JP6797539B2 - Foreign matter detection device and foreign matter detection method - Google Patents

Foreign matter detection device and foreign matter detection method Download PDF

Info

Publication number
JP6797539B2
JP6797539B2 JP2016065496A JP2016065496A JP6797539B2 JP 6797539 B2 JP6797539 B2 JP 6797539B2 JP 2016065496 A JP2016065496 A JP 2016065496A JP 2016065496 A JP2016065496 A JP 2016065496A JP 6797539 B2 JP6797539 B2 JP 6797539B2
Authority
JP
Japan
Prior art keywords
ray
inspected
image data
foreign matter
transparent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016065496A
Other languages
Japanese (ja)
Other versions
JP2017181161A (en
Inventor
格 宮崎
格 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2016065496A priority Critical patent/JP6797539B2/en
Publication of JP2017181161A publication Critical patent/JP2017181161A/en
Application granted granted Critical
Publication of JP6797539B2 publication Critical patent/JP6797539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、X線を用いて被検査物内の異物検出を行なう技術に関する。 The present invention relates to a technique for detecting a foreign substance in an object to be inspected using X-rays.

食品等の製造を行なう工場では、製品に金属やプラスチック等の異物が混入していないか否かを異物検出装置によって調べている。 At factories that manufacture food products, foreign matter detection devices are used to check whether foreign substances such as metals and plastics are mixed in the products.

この異物検出装置として、従来では、コンベア等によって所定方向に搬送される被検査物の通過路にX線を出射し、被検査物を透過したX線の強さをセンサ(複数のX線センサが通過方向と直交する方向に並んで一体化されたラインセンサ)で検出し、その検出信号が異物の存在によって局所的に変化することを利用して検出する方式のものが用いられている。 Conventionally, as this foreign matter detecting device, X-rays are emitted to a passage path of an object to be inspected which is conveyed in a predetermined direction by a conveyor or the like, and the intensity of the X-rays transmitted through the object to be inspected is detected by a sensor (multiple X-ray sensors). Is detected by an integrated line sensor) that is lined up in a direction orthogonal to the passing direction, and a detection signal is detected by utilizing the fact that the detection signal changes locally due to the presence of a foreign substance.

しかし、上記したように被検査物を透過したX線の強度をセンサで検出する方式では、X線が透過する方向の厚さや材質が変化する物品による透過率の違いにより、異物を正確に検出できない場合があった。 However, as described above, in the method of detecting the intensity of X-rays transmitted through the object to be inspected by a sensor, foreign matter is accurately detected due to the difference in transmittance depending on the thickness in the direction in which the X-rays are transmitted and the material of which the material changes. Sometimes I couldn't.

これを解決する技術として、例えば特許文献1には、被検査物を透過するX線のエネルギーを異ならせて得られる二つの透過X線データに対するサブトラクション(画像データの差分処理)等の処理を行なうことで、異物の検出精度を高めることが提案されている。 As a technique for solving this, for example, in Patent Document 1, processing such as subtraction (difference processing of image data) for two transmitted X-ray data obtained by different energies of X-rays transmitted through an inspected object is performed. As a result, it has been proposed to improve the detection accuracy of foreign substances.

特開平10−318943号公報Japanese Unexamined Patent Publication No. 10-318943

しかしながら、上記特許文献1では、単一のX線源から出力されて被検査物を透過したX線を、被検査物の搬送方向に並んで配置され、X線に対するエネルギー感度が異なる二つの検出器(ラインセンサ)で検出することで、二つの透過X線データを得るようにしている。 However, in Patent Document 1, two detections in which X-rays output from a single X-ray source and transmitted through an inspected object are arranged side by side in the transport direction of the inspected object and have different energy sensitivities to X-rays. Two transmitted X-ray data are obtained by detecting with a device (line sensor).

このため、必然的に一方の検出器に入射するX線が被検査物内を透過する経路と、他方の検出器に入射するX線が被検査物内を透過する経路が一致せず、その影響で、被検査物の異物を正しく認識できなくなることが考えられる。また、二つの検出器のセンサ素子の特性差により、正確な異物検出を行なえないことも考えられる。 Therefore, inevitably, the path through which the X-rays incident on one detector pass through the inspected object and the path through which the X-rays incident on the other detector pass through the inspected object do not match. Due to the influence, it is possible that the foreign matter to be inspected cannot be recognized correctly. It is also possible that accurate foreign matter detection cannot be performed due to the difference in the characteristics of the sensor elements of the two detectors.

なお、特許文献1には、X線エネルギーが異なる2つのX線源を用いることも記載されているが、その場合、二つのX線が互いに干渉しないようにX線源およびそれに対応する二つの検出器(ラインセンサ)の間隔を広くとらなければならず、装置全体が大きくなるとともに、その間で搬送中の被検査物の姿勢変化が起きやすくなり、しかも、前記同様に二つの検出器を用いるため、異物の検出精度が低下する恐れがある。 It should be noted that Patent Document 1 also describes the use of two X-ray sources having different X-ray energies, but in that case, the X-ray source and the two corresponding X-ray sources so that the two X-rays do not interfere with each other. The distance between the detectors (line sensors) must be widened, the entire device becomes large, and the posture of the object to be inspected changes easily between them, and two detectors are used in the same manner as described above. Therefore, the detection accuracy of foreign matter may decrease.

これを解決する方法として、X線管等から発生されるX線の光子のエネルギーにばらつきがあることに着目し、X線の光子が入射される毎にそのエネルギーに対応した波高値のパルス信号を出力する光子検出型のX線センサを用い、一定時間内にX線センサから出力されたパルス信号をその波高値の違いにより複数の領域に分類し、その領域毎のパルス信号の数を累積することで、X線エネルギーが異なる場合の透過画像データを得ることが考えられる。この方式であれば、複数のX線センサを被検査物の通過方向と交差する方向に1列に並べておけばよく、上記問題を解消できる。 As a method to solve this, paying attention to the variation in the energy of X-ray photons generated from X-ray tubes, etc., each time an X-ray photon is incident, a pulse signal with a peak value corresponding to that energy Using a photon detection type X-ray sensor that outputs, the pulse signals output from the X-ray sensor within a certain period of time are classified into multiple regions according to the difference in peak value, and the number of pulse signals for each region is accumulated. By doing so, it is conceivable to obtain transmitted image data when the X-ray energies are different. With this method, a plurality of X-ray sensors may be arranged in a row in a direction intersecting the passing direction of the object to be inspected, and the above problem can be solved.

ここで、被検査物を透過するX線のエネルギーは、被検査物の材質とX線透過方向の厚さによって大きく変化する。被検査物の材質をほぼ均一とし、X線透過方向の厚さがほぼ一定であれば、その厚さに合わせてX線の平均的な出射エネルギーを一定に調整しておけば、X線センサに入射するX線の線量を適正範囲に維持できる。 Here, the energy of X-rays transmitted through the object to be inspected varies greatly depending on the material of the object to be inspected and the thickness in the X-ray transmission direction. If the material of the object to be inspected is made almost uniform and the thickness in the X-ray transmission direction is almost constant, the average emission energy of X-rays can be adjusted to be constant according to the thickness of the X-ray sensor. The dose of X-rays incident on the can be maintained within an appropriate range.

