JP6798770B2 - Round bottle - Google Patents

Round bottle Download PDF

Info

Publication number
JP6798770B2
JP6798770B2 JP2015132017A JP2015132017A JP6798770B2 JP 6798770 B2 JP6798770 B2 JP 6798770B2 JP 2015132017 A JP2015132017 A JP 2015132017A JP 2015132017 A JP2015132017 A JP 2015132017A JP 6798770 B2 JP6798770 B2 JP 6798770B2
Authority
JP
Japan
Prior art keywords
bottle
pillar
radial direction
curved surface
vertical groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015132017A
Other languages
Japanese (ja)
Other versions
JP2017013845A (en
Inventor
哲郎 宇佐美
哲郎 宇佐美
小口 弘樹
弘樹 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP2015132017A priority Critical patent/JP6798770B2/en
Publication of JP2017013845A publication Critical patent/JP2017013845A/en
Application granted granted Critical
Publication of JP6798770B2 publication Critical patent/JP6798770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、円形ボトルに関する。 The present invention relates to a circular bottle.

従来から、合成樹脂材料で有底円筒状に形成された円形ボトルとして、例えば下記特許文献1に示されるように、円筒状の胴部に、その径方向の内側に向けて窪むパネル部が周方向に間隔をあけて複数形成されるとともに、周方向で隣り合うパネル部同士の間が柱部とされた構成が知られている。
この構成では、例えばボトルに密封された内容物の温度が低下してボトル内が減圧した場合等に、パネル部が径方向の内側に向けて優先的に変形(減圧変形)することで、ボトルのうちパネル部以外の部分での変形を抑えつつ、ボトル内の減圧を吸収する。
Conventionally, as a circular bottle formed of a synthetic resin material in a bottomed cylindrical shape, for example, as shown in Patent Document 1 below, a panel portion recessed inward in the radial direction thereof is provided on the cylindrical body portion. It is known that a plurality of panel portions are formed at intervals in the circumferential direction, and a pillar portion is formed between panel portions adjacent to each other in the circumferential direction.
In this configuration, for example, when the temperature of the contents sealed in the bottle drops and the inside of the bottle is decompressed, the panel portion is preferentially deformed inward in the radial direction (decompression deformation), so that the bottle is deformed. It absorbs the decompression in the bottle while suppressing the deformation in the part other than the panel part.

特開2009−35263号公報JP-A-2009-35263

しかしながら、前記従来の円形ボトルでは、ボトル内が減圧してパネル部が変形したときに、胴部の横断面形状の印象が円形状から角形状に変形し、外観品質が低下するという問題がある。 However, the conventional circular bottle has a problem that when the inside of the bottle is depressurized and the panel portion is deformed, the impression of the cross-sectional shape of the body portion is deformed from a circular shape to a square shape, and the appearance quality is deteriorated. ..

本発明は、前述した事情に鑑みてなされたものであって、胴部を円形状に保ったまま減圧変形させることを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to deform the body under reduced pressure while maintaining the circular shape.

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る円形ボトルは、円筒状の胴部に、その径方向の内側に向けて窪む縦溝部が周方向に間隔をあけて複数形成されるとともに、周方向に隣り合う前記縦溝部同士の間が柱部とされた円形ボトルであって、前記縦溝部は、前記胴部の、ボトル軸に直交する横断面視において、ボトル軸と、前記縦溝部の、ボトル軸回りに沿う周方向の中央部と、を結ぶ直線に対して線対称形状を呈し、前記柱部は、前記胴部の前記横断面視において、ボトル軸と、前記柱部における周方向の中央部と、を結ぶ直線に対して線対称形状を呈し、複数の前記縦溝部は、互いに同等の形状で同等の大きさに形成され、複数の前記柱部は、互いに同等の形状で同等の大きさに形成され、前記縦溝部は、前記柱部の頂面に対して径方向の内側に位置して径方向の外側を向く底壁部と、前記底壁部の外周縁から径方向の外側に向けて延びる側壁部と、により画成され、前記側壁部は、前記底壁部における周方向の両端に連なりボトル軸方向に延びる一対の縦側壁部を備え、前記縦側壁部において径方向の内側に位置する端部は、前記底壁部と第1曲面部を介して連結され、前記縦側壁部において径方向の外側に位置する端部は、前記柱部の頂面と第2曲面部を介して連結され、前記胴部の前記横断面視において、前記第1曲面部は、径方向の内側に向けて突となり、前記第2曲面部は、径方向の外側に向けて突となっていて、前記第1曲面部の曲率が前記第2曲面部の曲率よりも大きく、前記柱部の幅Aと前記縦溝部の幅Cとの幅比C/Aが、0.50以上1.14以下であり、前記胴部の前記横断面視において、ボトル軸を中心とし複数の前記柱部における各頂面上を通過する仮想円と、前記縦溝部における径方向の外端開口縁同士を結ぶ仮想直線と、の径方向の距離が、0.13mm以上0.34mm以下となっていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
In the circular bottle according to the present invention, a plurality of flutes recessed inward in the radial direction are formed on the cylindrical body at intervals in the circumferential direction, and the flutes adjacent to each other in the circumferential direction are formed. A circular bottle having a column between them, and the vertical groove portion is a circumferential direction of the body portion of the body portion along the circumference of the bottle axis between the bottle shaft and the vertical groove portion in a cross-sectional view perpendicular to the bottle axis. The pillar portion has a linearly symmetrical shape with respect to the straight line connecting the central portion of the body portion, and the pillar portion is a straight line connecting the bottle axis and the central portion in the circumferential direction of the pillar portion in the cross-sectional view of the body portion. The plurality of the flutes are formed to have the same shape and the same size as each other, and the plurality of the pillars are formed to have the same shape and the same size. The flutes are a bottom wall portion that is located inside the top surface of the column portion in the radial direction and faces outward in the radial direction, and a side wall portion that extends outward in the radial direction from the outer peripheral edge of the bottom wall portion. The side wall portion is provided with a pair of vertical side wall portions that are connected to both ends in the circumferential direction of the bottom wall portion and extend in the bottle axis direction, and the end portions located inside in the radial direction in the vertical side wall portion. Is connected to the bottom wall portion via the first curved surface portion, and the end portion of the vertical side wall portion located on the outer side in the radial direction is connected to the top surface of the column portion via the second curved surface portion. In the cross-sectional view of the body portion, the first curved surface portion has a protrusion toward the inside in the radial direction, and the second curved surface portion has a protrusion toward the outside in the radial direction. The curvature of the curved surface portion is larger than the curvature of the second curved surface portion, and the width ratio C / A between the width A of the pillar portion and the width C of the vertical groove portion is 0.50 or more and 1.14 or less. In the cross-sectional view of the body portion, a virtual circle passing over each top surface of the plurality of pillar portions centered on the bottle axis and a virtual straight line connecting the radial outer end opening edges of the vertical groove portion. It is characterized in that the distance in the radial direction is 0.13 mm or more and 0.34 mm or less .

この場合、胴部の横断面視において、前記仮想円と前記仮想直線との径方向の距離が、1.0mm未満となっていて、縦溝部の溝幅が狭く抑えられている。その上、胴部の横断面視において縦溝部および柱部がそれぞれ線対称形状を呈している。更に、複数の柱部および複数の縦溝部がそれぞれ、互いに同等の形状で同等の大きさに形成されている。したがって、円形ボトル内の減圧時に、胴部を、全周にわたって均等に縮径変形させることができ、円形ボトルを角形状に変形させずに円形状に保ったまま減圧変形させることができる。 In this case, in the cross-sectional view of the body portion, the radial distance between the virtual circle and the virtual straight line is less than 1.0 mm, and the groove width of the vertical groove portion is suppressed to be narrow. Moreover, in the cross-sectional view of the body portion, the vertical groove portion and the pillar portion each exhibit a line-symmetrical shape. Further, the plurality of pillars and the plurality of flutes are formed in the same shape and the same size as each other. Therefore, when the pressure inside the circular bottle is reduced, the body portion can be uniformly reduced in diameter over the entire circumference, and the circular bottle can be deformed under reduced pressure while maintaining a circular shape without being deformed into a square shape.

本発明によれば、胴部を円形状に保ったまま減圧変形させることができる。 According to the present invention, the body can be deformed under reduced pressure while maintaining the circular shape.

本発明の実施形態における円形ボトルの側面図である。It is a side view of the circular bottle in embodiment of this invention. 図1に示す円形ボトルの横断面図である。It is a cross-sectional view of the circular bottle shown in FIG. 本発明の検証試験を説明するボトルの横断面図である。It is sectional drawing of the bottle explaining the verification test of this invention. 本発明の第1検証試験の結果を示すグラフである。It is a graph which shows the result of the 1st verification test of this invention. 本発明の第2検証試験の結果を示すグラフである。It is a graph which shows the result of the 2nd verification test of this invention.

以下、図面を参照し、本発明の実施形態に係る円形ボトルを説明する。
本実施形態に係る円形ボトル1は、図1および図2に示されるように、口部11、肩部12、胴部13及び底部14を備え、これら11〜14が、それぞれの中心軸線を共通軸上に位置させた状態で、この順に連設された概略構成となっている。
Hereinafter, the circular bottle according to the embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the circular bottle 1 according to the present embodiment includes a mouth portion 11, a shoulder portion 12, a body portion 13 and a bottom portion 14, and these 11 to 14 have a common central axis. It has a schematic configuration in which they are connected in this order while being positioned on the shaft.

以下、上述した共通軸をボトル軸Oといい、ボトル軸O方向に沿って口部11側を上側、底部14側を下側という。円形ボトル1をボトル軸O方向から見た平面視において、ボトル軸Oに直交する方向を径方向といい、ボトル軸O回りに周回する方向を周方向という。
なお、この円形ボトル1は、合成樹脂材料で一体に形成され、例えば、射出成形により有底筒状に形成されたプリフォームが、ブロー成形されて形成される。また、口部11には、図示しないキャップが装着される。さらに、口部11、肩部12、胴部13及び底部14はそれぞれ、径方向に沿う横断面視形状が円形状となっている。
Hereinafter, the above-mentioned common shaft is referred to as a bottle shaft O, and the mouth portion 11 side is referred to as an upper side and the bottom portion 14 side is referred to as a lower side along the bottle shaft O direction. In a plan view of the circular bottle 1 viewed from the bottle axis O direction, the direction orthogonal to the bottle axis O is called the radial direction, and the direction that orbits around the bottle axis O is called the circumferential direction.
The circular bottle 1 is integrally formed of a synthetic resin material. For example, a preform formed into a bottomed tubular shape by injection molding is blow-molded to form a preform. Further, a cap (not shown) is attached to the mouth portion 11. Further, each of the mouth portion 11, the shoulder portion 12, the body portion 13, and the bottom portion 14 has a circular cross-sectional view along the radial direction.

肩部12には、周溝部15が全周にわたって連続して形成されている。周溝部15は、ボトル軸O方向に沿って間隔をあけて複数(図示の例では2つ)設けられている。胴部13は円筒状に形成され、肩部12の下端に連なり下方に向けて延在している。胴部13には、図示しない例えばシュリンクラベル等のラベルが巻き付けられる。胴部13は、上方から下方まで同一の径となるように形成されている。底部14は、有底筒状に形成されていて、胴部13の下端開口部を閉塞している。肩部12と胴部13との接続部分には、第1環状凹溝16が全周にわたって連続して形成され、胴部13と底部14との接続部分には、第2環状凹溝17が全周にわたって連続して形成されている。 A peripheral groove portion 15 is continuously formed on the shoulder portion 12 over the entire circumference. A plurality of peripheral groove portions 15 (two in the illustrated example) are provided at intervals along the bottle axis O direction. The body portion 13 is formed in a cylindrical shape, is connected to the lower end of the shoulder portion 12, and extends downward. A label (for example, a shrink label) (not shown) is wrapped around the body 13. The body portion 13 is formed so as to have the same diameter from the upper side to the lower side. The bottom portion 14 is formed in a bottomed tubular shape and closes the lower end opening of the body portion 13. A first annular groove 16 is continuously formed in the connecting portion between the shoulder portion 12 and the body portion 13, and a second annular groove 17 is formed in the connecting portion between the body portion 13 and the bottom portion 14. It is formed continuously over the entire circumference.

この円形ボトル1では、円筒状の胴部13に、その径方向の内側に向けて窪む縦溝部21が周方向に間隔をあけて複数形成されるとともに、周方向に隣り合う縦溝部21同士の間が柱部22とされている。すなわち、胴部13には、縦溝部21と柱部22とが周方向に交互に配設されている。縦溝部21および柱部22は、胴部13のうち、ボトル軸O方向の両端部を回避した中間部でボトル軸O方向に沿って延在している。縦溝部21および柱部22は、例えば周方向に偶数個ずつ設けることが可能であり、図示の例では各12個とされている。なお、縦溝部21および柱部22を周方向に奇数個ずつ設けてもよい。 In this circular bottle 1, a plurality of vertical groove portions 21 recessed inward in the radial direction are formed in the cylindrical body portion 13 at intervals in the circumferential direction, and the vertical groove portions 21 adjacent to each other in the circumferential direction are formed. The space between them is the pillar portion 22. That is, the vertical groove portions 21 and the pillar portions 22 are alternately arranged in the circumferential direction in the body portion 13. The vertical groove portion 21 and the pillar portion 22 extend along the bottle axis O direction at an intermediate portion of the body portion 13 that avoids both ends in the bottle axis O direction. The vertical groove portion 21 and the pillar portion 22 can be provided, for example, in an even number of each in the circumferential direction, and are set to 12 in each of the illustrated examples. In addition, an odd number of vertical groove portions 21 and column portions 22 may be provided in the circumferential direction.

図2に示すように、胴部13の、ボトル軸Oに直交する横断面視において、縦溝部21は、ボトル軸Oと、縦溝部21における周方向の中央部と、を結ぶ直線に対して線対称形状を呈し、柱部22は、ボトル軸Oと、柱部22における周方向の中央部と、を結ぶ直線に対して線対称形状を呈している。複数の縦溝部21は、互いに同等の形状で同等の大きさに形成され、複数の柱部22は、互いに同等の形状で同等の大きさに形成されている。 As shown in FIG. 2, in a cross-sectional view of the body portion 13 orthogonal to the bottle axis O, the vertical groove portion 21 is a straight line connecting the bottle shaft O and the central portion in the circumferential direction of the vertical groove portion 21. The pillar portion 22 has a line-symmetrical shape, and the pillar portion 22 has a line-symmetrical shape with respect to a straight line connecting the bottle shaft O and the central portion in the circumferential direction of the pillar portion 22. The plurality of vertical groove portions 21 are formed to have the same shape and the same size as each other, and the plurality of pillar portions 22 are formed to have the same shape and the same size as each other.

縦溝部21の溝幅(周方向に沿った大きさ)は、径方向の外側から内側に向けて漸次、小さくなっていて、柱部22の柱幅(周方向に沿った大きさ)は、径方向の外側から内側に向けて漸次、大きくなっている。縦溝部21および柱部22はそれぞれ、前記横断面視において等脚台形状に形成されている。柱部22において径方向の外側を向く径方向の外端面である頂面23は、胴部13の外周面における最大外径部を構成するとともに、径方向の外側に向けて突の曲面状に形成されている。この円形ボトル1では、複数の柱部22における各頂面23上を、ボトル軸Oを中心とする第1仮想円C1(仮想円)が共通して通過する。 The groove width (size along the circumferential direction) of the vertical groove portion 21 is gradually reduced from the outside to the inside in the radial direction, and the column width (size along the circumferential direction) of the pillar portion 22 is It gradually increases from the outside to the inside in the radial direction. The vertical groove portion 21 and the pillar portion 22 are each formed in an isosceles trapezoidal shape in the cross-sectional view. The top surface 23, which is the outer end surface in the radial direction of the pillar portion 22 facing outward in the radial direction, constitutes the maximum outer diameter portion on the outer peripheral surface of the body portion 13 and has a curved surface that protrudes outward in the radial direction. It is formed. In the circular bottle 1, the first virtual circle C1 (virtual circle) centered on the bottle shaft O passes on each of the top surfaces 23 of the plurality of pillar portions 22 in common.

縦溝部21は、柱部22の頂面23に対して径方向の内側に位置して径方向の外側を向く底壁部24と、底壁部24の外周縁から径方向の外側に向けて延びる側壁部25と、により画成されている。
底壁部24は、前記横断面視において、径方向の外側に向けて突の曲面状に形成されていて、この円形ボトル1では、複数の縦溝部21における各底壁部24を、ボトル軸Oを中心とする第2仮想円C2が共通して通過する。第2仮想円C2は、第1仮想円C1よりも小径であり、両仮想円C1、C2の半径の差が、縦溝部21の深さ(柱部22の高さ)となっている。
The vertical groove portion 21 is located inside the top surface 23 of the pillar portion 22 in the radial direction and faces the outside in the radial direction, and the bottom wall portion 24 toward the outside in the radial direction from the outer peripheral edge of the bottom wall portion 24. It is defined by an extending side wall portion 25.
The bottom wall portion 24 is formed in a curved surface shape that protrudes outward in the radial direction in the cross-sectional view, and in this circular bottle 1, each bottom wall portion 24 in the plurality of flutes 21 is formed as a bottle shaft. The second virtual circle C2 centered on O passes in common. The second virtual circle C2 has a smaller diameter than the first virtual circle C1, and the difference in radius between the two virtual circles C1 and C2 is the depth of the vertical groove portion 21 (the height of the pillar portion 22).

図1および図2に示すように、側壁部25は、ボトル軸O方向の両端に位置して周方向に延びる一対の横側壁部26と、底壁部24における周方向の両端に連なりボトル軸O方向に延びる一対の縦側壁部27と、を備えている。
一対の横側壁部26は、径方向の内側から外側に向かうに従いボトル軸O方向の外側に向けて傾斜する傾斜面とされている。一対の縦側壁部27は、径方向の内側から外側に向かうに従い周方向の外側(各縦側壁部27が離間する方向)に向けて傾斜している。
As shown in FIGS. 1 and 2, the side wall portions 25 are connected to a pair of lateral side wall portions 26 located at both ends in the bottle axis O direction and extending in the circumferential direction, and both ends in the circumferential direction of the bottom wall portion 24, and the bottle shaft. It includes a pair of vertical side wall portions 27 extending in the O direction.
The pair of lateral side wall portions 26 are inclined surfaces that incline toward the outside in the bottle axis O direction from the inside to the outside in the radial direction. The pair of vertical side wall portions 27 are inclined toward the outer side in the circumferential direction (direction in which the vertical side wall portions 27 are separated) from the inner side in the radial direction to the outer side.

図2に示すように、縦側壁部27において径方向の内側に位置する端部は、底壁部24と第1曲面部28を介して連結され、縦側壁部27において径方向の外側に位置する端部は、柱部22の頂面23と第2曲面部29を介して連結されている。前記横断面視において、第1曲面部28は、径方向の内側に向けて突となり、第2曲面部29は、径方向の外側に向けて突となっていて、図示の例では、第1曲面部28の曲率が第2曲面部29の曲率よりも大きくなっている。 As shown in FIG. 2, the end portion located inside the vertical side wall portion 27 in the radial direction is connected to the bottom wall portion 24 via the first curved surface portion 28, and is located outside the vertical side wall portion 27 in the radial direction. The end portion to be formed is connected to the top surface 23 of the pillar portion 22 via the second curved surface portion 29. In the cross-sectional view, the first curved surface portion 28 has a protrusion toward the inside in the radial direction, and the second curved surface portion 29 has a protrusion toward the outside in the radial direction. In the illustrated example, the first curved surface portion 29 has a protrusion. The curvature of the curved surface portion 28 is larger than the curvature of the second curved surface portion 29.

そして本実施形態では、前記横断面視において、第1仮想円C1と、縦溝部21における径方向の外端開口縁同士を結ぶ仮想直線Lと、の径方向の距離Dは、1.0mm未満となっている。なお、縦溝部21における径方向の外端開口縁は、第1仮想円C1が柱部22の頂面23(胴部13の外周面)から離間し始める部分となっている。 In the present embodiment, in the cross-sectional view, the radial distance D between the first virtual circle C1 and the virtual straight line L connecting the radial outer end opening edges of the vertical groove portion 21 is less than 1.0 mm. It has become. The radial outer end opening edge of the vertical groove portion 21 is a portion where the first virtual circle C1 starts to be separated from the top surface 23 (outer peripheral surface of the body portion 13) of the pillar portion 22.

以上説明したように、本実施形態に係る円形ボトル1によれば、胴部13の横断面視において、前記第1仮想円C1と前記仮想直線Lとの径方向の距離が、1.0mm未満となっていて、縦溝部21の溝幅が狭く抑えられている。その上、胴部13の横断面視において縦溝部21および柱部22がそれぞれ線対称形状を呈している。更に、複数の柱部22および複数の縦溝部21がそれぞれ、互いに同等の形状で同等の大きさに形成されている。したがって、円形ボトル1内の減圧時に、胴部13を、全周にわたって均等に縮径変形させることができ、円形ボトル1を角形状に変形させずに円形状に保ったまま減圧変形させることができる。 As described above, according to the circular bottle 1 according to the present embodiment, the radial distance between the first virtual circle C1 and the virtual straight line L is less than 1.0 mm in the cross-sectional view of the body portion 13. The groove width of the vertical groove portion 21 is suppressed to be narrow. Further, in the cross-sectional view of the body portion 13, the vertical groove portion 21 and the pillar portion 22 each have a line-symmetrical shape. Further, the plurality of pillar portions 22 and the plurality of flutes 21 are formed in the same shape and the same size as each other. Therefore, when the pressure inside the circular bottle 1 is reduced, the body portion 13 can be uniformly reduced in diameter over the entire circumference, and the circular bottle 1 can be deformed under reduced pressure while maintaining a circular shape without being deformed into a square shape. it can.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、縦溝部21の数や配置等は、ボトルに要求される強度や減圧吸収容量等を考慮して適宜設計変更が可能である。
前記実施形態では、縦溝部21および柱部22が、前記横断面視において等脚台形状に形成されているが、本発明はこれに限られない。例えば、縦溝部21および柱部22が、前記横断面視において半円形状に形成されていてもよい。なお前述の半円形状は、例えば、円弧により形成したり、円弧と直線とを組み合わせて形成したりすること等ができる。
For example, the number and arrangement of the flutes 21 can be appropriately changed in consideration of the strength required for the bottle, the decompression absorption capacity, and the like.
In the above embodiment, the vertical groove portion 21 and the pillar portion 22 are formed in an isosceles trapezoidal shape in the cross-sectional view, but the present invention is not limited to this. For example, the vertical groove portion 21 and the pillar portion 22 may be formed in a semicircular shape in the cross-sectional view. The semicircular shape described above can be formed by, for example, an arc, or a combination of an arc and a straight line.

