JP6473284B2 - Bottle - Google Patents

Bottle Download PDF

Info

Publication number
JP6473284B2
JP6473284B2 JP2012259711A JP2012259711A JP6473284B2 JP 6473284 B2 JP6473284 B2 JP 6473284B2 JP 2012259711 A JP2012259711 A JP 2012259711A JP 2012259711 A JP2012259711 A JP 2012259711A JP 6473284 B2 JP6473284 B2 JP 6473284B2
Authority
JP
Japan
Prior art keywords
bottle
circumferential
circumferential groove
valley
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012259711A
Other languages
Japanese (ja)
Other versions
JP2014105002A (en
Inventor
宏明 今井
宏明 今井
浩通 斉藤
浩通 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP2012259711A priority Critical patent/JP6473284B2/en
Publication of JP2014105002A publication Critical patent/JP2014105002A/en
Application granted granted Critical
Publication of JP6473284B2 publication Critical patent/JP6473284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Description

本発明は、ボトルに関する。   The present invention relates to a bottle.

従来から、合成樹脂材料で有底筒状に形成されたボトルとして、例えば下記特許文献1に示されるように、筒状の胴部に、その径方向の内側に向けて窪み、かつ全周に亘って連続して延びる周溝がボトル軸方向に間隔をあけて複数形成された構成が知られている。
この構成によれば、ボトルの径方向の剛性を高めることができるので、例えば胴部にラインプレッシャーが作用したとき、あるいはボトルに密封された内容物の温度が低下してボトル内が減圧した場合等に、胴部の変形を抑えるようになっている。
Conventionally, as a bottle formed into a bottomed cylindrical shape with a synthetic resin material, for example, as shown in Patent Document 1 below, the cylindrical body portion is recessed toward the inner side in the radial direction, and on the entire circumference. A configuration is known in which a plurality of circumferential grooves extending continuously are formed at intervals in the bottle axial direction.
According to this configuration, since the rigidity in the radial direction of the bottle can be increased, for example, when the line pressure acts on the body portion, or when the temperature of the contents sealed in the bottle is lowered and the inside of the bottle is decompressed For example, the deformation of the body portion is suppressed.

特開2004−262500号公報JP 2004-262500 A

しかしながら、上述した従来のボトルでは、ボトル内の減圧吸収性能を向上させることに対して改善の余地があった。   However, the above-described conventional bottle has room for improvement with respect to improving the vacuum absorption performance in the bottle.

そこで、本発明は、上述した事情に鑑みてなされたものであって、その目的は、所望の減圧吸収性能を具備させることができるボトルを提供することである。   Then, this invention was made | formed in view of the situation mentioned above, Comprising: The objective is to provide the bottle which can be provided with desired decompression absorption performance.

上記課題を解決するために、本発明は以下の手段を提案している。
本発明に係るボトルは、筒状の胴部に、その径方向の内側に向けて窪み、かつ全周に亘って延設された周溝がボトル軸方向に間隔をあけて複数形成されたボトルであって、前記周溝は、それぞれ同形同大に形成されるとともに、前記胴部の側面視でボトル軸方向に屈曲しながら周方向に沿って周期的に延びる波形状を呈し、ボトル軸方向で隣接する前記周溝のうち、一の前記周溝における山側の頂部と、前記一の周溝に隣接する他の前記周溝における山側及び谷側の頂部と、の周方向の位置、並びに前記一の周溝における谷側の頂部と、前記他の周溝における山側及び谷側の頂部と、の周方向の位置がそれぞれ異なっており、前記胴部の側面視において、前記周溝は、山側及び谷側の頂部が曲線となっており、山側及び谷側の頂部間を連結する連結部が直線となっており、前記連結部のうち、前記胴部の側面視において、前記ボトル軸と重なる正面に位置する連結部の周方向に対する傾斜角度が15°以上になっており、ボトル軸方向で隣接する前記周溝間の最小距離は、前記周溝において山側及び谷側の頂部間のボトル軸方向の振幅以上になっていることを特徴としている。
In order to solve the above problems, the present invention proposes the following means.
The bottle according to the present invention is a bottle in which a plurality of circumferential grooves that are recessed toward the inside in the radial direction and extend over the entire circumference are formed at intervals in the bottle axis direction in a cylindrical body portion. The circumferential grooves are each formed in the same shape and size, and have a wave shape extending periodically along the circumferential direction while being bent in the bottle axial direction in a side view of the body portion, Out of the circumferential grooves adjacent in the direction, the circumferential positions of the tops on the mountain side in one circumferential groove and the tops on the mountain side and valley side in the other circumferential grooves adjacent to the one circumferential groove, and The circumferential positions of the top of the valley side in the one circumferential groove and the top of the mountain side and the valley side in the other circumferential groove are different from each other. The tops of the mountain side and the valley side are curved, and connect the tops of the mountain side and the valley side. The connecting part is a straight line, and in the connecting part, in the side view of the body part, the inclination angle with respect to the circumferential direction of the connecting part located on the front surface overlapping the bottle axis is 15 ° or more, and the bottle The minimum distance between the circumferential grooves adjacent in the axial direction is characterized by being not less than the amplitude in the bottle axial direction between the crests on the crest and trough sides in the circumferential groove.

このような特徴により、周溝がボトル軸方向に屈曲しながら延びる波形状を呈しているため、ボトル減圧時において、胴部のうち、周溝間に位置する部分に径方向の内側に向けて作用する応力が、周方向に広がるのを周溝(連結部)によって抑制できる。そのため、胴部の不正変形を抑制し、胴部を周方向の全体に亘って均等に変形させながらボトルの内圧変化(減圧)を吸収できる。その結果、所望の減圧吸収性能を具備させることができる。
また、周溝が波形状を呈しているので、従来のように周溝を周方向に沿って形成したストレート形状に比べてデザイン性も向上させることができる。
また、ボトルに圧縮方向の軸力が加えられたときに、胴部が周溝の溝幅を全周に亘って狭めるように圧縮変形するのを抑制でき、周溝を形成したことによる座屈強度の低下を抑えることができる。
Due to such a feature, the circumferential groove has a wave shape extending while bending in the bottle axial direction, so that when the bottle is decompressed, the portion located between the circumferential grooves on the body portion is directed radially inward. It is possible to suppress the acting stress from spreading in the circumferential direction by the circumferential groove (connecting portion). For this reason, it is possible to absorb the change in the internal pressure (decompression) of the bottle while suppressing the unauthorized deformation of the body and uniformly deforming the body over the entire circumferential direction. As a result, desired vacuum absorption performance can be provided.
Moreover, since the circumferential groove has a wave shape, the design can be improved as compared with the straight shape in which the circumferential groove is formed along the circumferential direction as in the prior art.
Further, when an axial force in the compression direction is applied to the bottle, it is possible to suppress the body portion from being compressed and deformed so as to narrow the groove width of the circumferential groove over the entire circumference, and buckling due to the formation of the circumferential groove. A decrease in strength can be suppressed.

また、前記傾斜角度が20°以上55°以下になっていてもよい。
この場合、傾斜角度を20°以上にすることで、上述した作用効果を確実に奏功させることができる。
一方、傾斜角度を55°以下にすることで、ボトル減圧時において、胴部のうち、周溝間に位置する部分に径方向の内側に向けて作用する応力が、連結部を伝ってボトル軸方向に広がるのを抑制でき、胴部の不正変形を抑制できる。
The inclination angle may be 20 ° or more and 55 ° or less.
In this case, by making the inclination angle 20 ° or more, the above-described effects can be reliably achieved.
On the other hand, by setting the inclination angle to 55 ° or less, when the bottle is depressurized, the stress acting on the inner side in the radial direction on the portion located between the circumferential grooves in the body portion is transmitted to the bottle shaft through the connecting portion. Spreading in the direction can be suppressed, and unauthorized deformation of the trunk can be suppressed.

また、前記胴部は、ボトル軸方向の外側から内側に向かうに従い漸次縮径していてもよい。
この場合、胴部がボトル軸方向の全体に亘って同径とされた、いわゆるストレートボトルに比べて減圧強度の低い絞りボトルであっても、所望の減圧吸収性能を具備させることができる。
Moreover, the said trunk | drum may be gradually diameter-reduced as it goes inside from the outer side of a bottle axial direction.
In this case, even a drawn bottle having a reduced pressure strength compared to a so-called straight bottle in which the body portion has the same diameter in the whole bottle axial direction can have a desired reduced pressure absorption performance.

本発明に係るボトルによれば、所望の減圧吸収性能を具備させることができる。   The bottle according to the present invention can have a desired reduced-pressure absorption performance.

本発明の実施形態におけるボトルの側面図である。It is a side view of the bottle in the embodiment of the present invention. ボトルの周溝を示す拡大側面図である。It is an enlarged side view which shows the circumferential groove of a bottle. 実施形態の他の構成を示すボトルの側面図である。It is a side view of the bottle which shows the other structure of embodiment. 傾斜角度と減圧強度との関係を示すグラフである。It is a graph which shows the relationship between an inclination angle and pressure reduction intensity. 実施形態の他の構成を示すボトルの側面図である。It is a side view of the bottle which shows the other structure of embodiment. 実施形態の他の構成を示すボトルの側面図である。It is a side view of the bottle which shows the other structure of embodiment. 実施形態の他の構成を示すボトルの側面図である。It is a side view of the bottle which shows the other structure of embodiment. 従来のボトルの側面図である。It is a side view of the conventional bottle.

以下、図面を参照し、本発明の実施形態に係るボトルを説明する。
本実施形態に係るボトル1は、図1に示されるように、口部11、肩部12、胴部13および底部14を備え、これらがそれぞれの中心軸線を共通軸上に位置した状態でこの順に連設された概略構成とされている。
Hereinafter, bottles according to embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the bottle 1 according to the present embodiment includes a mouth portion 11, a shoulder portion 12, a trunk portion 13, and a bottom portion 14, and these bottles are positioned with their central axes on a common axis. It is set as the schematic structure connected in order.

以下、上述した共通軸をボトル軸Oといい、ボトル軸O方向に沿って口部11側を上側、底部14側を下側といい、また、ボトル軸Oに直交する方向を径方向といい、ボトル軸O回りに周回する方向を周方向という。
なお、このボトル1は、合成樹脂材料で一体に形成され、射出成形により有底筒状に形成されたプリフォームが、ブロー成形されて形成される。また、口部11には、図示しないキャップが装着される。さらに、口部11、肩部12、胴部13及び底部14はそれぞれ、径方向に沿う横断面視形状が円形状となっている。
Hereinafter, the above-described common axis is referred to as the bottle axis O, the mouth 11 side along the bottle axis O direction is referred to as the upper side, the bottom 14 side is referred to as the lower side, and the direction orthogonal to the bottle axis O is referred to as the radial direction. The direction around the bottle axis O is called the circumferential direction.
The bottle 1 is integrally formed of a synthetic resin material, and is formed by blow molding a preform formed into a bottomed cylinder by injection molding. Further, a cap (not shown) is attached to the mouth portion 11. Further, each of the mouth portion 11, the shoulder portion 12, the trunk portion 13, and the bottom portion 14 has a circular cross-sectional view shape along the radial direction.

胴部13は筒状に形成され、そのボトル軸O方向の両端部には、環状凹溝16が全周に亘って連続して形成されている。   The trunk | drum 13 is formed in a cylinder shape, and the annular groove 16 is continuously formed in the both ends of the bottle axis | shaft O direction over the perimeter.

また、胴部13のうち、ボトル軸O方向の両端部同士の間に位置する中間部13aには、径方向の内側に向けて窪み、かつ全周に亘って連続して延びる周溝15がボトル軸O方向に間隔をあけて複数形成されている(図示の例では4本)。これら周溝15は、中間部13aにおいてボトル軸O方向の全域に亘って、ボトル軸O方向に均等に配置されている。   In addition, a circumferential groove 15 that is recessed toward the inner side in the radial direction and continuously extends over the entire circumference is formed in the intermediate portion 13a located between both end portions in the bottle axis O direction of the body portion 13. A plurality are formed at intervals in the bottle axis O direction (four in the illustrated example). These circumferential grooves 15 are evenly arranged in the bottle axis O direction over the entire area in the bottle axis O direction in the intermediate portion 13a.

各周溝15は、胴部13の側面視でボトル軸O方向に屈曲しながら周方向に沿って周期的に延びる互いに同形同大の波形状を呈している。具体的に、各周溝15は、上方に向けて突の山側の頂部15a(以下、山側頂部15aという)、下方に向けて突の谷側の頂部15b(以下、谷側頂部15bという)が周方向に沿って交互に位置するとともに、これら山側頂部15a及び谷側頂部15b間が連結部15cにより連結されている。なお、図示の例では、山側頂部15a及び谷側頂部15bは、それぞれ曲線となっており、各頂部15a,15b間を連結する連結部15cは直線になっている。   Each circumferential groove 15 has a wave shape of the same shape and the same size as each other extending in the circumferential direction while being bent in the bottle axis O direction in a side view of the body portion 13. Specifically, each circumferential groove 15 has a peak-side peak 15a (hereinafter referred to as a peak-side peak 15a) projecting upward and a valley-shaped peak 15b (hereinafter referred to as a valley-side peak 15b) protruding downward. While alternately located along the circumferential direction, the mountain-side top 15a and the valley-side top 15b are connected by a connecting portion 15c. In the example shown in the figure, the mountain-side top portion 15a and the valley-side top portion 15b are curved, and the connecting portion 15c that connects the top portions 15a and 15b is a straight line.

また、ボトル軸O方向で隣接する各周溝15の位相は、同位相になっている。すなわち、ボトル軸O方向で隣接する各周溝15間において、上述した山側頂部15a同士及び谷側頂部15b同士はそれぞれ周方向に沿う位置が同等(ボトル軸O方向で重なる位置)になっており、ボトル軸O方向の距離が全周に亘って等しくなっている。
また、図2に示すように、胴部13の側面視において、周溝15のうち、連結部15cの周方向に対する傾斜角度θ、具体的には周方向のうち、ボトル軸O方向に沿う周溝15の中央部を通る第1仮想線L1と、連結部15cにおける溝幅の中央部を通る第2仮想線L2と、のなす角度は15°以上60°以下の範囲になっていることが好ましい。これについては、後に詳述する。なお、図2においては、図面を分かり易くするため、図1に示す周溝15に対して縮尺を異ならせてある。
Moreover, the phase of each circumferential groove 15 adjacent in the bottle axis O direction is the same phase. That is, between the circumferential grooves 15 adjacent in the bottle axis O direction, the above-described mountain-side crests 15a and valley-side crests 15b have the same positions along the circumferential direction (positions that overlap in the bottle axis O direction). The distance in the bottle axis O direction is the same over the entire circumference.
In addition, as shown in FIG. 2, in the side view of the body portion 13, the inclination angle θ with respect to the circumferential direction of the connecting portion 15 c in the circumferential groove 15, specifically, the circumferential direction along the bottle axis O direction in the circumferential direction. The angle formed by the first imaginary line L1 passing through the central part of the groove 15 and the second imaginary line L2 passing through the central part of the groove width in the connecting part 15c may be in the range of 15 ° to 60 °. preferable. This will be described in detail later. In FIG. 2, the scale is different from that of the circumferential groove 15 shown in FIG. 1 for easy understanding of the drawing.

本実施形態によれば、周溝15がボトル軸O方向に屈曲しながら延びる波形状を呈しているため、ボトル1減圧時において、胴部13のうち、周溝15間に位置する部分に径方向の内側に向けて作用する応力が、周方向に広がるのを周溝15(連結部15c)によって抑制できる。そのため、胴部13の不正変形を抑制し、胴部13を周方向の全体に亘って均等に変形させながらボトル1の内圧変化(減圧)を吸収できる。その結果、所望の減圧吸収性能を具備させることができる。
また、周溝15が波形状を呈しているので、図8に示すように周溝15を周方向に沿って形成したストレート形状に比べてデザイン性も向上させることができる。
According to the present embodiment, since the circumferential groove 15 has a wave shape extending while being bent in the bottle axis O direction, the diameter of the portion located between the circumferential grooves 15 in the body portion 13 when the bottle 1 is decompressed. It is possible to suppress the stress acting toward the inner side in the direction from spreading in the circumferential direction by the circumferential groove 15 (connecting portion 15c). Therefore, unauthorized deformation of the body portion 13 is suppressed, and changes in the internal pressure (decompression) of the bottle 1 can be absorbed while the body portion 13 is uniformly deformed over the entire circumferential direction. As a result, desired vacuum absorption performance can be provided.
Further, since the circumferential groove 15 has a wave shape, the design can be improved as compared with the straight shape in which the circumferential groove 15 is formed along the circumferential direction as shown in FIG.

ここで、本願発明者は、上述した作用効果を確認するため、周溝15(連結部15c)の傾斜角度θと減圧強度(kPa)との関係を検証した。なお、本検証では、減圧時に底部14が実質的に変形しないような構成とし、胴部13のみの減圧強度を解析により検証した。また、本検証ではサンプルボトルを密封状態で減圧したきに、不正変形した時点での圧力を減圧強度として読み取った。   Here, in order to confirm the above-described effects, the inventor of the present application verified the relationship between the inclination angle θ of the circumferential groove 15 (connecting portion 15c) and the reduced pressure strength (kPa). In this verification, the bottom portion 14 is not substantially deformed at the time of decompression, and the decompression strength of only the body portion 13 is verified by analysis. In this verification, when the sample bottle was decompressed in a sealed state, the pressure at the time of unauthorized deformation was read as the decompression strength.

次に、本検証で用いたサンプルボトル(実施例1〜4、比較例1,2)について説明する。各実施例では、周溝15における径方向の深さDや、振幅A(ボトル軸O方向に沿う山側頂部15aにおける溝幅の中央部と、谷側頂部15bにおける溝幅の中央部と、の間の長さ(図2参照))、ボトル軸O方向で隣接する周溝15の位相をそれぞれ異ならせている。なお、以下に示す各図では、上述した図1と対応する構成については同一の符号を付して説明を省略する。   Next, sample bottles (Examples 1 to 4 and Comparative Examples 1 and 2) used in this verification will be described. In each example, the depth D in the radial direction in the circumferential groove 15 and the amplitude A (the central portion of the groove width in the mountain side top portion 15a along the bottle axis O direction, and the central portion of the groove width in the valley side top portion 15b, The length of the circumferential groove 15 adjacent to each other in the direction of the bottle axis O (see FIG. 2). In each figure shown below, the same reference numerals are given to the components corresponding to those in FIG. 1 described above, and description thereof is omitted.

実施例1,2,4は、上述した図1に示すボトル1であって、周溝15が波形状を呈するととともに、ボトル軸O方向で隣接する周溝15の位相が同位相とされたものである。
実施例3は、図3に示すボトル1であって、周溝15が波形状を呈するとともに、ボトル軸O方向で隣接する周溝15の位相が逆位相とされたものである。すなわち、ボトル軸O方向で隣接する各周溝15間において、山側頂部15a及び谷側頂部15bの周方向に沿う位置が同等になっている。
また、比較例1,2は、図8に示すボトルであって、周溝15を周方向に沿って形成したストレート形状のものである。
Examples 1, 2, and 4 are the bottle 1 shown in FIG. 1 described above, and the circumferential groove 15 has a wave shape, and the phase of the circumferential groove 15 adjacent in the bottle axis O direction is the same phase. Is.
Example 3 is the bottle 1 shown in FIG. 3, in which the circumferential groove 15 has a wave shape and the phase of the circumferential groove 15 adjacent in the bottle axis O direction is reversed. That is, between the circumferential grooves 15 adjacent in the bottle axis O direction, the positions along the circumferential direction of the peak side peak portion 15a and the valley side peak portion 15b are equal.
Moreover, the comparative examples 1 and 2 are the bottles shown in FIG. 8, Comprising: The thing of the straight shape which formed the circumferential groove 15 along the circumferential direction.

上述した各実施例、及び比較例の具体的な条件は、以下の通りである。
実施例1:周溝15の深さD=1.5mm、振幅A=4mm、同位相
実施例2:周溝15の深さD=1.5mm、振幅A=6mm、同位相
実施例3:周溝15の深さD=1.5mm、振幅A=4mm、逆位相
実施例4:周溝15の深さD=2.0mm、振幅A=4mm、同位相
比較例1:周溝15の深さD=1.5mm
比較例2:周溝15の深さD=2.0mm
Specific conditions of the above-described examples and comparative examples are as follows.
Example 1: Depth D = 1.5 mm of circumferential groove 15 and amplitude A = 4 mm, same phase Example 2: Depth D of circumferential groove 15 = 1.5 mm, amplitude A = 6 mm, same phase Example 3: Circumferential groove 15 depth D = 1.5 mm, amplitude A = 4 mm, reverse phase Example 4: Circumferential groove 15 depth D = 2.0 mm, amplitude A = 4 mm, same phase Comparative Example 1: Circumferential groove 15 Depth D = 1.5mm
Comparative example 2: Depth D of circumferential groove 15 = 2.0 mm

図4に示すように、傾斜角度に対する減圧強度の関係は、振幅Aや位相、深さDの変化に関わらず同じような傾向になっていることが分かる。具体的には、各実施例ともに所定の角度までは傾斜角度θが大きくなるに従い減圧強度が高くなっている。
これは、上述したように実施例では周溝15が波形状を呈しているため、ボトル1減圧時に胴部13に作用する応力が周方向に広がるのを連結部15cによって抑制し、胴部13を周方向の全体に亘って均等に変形させることができたためと考えられる。なお、各実施例ともに、傾斜角度が15°以上の角度範囲で減圧強度が各比較例以上となり、35°以上45°以下の角度範囲で最大になることが確認された。
As shown in FIG. 4, it can be seen that the relationship between the inclination angle and the reduced pressure intensity has the same tendency regardless of changes in the amplitude A, the phase, and the depth D. Specifically, in each embodiment, the pressure reduction intensity increases as the inclination angle θ increases up to a predetermined angle.
As described above, since the circumferential groove 15 has a wave shape in the embodiment as described above, the stress acting on the body portion 13 when the bottle 1 is decompressed is prevented from spreading in the circumferential direction by the connecting portion 15c. This is considered to have been able to be uniformly deformed over the entire circumferential direction. In each of the examples, it was confirmed that the reduced pressure strength was more than that of each comparative example in the angle range of 15 ° or more, and the maximum in the angle range of 35 ° to 45 °.

一方、各実施例ともに、傾斜角度θが大きくなり過ぎると、減圧強度が除々に低くなっていることが分かる。
これは、傾斜角度θが大きくなると、ボトル1減圧時に胴部13に作用する応力が、連結部15cを伝ってボトル軸O方向に広がり易くなるためであると考えられる。なお、少なくとも実施例1,3,4については、傾斜角度が60°以下の範囲までは、減圧強度が比較例2以上になることが確認された。
On the other hand, it can be seen that, in each example, when the inclination angle θ becomes too large, the reduced pressure strength gradually decreases.
This is considered to be because when the inclination angle θ increases, the stress acting on the body portion 13 when the bottle 1 is depressurized easily spreads in the direction of the bottle axis O along the connecting portion 15c. In addition, at least for Examples 1, 3, and 4, it was confirmed that the reduced-pressure strength was equal to or greater than that of Comparative Example 2 until the inclination angle was 60 ° or less.

以上の結果から、傾斜角度θは15°以上60°以下になっていることが好ましく、20°以上55°以下になっていることが減圧強度を確実に向上させる上ではより好ましい。すなわち、傾斜角度θを20°以上にすることで、ボトル1減圧時において、胴部13のうち、周溝15間に位置する部分に径方向の内側に向けて作用する応力が、周方向に広がるのを連結部15cによって確実に抑制できる。
一方、傾斜角度θを55°以下にすることで、ボトル1減圧時において、胴部13のうち、周溝15間に位置する部分に径方向の内側に向けて作用する応力が、連結部15cを伝ってボトル軸O方向に広がるのを確実に抑制できる。その結果、胴部13の不正変形を抑制し、所望の減圧吸収性能を具備させることができる。
From the above results, the inclination angle θ is preferably 15 ° or more and 60 ° or less, and more preferably 20 ° or more and 55 ° or less in order to reliably improve the pressure reduction strength. That is, by setting the inclination angle θ to 20 ° or more, when the bottle 1 is depressurized, the stress acting on the inner side in the radial direction on the portion located between the circumferential grooves 15 in the body portion 13 is increased in the circumferential direction. Spreading can be reliably suppressed by the connecting portion 15c.
On the other hand, when the inclination angle θ is set to 55 ° or less, when the bottle 1 is decompressed, the stress acting on the inner side in the radial direction on the portion located between the circumferential grooves 15 in the body portion 13 is reduced to the connecting portion 15c. It is possible to reliably suppress spreading in the direction of the bottle axis O along the path. As a result, unauthorized deformation of the body portion 13 can be suppressed and desired vacuum absorption performance can be provided.

なお、比較例では、周溝15が周方向に沿ってストレートに形成されているため、ボトル1減圧時に胴部13のうち周溝15間に作用する応力が、周方向に広がり易い。この場合、胴部13のうち、周方向に沿う一部分が径方向の内側に向けて局所的に縮径変形すると、その周方向の両側に位置する部分は、径方向の外側に向けて拡径変形する一方、径方向で対向する部分は径方向の内側に縮径変形する。その結果、胴部13が径方向に沿う断面視で楕円形状等の不正変形が生じ易いものと考えられる。   In the comparative example, since the circumferential groove 15 is formed straight along the circumferential direction, the stress acting between the circumferential grooves 15 in the body 13 when the bottle 1 is decompressed easily spreads in the circumferential direction. In this case, when a portion of the body portion 13 along the circumferential direction is locally reduced in diameter toward the inside in the radial direction, the portions located on both sides in the circumferential direction are expanded toward the outside in the radial direction. On the other hand, the portions facing in the radial direction are deformed to the inner diameter in the radial direction. As a result, it is considered that the body portion 13 is likely to be easily deformed in an elliptical shape or the like in a sectional view along the radial direction.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

例えば、上述した実施形態では、山側頂部15a、及び谷側頂部15bが曲線となった正弦波形状に周溝15を形成した場合について説明したが、これに限らず、図5に示すように、周溝15を三角波形状に形成しても構わない。   For example, in the above-described embodiment, the case where the circumferential groove 15 is formed in a sine wave shape in which the peak side peak portion 15a and the valley side peak portion 15b are curved is not limited thereto, but as shown in FIG. The circumferential groove 15 may be formed in a triangular wave shape.

また、上述した実施形態では、ボトル軸O方向で隣接する周溝15同士が同位相(図1参照)または逆位相(図3参照)の場合について説明したが、これに限らず、図6に示すように、同位相と逆位相との間で位相をずらして形成しても構わない。
図3、図6に示すように、ボトル軸O方向で隣接する周溝15同士の位相を互いにずらすことで、ボトル1に圧縮方向の軸力が加えられたときに、胴部13が周溝15の溝幅を全周に亘って狭めるように圧縮変形するのを抑制でき、周溝15を形成したことによる座屈強度の低下を抑えることができる。
さらに、周溝15の本数や深さ、振幅A等は、適宜設計変更が可能である。
In the above-described embodiment, the case where the circumferential grooves 15 adjacent in the bottle axis O direction are in the same phase (see FIG. 1) or opposite phase (see FIG. 3) has been described. As shown, the phase may be shifted between the same phase and the opposite phase.
As shown in FIGS. 3 and 6, when the axial force in the compression direction is applied to the bottle 1 by shifting the phases of the circumferential grooves 15 adjacent to each other in the bottle axis O direction, It is possible to suppress compression deformation so that the groove width of the groove 15 is narrowed over the entire circumference, and it is possible to suppress a reduction in buckling strength due to the formation of the groove 15.
Furthermore, the number and depth of the circumferential grooves 15, the amplitude A, and the like can be appropriately changed in design.

また、上述した実施形態では、肩部12、胴部13及び底部14のそれぞれの径方向に沿う横断面視形状を円形状としたが、これに限らず例えば、多角形状にする等適宜変更してもよい。さらに、上述した実施形態では、胴部13の外径がボトル軸O方向の全体に亘って同径である場合について説明したが、これに限らず、ボトル軸O方向に沿って異なるように形成しても構わない。
例えば、図7に示すように、胴部13がボトル軸O方向の外側から内側に向かうに従い漸次縮径した、いわゆる絞りボトルを採用しても構わない。
この場合、胴部13がボトル軸O方向の全体に亘って同径とされた、いわゆるストレートボトル(図1参照)に比べて減圧強度の低い絞りボトルであっても、所望の減圧吸収性能を具備させることができる。
In the embodiment described above, the cross-sectional view shape along the radial direction of each of the shoulder portion 12, the trunk portion 13, and the bottom portion 14 is a circular shape, but is not limited thereto. May be. Furthermore, in the above-described embodiment, the case where the outer diameter of the body portion 13 has the same diameter over the entire bottle axis O direction has been described. It doesn't matter.
For example, as shown in FIG. 7, a so-called squeezed bottle in which the body portion 13 is gradually reduced in diameter from the outside toward the inside in the bottle axis O direction may be employed.
In this case, even if the bottle 13 is a drawn bottle having a reduced pressure strength lower than that of a so-called straight bottle (see FIG. 1) having the same diameter over the entire bottle axis O direction, the desired reduced pressure absorption performance is obtained. Can be provided.

また、上述した山側頂部15a及び谷側頂部15bを直線状の連結部15cにより連結する構成について説明したが、これに限らず、連結部15cを曲線状とする等、周溝15の波形状は適宜設計変更が可能である。何れにしても、図2に示すように、周方向のうち、ボトル軸O方向に沿う周溝15の中央部を通る第1仮想線L1と、この第1仮想線L1及び第2仮想線L2の交点を通る接線と、のなす傾斜角度θが15°以上であれば構わない。   Moreover, although the structure which connects the mountain side top part 15a and the valley side top part 15b which were mentioned above by the linear connection part 15c was demonstrated, not only this but the waveform of the circumferential groove 15, such as making the connection part 15c curved, Design changes can be made as appropriate. In any case, as shown in FIG. 2, the first imaginary line L1 passing through the central portion of the circumferential groove 15 along the bottle axis O direction, and the first imaginary line L1 and the second imaginary line L2 in the circumferential direction. The inclination angle θ formed by the tangent line passing through the intersection may be 15 ° or more.

また、ボトル1を形成する合成樹脂材料は、例えばポリエチレンテレフタレートや、ポリエチレンナフタレート、非晶性ポリエステル等、またはこれらのブレンド材料等、適宜変更してもよい。
さらに、ボトル1は単層構造体に限らず中間層を有する積層構造体としてもよい。この中間層としては、例えばガスバリア性を有する樹脂材料からなる層、再生材からなる層、若しくは酸素吸収性を有する樹脂材料からなる層等が挙げられる。
The synthetic resin material forming the bottle 1 may be appropriately changed, for example, polyethylene terephthalate, polyethylene naphthalate, amorphous polyester, or a blend material thereof.
Further, the bottle 1 is not limited to a single layer structure, and may be a laminated structure having an intermediate layer. Examples of the intermediate layer include a layer made of a resin material having a gas barrier property, a layer made of a recycled material, or a layer made of a resin material having an oxygen absorbing property.

その他、本発明の趣旨を逸脱しない範囲で、上述した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上述した各変形例を適宜組み合わせてもよい。   In addition, in the range which does not deviate from the meaning of this invention, it is possible to replace suitably the component in the embodiment mentioned above by the known component, and you may combine each modification mentioned above suitably.

1…ボトル 13…胴部 15…周溝 15a…山側頂部(頂部) 15b…谷側頂部(頂部) 15c…連結部 O…ボトル軸 DESCRIPTION OF SYMBOLS 1 ... Bottle 13 ... Trunk part 15 ... Circumferential groove 15a ... Mountain side top part (top part) 15b ... Valley side top part (top part) 15c ... Connection part O ... Bottle axis

Claims (3)

筒状の胴部に、その径方向の内側に向けて窪み、かつ全周に亘って延設された周溝がボトル軸方向に間隔をあけて複数形成されたボトルであって、
前記周溝は、それぞれ同形同大に形成されるとともに、前記胴部の側面視でボトル軸方向に屈曲しながら周方向に沿って周期的に延びる波形状を呈し、
ボトル軸方向で隣接する前記周溝のうち、一の前記周溝における山側の頂部と、前記一の周溝に隣接する他の前記周溝における山側及び谷側の頂部と、の周方向の位置、並びに前記一の周溝における谷側の頂部と、前記他の周溝における山側及び谷側の頂部と、の周方向の位置がそれぞれ異なっており、
前記胴部の側面視において、前記周溝は、山側及び谷側の頂部が曲線となっており、山側及び谷側の頂部間を連結する連結部が直線となっており、
前記連結部のうち、前記胴部の側面視において、前記ボトル軸と重なる正面に位置する連結部の周方向に対する傾斜角度が15°以上になっており、
ボトル軸方向で隣接する前記周溝間の最小距離は、前記周溝において山側及び谷側の頂部間のボトル軸方向の振幅以上になっていることを特徴とするボトル。
The cylindrical body is a bottle formed with a plurality of circumferential grooves that are recessed toward the inside in the radial direction and extended over the entire circumference at intervals in the bottle axial direction,
Each of the circumferential grooves is formed in the same shape and size, and exhibits a wave shape that periodically extends along the circumferential direction while being bent in the bottle axial direction in a side view of the body portion.
Out of the circumferential grooves adjacent in the bottle axial direction, the circumferential positions of the tops on the mountain side in one circumferential groove and the tops on the mountain side and valley side in the other circumferential grooves adjacent to the one circumferential groove , And the top of the valley side in the one circumferential groove, and the circumferential position of the peak side and the valley side in the other circumferential groove are different, respectively.
In the side view of the trunk portion, the circumferential groove has a peak on the mountain side and the valley side, and a connecting portion that connects the peaks on the mountain side and the valley side is a straight line.
Among the connecting parts, in the side view of the body part, the inclination angle with respect to the circumferential direction of the connecting part located on the front surface overlapping the bottle shaft is 15 ° or more,
The minimum distance between the circumferential grooves adjacent in the bottle axial direction is equal to or greater than the amplitude in the bottle axial direction between the crests and the valley-side apexes in the circumferential groove.
前記傾斜角度が20°以上55°以下になっていることを特徴とする請求項1記載のボトル。   The bottle according to claim 1, wherein the inclination angle is 20 ° to 55 °. 前記胴部は、ボトル軸方向の外側から内側に向かうに従い漸次縮径していることを特徴とする請求項1または請求項2に記載のボトル。   The bottle according to claim 1 or 2, wherein the body portion is gradually reduced in diameter from the outside toward the inside in the bottle axial direction.
JP2012259711A 2012-11-28 2012-11-28 Bottle Active JP6473284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259711A JP6473284B2 (en) 2012-11-28 2012-11-28 Bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259711A JP6473284B2 (en) 2012-11-28 2012-11-28 Bottle