しかし、厚さの異なる被検査物が順不同に検査ラインに搬入されるような場合がある。この場合、例えば、厚さが大の被測定物に合わせてX線の出射エネルギーを決めると、厚さが小の被検査物に対してX線の線量が過大となり、逆に、厚さが小の被検査物に合わせてX線の出射エネルギーを決めると、厚さが大の被検査物を透過するX線の線量が過小となる。 However, there are cases where objects of different thickness are carried into the inspection line in no particular order. In this case, for example, if the emission energy of X-rays is determined according to the object to be measured having a large thickness, the dose of X-rays becomes excessive with respect to the object to be inspected having a small thickness, and conversely, the thickness becomes large. If the emission energy of X-rays is determined according to the small object to be inspected, the dose of X-rays transmitted through the large object to be inspected becomes too small.

このように被検査物を透過したX線の線量が過大になると、上記した光子検出型のX線センサでは、光子の入力頻度が過大となって、例えば図5のように、X線センサから出力されるパルス信号P、P同士やパルス信号P、P同士が重なってしまい、二つのパルス信号に対してそれぞれ一つのピーク値(波高値H、H)しか得られない現象が発生する。この現象を一般的にパイルアップ現象と呼び、この現象が高い確率で発生すると、領域ごとの正しい計数結果が得られなくなり、その結果、異物の検出を正確に行なえなくなる。 When the dose of X-rays transmitted through the object to be inspected becomes excessive in this way, the photon input frequency becomes excessive in the photon detection type X-ray sensor described above, and the X-ray sensor, for example, as shown in FIG. The output pulse signals P 1 and P 2 and the pulse signals P 4 and P 5 overlap each other, and only one peak value (peak value H 1 and H 3 ) can be obtained for each of the two pulse signals. The phenomenon occurs. This phenomenon is generally called a pile-up phenomenon, and if this phenomenon occurs with a high probability, a correct counting result for each region cannot be obtained, and as a result, foreign matter cannot be detected accurately.

また、被検査物を透過したX線の線量が過小になると、パルス信号の累積数が極端に少なくなってノイズ成分との区別がつかなくなり、透過画像データのS/Nが低下してしまう。 Further, if the dose of X-rays transmitted through the object to be inspected is too small, the cumulative number of pulse signals becomes extremely small and cannot be distinguished from the noise component, and the S / N of the transmitted image data is lowered.

本発明は、上記課題を解決し、光子検出型のX線センサを用いながら、被検査物の厚さの違いによって生じるパイルアップ現象やS/N低下の影響を抑制して、高精度に異物検出が行なえる異物検出装置および異物検出方法を提供することを目的としている。 The present invention solves the above problems, and while using a photon detection type X-ray sensor, suppresses the influence of the pile-up phenomenon and S / N reduction caused by the difference in the thickness of the object to be inspected, and highly accurately removes foreign matter. It is an object of the present invention to provide a foreign matter detecting device and a foreign matter detecting method capable of detecting foreign matter.

前記目的を達成するために、本発明の請求項1の異物検出装置は、
被検査物が通過する通過路にX線を出射するX線発生部(22)と、
前記X線発生部から前記通過路に出射されて被検査物を透過したX線を受ける位置で、被検査物の通過方向と交差する方向に並ぶように配置され、それぞれがX線を受けて電気信号に変換する複数のX線センサ(31〜31)と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する透過画像データ生成手段(40)と、
前記透過画像データ生成手段によって生成された透過画像データに基づいて、被検査物内の異物の有無を判定する判定手段(50)とを有する異物検出装置において、
前記X線センサは、X線の光子が入力される毎に該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型であって、
前記透過画像データ生成手段は、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成するように構成され、
前記判定手段は、
前記透過画像データ生成手段で得られる複数の透過画像データに対するサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定するように構成されており、
さらに、
前記X線発生部が出射するX線に照射される位置に進入する前の被検査物のX線透過方向の厚さを検出する厚さ検出手段(60)と、
前記厚さ検出手段によって検出された被検査物の厚さに基づいて、該被検査物を透過して前記X線センサに入射されて出力される前記所定期間内の前記パルス信号入力数が所定の下限値と上限値により設定された適正範囲に入るように前記X線発生部が出射するX線の線量を可変するX線線量可変手段(70)とを設けたことを特徴としている。
In order to achieve the above object, the foreign matter detecting device according to claim 1 of the present invention is used.
An X-ray generator (22) that emits X-rays into the passage path through which the object to be inspected passes,
At the position where the X-ray is emitted from the X-ray generating portion to the passing path and passes through the inspected object, the X-rays are arranged so as to intersect the passing direction of the inspected object, and each receives the X-ray. Multiple X-ray sensors (31 1 to 31 N ) that convert to electrical signals,
While the object to be inspected is passing between the X-ray generating unit and the plurality of X-ray sensors, the signals output from the plurality of X-ray sensors are separated by a predetermined period and a predetermined signal processing is performed. , A transparent image data generation means for generating transparent image data of an inspected object, which is composed of two-dimensional position information determined by the passing direction of the inspected object and the arrangement direction of the X-ray sensors and signal processing results for each position. (40) and
In a foreign matter detecting device having a determination means (50) for determining the presence or absence of a foreign matter in an object to be inspected based on the transparent image data generated by the transparent image data generation means.
The X-ray sensor is a photon detection type that outputs a pulse signal having a peak value corresponding to the energy of the photon each time an X-ray photon is input.
The transparent image data generation means
For each of the X-ray sensors, it is determined in advance which of the regions in which the peak value of the pulse signal output from the X-ray sensor is divided into a plurality of predetermined ranges within the predetermined period, and within the predetermined period. The number of pulse signal inputs of the above is accumulated for each region, and the accumulated result for each region is used to generate a plurality of transmitted image data having different X-ray transmission energies.
The determination means
It is configured to determine the presence or absence of foreign matter in the object to be inspected by performing predetermined image processing including subtraction processing on a plurality of transparent image data obtained by the transparent image data generation means.
further,
A thickness detecting means (60) for detecting the thickness of the object to be inspected in the X-ray transmission direction before entering the position where the X-ray generating portion emits X-rays, and
Based on the thickness of the object to be inspected detected by the thickness detecting means, the number of pulse signal inputs within the predetermined period, which is transmitted through the object to be inspected and incident on the X-ray sensor and output, is predetermined. It is characterized in that an X-ray dose variable means (70) for varying the dose of X-rays emitted by the X-ray generating unit is provided so as to fall within an appropriate range set by the lower limit value and the upper limit value of .

また、本発明の請求項2の異物検出装置は、請求項1記載の異物検出装置において、
前記適正範囲の前記下限値は、1つの前記X線センサが前記所定期間内に出力することができる規格上の最大パルス数の4割であり、
前記適正範囲の前記上限値は、前記最大パルス数の6割であることを特徴とする。
Further, the foreign matter detecting apparatusMotomeko 2 of the present invention, the foreign matter detecting apparatus according to claim 1,
The lower limit of the appropriate range is 40% of the standard maximum number of pulses that one X-ray sensor can output within the predetermined period.
The upper limit value of the appropriate range is 60% of the maximum number of pulses .