複数の縦溝部21は、互いに同等の形状で同等の大きさに形成された形態に適宜変更することが可能であり、互いに完全に同一の形状で完全に同一の大きさに形成されていなくてもよい。つまり、複数の縦溝部21間で、互いに若干、形状や大きさが異なっていてもよく、複数の縦溝部21のうち、基準となる一の縦溝部21の大きさを1としたときに、他の縦溝部21の大きさが0.9〜1.1であれば、実質的に同様の効果が得られる。なお、このときの縦溝部21の大きさとしては、例えば縦溝部21の溝幅や深さなどが挙げられる。
また、複数の柱部22についても、複数の縦溝部21と同様に、複数の柱部22のうち、基準となる一の柱部22の大きさを1としたときに、他の柱部22の大きさが0.9〜1.1であれば、実質的に同様の効果が得られる。このときの柱部22の大きさとしては、例えば柱部22の柱幅や高さなどが挙げられる。
The plurality of flutes 21 can be appropriately changed to a form formed having the same shape and the same size as each other, and the plurality of flutes 21 are not formed in the same shape and the same size. May be good. That is, the shapes and sizes of the plurality of flutes 21 may be slightly different from each other, and when the size of one of the plurality of flutes 21 as a reference is set to 1. If the size of the other flutes 21 is 0.9 to 1.1, substantially the same effect can be obtained. The size of the vertical groove portion 21 at this time includes, for example, the groove width and depth of the vertical groove portion 21.
Further, with respect to the plurality of pillar portions 22, similarly to the plurality of vertical groove portions 21, when the size of one pillar portion 22 as a reference among the plurality of pillar portions 22 is set to 1, the other pillar portions 22 If the size of is 0.9 to 1.1, substantially the same effect can be obtained. Examples of the size of the pillar portion 22 at this time include the pillar width and height of the pillar portion 22.

ボトルを形成する合成樹脂材料は、例えばポリエチレンテレフタレートや、ポリエチレンナフタレート、非晶性ポリエステル等、またはこれらのブレンド材料等、適宜変更してもよい。
さらに、ボトルは単層構造体に限らず中間層を有する積層構造体としてもよい。この中間層としては、例えばガスバリア性を有する樹脂材料からなる層、再生材からなる層、若しくは酸素吸収性を有する樹脂材料からなる層等が挙げられる。
The synthetic resin material forming the bottle may be appropriately changed, for example, polyethylene terephthalate, polyethylene naphthalate, amorphous polyester, or a blend material thereof.
Further, the bottle is not limited to a single-layer structure and may be a laminated structure having an intermediate layer. Examples of the intermediate layer include a layer made of a resin material having a gas barrier property, a layer made of a recycled material, a layer made of a resin material having an oxygen absorption property, and the like.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, it is possible to replace the components in the embodiment with well-known components as appropriate without departing from the spirit of the present invention, and the above-mentioned modifications may be appropriately combined.

次に、以上説明した作用効果の検証試験について説明する。検証試験として、第1、第2検証試験を実施した。 Next, the verification test of the action and effect described above will be described. As verification tests, the first and second verification tests were carried out.

(第1検証試験)
第1検証試験では、実施例1および比較例1〜8の9種類の円形ボトルの形状につき解析を行った。なお、解析を行った各円形ボトルは図1に示す基本形状を有し、全高を179.0mm、胴部直径を70.0mm、縦溝部の深さを3.0mmとして設計している。
(1st verification test)
In the first verification test, the shapes of nine types of circular bottles of Example 1 and Comparative Examples 1 to 8 were analyzed. Each circular bottle analyzed has the basic shape shown in FIG. 1, and is designed with an overall height of 179.0 mm, a body diameter of 70.0 mm, and a vertical groove depth of 3.0 mm.

実施例1では、図3に示す胴部13の形状において、複数の柱部22および複数の縦溝部21をそれぞれ同等の形状で同等の大きさに形成した前記実施形態に係る円形ボトル1に準ずる構成を採用した。
比較例1〜8では、図3に示す胴部13の形状において、複数の柱部22同士で互いに周方向に沿った大きさを異ならせた。比較例1〜8では、複数の縦溝部21を、互いに同等の形状で同等の大きさに形成しつつ、各縦溝部21の周方向の位置を調整することで、周方向に隣り合う柱部22の周方向の大きさを互いに異ならせた。比較例1〜8では、柱部22が、1つおきに同等の形状となるようにした。すなわち、柱部22として、互いに周方向に大きさが異なる第1柱部22aと第2柱部22bとを、周方向に交互に配置した。
In the first embodiment, in the shape of the body portion 13 shown in FIG. 3, the plurality of pillar portions 22 and the plurality of flutes 21 are formed to have the same shape and the same size, respectively, according to the circular bottle 1 according to the embodiment. Adopted the configuration.
In Comparative Examples 1 to 8, in the shape of the body portion 13 shown in FIG. 3, the plurality of pillar portions 22 have different sizes along the circumferential direction from each other. In Comparative Examples 1 to 8, the column portions adjacent to each other in the circumferential direction are formed by adjusting the positions of the vertical groove portions 21 in the circumferential direction while forming the plurality of vertical groove portions 21 in the same shape and the same size. The circumferential sizes of 22 were made different from each other. In Comparative Examples 1 to 8, every other pillar portion 22 had the same shape. That is, as the pillar portions 22, the first pillar portions 22a and the second pillar portions 22b having different sizes in the circumferential direction are alternately arranged in the circumferential direction.

