018107060A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6066021B2 (en) | Non-aqueous electrolyte secondary battery negative electrode agent, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery | |
JP6973382B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery, negative electrode binder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP6801167B2 (en) | Electrodes for non-aqueous electrolyte secondary batteries | |
JP2017004682A (en) | Negative electrode agent for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery | |
JP6809453B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery | |
JP2017134923A (en) | Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof | |
JP6787117B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery | |
JP7151060B2 (en) | Negative electrode binder for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery | |
JP6634757B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
KR101784646B1 (en) | Electrode for non-aqueous electrolyte secondary battery | |
JP2021182484A (en) | Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP6961939B2 (en) | Negative electrode agent for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
WO2020026420A1 (en) | Negative electrode binder for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery | |
TWI673908B (en) | Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
WO2019208698A1 (en) | Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP2021182483A (en) | Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP2015225792A (en) | Negative electrode and lithium secondary battery using the same | |
JP2021044187A (en) | Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery | |
JP2017199575A (en) | Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6787117 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |