JP6799659B2 - How to install pipe fittings - Google Patents

How to install pipe fittings Download PDF

Info

Publication number
JP6799659B2
JP6799659B2 JP2019208093A JP2019208093A JP6799659B2 JP 6799659 B2 JP6799659 B2 JP 6799659B2 JP 2019208093 A JP2019208093 A JP 2019208093A JP 2019208093 A JP2019208093 A JP 2019208093A JP 6799659 B2 JP6799659 B2 JP 6799659B2
Authority
JP
Japan
Prior art keywords
pipe
fluid pipe
fluid
main body
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208093A
Other languages
Japanese (ja)
Other versions
JP2020073815A (en
Inventor
高橋 秀典
秀典 高橋
高橋 純一
純一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Koki Co Ltd
Original Assignee
Cosmo Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Koki Co Ltd filed Critical Cosmo Koki Co Ltd
Priority to JP2019208093A priority Critical patent/JP6799659B2/en
Publication of JP2020073815A publication Critical patent/JP2020073815A/en
Application granted granted Critical
Publication of JP6799659B2 publication Critical patent/JP6799659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joints With Sleeves (AREA)
  • Joints Allowing Movement (AREA)

Description

本発明は、第1の流体管と第2の流体管とを密封状に接続する管継手の設置方法に関する。 The present invention relates to a method of installing a pipe joint that connects a first fluid pipe and a second fluid pipe in a sealed manner.

従来、第1の流体管と第2の流体管とを密封状に接続する管継手の設置方法として、第1の流体管と第2の流体管に跨って外嵌される中間部体(本体部)、前記中間部体と前記流体管との間を密封するシール部体(弾性部材)、及び前記シール部体を押圧する添設フランジ部体(押圧部材)を備える管継手を用い、前記中間部体の両端部に設けられたフランジを流体管に溶接し、該中間部体の両側にシール部体を配設し、該シール部体を添設フランジ部体によって押圧するものがあった。(例えば、特許文献1参照)。 Conventionally, as a method of installing a pipe joint that connects a first fluid pipe and a second fluid pipe in a sealed manner, an intermediate body (main body) that is externally fitted across the first fluid pipe and the second fluid pipe. A pipe joint including a part), a seal part (elastic member) that seals between the intermediate part and the fluid pipe, and an auxiliary flange part (pressing member) that presses the seal part. In some cases, flanges provided at both ends of the intermediate body are welded to a fluid pipe, seal bodies are arranged on both sides of the intermediate body, and the seal body is pressed by an attached flange body. .. (See, for example, Patent Document 1).

特開平11−351491号公報(第3頁、図1、図2、図3)Japanese Unexamined Patent Publication No. 11-351491 (page 3, FIG. 1, FIG. 2, FIG. 3)

しかしながら、特許文献1にあっては、中間部体の両端部に設けられるフランジは流体管に溶接していたため、フランジを溶接することにより流体管に変形が生じ、シール部体の流体管に対する密着が不均一となり、密封機能が十分に発揮できないという問題がある。 However, in Patent Document 1, since the flanges provided at both ends of the intermediate body are welded to the fluid pipe, the fluid pipe is deformed by welding the flanges, and the seal body adheres to the fluid pipe. Is uneven, and there is a problem that the sealing function cannot be fully exerted.

本発明は、このような問題点に着目してなされたもので、第1の流体管と第2の流体管との密封機能を確実に維持できる管継手の設置方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method for installing a pipe joint capable of reliably maintaining a sealing function between a first fluid pipe and a second fluid pipe. To do.

前記課題を解決するために、本発明の管継手の設置方法は、
第1の流体管と第2の流体管とを密封状に接続する管継手の設置方法であって、
前記第1の流体管と前記第2の流体管のそれぞれの外周部に一体環状に形成される押圧部材及び一体形成される弾性部材を取付けるとともに、
少なくとも周方向に2分割される本体部を前記第1の流体管と前記第2の流体管に跨って外嵌し、
前記押圧部材によって前記弾性部材を前記本体部に対し押圧することで、前記弾性部材を前記流体管に対し押圧させ、該流体管の形状を調整する第1の形状調整工程を備えることを特徴としている。
この特徴によれば、流体管の形状を調整することによって、弾性部材を流体管に均等に密着させ、密封機能を高めることができるとともに、流体管と管継手とが相対変位するときの抵抗を小さくすることができる。
In order to solve the above problems, the method of installing a pipe joint of the present invention
It is a method of installing a pipe joint that connects the first fluid pipe and the second fluid pipe in a sealed manner.
A pressing member integrally formed in an annular shape and an elastic member integrally formed are attached to the outer peripheral portions of the first fluid pipe and the second fluid pipe, respectively.
The main body, which is divided into at least two parts in the circumferential direction, is fitted so as to straddle the first fluid pipe and the second fluid pipe.
It is characterized by comprising a first shape adjusting step of pressing the elastic member against the main body portion by the pressing member to press the elastic member against the fluid pipe and adjusting the shape of the fluid pipe. There is.
According to this feature, by adjusting the shape of the fluid pipe, the elastic member can be evenly adhered to the fluid pipe, the sealing function can be enhanced, and the resistance when the fluid pipe and the pipe joint are relatively displaced can be increased. It can be made smaller.

本発明の管継手の設置方法は、
前記押圧部材は、前記第1の流体管と前記第2の流体管との隙間を介して前記流体管のそれぞれの外周部に嵌挿されることを特徴としている。
この特徴によれば、第1の流体管と第2の流体管との隙間を利用して容易に一体環状に形成された押圧部材を流体管のそれぞれの外周部に嵌挿できる。
The method of installing a pipe joint of the present invention
The pressing member is characterized in that it is fitted and inserted into the outer peripheral portion of each of the fluid pipes through a gap between the first fluid pipe and the second fluid pipe.
According to this feature, the pressing member formed in an integrally annular shape can be easily inserted into the outer peripheral portion of each of the fluid pipes by utilizing the gap between the first fluid pipe and the second fluid pipe.

本発明の管継手の設置方法は、
前記第1の流体管及び前記第2の流体管の管軸方向の端部の少なくとも一方を切断して、前記第1の流体管と前記第2の流体管との隙間を調整する隙間調整工程を備えることを特徴としている。
この特徴によれば、押圧部材の厚さに応じて前記第1の流体管と前記第2の流体管の管軸方向の隙間を調整するので、幅広で剛性の高い押圧部材を流体管に外嵌でき、該押圧部材に倣って流体管の形状を調整することができる。
The method of installing a pipe joint of the present invention
A gap adjusting step of cutting at least one of the first fluid pipe and the end portion of the second fluid pipe in the pipe axial direction to adjust the gap between the first fluid pipe and the second fluid pipe. It is characterized by having.
According to this feature, since the gap between the first fluid pipe and the second fluid pipe in the pipe axis direction is adjusted according to the thickness of the pressing member, a wide and highly rigid pressing member is attached to the fluid pipe. It can be fitted and the shape of the fluid pipe can be adjusted according to the pressing member.

本発明の管継手の設置方法は、
前記第1の流体管と前記第2の流体管の管軸方向の端部の外周部に調整部材を取付け、該流体管の形状を調整する第2の形状調整工程を備えることを特徴としている。
この特徴によれば、流体管の調整部材の形状に倣うようにして流体管の形状を調整することができるばかりか、流体管が管継手から抜出ることも防止できる。
The method of installing a pipe joint of the present invention
It is characterized by having a second shape adjusting step of attaching an adjusting member to the outer peripheral portion of the end portion of the first fluid pipe and the second fluid pipe in the pipe axial direction and adjusting the shape of the fluid pipe. ..
According to this feature, not only the shape of the fluid pipe can be adjusted so as to follow the shape of the adjusting member of the fluid pipe, but also the fluid pipe can be prevented from being pulled out from the pipe joint.

本発明の管継手の設置方法は、
前記第1の流体管及び前記第2の流体管の管軸方向の端部の内周部に跨って密封状に押圧支持する押圧支持手段を取付け、該押圧支持手段によって前記流体管の形状を調整する第3の形状調整工程を備えることを特徴としている。
この特徴によれば、押圧支持手段によって流体管の端部の内周部を押圧支持できるので、容易に流体管の形状を調整することができるばかりか、第1の形状調整工程とともに流体管を管軸方に沿って形状調整できるため、該流体管の伸縮可撓性を高めることができる。
The method of installing a pipe joint of the present invention
A pressing support means that presses and supports the first fluid pipe and the inner peripheral portion of the end portion of the second fluid pipe in the tube axial direction in a sealed manner is attached, and the shape of the fluid pipe is formed by the pressing and supporting means. It is characterized by including a third shape adjusting step for adjusting.
According to this feature, since the inner peripheral portion of the end portion of the fluid pipe can be pressed and supported by the pressing support means, not only the shape of the fluid pipe can be easily adjusted, but also the fluid pipe can be provided together with the first shape adjusting step. Since the shape can be adjusted along the direction of the pipe axis, the expansion and contraction flexibility of the fluid pipe can be increased.

実施例1に係る伸縮可撓管継手が適用される水管橋の構成を示す図である。It is a figure which shows the structure of the water pipe bridge to which the telescopic flexible pipe joint which concerns on Example 1 is applied. (a)の左半分は伸縮可撓管継手の正面図、(a)の右半分は(b)のB−B断面図、(b)の上半分は(a)のA−A断面図、(b)の下半分は側面図である。The left half of (a) is a front view of a telescopic flexible pipe joint, the right half of (a) is a sectional view of BB of (b), and the upper half of (b) is a sectional view of AA of (a). The lower half of (b) is a side view. (a)は図2(a)のC−C断面図、(b)は図2(a)のA−A断面図である。(A) is a sectional view taken along the line CC of FIG. 2A, and FIG. 2B is a sectional view taken along the line AA of FIG. 2A. (a)は既設の伸縮管継手の取付状態を示す図、(b)は既設の伸縮管継手を撤去し、流体管の端部を切断する状況を示す図である。(A) is a diagram showing an attached state of the existing expansion pipe joint, and (b) is a diagram showing a situation in which the existing expansion pipe joint is removed and the end portion of the fluid pipe is cut. (a)は伸縮可撓管継手の押輪及び密封部材を流体管の外周部に取付けた状態を示す図、(b)は(a)の詳細図である。(A) is a view showing a state in which a push ring and a sealing member of a telescopic flexible pipe joint are attached to an outer peripheral portion of a fluid pipe, and (b) is a detailed view of (a). 流体管の端部に調整部材を取り付けた状態を示す図である。It is a figure which shows the state which attached the adjusting member to the end of the fluid pipe. (a)は伸縮可撓管継手の本体部を流体管に対し取付ける状況を示す図、(b)は(a)の詳細図である。(A) is a diagram showing a situation in which the main body of a telescopic flexible pipe joint is attached to a fluid pipe, and (b) is a detailed view of (a). (a)は伸縮可撓管継手の本体部を流体管に対し取付けた状態を示す図、(b)は流体管の変形状況を示す図である。(A) is a diagram showing a state in which the main body of the telescopic flexible pipe joint is attached to the fluid pipe, and (b) is a diagram showing a deformation state of the fluid pipe. 伸縮可撓管継手の本体部に対し押輪を取付けた状態を示す図である。It is a figure which shows the state which the push ring is attached to the main body part of the telescopic flexible pipe joint. (a)は伸縮可撓管継手取付け完了後の水圧試験の状況を示す図、(b)は(a)の詳細図である。(A) is a diagram showing the state of the water pressure test after the expansion and contraction flexible pipe joint installation is completed, and (b) is a detailed diagram of (a). (a)は水圧試験用の押圧支持手段の一部正面断面図、(b)は側断面図である。(A) is a partial front sectional view of the pressing support means for the water pressure test, and (b) is a side sectional view. (a)は実施例2に係る伸縮可撓管継手の一部側断面図、(b)は(a)の詳細図である。(A) is a partial side sectional view of the telescopic flexible pipe joint according to the second embodiment, and (b) is a detailed view of (a). は、伸縮可撓管継手の他の適用例を説明する図である。Is a diagram illustrating another application example of the telescopic flexible pipe joint.

本発明に係る管継手の設置方法を実施するための形態を実施例に基づいて以下に説明する。 A mode for carrying out the method for installing a pipe joint according to the present invention will be described below based on examples.

本発明に係る管継手につき、図1から図11を参照して説明する。以下、本発明にかかる管継手は、河川に架設される水管橋の両端と橋台に埋設される埋設管とをそれぞれ接続する伸縮可撓管継手に適用した実施例について説明する。図1に示されるように、流体管10は、河川2などに架設される流体管11、該流体管11に伸縮可撓管継手20、20’を介して密封状に接続され、橋台4、5に埋設される流体管12、13からなる。架設される流体管11は、その両端部を橋台4、5により支持され、さらにその中間部を橋台6、7により支持され、該橋台4、5、6、7はそれぞれ地中3に固定されている。なお、図1において、流体管11は、一体に構成されているが、分割された流体管をフランジ結合、受口挿口接合、押輪を用いるメカニカル接合、あるいは溶接接合などで接合したものであってもよい。また、管継手は、伸縮可撓管20、20’に限らず、伸縮管としてもよい。 The pipe joint according to the present invention will be described with reference to FIGS. 1 to 11. Hereinafter, an example in which the pipe joint according to the present invention is applied to a telescopic flexible pipe joint that connects both ends of an aqueduct bridge erected in a river and a buried pipe buried in an abutment will be described. As shown in FIG. 1, the fluid pipe 10 is hermetically connected to the fluid pipe 11 erected in a river 2 or the like via telescopic flexible pipe joints 20, 20', and is connected to the abutment 4, It is composed of fluid pipes 12 and 13 embedded in 5. Both ends of the erected fluid pipe 11 are supported by piers 4 and 5, and the intermediate portion thereof is supported by piers 6 and 7, and the piers 4, 5, 6 and 7 are fixed to underground 3 respectively. ing. In FIG. 1, the fluid pipe 11 is integrally formed, but the divided fluid pipes are joined by flange coupling, socket insertion joint, mechanical joint using a push ring, welding joint, or the like. You may. Further, the pipe joint is not limited to the telescopic flexible pipes 20 and 20', and may be a telescopic pipe.

図1において、架設される流体管11は、橋台4、5、6、7の上に設けられたリングサポート9、9、8、9により固定支持されている。ここで、リングサポート8は橋台6に対し固定され、さらにリングサポート8は流体管11に対し固定されており、橋台6、リングサポート及び流体管は一体に固定されている。一方、リングサポート9は、橋台4、5、7に対し後述するように移動可能な構造となっており、架設される流体管11と橋台4、5、6、7との間に生じる伸縮等の相対移動による外力を吸収することができるようになっている。さらに埋設される流体管12、13と橋台4、5との間の相対変位はほとんど生じない。したがって、伸縮可撓管継手20、20’は、橋台4、5に対し相対移動する流体管11と、橋台4、5に対し相対移動しない流体管12、13との間に設けられ、流体管11と流体管12、13との間に生じる伸縮、屈曲、捻じれなどの相対移動による外力を吸収する機能を果たしている。 In FIG. 1, the erected fluid pipe 11 is fixedly supported by ring supports 9, 9, 8 and 9 provided on the abutments 4, 5, 6 and 7. Here, the ring support 8 is fixed to the abutment 6, the ring support 8 is fixed to the fluid pipe 11, and the abutment 6, the ring support, and the fluid pipe are integrally fixed. On the other hand, the ring support 9 has a structure that can be moved with respect to the piers 4, 5, and 7 as described later, and the expansion and contraction that occurs between the erected fluid pipe 11 and the piers 4, 5, 6, and 7 and the like. It is possible to absorb the external force due to the relative movement of. Further, there is almost no relative displacement between the buried fluid pipes 12 and 13 and the abutments 4 and 5. Therefore, the telescopic flexible pipe joints 20 and 20'are provided between the fluid pipe 11 that moves relative to the abutments 4 and 5 and the fluid pipes 12 and 13 that do not move relative to the abutments 4 and 5. It functions to absorb external forces due to relative movement such as expansion and contraction, bending, and twisting that occur between the 11 and the fluid pipes 12 and 13.

流体管10は、ステンレス鋼、鋼製、またはダクタイル鋳鉄等からなり、必要に応じてゴムライニング、プラスチック塗装、エポキシ樹脂塗装、または粉体塗装等により防錆処理されている。尚、本実施例では流体管路内の流体は農業用水等の水であるが、流体管の内部を流れる流体は必ずしも農業用水に限らず、例えば工業用水や上水、下水等の他、ガスやガスと液体との気液混合体であっても構わない。 The fluid tube 10 is made of stainless steel, steel, ductile cast iron, or the like, and is rust-proofed by rubber lining, plastic coating, epoxy resin coating, powder coating, or the like, if necessary. In this embodiment, the fluid in the fluid pipe is water such as agricultural water, but the fluid flowing inside the fluid pipe is not necessarily limited to agricultural water, for example, industrial water, tap water, sewage, and other gases. It may be a gas-liquid mixture of gas and liquid.

つぎに、本発明に係る管継手としての伸縮可撓管継手20、20’について説明する。伸縮可撓管継手20、20’は、同一構造であるため、以下伸縮可撓管継手20について詳細に説明する。 Next, the telescopic flexible pipe joints 20 and 20'as the pipe joint according to the present invention will be described. Since the telescopic flexible pipe joints 20 and 20'have the same structure, the telescopic flexible pipe joint 20 will be described in detail below.

図2(a)、(b)に示されるように、伸縮可撓管継手20は、第1の流体管としての流体管11と第2の流体管としての流体管12に跨って外嵌される本体部21、本体部21と流体管11及び流体管12との間を密封する弾性部材としての密封部材22、22、及び該密封部材22、22を押圧する押圧部材としての押輪23、23を主に備える。以下、伸縮可撓管継手20を構成する部材について説明する。 As shown in FIGS. 2A and 2B, the telescopic flexible pipe joint 20 is externally fitted across the fluid pipe 11 as the first fluid pipe and the fluid pipe 12 as the second fluid pipe. The sealing members 22 and 22 as elastic members that seal between the main body 21 and the main body 21 and the fluid pipe 11 and the fluid pipe 12, and the push rings 23 and 23 as pressing members that press the sealing members 22 and 22. Mainly prepared. Hereinafter, the members constituting the telescopic flexible pipe joint 20 will be described.

図2に示されるように、本体部21は、流体管11と流体管12に跨って外嵌される筒状体である。該本体部21は、周方向に2分割される本体分割部21a及び本体分割部21bからなり、該本体分割部21a及び本体分割部21bの周方向端部には、管軸方向に延設されるフランジ21c、21c、21d、21dが設けられ、該本体分割部21a及び本体分割部21bはパッキン27(図3(a)参照)を介してボルト・ナット25、25、…により一体筒状にフランジ結合される。なお、本体部21は、鋼、ステンレス、鋳鉄、鋳鋼等から構成され、必要に応じゴムライニング、プラスチック塗装、エポキシ樹脂塗装、または粉体塗装等により防錆処理されている。また、本体部21は、3つ以上に分割される構造であってもよい。 As shown in FIG. 2, the main body 21 is a tubular body that is externally fitted across the fluid pipe 11 and the fluid pipe 12. The main body portion 21 is composed of a main body dividing portion 21a and a main body dividing portion 21b that are divided into two in the circumferential direction, and extends in the pipe axis direction at the peripheral end portions of the main body dividing portion 21a and the main body dividing portion 21b. Flange 21c, 21c, 21d, 21d are provided, and the main body dividing portion 21a and the main body dividing portion 21b are integrally formed into a tubular shape by bolts, nuts 25, 25, ... Through packing 27 (see FIG. 3A). Flange-coupled. The main body 21 is made of steel, stainless steel, cast iron, cast steel, etc., and is rust-proofed by rubber lining, plastic coating, epoxy resin coating, powder coating, or the like, if necessary. Further, the main body 21 may have a structure divided into three or more.

また、図3に示されるように、本体部21の上側に位置する本体分割部21a及び下側に位置する本体分割部21bの管軸方向両端部には、径方向内側に向けて肉厚に形成された収容部21h、21h、…が形成され、該収容部21h、21h、…が流体管11、12に対向する面には本体部21の管軸方向中央に向かって縮径する傾斜壁21j、21j、…が形成され、さらに該傾斜壁21j、21jの本体部21の中央寄りに、傾斜壁21j、21j、…から径方向内側に突出した突出壁21m、21m、…が全周に亘って形成されている。 Further, as shown in FIG. 3, both ends of the main body dividing portion 21a located on the upper side of the main body portion 21 and the main body dividing portion 21b located on the lower side in the pipe axial direction are thickened inward in the radial direction. The formed accommodating portions 21h, 21h, ... Are formed, and on the surface of the accommodating portions 21h, 21h, ... Facing the fluid pipes 11 and 12, an inclined wall whose diameter is reduced toward the center of the main body portion 21 in the pipe axial direction. 21j, 21j, ... Are formed, and projecting walls 21m, 21m, ... Protruding radially inward from the inclined walls 21j, 21j, ... Are formed all around the center of the main body 21 of the inclined walls 21j, 21j. It is formed over.

さらに、本体部21の本体分割部21a及び本体分割部21bの管軸方向両端部には径方向外側に向けてフランジ21f、21f、…が設けられている。該フランジ21f、21f、…には、ボルト挿通孔21k、21k、…が形成されている。加えて、本体部21の管軸方向中央部には、水圧試験の際に試験水を導入する高圧ソケット21nが設けられている。 Further, flanges 21f, 21f, ... Are provided at both ends of the main body dividing portion 21a and the main body dividing portion 21b in the pipe axial direction toward the outer side in the radial direction. Bolt insertion holes 21k, 21k, ... Are formed in the flanges 21f, 21f, .... In addition, a high-pressure socket 21n for introducing test water during a water pressure test is provided at the central portion of the main body 21 in the pipe axial direction.

つぎに、押輪23、23について説明する。押輪23、23は、一体環状に形成されて本体部21の両端部にそれぞれ配設され、かつ流体管11及び流体管12に外挿される。図2及び図3に示されるように、各押輪23、23も同一構造であるので、一方の押輪23について説明する。 Next, the push wheels 23 and 23 will be described. The push wheels 23 and 23 are integrally formed in an annular shape, are arranged at both ends of the main body 21, and are externally inserted into the fluid pipe 11 and the fluid pipe 12. As shown in FIGS. 2 and 3, since each of the push wheels 23 and 23 has the same structure, one push ring 23 will be described.

押輪23は、内径部に流体管11、12の外径よりもわずかに大径に形成された孔部23bを有する略円板状に形成され、該押輪23の外周側には本体部21のボルト挿通孔21k、21kと対向する位置にボルト挿通孔23c、23c、…が形成されている。また、押輪23の管軸方向の一方の端面には環状突部23aが形成され、該環状突部23aの軸方向端部には後述する密封部材22を押圧する押圧面23dが形成されている。 The push ring 23 is formed in a substantially disk shape having a hole portion 23b formed in an inner diameter portion having a diameter slightly larger than the outer diameter of the fluid pipes 11 and 12, and a main body portion 21 is formed on the outer peripheral side of the push ring 23. Bolt insertion holes 23c, 23c, ... Are formed at positions facing the bolt insertion holes 21k, 21k. Further, an annular protrusion 23a is formed on one end surface of the push ring 23 in the pipe axial direction, and a pressing surface 23d for pressing the sealing member 22, which will be described later, is formed on the axial end of the annular protrusion 23a. ..

つぎに、密封部材22、22について説明する。図2及び図3に示されるように、各密封部材22、22も同一構造であるので、一方の密封部材22について説明する。密封部材22は、ゴム、プラスチック等の弾性部材からなり、一体の無端状に形成される。密封部材22は、締付け状態でその内周面22aが、流体管11の外周部11aに密着するように円筒面に形成され、また、その外周面22jは、本体部21の収容部21hの傾斜壁21jに密着するように管軸方向に傾斜した円筒面を有し、さらに、その管軸方向端部は、押輪23の環状突部23aの押圧面23dと密着して押圧されるように被押圧面22dが形成されている。なお、密封部材22の断面は、ほぼK字状のK形ゴム輪のような形状を用いるのが好ましい。 Next, the sealing members 22 and 22 will be described. As shown in FIGS. 2 and 3, since the sealing members 22 and 22 also have the same structure, one of the sealing members 22 will be described. The sealing member 22 is made of an elastic member such as rubber or plastic, and is integrally formed in an endless shape. The sealing member 22 is formed on a cylindrical surface so that its inner peripheral surface 22a is in close contact with the outer peripheral portion 11a of the fluid pipe 11 in a tightened state, and the outer peripheral surface 22j is an inclination of the accommodating portion 21h of the main body portion 21. It has a cylindrical surface that is inclined in the pipe axis direction so as to be in close contact with the wall 21j, and the end portion in the pipe axis direction is covered so as to be in close contact with the pressing surface 23d of the annular protrusion 23a of the push ring 23. The pressing surface 22d is formed. It is preferable that the cross section of the sealing member 22 has a shape like a K-shaped rubber ring having a substantially K shape.

このように構成された密封部材22は、本体部21の収容部21hの傾斜壁21j及び突出壁21mと、流体管11の外周部11aとに囲まれた領域に収容され、密封部材22の被押圧面22dが押輪23の押圧面23dによって押圧されると、傾斜壁21jの楔効果により密封部材22の内周面22aは流体管11の外周部11aに強く密着して密封機能を発揮する。 The sealing member 22 configured in this way is housed in a region surrounded by the inclined wall 21j and the protruding wall 21m of the housing portion 21h of the main body portion 21 and the outer peripheral portion 11a of the fluid pipe 11, and is covered with the sealing member 22. When the pressing surface 22d is pressed by the pressing surface 23d of the pressing ring 23, the inner peripheral surface 22a of the sealing member 22 strongly adheres to the outer peripheral portion 11a of the fluid pipe 11 due to the wedge effect of the inclined wall 21j, and exerts a sealing function.

なお、収容部21hの傾斜壁21jの断面形状は、略円形に形成されているので、たとえば流体管11が楕円形に変形している場合には、流体管11の外周部11aと収容部21hの傾斜壁21jとの距離は、流体管の長軸方向が狭く、短軸方向が広くなる。したがって、密封部材22が流体管11を押圧する力は、流体管の長軸方向が大きく、短軸方向が小さくなるため、密封部材22が流体管11を押圧する力が不均一となり、密封機能の健全性に影響を与える虞がある。 Since the cross-sectional shape of the inclined wall 21j of the accommodating portion 21h is formed to be substantially circular, for example, when the fluid pipe 11 is deformed into an elliptical shape, the outer peripheral portion 11a of the fluid pipe 11 and the accommodating portion 21h The distance from the inclined wall 21j is narrow in the long axis direction and wide in the short axis direction of the fluid pipe. Therefore, the force of the sealing member 22 pressing the fluid pipe 11 is large in the long axis direction and small in the short axis direction of the fluid pipe, so that the force of the sealing member 22 pressing the fluid pipe 11 becomes non-uniform, and the sealing function May affect the soundness of the.

そこで、後述の伸縮可撓管継手20の設置工程にて説明するように、伸縮可撓管継手20は、密封部材22、22が流体管11、12を押圧するときの押圧力を利用して流体管11、12の形状を調整している。ここで、密封部材22、22が流体管11、12を押圧するときの反力は、本体分割部21aのフランジ21f、21fと本体分割部21bのフランジ21g、21g(図2)とを離間させるように作用する。しかしながら、本体分割部21aのフランジ21f、21f及び本体分割部21bのフランジ21g、21gに近接して配置される押輪23、23は、一体環状に形成され剛性が高いので、本体分割部21aのフランジ21f、21fと本体分割部21bのフランジ21g、21gとの離間を防止するので、流体管11、12の断面形状は押輪23、23の略円形状に倣うよう調整される。 Therefore, as will be described in the installation process of the telescopic flexible pipe joint 20 described later, the telescopic flexible pipe joint 20 utilizes the pressing force when the sealing members 22 and 22 press the fluid pipes 11 and 12. The shapes of the fluid pipes 11 and 12 are adjusted. Here, the reaction force when the sealing members 22 and 22 press the fluid pipes 11 and 12 separates the flanges 21f and 21f of the main body dividing portion 21a from the flanges 21g and 21g (FIG. 2) of the main body dividing portion 21b. Acts like. However, since the flanges 21f and 21f of the main body dividing portion 21a and the push wheels 23 and 23 arranged close to the flanges 21g and 21g of the main body dividing portion 21b are integrally formed in an annular shape and have high rigidity, the flange of the main body dividing portion 21a Since the separation between the 21f and 21f and the flanges 21g and 21g of the main body dividing portion 21b is prevented, the cross-sectional shape of the fluid pipes 11 and 12 is adjusted to follow the substantially circular shape of the push rings 23 and 23.

以下、たとえば、温度による伸縮を吸収するために既設された伸縮管継手を耐震性を有する管継手に変更する場合の例として、既設の伸縮管継手60を本発明に係る伸縮可撓管継手20に交換する工程について説明する。なお、流体管11の両側に配設される伸縮可撓管継手20は同一構成のため、流体管11と流体管12とを接続する既設の伸縮管継手60を伸縮可撓管継手20に交換する工程について図4から図12を参照して説明する。 Hereinafter, as an example of changing an existing expansion joint to a pipe joint having earthquake resistance in order to absorb expansion and contraction due to temperature, the existing expansion pipe joint 60 is replaced with the expansion and contraction flexible pipe joint 20 according to the present invention. The process of exchanging with will be described. Since the telescopic flexible pipe joints 20 arranged on both sides of the fluid pipe 11 have the same configuration, the existing telescopic pipe joint 60 connecting the fluid pipe 11 and the fluid pipe 12 is replaced with the telescopic flexible pipe joint 20. The steps to be performed will be described with reference to FIGS. 4 to 12.

図4(a)において、流体管11はリングサポート9に一体に固定されている。また、リングサポート9は流体管11を直接保持するサポート部9a及び脚部9bを有し、該脚部9bは橋台4上に敷設された脚板9c上に載置され、脚部9bは流体管11の伸縮等の変位にともないと脚板9c上を相対移動できるようになっている。 In FIG. 4A, the fluid pipe 11 is integrally fixed to the ring support 9. Further, the ring support 9 has a support portion 9a and a leg portion 9b that directly hold the fluid pipe 11, and the leg portion 9b is placed on a leg plate 9c laid on the abutment 4, and the leg portion 9b is a fluid pipe. It is possible to move relative to the leg plate 9c with displacement such as expansion and contraction of 11.

最初に、既設の伸縮管継手60を締付用のボルト・ナットを取外し、本体を溶断して撤去する。撤去方法は溶断に限らず本体が分割式なら分割を外してもよい。そして隙間調整工程として図4(b)に示されるように、流体管11と流体管12との管軸方向の隙間15aを調整する。該隙間調整工程は、既設の伸縮管継手60の隙間15aが耐震設計上要求される最小隙間を満たすようにするために、流体管12の一部12aを切断、除去するものである。隙間調整工程を終了後、流体管の表面の錆取り、表面処理を行う。なお、切断とは、たとえば、ガス切断、バイト、バンドソー等の刃物による切削、グラインダ等による研削等の機械加工を含む。 First, the bolts and nuts for tightening the existing expansion joint 60 are removed, and the main body is blown and removed. The removal method is not limited to fusing, and if the main body is a split type, the split may be removed. Then, as a gap adjusting step, as shown in FIG. 4B, the gap 15a in the pipe axial direction between the fluid pipe 11 and the fluid pipe 12 is adjusted. In the gap adjusting step, a part 12a of the fluid pipe 12 is cut and removed so that the gap 15a of the existing expansion pipe joint 60 satisfies the minimum gap required for seismic design. After completing the gap adjustment process, the surface of the fluid pipe is rust-removed and surface-treated. The cutting includes, for example, gas cutting, cutting with a cutting tool such as a tool bit or a band saw, and machining such as grinding with a grinder or the like.

図5(a)(b)に示されるように、流体管11と流体管12との隙間15a(図4(b)参照)を調整した後の隙間15bの隙間寸法S1は比較的大きいため、該隙間寸法S1を利用して押輪23の最大幅寸法S2、密封部材22の最大幅寸法S3も大きくすることができ、分割構造を有さず一体に形成された剛性の高い押輪23を使用することができる。なお、隙間15aが当初から十分な距離を有している場合には、上記した流体管12の切断を行わなくともよい。逆に、隙間調整工程後の隙間15bを押輪23や密封部材22が通過できない場合には、必要に応じて分割構成された押輪23、23及び密封部材22、22を使用する。 As shown in FIGS. 5A and 5B, the gap dimension S1 of the gap 15b after adjusting the gap 15a between the fluid pipe 11 and the fluid pipe 12 (see FIG. 4B) is relatively large. The maximum width dimension S2 of the push ring 23 and the maximum width dimension S3 of the sealing member 22 can also be increased by using the gap dimension S1, and the push ring 23 having high rigidity formed integrally without having a divided structure is used. be able to. If the gap 15a has a sufficient distance from the beginning, it is not necessary to cut the fluid pipe 12 as described above. On the contrary, when the push ring 23 and the sealing member 22 cannot pass through the gap 15b after the gap adjusting step, the push ring 23, 23 and the sealing member 22, 22 which are divided and configured as necessary are used.

つぎに、図6に示されるように、流体管11、12の管軸方向端部の外周側に調整部材26を取付ける。調整部材26は、流体管11、12の外周に4カ所等配で取付けられ、地震時の挙動に伴う伸縮可撓管継手20からの流体管11、12の抜出しを防止する機能を果たしている。また、通常、大口径の薄肉管の端部で生じたり、前記切断工程で生じる流体管11、12の変形が大きい場合には、第2の形状調整工程として流体管11、12の円周1/4〜1/2程度の長さを有する調整部材26を流体管11、12の外周に溶接し、流体管の形状を調整することもできる。溶接後、調整部材26を溶接後、防錆処理を行う。 Next, as shown in FIG. 6, the adjusting member 26 is attached to the outer peripheral side of the axial end of the fluid pipes 11 and 12. The adjusting member 26 is attached to the outer periphery of the fluid pipes 11 and 12 at four locations at equal intervals, and functions to prevent the fluid pipes 11 and 12 from being pulled out from the telescopic flexible pipe joint 20 due to the behavior during an earthquake. Further, when the deformation of the fluid pipes 11 and 12 usually occurs at the end of a thin-walled pipe having a large diameter or is large in the cutting step, the circumference 1 of the fluid pipes 11 and 12 is used as the second shape adjustment step. It is also possible to adjust the shape of the fluid pipe by welding the adjusting member 26 having a length of about / 4 to 1/2 to the outer circumferences of the fluid pipes 11 and 12. After welding, the adjusting member 26 is welded and then subjected to rust prevention treatment.

つぎに、図7に示されるように、本体部21の取付けを行う。まず、本体分割部21bをワイヤ等(図示せず)で吊りながら本体分割部21bを流体管11、12に沿って回転させ、本体分割部21bを橋台上の設置した枕木61の上に仮置きする。続いて、本体分割部21aをワイヤ等(図示せず)で吊りながら流体管11、12の上部に跨るようにかぶせる。 Next, as shown in FIG. 7, the main body 21 is attached. First, while suspending the main body dividing portion 21b with a wire or the like (not shown), the main body dividing portion 21b is rotated along the fluid pipes 11 and 12, and the main body dividing portion 21b is temporarily placed on the sleepers 61 installed on the abutment. To do. Subsequently, the main body dividing portion 21a is hung by a wire or the like (not shown) and covered over the upper portions of the fluid pipes 11 and 12.

続いて、図8(a)にしめされるように、フランジ21c、21c、21d、21dをボルト・ナット25、25、…によって締め付け、本体部21を環状に一体に組立てる。このとき流体管11、12の外周部と、本体部21の突出壁21mの内周部21p、21p(図3(b)参照)との隙間を隙間ゲージ等で確認する。該隙間を流体管11、12の周方向の数か所で確認することにより流体管11、12の変形状態を確認できる(図8(b)参照)。このとき、隙間δ1とδ3、δ2とδ4の差異が大きければ、油圧ジャッキ等を使用して本体部21を上下方向、左右方向の位置調整を行い、隙間δ1とδ3、δ2とδ4がほぼ同じになるようにして、流体管11、12の管軸中心と内周部21p、21pの軸中心をほぼ一致するように調整することが望ましい。 Subsequently, as shown in FIG. 8A, the flanges 21c, 21c, 21d, 21d are tightened with bolts, nuts 25, 25, ..., And the main body 21 is integrally assembled in an annular shape. At this time, the gap between the outer peripheral portions of the fluid pipes 11 and 12 and the inner peripheral portions 21p and 21p (see FIG. 3B) of the protruding wall 21m of the main body portion 21 is confirmed by a feeler gauge or the like. The deformed state of the fluid pipes 11 and 12 can be confirmed by checking the gaps at several points in the circumferential direction of the fluid pipes 11 and 12 (see FIG. 8B). At this time, if the difference between the gaps δ1 and δ3 and δ2 and δ4 is large, the position of the main body 21 is adjusted in the vertical and horizontal directions using a hydraulic jack or the like, and the gaps δ1 and δ3 and δ2 and δ4 are almost the same. It is desirable to adjust so that the center of the pipe axis of the fluid tubes 11 and 12 and the center of the axis of the inner peripheral portions 21p and 21p are substantially the same.

つぎに、密封部材22が流体管11、12上を滑り移動するときの摩擦抵抗を低減するため、本体部21の両端部と密封部材22、22との間に滑剤を塗る。そして、図9に示されるように、本体部21のフランジ21f、21f、21g、21gと押輪23、23とをボルト・ナット24、24、…によって締め付けを行い、密封部材22を本体部21の傾斜壁21j、21jに軽く接触させる。そして、第1の形状調整工程として前工程で確認した隙間δ1、δ3及びδ2、δ4のうち狭い部分(流体管の長軸方向)に配置されるボルト・ナット24、24、…を優先して絞込む。隙間の狭い部分に配置されるボルト・ナット24、24、…を優先して絞込むことで、流体管11、12の形状を容易に調整することができる。さらに、流体管11、12の形状を調整した段階で、本体部21のフランジ21f、21f、21g、21gと押輪23、23との間隔が所定量になるまでボルト・ナット24、24、…を均等に締付ける。流体管11、12の形状を調整しているので、ボルト・ナット24、24、…を絞付けるときの締付け力のバラツキを小さくすることができる。 Next, in order to reduce the frictional resistance when the sealing member 22 slides on the fluid pipes 11 and 12, a lubricant is applied between both ends of the main body 21 and the sealing members 22 and 22. Then, as shown in FIG. 9, the flanges 21f, 21f, 21g, 21g of the main body 21 and the push wheels 23, 23 are tightened by bolts, nuts 24, 24, ..., And the sealing member 22 is tightened by the main body 21. Lightly contact the inclined walls 21j and 21j. Then, as the first shape adjustment step, priority is given to the bolts / nuts 24, 24, ... Arranged in the narrow portion (long axis direction of the fluid pipe) of the gaps δ1, δ3 and δ2, δ4 confirmed in the previous step. Narrow down. The shapes of the fluid pipes 11 and 12 can be easily adjusted by preferentially narrowing down the bolts and nuts 24, 24, ... Arranged in the narrow gap. Further, when the shapes of the fluid pipes 11 and 12 are adjusted, the bolts, nuts 24, 24, ... Are added until the distance between the flanges 21f, 21f, 21g, 21g of the main body 21 and the push wheels 23, 23 becomes a predetermined amount. Tighten evenly. Since the shapes of the fluid pipes 11 and 12 are adjusted, it is possible to reduce the variation in the tightening force when tightening the bolts / nuts 24, 24, ....

つぎに、伸縮可撓管継手20の設置の密封性を確かめるために、水圧試験を行う。図10に示されるように、流体管11、12の管軸方向の端部の内周部に跨って密封状に押圧支持する押圧支持手段50を取付け、伸縮可撓管継手20、流体管11、12及び押圧支持手段50によって囲まれた空間Cvに高圧ソケット21nを介して水を注入し、試験圧力を所定時間加えて水圧試験を行う。 Next, a water pressure test is performed in order to confirm the tightness of the installation of the telescopic flexible pipe joint 20. As shown in FIG. 10, a pressure support means 50 that presses and supports the fluid pipes 11 and 12 in a sealed manner across the inner peripheral portion of the end portion in the pipe axial direction is attached, and the telescopic flexible pipe joint 20 and the fluid pipe 11 are attached. , 12 and the space Cv surrounded by the pressing support means 50 are injected with water through the high pressure socket 21n, and a test pressure is applied for a predetermined time to perform a water pressure test.

ここで、押圧支持手段50の構成について説明する。図11に示されるように、押圧支持手段50は、環状フレーム53、搬送手段52、シール部54、複数の押圧ボルト55を主に備える。環状フレーム53は、流体管11、12の管軸方向の端部の内周部に跨って配置できる管軸方向長さを有し、さらに周方向に複数に分割された扇状部材53a、53a、…をボルト・ナット56、56、…で結合して環状に形成される。また、それぞれの扇状部材53aには、雌ねじ部53b、53bが設けられ、後述するシール部54を押圧する押圧ボルト55、55が取り付けられている。シール部54は、流体管11、12の管軸方向の端部の内周部に跨って密封可能な管軸方向長さを有し環状一体に形成されたパッキン54a、周方向に複数に分割された押圧板54b、54b、…、及び複数の座板54c、54c、…からなる。パッキン54aは、その外周側が流体管11、12の管軸方向の端部の内周部に跨って密封し、その内周部は全周に亘って環状一体に形成される複数の押圧板54b、54b、…によって押圧支持される。また押圧板54b、54b、…の内周部は、複数の座板54c、54c、…によって支持され、さらに該複数の座板54c、54c、…の内周部は、押圧ボルト55、55、…によって押圧支持されている。このように構成された押圧支持手段50は流体管11の途中に設けられた人孔(図示せず)から分解状態で搬入され、流体管の中で組立てられ、搬送手段52、52を利用して水圧試験位置まで搬送される。 Here, the configuration of the pressing support means 50 will be described. As shown in FIG. 11, the pressing support means 50 mainly includes an annular frame 53, a conveying means 52, a seal portion 54, and a plurality of pressing bolts 55. The annular frame 53 has a length in the pipe axial direction that can be arranged so as to straddle the inner peripheral portion of the end portion of the fluid pipes 11 and 12 in the pipe axial direction, and is further divided into a plurality of fan-shaped members 53a, 53a in the circumferential direction. ... Is joined by bolts and nuts 56, 56, ... To form an annular shape. Further, each fan-shaped member 53a is provided with female screw portions 53b and 53b, and pressing bolts 55 and 55 for pressing the seal portion 54 described later are attached. The seal portion 54 is a packing 54a having a length in the pipe axial direction that can be sealed over the inner peripheral portion of the end portion of the fluid pipes 11 and 12 in the pipe axial direction and is integrally formed in an annular shape, and is divided into a plurality of parts in the circumferential direction. It is composed of the pressed pressing plates 54b, 54b, ..., And a plurality of seat plates 54c, 54c, .... The outer peripheral side of the packing 54a is sealed so as to straddle the inner peripheral portion of the end portion of the fluid pipes 11 and 12 in the pipe axial direction, and the inner peripheral portion thereof is formed in an annular shape over the entire circumference. , 54b, ... Is pressed and supported. Further, the inner peripheral portions of the pressing plates 54b, 54b, ... Are supported by the plurality of seat plates 54c, 54c, ..., And the inner peripheral portions of the plurality of seat plates 54c, 54c, ... Are the pressing bolts 55, 55, ... It is pressed and supported by ... The pressing support means 50 configured in this way is carried in a disassembled state from a manhole (not shown) provided in the middle of the fluid pipe 11, assembled in the fluid pipe, and uses the transport means 52, 52. Is transported to the water pressure test position.

また、図10(b)及び図11(b)に示されるように、押圧支持手段50のシール部54は、流体管11、12の管軸方向の端部の内周部に跨って、かつ2つの密封部材22、22の間に配置される。さらに第3の形状調整工程として押圧支持手段50のシール部54を、流体管11、12の管軸方向の端部に直接押圧させ、流体管11、12の形状を調整することができる。なお、流体管11、12の形状調整は、押圧支持手段50単独で行ってもよいが、前工程の伸縮可撓管継手20のボルト・ナット24、24、…の絞込みによる密封部材22、22の押圧力を併用してもよい。 Further, as shown in FIGS. 10 (b) and 11 (b), the seal portion 54 of the pressing support means 50 straddles the inner peripheral portion of the end portions of the fluid pipes 11 and 12 in the pipe axial direction, and It is arranged between the two sealing members 22, 22. Further, as a third shape adjusting step, the seal portion 54 of the pressing support means 50 can be directly pressed against the end portion of the fluid pipes 11 and 12 in the pipe axial direction to adjust the shape of the fluid pipes 11 and 12. The shape of the fluid pipes 11 and 12 may be adjusted by the pressing support means 50 alone, but the sealing members 22 and 22 by narrowing down the bolts and nuts 24, 24, ... Of the telescopic flexible pipe joint 20 in the previous process. You may also use the pressing force of.