Publications (2)

Publication Number Publication Date
JP2014105002A JP2014105002A (en) 2014-06-09
JP6473284B2 true JP6473284B2 (en) 2019-02-20

Family

ID=51026821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259711A Active JP6473284B2 (en) 2012-11-28 2012-11-28 Bottle

Country Status (1)

Country Link
JP (1) JP6473284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999677B2 (en) 2016-09-12 2022-01-18 ペイロー,ピエール Fastening device for holding the sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114544A (en) * 2015-12-25 2017-06-29 アサヒ飲料株式会社 Plastic bottle and beverage product

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515848B2 (en) * 1996-03-07 2004-04-05 ライオン株式会社 Thin plastic bottles
JPH1029614A (en) * 1996-07-15 1998-02-03 Toyo Seikan Kaisha Ltd Plastic bottle
IT236209Y1 (en) * 1997-10-10 2000-08-08 So Ge A M S P A EASY-TO-GRIP BOTTLE
JPH11181474A (en) * 1997-12-25 1999-07-06 Lion Corp Liquid detergent packed in thin-wall container
JP2000127231A (en) * 1998-10-21 2000-05-09 Aoki Technical Laboratory Inc Thin-walled bottle by stretching blow molding
FR2804939B1 (en) * 2000-02-10 2002-04-26 Sidel Sa PLASTIC CONTAINER WITH NON-CYLINDRICAL BODY REINFORCED BY PERIPHERAL GEORGES
JP2003040230A (en) * 2001-07-27 2003-02-13 Toyo Seikan Kaisha Ltd Synthetic resin bottle
WO2004080828A1 (en) * 2003-03-12 2004-09-23 Constar International Inc. Container exhibiting improved top load performance
JP4401848B2 (en) * 2004-04-15 2010-01-20 ライオン株式会社 Thin-walled plastic bottle
US8596479B2 (en) * 2008-12-23 2013-12-03 Amcor Limited Hot-fill container
JP2010285207A (en) * 2009-06-15 2010-12-24 Kirin Brewery Co Ltd Plastic bottle and beverage product using the same
USD643729S1 (en) * 2009-07-09 2011-08-23 Plastipak Packaging, Inc. Plastic container
CN102686618B (en) * 2009-11-10 2014-12-24 道达尔研究技术弗吕公司 Bimodal polyethylene for injection stretch blow moulding applications
US10518933B2 (en) * 2009-12-04 2019-12-31 Plastipak Packaging, Inc. Stackable plastic container
JP5650520B2 (en) * 2010-12-28 2015-01-07 株式会社吉野工業所 Bottle
JP6521634B2 (en) * 2011-12-05 2019-05-29 ナイアガラ・ボトリング・エルエルシー Plastic container with ribs of varying depth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999677B2 (en) 2016-09-12 2022-01-18 ペイロー,ピエール Fastening device for holding the sensor

Also Published As

Publication number Publication date
JP2014105002A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
WO2013114760A1 (en) Bottle
KR101818078B1 (en) Bottle
WO2012057026A1 (en) Bottle
WO2012147885A1 (en) Bottle
JP6473284B2 (en) Bottle
WO2015166682A1 (en) Bottle
JP6040013B2 (en) Bottle
JP5793300B2 (en) Bottle
JP5785823B2 (en) Bottle
JP5650520B2 (en) Bottle
JP6798770B2 (en) Round bottle
JP5719677B2 (en) Bottle
JP5890094B2 (en) Bottle
JP2009007026A (en) Bottle
JP2018115036A (en) Bottle
JP6335736B2 (en) Bottle
JP5835909B2 (en) Bottle
JP4916850B2 (en) Bottle
JP2015224077A (en) Bottle which can deform by squeeze deformation
JP6670573B2 (en) A bottle with a panel formed on the body
JP7539346B2 (en) bottle
JP7068909B2 (en) Bottle
JP2020097436A (en) Rectangular bottle
JP6902933B2 (en) Bottle
JP6910240B2 (en) Volume reduction container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170711

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190125

R150 Certificate of patent or registration of utility model

Ref document number: 6473284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150