実施例1、比較例1〜8それぞれにおける第1柱部22a、第2柱部22bおよび縦溝部21それぞれの周方向に沿った大きさとしての幅は、それぞれ以下に示す表1のように調整した。なお実施例1では、前記実施形態に係る円形ボトル1と同様に、複数の柱部22が、互いに同等の形状で同等の大きさであり、表1では、実施例1における第1柱部22a、第2柱部22bそれぞれの幅を同一の値にして表記している。
ここで表1における、第1柱部22a、第2柱部22bおよび縦溝部21それぞれの幅A、B、Cは、第1柱部22a、第2柱部22bおよび縦溝部21それぞれにおける第1仮想円C1上での周方向に沿った大きさを表している。すなわち、表1中における第1柱部22aおよび第2柱部22bそれぞれの幅A、Bとは、第1仮想円C1のうち第1柱部22aおよび第2柱部22bの各頂面23上を通過する円弧部分の長さであり、表1中における縦溝部21の幅Cとは、第1仮想円C1のうち縦溝部21における径方向の外端開口縁同士を結んだ円弧部分の長さである。第1柱部22a、第2柱部22bおよび縦溝部それぞれの幅A、B、Cは、それぞれ対応する円弧部分がボトル軸Oを中心としてなす中心角θa、θb、θcの大きさに比例する。
The widths of the first pillar portion 22a, the second pillar portion 22b, and the flutes 21 in each of Example 1 and Comparative Examples 1 to 8 along the circumferential direction are adjusted as shown in Table 1 below. did. In the first embodiment, similarly to the circular bottle 1 according to the embodiment, the plurality of pillar portions 22 have the same shape and the same size as each other. In Table 1, the first pillar portion 22a in the first embodiment is shown. , The width of each of the second pillar portions 22b is set to the same value.
Here, the widths A, B, and C of the first pillar portion 22a, the second pillar portion 22b, and the flute portion 21 in Table 1 are the first in each of the first pillar portion 22a, the second pillar portion 22b, and the flute portion 21. It represents the size along the circumferential direction on the virtual circle C1. That is, the widths A and B of the first pillar portion 22a and the second pillar portion 22b in Table 1 are on the top surfaces 23 of the first pillar portion 22a and the second pillar portion 22b of the first virtual circle C1. The width C of the vertical groove portion 21 in Table 1 is the length of the arc portion connecting the outer end opening edges in the radial direction of the vertical groove portion 21 of the first virtual circle C1. That's right. The widths A, B, and C of the first pillar portion 22a, the second pillar portion 22b, and the flutes are proportional to the sizes of the central angles θa, θb, and θc formed by the corresponding arc portions centered on the bottle axis O, respectively. ..

そして本検証試験では、実施例1および比較例1〜8の各円形ボトルにおいて、ボトル内を減圧させて吸収容量を測定した。吸収容量は、柱部22における変形量のばらつき、つまり柱部22の頂面23において最も変形した部分と最も変形しなかった部分の変形量の差が、1.0mmになったときに測定した。
結果を表1および図4に示す。図4は、表1における「柱部の幅比A/B」を横軸に、「吸収容量(ml)」を縦軸にとったグラフである。
Then, in this verification test, the absorption capacity of each of the circular bottles of Example 1 and Comparative Examples 1 to 8 was measured by reducing the pressure inside the bottle. The absorption capacity was measured when the variation in the amount of deformation in the column portion 22, that is, the difference in the amount of deformation in the most deformed portion and the least deformed portion on the top surface 23 of the pillar portion 22 became 1.0 mm. ..
The results are shown in Table 1 and FIG. FIG. 4 is a graph in which "column width ratio A / B" in Table 1 is plotted on the horizontal axis and "absorption capacity (ml)" is plotted on the vertical axis.

Figure 0006798770
Figure 0006798770

これらの表およびグラフから、実施例1における吸収容量が最大になっており、実施例1の円形ボトルでは、比較例1〜8の円形ボトルに比べて、胴部13を円形状に保ったまま大きく減圧(縮径)変形できることが確認された。 From these tables and graphs, the absorption capacity in Example 1 is maximized, and the circular bottle of Example 1 keeps the body portion 13 in a circular shape as compared with the circular bottles of Comparative Examples 1 to 8. It was confirmed that it can be greatly reduced in pressure (reduced diameter).

(第2検証試験)
第2検証試験では、第1検証試験で採用した実施例1に加え、実施例2〜4の4種類の円形ボトルの形状につき解析を行った。なお、解析を行った各円形ボトルは、第1検証試験と同様に、図1に示す基本形状を有し、全高を179.0mm、胴部直径を70.0mm、縦溝部の深さを3.0mmとして設計している。
(Second verification test)
In the second verification test, in addition to Example 1 adopted in the first verification test, the shapes of four types of circular bottles of Examples 2 to 4 were analyzed. As in the first verification test, each circular bottle analyzed has the basic shape shown in FIG. 1, the total height is 179.0 mm, the body diameter is 70.0 mm, and the vertical groove depth is 3. It is designed as 0.0 mm.