また、本発明の請求項3の異物検出方法は、
X線発生部(22)から被検査物が通過する通過路にX線を出射する段階と、
前記通過路に出射されて被検査物を透過したX線を、被検査物の通過方向と交差する方向に並んだ複数のX線センサ(31〜31)で受けて電気信号に変換する段階と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する段階と、
前記生成された透過画像データに基づいて、被検査物内の異物の有無を判定する段階とを含む異物検出方法において、
前記X線センサとして、X線の光子が入力される毎に、該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、
前記透過画像データを生成する段階では、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成し、
前記被検査物内の異物の有無を判定する段階では、
前記生成された複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定し、
さらに、前記X線の照射位置に被検査物が進入する前に、その被検査物のX線透過方向の厚さを検出し、該検出した厚さに応じて、前記X線センサに入射されて出力される前記所定期間内の前記パルス信号入力数が所定の下限値と上限値により設定された適正範囲となるように前記X線発生部から出射されるX線の線量を可変することを特徴としている。
Further, the method for detecting a foreign substance according to claim 3 of the present invention is:
The stage of emitting X-rays from the X-ray generator (22) to the passage path through which the object to be inspected passes, and
The X-rays emitted from the passage path and transmitted through the object to be inspected are received by a plurality of X-ray sensors (31 1 to 31 N ) arranged in a direction intersecting the passing direction of the object to be inspected and converted into an electric signal. Stages and
While the object to be inspected is passing between the X-ray generating unit and the plurality of X-ray sensors, the signals output from the plurality of X-ray sensors are separated by a predetermined period and a predetermined signal processing is performed. , A step of generating transparent image data of the inspected object consisting of two-dimensional position information determined by the passing direction of the inspected object and the arrangement direction of the X-ray sensors and the signal processing result for each position.
In the foreign matter detection method including the step of determining the presence or absence of foreign matter in the object to be inspected based on the generated transparent image data.
As the X-ray sensor, a photon detection type that outputs a pulse signal of a peak value corresponding to the energy of the photon each time an X-ray photon is input is used.
At the stage of generating the transparent image data,
For each of the X-ray sensors, it is determined in advance which of the regions in which the peak value of the pulse signal output from the X-ray sensor is divided into a plurality of predetermined ranges within the predetermined period, and within the predetermined period. The number of pulse signal inputs of is accumulated for each region, and the cumulative result for each region is used to generate a plurality of transmitted image data having different X-ray transmission energies.
At the stage of determining the presence or absence of foreign matter in the object to be inspected,
By performing predetermined image processing including subtraction processing on the plurality of generated transparent image data, the presence or absence of foreign matter in the object to be inspected is determined.
Further, before the object to be inspected enters the X-ray irradiation position, the thickness of the object to be inspected in the X-ray transmission direction is detected, and the object is incident on the X-ray sensor according to the detected thickness. The dose of X-rays emitted from the X-ray generator is variable so that the number of pulse signal inputs within the predetermined period to be output is within the appropriate range set by the predetermined lower limit value and upper limit value. It is a feature.

このように、本発明では、X線センサとして、X線の光子が入力される毎に、その光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用いるとともに、X線の照射位置に進入する被検査物のX線透過方向の厚さを検出し、その厚さに応じて、被検査物を透過してX線センサに入射されるX線の線量が適正範囲となるように可変した状態で、その被検査物をX線の照射位置に進入させ、各X線センサについて、そのX線センサから所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、所定期間内のパルス信号入力数を領域毎に累積し、その領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成する。そして、これらの透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定している。 As described above, in the present invention, as the X-ray sensor, a photon detection type that outputs a peak value pulse signal corresponding to the energy of the X-ray photon each time it is input is used, and X-ray irradiation is performed. The thickness of the X-ray transmission direction of the object to be inspected that enters the position is detected, and the dose of X-ray that passes through the object to be inspected and is incident on the X-ray sensor is within the appropriate range according to the thickness. In the state of being variable to, the object to be inspected is made to enter the X-ray irradiation position, and for each X-ray sensor, the peak value of the pulse signal output from the X-ray sensor within a predetermined period is set within a predetermined range in advance. It is determined which of the regions is divided into a plurality of regions, the number of pulse signal inputs within a predetermined period is accumulated for each region, and the cumulative result for each region is used to obtain a plurality of transmitted image data having different X-ray transmission energies. To generate. Then, by performing predetermined image processing including subtraction processing on these transparent image data, the presence or absence of foreign matter in the inspected object is determined.

このため、被検査物の通過方向と交差する方向に一列に並んだ複数のX線センサを用いながら、複数のX線透過エネルギーが異なる複数の透過画像データを生成することができ、従来のように複数のラインセンサを被検査物の通過方向に並べる方法や、複数のX線源を用いる方法に比べて、異物の検出精度を高くすることができ、装置全体を小型化できる。 Therefore, it is possible to generate a plurality of transmitted image data having different X-ray transmission energies while using a plurality of X-ray sensors arranged in a row in a direction intersecting the passing direction of the object to be inspected. Compared with the method of arranging a plurality of line sensors in the passing direction of the object to be inspected or the method of using a plurality of X-ray sources, the detection accuracy of foreign matter can be improved and the entire device can be miniaturized.

また、X線が照射される位置に進入する前に検出された被検査物の厚さに応じて、X線発生部から出射されるX線の線量を可変させているので、X線センサに入射するX線の線量を適正範囲に維持でき、パイルアップ現象やS/N低下による精度低下が抑制された透過画像データを得ることができ、厚さの異なる被検査物が順不同に搬入する場合であっても異物検出を正確に行なうことができる。 In addition, since the dose of X-rays emitted from the X-ray generating part is changed according to the thickness of the object to be inspected detected before entering the position where the X-rays are irradiated, the X-ray sensor can be used. When the dose of incident X-rays can be maintained within an appropriate range, transmission image data with suppressed pile-up phenomenon and accuracy deterioration due to S / N reduction can be obtained, and objects of different thickness are carried in in no particular order. Even so, foreign matter can be detected accurately.

本発明の実施形態の構成図Configuration diagram of the embodiment of the present invention X線センサから出力されるパルス信号と領域との関係を示す図The figure which shows the relationship between the pulse signal output from an X-ray sensor and a region. 波高値の領域毎に得られる3種類の透過画像データの例を示す図The figure which shows the example of three kinds of transparent image data obtained for each area of a crest value. 厚さが異なる被検査物が搬入した場合にX線発生部22から出射されるX線の線量の変化例を示す図The figure which shows the change example of the dose of the X-ray emitted from the X-ray generation part 22 when the object to be inspected with a different thickness is carried in. X線センサから出力されるパルス信号が重なった場合の波形を示す図The figure which shows the waveform when the pulse signals output from an X-ray sensor overlap.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した異物検出装置20の全体構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the overall configuration of the foreign matter detecting device 20 to which the present invention is applied.

この異物検出装置20は、搬送装置21、X線発生部22、複数NのX線センサ31〜31、透過画像データ生成手段40、判定手段50、厚さ検出手段60およびX線線量可変手段70を有している。 The foreign matter detecting device 20 includes a transport device 21, an X-ray generating unit 22, a plurality of N X-ray sensors 31 1 to 31 N , a transmission image data generating means 40, a determining means 50, a thickness detecting means 60, and an X-ray dose variable. It has means 70.

搬送装置21は、被検査物Wを所定方向(図では紙面に直交する方向)に搬送するためのものであり、一般的には、コンベアのように被検査物Wを一定速度で水平に搬送するものが使用されるが、必ずしも動力源をもつ搬送装置を用いる必要はなく、被検査物の重さを利用して傾斜路を滑走させる方式や、上方から落下させる方式であってもよい。 The transport device 21 is for transporting the object W to be inspected in a predetermined direction (direction orthogonal to the paper surface in the figure), and generally, the object W to be inspected is horizontally transported at a constant speed like a conveyor. However, it is not always necessary to use a conveyor having a power source, and a method of sliding on a ramp using the weight of the object to be inspected or a method of dropping from above may be used.

X線発生部22は、搬送装置21によって所定方向に搬送される被検査物Wが通過する通過路にX線を出射する。この実施形態では、搬送装置21によって搬送される被検査物Wの上方からその搬送路の幅方向に拡がるX線を出射するものとするが、X線の出射方向はこれに限らず、被検査物Wの側方から側面方向へ出射してもよい。 The X-ray generating unit 22 emits X-rays to a passing path through which the object W to be inspected, which is conveyed in a predetermined direction by the conveying device 21, passes. In this embodiment, it is assumed that X-rays spreading in the width direction of the transport path are emitted from above the object W to be transported by the transport device 21, but the emission direction of the X-rays is not limited to this and is to be inspected. It may be emitted from the side of the object W toward the side surface.

X線発生部22のX線源には、加熱したフィラメントから放出される電子を加速して陽極のターゲットに衝突させてX線を放出させる熱陰極X線管や、格子制御型熱陰極X線管が用いられ、その他にX線管を駆動するために必要な電源が含まれている。 The X-ray source of the X-ray generator 22 includes a hot cathode X-ray tube that accelerates the electrons emitted from the heated filament and collides with the target of the anode to emit X-rays, and a lattice-controlled hot cathode X-ray. A tube is used and also includes the power supply needed to drive the X-ray tube.

X線発生部22が出射するX線の線量(単位時間当りのエネルギーの総和)は、単位時間当りにX線管のフィラメントから陽極のターゲットに到達する電子の数(管電流)や管電圧に対応しており、管電流は、電子の放出量を決めるフィラメント電流や、電子の流れを制御する格子電圧等に依存する。このX線発生部22が出射するX線の線量は、X線線量可変手段70によって可変されるが、それについては後述する。 The X-ray dose (total energy per unit time) emitted by the X-ray generator 22 is the number of electrons (tube current) and tube voltage that reach the anode target from the filament of the X-ray tube per unit time. Correspondingly, the tube current depends on the filament current that determines the amount of emitted electrons, the lattice voltage that controls the flow of electrons, and the like. The dose of X-rays emitted by the X-ray generator 22 is varied by the X-ray dose variable means 70, which will be described later.

複数NのX線センサ31〜31は、それぞれがX線を受けて電気信号に変換するものであり、X線発生部22から被検査物Wの通過路に出射されて被検査物Wを透過したX線を受ける位置で、被検査物Wの通過方向(紙面と直交する方向)と交差(この例では直交)する方向に隙間がほとんど無い状態で一列に並んでいる。 Each of the plurality of N X-ray sensors 31 1 to 31 N receives X-rays and converts them into an electric signal, and is emitted from the X-ray generator 22 into the passage path of the object W to be inspected. At the position where the X-rays transmitted through the X-rays are received, they are lined up in a row with almost no gap in the direction in which the object W to be inspected passes (the direction orthogonal to the paper surface) and intersects (orthogonal in this example).

実際の装置としては、複数NのX線センサ31〜31は、それぞれが一体的に連結された一本のラインセンサ30で構成され、搬送装置21の搬送路の下面側に配置されている。ここで、例えばX線センサの幅を1mm、X線センサ同士の隙間を幅に対して無視できる程小さいとし、被検査物Wを搬送する搬送路の幅を200mmとすれば、概略200個のX線センサを有するラインセンサを用いればよい。 As an actual device, the plurality of N X-ray sensors 31 1 to 31 N are composed of one line sensor 30 in which each is integrally connected, and are arranged on the lower surface side of the transport path of the transport device 21. There is. Here, for example, if the width of the X-ray sensor is 1 mm, the gap between the X-ray sensors is negligibly small with respect to the width, and the width of the transport path for transporting the object W to be inspected is 200 mm, there are approximately 200 X-ray sensors. A line sensor having an X-ray sensor may be used.

従来の異物検出装置で用いられるX線センサは、一般的に入射したX線により可視光を発生してこれをフォトセンサで受けて電気信号に変換するシンチレータ型フォトセンサであって可視光のエネルギーを積分した値が画像の濃淡を表すが、この異物検出装置20が用いるX線センサ31〜31は、被検査物Wを透過したX線の光子が入力される毎に、その光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型(CdTeセンサ)であり、単位時間当りに出力するパルス数が透過画像の濃淡を表すことになる。 The X-ray sensor used in a conventional foreign matter detection device is a scintillator-type photosensor that generally generates visible light from incident X-rays, receives it with a photon sensor, and converts it into an electrical signal, and the energy of the visible light. The value obtained by integrating the above represents the shading of the image. The X-ray sensors 31 1 to 31 N used by the foreign matter detection device 20 are used for each time an X-ray photon transmitted through the object W is input. It is a photon detection type (CdTe sensor) that outputs a peak value pulse signal corresponding to energy, and the number of pulses output per unit time represents the shading of the transmitted image.

透過画像データ生成手段40は、X線発生部22とX線センサ31〜31の間を被検査物Wが通過している間にX線センサ31〜31からそれぞれ出力される信号をスキャン時間ずつ区切って所定の信号処理を行い、被検査物Wの通過方向とX線センサの並び方向とで決まる2次元の位置の情報と、その位置毎の信号処理結果からなる被検査物の透過画像データを生成する。 The transmission image data generation means 40 outputs signals from the X-ray sensors 31 1 to 31 N while the object W to be inspected passes between the X-ray generator 22 and the X-ray sensors 31 1 to 31 N , respectively. Is divided by scan time and subjected to predetermined signal processing, and the inspected object consists of two-dimensional position information determined by the passing direction of the inspected object W and the arrangement direction of the X-ray sensors, and the signal processing result for each position. Generates transparent image data of.

前記したように、光子検出型のX線センサ31〜31は、一つの光子の入力に対して、その光子のエネルギーに対応した波高値のパルス信号を一つ出力するが、X線発生部22から出射されるX線の光子のエネルギーは、その管電流が一定であってもばらつきがあるため、それに応じて、図2に示すように、各X線センサから出力されるパルス信号P、P、P、…の波高値H、H、H、…にばらつきが生じる。 As described above, the photon detection type X-ray sensors 31 1 to 31 N output one peak value pulse signal corresponding to the energy of the photon for each photon input, but X-rays are generated. Since the energy of the X-ray photons emitted from the unit 22 varies even if the tube current is constant, the pulse signal P output from each X-ray sensor corresponds to the energy, as shown in FIG. The peak values H 1 , H 2 , H 3 , ... Of 1 , P 2 , P 3 , ... Are varied.

言い換えれば、エネルギーの異なるX線が混在していることになり、スキャン時間内に一つのX線センサから出力されるパルス信号の波高値H、H、H、…が、予め波高値の出力範囲全体を複数M(図2ではM=4)に区分けした領域R〜Rのいずれに入るかを判定し、そのスキャン時間内のパルス信号入力数を領域毎に累積すれば、そのスキャン時間に対応する部位についてX線透過エネルギーの範囲が異なる複数の透過画像データを生成することができる。 In other words, X-rays with different energies are mixed, and the peak values H 1 , H 2 , H 3 , ... Of the pulse signals output from one X-ray sensor within the scan time are the peak values in advance. if the entire output range to determine enters one the regions R 1 to R M divided into a plurality M (in FIG. 2 M = 4), the cumulative number of the pulse signal input within the scanning time for each region, It is possible to generate a plurality of transmitted image data having different ranges of X-ray transmitted energy for the portion corresponding to the scan time.

上記X線透過エネルギーの範囲が異なる複数の透過画像データを生成するために、透過画像データ生成手段40は、各X線センサ31〜31の出力信号を、それぞれA/D変換器41〜41によってデジタルのデータ列に変換し、波高値検出手段42〜42に入力する。 In order to generate a plurality of transmitted image data having different ranges of the X-ray transmitted energy, the transmitted image data generating means 40 converts the output signals of the X-ray sensors 31 1 to 31 N into A / D converters 41 1 respectively. It is converted into a digital data string by ~ 41 N and input to the peak value detecting means 42 1 to 42 N.

各波高値検出手段42〜42は、入力されるデータ列からパルス信号の波高値を検出するためのものであり、例えば入力されるデータ列に対して微分処理を行い、微分値(信号の傾き)が所定以上の正の値から所定以下の負の値に切り換わるときのゼロクロスタイミングを検出し、そのゼロクロスタイミングにおけるデータ値をパルス信号の波高値として検出し、それぞれ領域判定手段43〜43に出力する。 Each crest value detecting means 42 1 to 42 N is for detecting the crest value of the pulse signal from the input data string. For example, the input data string is subjected to differential processing to perform a differential value (signal). slope) detects a zero-cross timing when switched to a negative value of the predetermined or less from the positive value equal to or greater than a predetermined, detecting the data value at that zero-cross timing as the crest value of the pulse signals, respectively region determining means 43 1 Output to ~ 43 N.

領域判定手段43〜43は、前記した波高値の出力範囲を複数Mの領域R〜Rに区分けする境界値領域L〜LM−1と、波高値検出手段42〜42で検出された波高値とを比較し、その波高値がいずれの領域に入るかを判定し、波高値が入る領域を表す領域識別信号を領域別累積手段44〜44に出力する。 Region determining means 43 1 ~ 43 N includes a boundary value region L 1 ~L M-1 for dividing the output range of the above-mentioned peak value in the region R 1 to R M of the plurality M, the peak value detecting means 42 1-42 The crest value detected in N is compared, it is determined which region the crest value falls into, and a region identification signal representing the region in which the crest value enters is output to the area-specific accumulation means 44 1 to 44 N.

各領域別累積手段44〜44は、スキャン時間内に領域判定手段43〜43からそれぞれ出力される領域識別信号を受け、同一領域を示す領域識別信号の入力数をそれぞれ累積して、スキャン時間内における領域毎の累積数を求めて順次出力する。 The cumulative means 44 1 to 44 N for each region receive the region identification signals output from the region determining means 43 1 to 43 N within the scan time, and accumulate the number of input of the region identification signals indicating the same region. , The cumulative number for each area within the scan time is calculated and output sequentially.

この領域識別信号の累積数は、スキャン時間内に1つのX線センサから出力されるパルス信号のうち、その波高値が入る領域が同じパルス信号同士の累積数であり、上記各領域別累積手段44〜44からスキャン時間毎に出力される領域識別信号の累積数を、透過画像データメモリ45に、並列的に且つ時系列に記憶することで、領域ごとの被検査物に対するX線透過画像データが得られる。 The cumulative number of the region identification signals is the cumulative number of pulse signals having the same peak value in the pulse signals output from one X-ray sensor within the scan time, and is the cumulative number of the pulse signals for each region. By storing the cumulative number of area identification signals output from 44 1 to 44 N for each scan time in the transparent image data memory 45 in parallel and in chronological order, X-ray transmission to the object to be inspected for each area is transmitted. Image data can be obtained.

簡単な例として、スキャン時間を3単位、X線センサ数Nを3、波高値の領域数Mを3とし、パルス信号の累積数をA(波高値の領域の順位、スキャン時間の順位,センサの並び順位)で表すと、最初のスキャン時間T1内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,1,1)、領域Rに入るものの累積数をA(2,1,1)、領域Rに入るもの累積数をA(3,1,1)とする。 As a simple example, the scan time is 3 units, the number of X-ray sensors N is 3, the number of peak value regions M is 3, and the cumulative number of pulse signals is A (rank of peak value region, rank of scan time, sensor). expressed in sequence order) of in the first scan time T1, of the first X-ray pulse signal sensor 311 has output, the cumulative number of those whose peak value enters the area R 1 a (1, 1 , 1), a (2,1,1 cumulative number of those entering the area R 2), the cumulative number to fall region R 3 and a (3,1,1).

また、同じスキャン時間T1内で2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,1,2)、領域Rに入るものの累積数をA(2,1,2)、領域Rに入るものの累積数をA(3,1,2)とする。 Also, of the second X-ray sensor 31 pulse signal 2 is output in the same scan time within T1, the cumulative number of those whose peak value enters the area R 1 A (1,1,2), in the region R 2 the cumulative number of those entering a (2,1,2), the cumulative number of those entering the area R 3 and a (3,1,2).

また、同じスキャン時間T1内で3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,1,3)、領域Rに入るものの累積数をA(2,1,3)、領域Rに入るものの累積数をA(3,1,3)とする。 Further, of the third pulse signal by the X-ray sensor 313 is output in the same scan time within T1, the cumulative number of those whose peak value enters the area R 1 A (1,1,3), in the region R 2 the cumulative number of those entering a (2,1,3), the cumulative number of those entering the area R 3 and a (3,1,3).

同様に、次のスキャン時間T2内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,2,1)、領域Rに入るものの累積数をA(2,2,1)、領域Rに入るものの累積数をA(3,2,1)とし、2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,2,2)、領域Rに入るものの累積数をA(2,2,2)、領域Rに入るものの累積数をA(3,2,2)とし、3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,2,3)、領域Rに入るものの累積数をA(2,2,3)、領域Rに入るものの累積数をA(3,2,3)とする。 Similarly, in the next scan time T2, of the first X-ray sensor 31 pulse signal 1 is outputted, the cumulative number of those whose peak value enters the area R 1 A (1,2,1), region The cumulative number of things that enter R 2 is A (2,2,1), the cumulative number of things that enter region R 3 is A (3,2,1), and the pulse signal output by the second X-ray sensor 312 among them, the cumulative number of those whose peak value enters the area R 1 a (1,2,2), a (2,2,2) the cumulative number of those entering the area R 2, the cumulative number of those entering the area R 3 was the a (3,2,2), 3 th of pulse signals X-ray sensor 313 has output, the cumulative number of those whose peak value enters the area R 1 a (1,2,3), region the cumulative number of those entering the R 2 a (2,2,3), the cumulative number of those entering the area R 3 and a (3,2,3).

さらに、次のスキャン時間T3内で、1番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,3,1)、領域Rに入るものの累積数をA(2,3,1)、領域Rに入るものの累積数をA(3,3,1)とし、2番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るもの累積数をA(1,3,2)、領域Rに入るものの累積数をA(2,3,2)、領域Rに入るものの累積数をA(3,3,2)とし、3番目のX線センサ31が出力したパルス信号のうち、その波高値が領域Rに入るものの累積数をA(1,3,3)、領域Rに入るものの累積数をA(2,3,3)、領域Rに入るものの累積数をA(3,3,3)とする。 Further, in the next scan time T3, of the first X-ray pulse signal sensor 311 has output, the cumulative number of those whose peak value enters the region R 1 A (1, 3, 1), area R the cumulative number of those entering 2 a (2,3,1), the cumulative number of those entering the area R 3 and a (3,3,1), of the second X-ray sensor 312 is a pulse signal output , the cumulative number that the peak value enters the area R 1 a (1,3,2), the cumulative number of those entering the area R 2 a (2,3,2), the cumulative number of those entering the area R 3 and a (3,3,2), 3 th of pulse signals X-ray sensor 313 has output, the cumulative number of those whose peak value enters the region R 1 a (1,3,3), a region R the cumulative number of those entering 2 a (2,3,3), the cumulative number of those entering the area R 3 and a (3,3,3).

このようにして得られたデータから、領域Rについて得られた9つの累積数を、図3の(a)のように、横方向をスキャン時間の順、縦方向をセンサの並び順となるように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の9つの部位の透過画像データが得られる。 Thus from the obtained data in the composed nine cumulative number obtained for region R 1, as in FIG. 3 (a), transverse to the scan time of the order, the longitudinal and order of the sensor if arranged in three rows and three columns as the transmission image data for the nine sites of the object by the X-ray energy range corresponding to the region R 1 is obtained.

同様に、領域Rについて得られた9つの累積数を、図3の(b)のように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の透過画像データが得られ、領域Rについて得られた9つの累積数を、図3の(c)のように3行3列に配置すれば、領域Rに対応したエネルギー範囲のX線による被検査物の透過画像データが得られる。 Similarly, nine cumulative number obtained for region R 2, if arranged in three rows and three columns as shown in (b) of FIG. 3, the object to be inspected by the X-ray energy range corresponding to the region R 2 If the transparent image data is obtained and the nine cumulative numbers obtained for the region R 3 are arranged in 3 rows and 3 columns as shown in FIG. 3 (c), the X-ray of the energy range corresponding to the region R 3 is obtained. Transparent image data of the object to be inspected can be obtained.

実際には、異物検査に必要なスキャン数は、物品の搬送方向の長さを搬送速度で除して得られる搬送時間(例えば0.5秒)をスキャン時間(例えば1ミリ秒)で除算した値(例えば500)となり、センサの並び方向の分割数はX線センサの数N(例えば200)に対応している。 Actually, the number of scans required for foreign matter inspection is obtained by dividing the length of the article in the transport direction by the transport speed and dividing the transport time (for example, 0.5 seconds) by the scan time (for example, 1 millisecond). It becomes a value (for example, 500), and the number of divisions in the arrangement direction of the sensors corresponds to the number N (for example, 200) of the X-ray sensors.

このようにして、波高値の領域にそれぞれ対応したエネルギー範囲毎の透過画像データが得られれば、判定手段50により、それら複数の透過画像データに対して従来から行なわれているサブトラクション処理を含む所定の画像処理を行なうことで、被検査物の異物の有無を判定することができる。 In this way, if the transmitted image data for each energy range corresponding to each peak value region is obtained, the determination means 50 includes a predetermined subtraction process that has been conventionally performed on the plurality of transmitted image data. By performing the image processing of, it is possible to determine the presence or absence of foreign matter on the object to be inspected.

なお、上記の波高値の領域の区分けの仕方は任意であり、一つの例としては、X線発生部22から出射されるX線の光子のエネルギーの最大値(X線管の場合、電子の加速電圧に依存する理論値)に対してX線センサが出力するパルス信号の波高値と、所定の基準値(例えば0)との間を複数に等分すればよい。また、領域数も2つ以上で任意であり、最初に多くの領域で透過画像データを生成しておき、その被検査物について異物の検出に最適な透過画像データの組合せを見つけ、その最適な透過画像データによるサブトラクション処理を含む所定の画像処理を行なってもよい。 The method of dividing the peak value region is arbitrary, and as an example, the maximum value of the energy of the X-ray photon emitted from the X-ray generator 22 (in the case of an X-ray tube, the electron's). The peak value of the pulse signal output by the X-ray sensor and a predetermined reference value (for example, 0) may be equally divided into a plurality of values with respect to the theoretical value depending on the accelerating voltage. In addition, the number of regions is arbitrary with two or more, and transparent image data is first generated in many regions, and the optimum combination of transparent image data for detecting foreign matter is found for the object to be inspected, and the optimum combination is found. Predetermined image processing including subtraction processing using transparent image data may be performed.

具体的には、例えば、初期の領域数を10として、それぞれの領域で透過画像データを生成しておき、エネルギーの大きい方から数えて1番目の領域を前述の領域Rに割当て、3番目の領域を前述の領域Rに割当て、……というように、初期の領域から最終的な領域に選択的に割り当てて、この割り当てられた領域の透過画像データを複数用いて、所定の画像処理を行なってもよい。また、エネルギーの大きい方から数えて1番目と2番目の領域の透過画像データを合成して、これを前述の領域Rの透過画像データとし、3番目と4番目の領域の透過画像データを合成して、これを前述の領域Rの透過画像データとし、……というように初期の複数の領域の透過画像データを合成して最終的な1つの領域の透過画像データとし、その合成された透過画像データを複数用いる、あるいは合成された透過画像データと、それを含まない初期の領域の透過画像データとを用いて所定の画像処理を行なってもよい。 Specifically, for example, the initial number of regions as 10, allocated in advance to generate a transmission image data in each region, the first region counted from the largest energy in the region R 1 of the above, the third allocates a region in the region R 2 of the above, and so ......, finally region selectively assigned from the initial region, using a plurality of transmission image data of the assigned area, predetermined image processing May be done. Further, by combining the transmission image data of the first and second regions counted from the larger energy, which was the previous region R 1 of the transmitted image data, the transmitted image data of the third and fourth region synthesized and, this as a transmission image data in the above described region R 2, by combining the transmission image data of the initial plurality of regions so as ...... the transmitted image data of the final one region is the combined Predetermined image processing may be performed using a plurality of transparent image data or a composite of transparent image data and transparent image data in an initial region that does not include the transparent image data.

上記具体例では、初期の領域の数だけ透過画像データを生成しておき、異物の検出に最適な透過画像データの組合せに応じて、領域の割当てや透過画像データの合成を行なうようにしているが、被検査物に対して異物検出に最適な透過画像データの組合せが既知の場合には、割当てられる領域についての透過画像データのみを生成すればよく、また、複数の透過画像データを合成する代わりに、複数の領域の領域識別信号の累積数を加算して、一つの透過画像データを生成してもよい。これにより、透過画像データの記憶領域を節約することができる。 In the above specific example, transparent image data is generated for the number of initial regions, and regions are allocated and transparent image data is combined according to the optimum combination of transparent image data for detecting foreign matter. However, when the optimum combination of transparent image data for detecting foreign matter is known for the object to be inspected, only the transparent image data for the allocated area needs to be generated, and a plurality of transparent image data are combined. Alternatively, one transparent image data may be generated by adding the cumulative number of region identification signals of a plurality of regions. As a result, the storage area for transparent image data can be saved.

ここで、サブトラクション処理について簡単に説明すると、同一部位について異なるエネルギーによるX線透過データが得られた場合、その差分処理を行なうと、その部位の厚さの影響が除去され、材質(透過率)の影響だけが現れ、X線エネルギーの違いに対する被検査物自体の材質の透過率変化と、異物の材質の透過率変化の差が顕著化する。これにより、異物に対する検出感度が高くなる。判定手段50では、この処理の他に、ノイズの除去等のために各種のフィルタ処理などを行い、異物の検出をより高い精度で行なっている。 Here, to briefly explain the subtraction processing, when X-ray transmission data with different energies are obtained for the same part, the influence of the thickness of the part is removed by performing the difference processing, and the material (transmittance). The difference between the change in the transmittance of the material of the object to be inspected and the change in the transmittance of the material of the foreign matter becomes remarkable with respect to the difference in X-ray energy. As a result, the detection sensitivity for foreign matter is increased. In addition to this processing, the determination means 50 performs various filter processing and the like for removing noise and the like to detect foreign matter with higher accuracy.

上記方法で得られた複数の透過画像データは、物品の通過方向と直交する方向に一列に並んだ複数のX線センサの出力から求めているので、二つのラインセンサを用いる従来方式に比べて、格段に精度の高い透過画像データが得られ、それにより、異物検出を正確に行なうことができ、しかも小型に構成できる。 Since the plurality of transmitted image data obtained by the above method is obtained from the outputs of a plurality of X-ray sensors arranged in a line in a direction orthogonal to the passing direction of the article, compared with the conventional method using two line sensors. Therefore, transparent image data with extremely high accuracy can be obtained, so that foreign matter can be detected accurately and the size can be reduced.

なお、判定手段50の判定結果(異物の有無を示す信号)は、図示しない後続の選別装置に送られ、異物有りと判定された物品が、良品の経路から排除されることになる。 The determination result (signal indicating the presence or absence of foreign matter) of the determination means 50 is sent to a subsequent sorting device (not shown), and the article determined to have foreign matter is excluded from the good product path.

上記のように光子検出型のX線センサを用いた場合、前記したように、X線センサに入射されるX線の線量(単位時間当りに出力される光子数)が多すぎるとパイルアップ現象が高い確率で発生して、領域ごとの正しい計数結果が得られなくなり、X線の線量が少なすぎるとノイズとの区別がつかなくなり、やはり正しい透過画像データが得られない。 When a photon detection type X-ray sensor is used as described above, as described above, if the dose of X-rays incident on the X-ray sensor (the number of photons output per unit time) is too large, a pile-up phenomenon occurs. Will occur with a high probability, and correct counting results for each region will not be obtained. If the X-ray dose is too small, it will be indistinguishable from noise, and correct transmitted image data will not be obtained.

被検査物を透過するX線の線量は、被検査物の材質が同じであれば、その透過方向の厚さが大きい程少なくなるので、一般的には、被検査物の厚さに応じてX線発生部22から出射されるX線の線量を設定しているが、材質は同じでも厚さが均一でない被検査物が順不同に検査ラインに搬入するような場合には対応できない。 If the material of the object to be inspected is the same, the dose of X-rays that pass through the object to be inspected will decrease as the thickness in the transmission direction increases. Therefore, in general, it depends on the thickness of the object to be inspected. Although the dose of X-rays emitted from the X-ray generating unit 22 is set, it cannot be dealt with when objects to be inspected having the same material but not uniform thickness are carried into the inspection line in random order.

これを解決するために、実施形態の異物検出装置20では、厚さ検出手段60とX線線量可変手段70が設けられている。 In order to solve this problem, the foreign matter detecting device 20 of the embodiment is provided with a thickness detecting means 60 and an X-ray dose variable means 70.

厚さ検出手段60は、搬送装置21上のX線照射位置の手前で、被検査物WのX線透過方向の厚さを検出する。この厚さ検出の方法は任意であるが、例えば光学的な構成例で言えば、厚さ検出領域に進入した被検査物の側面の一方側から光を照射し、その光を反対側に縦方向に並んだ複数の受光器で受け、被検査物によって光の入射が遮られた受光器の高さにより検出する。また、光学反射型のセンサを通過路(搬送面)の上方に配置して、レーザー光を出射し、被検査物の上面で反射した反射光を受光して変位を測定し、センサから通過路(搬送面)までの距離とセンサから被検査物の上面までの距離の差を被検査物の厚さとして検出する方式であってもよい。 The thickness detecting means 60 detects the thickness of the object W to be inspected in the X-ray transmission direction in front of the X-ray irradiation position on the transport device 21. This thickness detection method is arbitrary, but in the case of an optical configuration example, for example, light is irradiated from one side of the side surface of the object to be inspected that has entered the thickness detection region, and the light is vertically transmitted to the opposite side. It is received by a plurality of receivers arranged in a direction, and is detected by the height of the receivers in which the incident of light is blocked by the object to be inspected. In addition, an optical reflection type sensor is placed above the passage path (transport surface), laser light is emitted, the reflected light reflected on the upper surface of the object to be inspected is received, the displacement is measured, and the passage path is measured from the sensor. A method may be used in which the difference between the distance to the (conveyed surface) and the distance from the sensor to the upper surface of the object to be inspected is detected as the thickness of the object to be inspected.

ここで検出される厚さとは、厚さ検出領域を通過する際に得られる被検査物の厚さの最大値、平均値等のいずれであってもよい。 The thickness detected here may be any of the maximum value, the average value, and the like of the thickness of the object to be inspected obtained when passing through the thickness detection region.

厚さ検出手段60によって検出された厚さHを受けたX線線量可変手段70は、その厚さHの被検査物を透過してX線センサに入射するX線の線量が、前記パイルアップ現象の発生確率が低く、またパルス信号累積数がノイズレベルより十分大きい適正範囲内に入るように、X線発生部22から出射されるX線の線量(具体的には、X線発生部22のX線管の管電流や管電圧を制御する制御値)を可変させる。 In the X-ray dose variable means 70 that has received the thickness H detected by the thickness detecting means 60, the dose of X-rays that pass through the object to be inspected of the thickness H and enter the X-ray sensor is piled up. The dose of X-rays emitted from the X-ray generator 22 (specifically, the X-ray generator 22) so that the probability of occurrence of the phenomenon is low and the cumulative number of pulse signals falls within an appropriate range sufficiently larger than the noise level. The control value for controlling the tube current and tube voltage of the X-ray tube) is changed.