水圧試験が完了して伸縮可撓管継手20の設置が終了する。なお、押圧支持手段50の押圧ボルト55、55、…を全周に亘って緩めると、押圧支持手段50の搬送手段52、52が流体管11、12の内周部に接触し、押圧支持手段50は搬送手段52、52によって自由に移動できるようになる。押圧支持手段50は、人孔(図示せず)の近くまで搬送され、搬出可能な大きさに分解されて、人孔から流体管11、12の外へ搬出される。 The hydraulic test is completed and the installation of the telescopic flexible pipe joint 20 is completed. When the pressing bolts 55, 55, ... Of the pressing supporting means 50 are loosened over the entire circumference, the conveying means 52, 52 of the pressing supporting means 50 come into contact with the inner peripheral portions of the fluid pipes 11, 12, and the pressing supporting means The 50 can be freely moved by the transport means 52 and 52. The pressing support means 50 is transported to the vicinity of a manhole (not shown), decomposed into a size that can be carried out, and carried out of the manholes 11 and 12 through the manhole.

このように構成された伸縮可撓管継手20は、流体管の形状を調整できるので、密封部材22、22を流体管11、12に均等に密着させることができ、密封機能を高めることができる。さらに、流体管11、12の形状は調整されているので、流体管11、12と伸縮可撓管継手20とが相対変位するときの抵抗を小さくすることができるので、伸縮可撓管継手20の信頼性を向上することができる。 Since the shape of the fluid pipe can be adjusted in the telescopic flexible pipe joint 20 configured in this way, the sealing members 22 and 22 can be evenly adhered to the fluid pipes 11 and 12, and the sealing function can be enhanced. .. Further, since the shapes of the fluid pipes 11 and 12 are adjusted, the resistance when the fluid pipes 11 and 12 and the telescopic flexible pipe joint 20 are relatively displaced can be reduced, so that the telescopic flexible pipe joint 20 can be reduced. The reliability of the can be improved.

次に、実施例2に係る伸縮可撓管継手30につき、図12を参照して説明する。尚、前記実施例と同一構成で重複する説明を省略する。 Next, the telescopic flexible pipe joint 30 according to the second embodiment will be described with reference to FIG. It should be noted that the same configuration as in the above embodiment and overlapping description will be omitted.

図12(a)、(b)に示されるように、伸縮可撓管継手30は、流体管11と流体管12に跨って外嵌される本体部31、本体部31と流体管11及び流体管12との間を密封する密封部材32、32、及び該密封部材32、32を押圧する押輪33、33を主に備える。実施例2の伸縮可撓管継手30は、密封部材32、32を押圧する態様が実施例1の伸縮可撓管継手20と異なる。 As shown in FIGS. 12A and 12B, the telescopic flexible pipe joint 30 has a main body portion 31, a main body portion 31, the fluid pipe 11 and a fluid that are externally fitted across the fluid pipe 11 and the fluid pipe 12. It mainly includes sealing members 32, 32 for sealing between the pipes 12 and push rings 33, 33 for pressing the sealing members 32, 32. The telescopic flexible pipe joint 30 of the second embodiment is different from the telescopic flexible pipe joint 20 of the first embodiment in the mode of pressing the sealing members 32, 32.

本体部31は、本体分割部31a及び本体分割部31bの2分割構成され、該本体分割部31a及び本体分割部31bの管軸方向両端部には、該本体分割部31a及び本体分割部31bの径方向内側に向けて肉厚に形成された収容部31h、31h、…が形成され、該収容部31h、31h、…が流体管に対向する面には本体部31の管軸方向中心に向かって縮径する傾斜壁31j、31j、…が形成されている。 The main body portion 31 is divided into two parts, a main body dividing portion 31a and a main body dividing portion 31b, and the main body dividing portion 31a and the main body dividing portion 31b are provided at both ends in the pipe axial direction of the main body dividing portion 31a and the main body dividing portion 31b. Accommodating portions 31h, 31h, ... Formed thickly inward in the radial direction are formed, and the accommodating portions 31h, 31h, ... Are directed toward the center of the main body portion 31 in the pipe axial direction on the surface facing the fluid pipe. Inclined walls 31j, 31j, ... Are formed.

また、押輪33は、内径部に流体管11、12の外径よりもわずかに大径に形成された孔部33bを有する一体の円板状に形成され、該押輪33には、本体部31の傾斜壁31j、31j、…に対向する位置に傾斜壁33j、33jが形成されている。そして、密封部材32、32は、本体部31の傾斜壁31j、31jと押輪33の傾斜壁33j、33jの2つの傾斜壁による楔効果を利用して押圧されるので、密封部材32、32は流体管11、12に強く密着して密封機能を発揮する。 Further, the push ring 33 is formed in an integral disk shape having a hole 33b formed in the inner diameter portion having a diameter slightly larger than the outer diameter of the fluid pipes 11 and 12, and the push ring 33 has a main body portion 31. The inclined walls 33j, 33j are formed at positions facing the inclined walls 31j, 31j, .... Then, since the sealing members 32 and 32 are pressed by utilizing the wedge effect of the two inclined walls 31j and 31j of the main body 31 and the inclined walls 33j and 33j of the push ring 33, the sealing members 32 and 32 are pressed. It adheres strongly to the fluid pipes 11 and 12 and exhibits a sealing function.

さらに、密封部材32、32が流体管11、12を押圧するときの反力は、2分割構成の本体部31と、一体構成された押輪33とが分担するとともに、一体構成された押輪33が2分割構成の本体部31の側面に密着して、2分割構成の本体部31の変形を防止するので、流体管11、12の断面形状は押輪33、33に倣うよう調整される。 Further, the reaction force when the sealing members 32, 32 press the fluid pipes 11 and 12 is shared by the main body portion 31 having a two-divided structure and the push ring 33 integrally formed, and the push ring 33 integrally formed. The cross-sectional shape of the fluid pipes 11 and 12 is adjusted to follow the push rings 33 and 33 so as to be in close contact with the side surface of the main body 31 having the two-divided structure and prevent the main body 31 having the two-divided structure from being deformed.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although examples of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these examples, and any changes or additions within the scope of the gist of the present invention are included in the present invention. Is done.

上記実施例に係る伸縮可撓管継手20、30は、水管橋の両端に配設される流体管との接続に適用したものであるが、これに限らず、図13(a)に示されるように、流体管40を切断し、切断後の流体管40a、40bを接続する管継手として使用してもよい。また、図13(b)に示されるように、流体管41に取付けられた空気弁42などの接続部材を撤去したあとの流体管41a、41bを接続する管継手として使用してもよい。さらに、図13(c)に示されるように、バイパス管48を不断流工法で設置し、流体管45の一部を撤去したあとの流体管45a、45bを接続する管継手として使用してもよく、この場合、不断流での設置が可能となる。 The telescopic flexible pipe joints 20 and 30 according to the above embodiment are applied to the connection with the fluid pipes arranged at both ends of the water pipe bridge, but are not limited to this, and are shown in FIG. 13 (a). As described above, the fluid pipe 40 may be cut and used as a pipe joint for connecting the cut fluid pipes 40a and 40b. Further, as shown in FIG. 13B, it may be used as a pipe joint for connecting the fluid pipes 41a and 41b after removing the connecting member such as the air valve 42 attached to the fluid pipe 41. Further, as shown in FIG. 13 (c), the bypass pipe 48 may be installed by the uninterrupted flow method and used as a pipe joint for connecting the fluid pipes 45a and 45b after removing a part of the fluid pipe 45. Often, in this case, it is possible to install in a continuous flow.