実施例1〜4では、いずれも複数の柱部22および複数の縦溝部21をそれぞれ同等の形状で同等の大きさに形成した前記実施形態に係る円形ボトル1に準ずる構成を採用した。実施例1〜4における各円形ボトルでは、柱部22および縦溝部21それぞれの溝を、以下に示す表2のように調整した。なお表2における柱部22および縦溝部21それぞれの幅A、Cは、表1と同様に、柱部22および縦溝部21それぞれにおける第1仮想円C1上での周方向に沿った大きさを表している。実施例1〜4は、いずれも前記実施形態に係る円形ボトル1と同様に、複数の柱部22が、互いに同等の形状で同等の大きさであるため、表2では、第1柱部22aおよび第2柱部22bの区別を設けず「柱部」と統一して表記し、さらに、第1柱部22aおよび第2柱部22bの区別なく全ての柱部22の幅を、統一して「柱部の幅A」と表記している。 In Examples 1 to 4, a configuration similar to the circular bottle 1 according to the above embodiment in which the plurality of pillar portions 22 and the plurality of flutes 21 are formed to have the same shape and the same size is adopted. In each of the circular bottles of Examples 1 to 4, the grooves of the pillar portion 22 and the vertical groove portion 21 were adjusted as shown in Table 2 below. The widths A and C of the pillars 22 and the flutes 21 in Table 2 have the same sizes as those in Table 1 along the circumferential direction of the pillars 22 and the flutes 21 on the first virtual circle C1. Represents. In Examples 1 to 4, the plurality of pillars 22 have the same shape and the same size as the circular bottle 1 according to the above embodiment. Therefore, in Table 2, the first pillar 22a And the second pillar part 22b are not distinguished and are unified as "pillar part", and the widths of all the pillar parts 22 are unified without distinguishing between the first pillar part 22a and the second pillar part 22b. It is written as "width of pillar A".

そして本検証試験では、実施例1〜4の各円形ボトル1において、ボトル内を減圧させて吸収容量を測定した。吸収容量は、第1検証試験と同様のタイミングで測定した。
結果を表2および図5に示す。表2における「距離D(mm)」は、実施例1〜4の各円形ボトルにおける第1仮想円C1と仮想直線Lとの径方向の距離Dの値である。表2における「第1仮想円における柱部の割合(%)」とは、第1仮想円C1の全長に対する全ての柱部22の幅Aの総和の割合であり、(全ての柱部22の幅Aの総和)/(第1仮想円C1の全長)で求められる値である。図5は、表2における「柱部と縦溝部の幅比C/A」を横軸に、「吸収容量(ml)」を縦軸にとったグラフである。
Then, in this verification test, in each of the circular bottles 1 of Examples 1 to 4, the inside of the bottle was depressurized and the absorption capacity was measured. The absorption capacity was measured at the same timing as in the first verification test.
The results are shown in Table 2 and FIG. “Distance D (mm)” in Table 2 is a value of the radial distance D between the first virtual circle C1 and the virtual straight line L in each of the circular bottles of Examples 1 to 4. The "ratio (%) of the pillars in the first virtual circle" in Table 2 is the ratio of the total width A of all the pillars 22 to the total length of the first virtual circle C1 (of all the pillars 22). It is a value obtained by (sum of width A) / (total length of the first virtual circle C1). FIG. 5 is a graph in which "width ratio C / A of column portion and vertical groove portion" in Table 2 is plotted on the horizontal axis and "absorption capacity (ml)" is plotted on the vertical axis.

Figure 0006798770
Figure 0006798770

これらの表およびグラフから、実施例2、3、1、4の順に、つまり縦溝部21の幅が狭いボトルから広いボトルの順に吸収容量が大きくなっており、縦溝部21の幅を広げた円形ボトルほど、吸収容量が向上することが確認された。 From these tables and graphs, the absorption capacity increases in the order of Examples 2, 3, 1, 4, that is, from the bottle with the narrower groove portion 21 to the bottle with the wider vertical groove portion 21, and the width of the vertical groove portion 21 is widened. It was confirmed that the more bottles, the better the absorption capacity.

1 円形ボトル
13 胴部
21 縦溝部
22 柱部
23 頂面
C1 第1仮想円(仮想円)
D 距離
L 仮想直線
O ボトル軸
1 Circular bottle 13 Body 21 Vertical groove 22 Pillar 23 Top surface C1 First virtual circle (virtual circle)
D Distance L Virtual straight line O Bottle axis

Claims (1)

円筒状の胴部に、その径方向の内側に向けて窪む縦溝部が周方向に間隔をあけて複数形成されるとともに、周方向に隣り合う前記縦溝部同士の間が柱部とされた円形ボトルであって、
前記縦溝部は、前記胴部の、ボトル軸に直交する横断面視において、ボトル軸と、前記縦溝部の、ボトル軸回りに沿う周方向の中央部と、を結ぶ直線に対して線対称形状を呈し、
前記柱部は、前記胴部の前記横断面視において、ボトル軸と、前記柱部における周方向の中央部と、を結ぶ直線に対して線対称形状を呈し、
複数の前記縦溝部は、互いに同等の形状で同等の大きさに形成され、
複数の前記柱部は、互いに同等の形状で同等の大きさに形成され、
前記縦溝部は、前記柱部の頂面に対して径方向の内側に位置して径方向の外側を向く底壁部と、前記底壁部の外周縁から径方向の外側に向けて延びる側壁部と、により画成され、
前記側壁部は、前記底壁部における周方向の両端に連なりボトル軸方向に延びる一対の縦側壁部を備え、
前記縦側壁部において径方向の内側に位置する端部は、前記底壁部と第1曲面部を介して連結され、
前記縦側壁部において径方向の外側に位置する端部は、前記柱部の頂面と第2曲面部を介して連結され、
前記胴部の前記横断面視において、前記第1曲面部は、径方向の内側に向けて突となり、前記第2曲面部は、径方向の外側に向けて突となっていて、前記第1曲面部の曲率が前記第2曲面部の曲率よりも大きく、
前記柱部の幅Aと前記縦溝部の幅Cとの幅比C/Aが、0.50以上1.14以下であり、
前記胴部の前記横断面視において、ボトル軸を中心とし複数の前記柱部における各頂面上を通過する仮想円と、前記縦溝部における径方向の外端開口縁同士を結ぶ仮想直線と、の径方向の距離が、0.13mm以上0.34mm以下となっていることを特徴とする円形ボトル。
A plurality of vertical grooves that are recessed inward in the radial direction are formed on the cylindrical body at intervals in the circumferential direction, and the vertical grooves that are adjacent to each other in the circumferential direction are formed as pillars. It ’s a round bottle,
The vertical groove portion has a line-symmetrical shape with respect to a straight line connecting the bottle shaft and the central portion of the vertical groove portion in the circumferential direction along the circumference of the bottle axis in a cross-sectional view of the body portion orthogonal to the bottle axis. Presenting
The pillar portion has a line-symmetrical shape with respect to a straight line connecting the bottle shaft and the central portion in the circumferential direction of the pillar portion in the cross-sectional view of the body portion.
The plurality of flutes are formed in the same shape and the same size as each other.
The plurality of pillars are formed to have the same shape and the same size as each other.
The flutes are a bottom wall portion that is located inside the column portion in the radial direction and faces outward in the radial direction, and a side wall that extends outward in the radial direction from the outer peripheral edge of the bottom wall portion. It is defined by the department and
The side wall portion includes a pair of vertical side wall portions connected to both ends in the circumferential direction of the bottom wall portion and extending in the bottle axial direction.
The end portion of the vertical side wall portion located inside in the radial direction is connected to the bottom wall portion via the first curved surface portion.
The end portion of the vertical side wall portion located on the outer side in the radial direction is connected to the top surface of the pillar portion via the second curved surface portion.
In the cross-sectional view of the body portion, the first curved surface portion has a protrusion toward the inside in the radial direction, and the second curved surface portion has a protrusion toward the outside in the radial direction. The curvature of the curved surface portion is larger than the curvature of the second curved surface portion,
The width ratio C / A of the width A of the pillar portion and the width C of the vertical groove portion is 0.50 or more and 1.14 or less.
In the cross-sectional view of the body portion, a virtual circle passing over each top surface of the plurality of pillar portions centered on the bottle axis, and a virtual straight line connecting the radial outer end opening edges of the vertical groove portion with each other. A circular bottle characterized in that the radial distance between the two is 0.13 mm or more and 0.34 mm or less .
JP2015132017A 2015-06-30 2015-06-30 Round bottle Active JP6798770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132017A JP6798770B2 (en) 2015-06-30 2015-06-30 Round bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132017A JP6798770B2 (en) 2015-06-30 2015-06-30 Round bottle

Publications (2)

Publication Number Publication Date
JP2017013845A JP2017013845A (en) 2017-01-19
JP6798770B2 true JP6798770B2 (en) 2020-12-09

Family

ID=57829017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132017A Active JP6798770B2 (en) 2015-06-30 2015-06-30 Round bottle

Country Status (1)

Country Link
JP (1) JP6798770B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140824A (en) * 2017-02-28 2018-09-13 サントリーホールディングス株式会社 Resin container
JP6987561B2 (en) * 2017-07-26 2022-01-05 株式会社吉野工業所 Synthetic resin container
JP7400567B2 (en) 2020-01-17 2023-12-19 東洋製罐株式会社 Synthetic resin container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513744C2 (en) * 1998-04-09 2000-10-30 Plm Ab plastic Containers
JP4515105B2 (en) * 2004-01-29 2010-07-28 株式会社フジシールインターナショナル Shrink label and container with the label
JP6122611B2 (en) * 2012-07-31 2017-04-26 株式会社吉野工業所 Bottle

Also Published As

Publication number Publication date
JP2017013845A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2013114760A1 (en) Bottle
US10081476B2 (en) Bottle
JP7068910B2 (en) Bottle
JP6798770B2 (en) Round bottle
JP6307370B2 (en) Bottle
KR20170005408A (en) Bottle
JP6040013B2 (en) Bottle
JP5793300B2 (en) Bottle
JP6224300B2 (en) Bottle
CA2801854A1 (en) Synthetic resin container
JP7370248B2 (en) Bottle
JP7162517B2 (en) square bottle
JP6535786B2 (en) Bottle
JP7241600B2 (en) square bottle
JP6473284B2 (en) Bottle
JP6703898B2 (en) Bottle with waist
JP6902933B2 (en) Bottle
JP6670573B2 (en) A bottle with a panel formed on the body
JP5835909B2 (en) Bottle
JP7122855B2 (en) Bottle
JP7068909B2 (en) Bottle
JP5986733B2 (en) Bottle
JP7300922B2 (en) pressure bottle
JP5890094B2 (en) Bottle
JP6925115B2 (en) Bottle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200408

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200414

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200605

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200609

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200901

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201006

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201110

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201119

R150 Certificate of patent or registration of utility model

Ref document number: 6798770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150