11 流体管(第1の流体管)
12、13 流体管(第2の流体管)
15b 隙間
20 伸縮可撓管継手(管継手)
21 本体部
22 密封部材(弾性部材)
23 押輪(押圧部材)
26 調整部材
30 伸縮可撓管継手(管継手)
31 本体部
32 密封部材(弾性部材)
33 押輪(押圧部材)
50 押圧支持手段
11 Fluid pipe (first fluid pipe)
12, 13 fluid pipe (second fluid pipe)
15b Gap 20 Telescopic flexible pipe joint (pipe joint)
21 Main body 22 Sealing member (elastic member)
23 Push ring (pressing member)
26 Adjusting member 30 Telescopic flexible pipe joint (pipe joint)
31 Main body 32 Sealing member (elastic member)
33 Push ring (pressing member)
50 Pressing support means

Claims (4)

橋台に対し相対移動する第1の流体管と橋台に対し相対移動しない第2の流体管とを密封状に接続する管継手の設置方法であって、
前記第1の流体管及び前記第2の流体管の管軸方向の端部の少なくとも一方を切断して、前記第1の流体管と前記第2の流体管との隙間を調整する隙間調整工程と、
前記第1の流体管と前記第2の流体管のそれぞれの外周部に一体環状に形成される押圧部材及び一体形成される弾性部材を取付けるとともに、
少なくとも周方向に2分割される本体部を前記第1の流体管と前記第2の流体管に跨って外嵌し環状に一体に組立て、
前記押圧部材によって前記弾性部材を前記本体部に対し押圧することで、前記弾性部材を前記流体管に対し押圧させ、該流体管の形状を調整する第1の形状調整工程と、を備えることを特徴とする管継手の設置方法。
It is a method of installing a pipe joint that connects a first fluid pipe that moves relative to the abutment and a second fluid pipe that does not move relative to the abutment in a sealed manner.
A gap adjusting step of cutting at least one of the first fluid pipe and the end portion of the second fluid pipe in the pipe axial direction to adjust the gap between the first fluid pipe and the second fluid pipe. When,
A pressing member integrally formed in an annular shape and an elastic member integrally formed are attached to the outer peripheral portions of the first fluid pipe and the second fluid pipe, respectively.
The main body, which is divided into at least two parts in the circumferential direction, is externally fitted across the first fluid pipe and the second fluid pipe and assembled integrally in an annular shape.
The present invention includes a first shape adjusting step of pressing the elastic member against the main body portion by the pressing member to press the elastic member against the fluid pipe and adjusting the shape of the fluid pipe. How to install the characteristic pipe joint.
前記押圧部材は、前記第1の流体管と前記第2の流体管との隙間を介して前記流体管のそれぞれの外周部に嵌挿されることを特徴とする請求項1に記載の管継手の設置方法。 The pipe joint according to claim 1, wherein the pressing member is fitted into the outer peripheral portion of each of the fluid pipes through a gap between the first fluid pipe and the second fluid pipe. Installation method. 前記隙間調整工程よりも前に、前記第1の流体管と前記第2の流体管とを接続する既設の管継手を撤去する工程を備えることを特徴とする請求項1または2に記載の管継手の設置方法。 The pipe according to claim 1 or 2, further comprising a step of removing an existing pipe joint connecting the first fluid pipe and the second fluid pipe before the gap adjusting step. How to install the fitting. 前記第1の流体管と前記第2の流体管の管軸方向の端部の外周部に調整部材を取付け、前記流体管の形状を調整する第2の形状調整工程を備えることを特徴とする請求項1ないし3のいずれかに記載の管継手の設置方法。 A second shape adjusting step is provided in which an adjusting member is attached to an outer peripheral portion of an end portion of the first fluid pipe and the second fluid pipe in the pipe axial direction to adjust the shape of the fluid pipe. The method for installing a pipe joint according to any one of claims 1 to 3.
JP2019208093A 2019-11-18 2019-11-18 How to install pipe fittings Active JP6799659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208093A JP6799659B2 (en) 2019-11-18 2019-11-18 How to install pipe fittings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208093A JP6799659B2 (en) 2019-11-18 2019-11-18 How to install pipe fittings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015183875A Division JP6621280B2 (en) 2015-09-17 2015-09-17 How to install pipe fittings

Publications (2)

Publication Number Publication Date
JP2020073815A JP2020073815A (en) 2020-05-14
JP6799659B2 true JP6799659B2 (en) 2020-12-16

Family

ID=70610090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208093A Active JP6799659B2 (en) 2019-11-18 2019-11-18 How to install pipe fittings

Country Status (1)

Country Link
JP (1) JP6799659B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114523A (en) * 1978-01-31 1978-10-06 Kubota Ltd Split joint
JPS6084412A (en) * 1983-10-14 1985-05-13 鹿島建設株式会社 Expansion joint structure of pipe body
JP2534967Y2 (en) * 1992-03-23 1997-05-07 東京瓦斯株式会社 Mechanical coupling device for steel pipe connection
JP4169832B2 (en) * 1998-06-04 2008-10-22 日本ヴィクトリック株式会社 Tubular repair method and mechanism
JP4200558B2 (en) * 1998-08-10 2008-12-24 コスモ工機株式会社 Pipe fitting
US20030230897A1 (en) * 2002-06-12 2003-12-18 Ebaa Iron, Inc. Restrained sleeve pipe coupling
JP4609758B2 (en) * 2005-03-22 2011-01-12 日立金属株式会社 Pipe fitting
JP4871112B2 (en) * 2006-12-13 2012-02-08 株式会社栗本鐵工所 Telescopic tube water leakage prevention device
JP2013002494A (en) * 2011-06-14 2013-01-07 Sekisui Chem Co Ltd Connecting structure of pipe body
JP5939860B2 (en) * 2012-03-27 2016-06-22 株式会社水道技術開発機構 Assembling method of pipe joint, spacer for temporary fixing used for pipe joint and pipe joint

Also Published As

Publication number Publication date
JP2020073815A (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP6623472B2 (en) Repair joint and repair method of leaky joint
KR20200041255A (en) Pipe joint method using active grooved joint
JP2005147243A (en) Flange joint body for valve pit
JP6962729B2 (en) Leakage prevention device
JP6799659B2 (en) How to install pipe fittings
KR101844820B1 (en) flexible pipe joint apparatus improved pressure resistance
JP2023153334A (en) Repair device
JP6247126B2 (en) Pipe connection structure
JP4808544B2 (en) Telescopic flexible pipe joint
JP6621280B2 (en) How to install pipe fittings
JP2019120379A (en) Leakage repairing structure and leakage repairing tool
JP2017133589A (en) Repair joint
JP4169832B2 (en) Tubular repair method and mechanism
JP5998003B2 (en) Branch pipe connection device
JP2016080121A (en) Pipe joint
RU2289058C1 (en) Pipeline coupling
CN111133243B (en) Pipe joint and method for assembling pipe joint
JP2014156920A (en) Device and method for connecting conduit
JP2015102124A (en) Conduit connection device and conduit connection method
JP2019219001A (en) Leakage prevention tool and attachment method of the same
JP3458099B2 (en) Compensating flexible pipe fittings
JP7325871B1 (en) Water stop device
JP6786443B2 (en) Expansion joint structure
JP2012041958A (en) Pipe joint
JP4219904B2 (en) Piping equipment and pipe displacement adjustment mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R150 Certificate of patent or registration of utility model

Ref document number: 6799659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250