この可変処理の方法は種々あるが、例えば、被検査物の種類(材質)および厚さの区分毎に予めサンプル品によって最適なX線の線量を与える制御値を記憶しておき、厚さ検出手段60で検出された厚さHが含まれる区分に対応した制御値を読み出してX線発生部22に設定する方法や、厚さと最適制御値との関係を示す式に、厚さ検出手段60で検出された厚さHを代入して制御値を算出し、これをX線発生部22に設定する方法等が採用できる。 There are various methods of this variable processing. For example, the control value that gives the optimum X-ray dose according to the sample product is stored in advance for each type (material) and thickness classification of the object to be inspected, and the thickness is detected. The thickness detecting means 60 is described in a method of reading out a control value corresponding to a category including the thickness H detected by the means 60 and setting it in the X-ray generating unit 22, and an expression showing the relationship between the thickness and the optimum control value. A method of calculating a control value by substituting the thickness H detected in 1 and setting this in the X-ray generating unit 22 can be adopted.

図4は、厚さ検出手段60によって検出される被検査物の厚さと、X線発生部22が出射するX線の線量の関係を示すものであり、図4の(a)のように、被検査物W1が厚さ検出領域に入ってその厚さH1(ここでは厚さ一定とするが、前記したように、通過方向に沿って得られる厚さのうちの最大値や平均値等であってもよい)が検出されると、それから所定時間Tdが経過したタイミング(被検査物W1がX線照射位置の直前に達し、且つスキャン時間が開始されるタイミング)に図4の(b)のように、X線発生部22のX線の線量が厚さH1に対応した適正な線量A1に切り換わる。これによって、厚さH1の被検査物W1についての透過画像データが正確に得られ、異物検出が正しく行なわれる。 FIG. 4 shows the relationship between the thickness of the object to be inspected detected by the thickness detecting means 60 and the dose of X-rays emitted by the X-ray generating unit 22, as shown in FIG. 4A. The object W1 to be inspected enters the thickness detection region and its thickness H1 (here, the thickness is constant, but as described above, the maximum value or the average value of the thicknesses obtained along the passing direction is used. When Td is detected for a predetermined time (when the object W1 to be inspected reaches immediately before the X-ray irradiation position and the scan time is started), (b) of FIG. As described above, the X-ray dose of the X-ray generating unit 22 is switched to an appropriate dose A1 corresponding to the thickness H1. As a result, transparent image data for the object W1 to be inspected having a thickness H1 can be accurately obtained, and foreign matter detection can be performed correctly.

そして、この被検査物W1の後に、隙間を開けて次の被検査物W2が厚さ検出領域に入り、その厚さH2が検出されると、前記同様に、この被検査物W2がX線照射位置に進入するタイミングに合わせて、X線発生部22のX線の線量が厚さH2に対応した適正な線量A2に切り換わる。これによって、厚さH2の被検査物W2についての透過画像データが正確に得られ、異物検出が正しく行なわれる。なお、X線線量可変手段70は、厚さ検出手段60で検出される厚さが所定値以下となる範囲Bを被検査物の隙間と判断して、被検査物を区別している。 Then, after the inspected object W1, a gap is opened and the next inspected object W2 enters the thickness detection region, and when the thickness H2 is detected, the inspected object W2 is X-rayed in the same manner as described above. The X-ray dose of the X-ray generating unit 22 is switched to an appropriate dose A2 corresponding to the thickness H2 according to the timing of entering the irradiation position. As a result, transparent image data for the object W2 to be inspected having a thickness H2 can be accurately obtained, and foreign matter can be detected correctly. The X-ray dose variable means 70 distinguishes the inspected object by determining the range B in which the thickness detected by the thickness detecting means 60 is equal to or less than a predetermined value as a gap of the inspected object.

なお、X線センサに入射されるX線の線量の適正範囲としては、例えば、1つのX線センサがスキャン時間内に出力することができる規格上の最大パルス数(例えば、スキャン時間1ミリ秒で1000個)に対して設定された範囲(例えば、400〜600)とすることができる。この場合、実際に被検査物について得られる透過画像データのうち、1つのX線センサがスキャン時間内に出力したパルス信号の全領域分の累積数を上記適正範囲となるように線量を設定していることになるが、全領域分でなく、一部の領域の累積数を対象とする場合、それに合わせて適正範囲を変更すればよい。 The appropriate range of the dose of X-rays incident on the X-ray sensor is, for example, the maximum number of pulses according to the standard that one X-ray sensor can output within the scan time (for example, the scan time is 1 millisecond). It can be set to a range (for example, 400 to 600) set for (1000 pieces). In this case, the dose is set so that the cumulative number of the pulse signals output by one X-ray sensor for the entire region of the transmitted image data actually obtained for the object to be inspected is within the above-mentioned appropriate range. However, if the cumulative number of some areas is targeted instead of the entire area, the appropriate range may be changed accordingly.

このように、被検査物の厚さを検出し、その厚さに応じてX線センサに入射されるX線の線量が適正範囲に入るように、X線発生部22が出射するX線の線量を可変することで、厚さの異なる被検査物が順不同に搬入される場合であっても、それぞれの被検査物に対する異物検出を正確に行なうことができる。 In this way, the thickness of the X-ray emitted by the X-ray generating unit 22 is detected so that the thickness of the X-ray to be inspected is detected and the dose of the X-ray incident on the X-ray sensor falls within an appropriate range according to the thickness. By varying the dose, even when objects of different thickness are carried in in no particular order, foreign matter can be accurately detected for each object to be inspected.

なお、前記した透過画像データの保存形式は任意であるが、波高値の領域ごとに異なる色を割当て、その領域に割り当てた色の輝度を、パルス信号の累積数に対応させることで、透過画像を観察する場合に観測者が分かりやすくなる。 Although the storage format of the transparent image data described above is arbitrary, a transparent image is obtained by assigning a different color to each peak value region and making the brightness of the color assigned to that region correspond to the cumulative number of pulse signals. It becomes easier for the observer to understand when observing.

例えば、波高値の領域を3つとし、各領域に赤(R)、緑(G)、青(B)の3原色を割当て、それぞれの色の輝度値にパルス累積数を割当てる。ただし、各色の輝度に割り当てる値は例えば8ビットで表せる範囲(0〜255)とし、実際のパルス累積数の範囲が8ビットで表せる範囲内に収まるように正規化(圧縮処理または伸長処理)する。この場合、3つの透過画像データを1つのRGBカラー画像データとして保存することができる。このため、透過画像データの記憶領域を節約することができる。また、データ形式が、一般的なRGBカラー画像データであるため、画像処理や画像表示が容易に行なえる。 For example, there are three peak value regions, three primary colors of red (R), green (G), and blue (B) are assigned to each region, and the cumulative number of pulses is assigned to the brightness value of each color. However, the value assigned to the brightness of each color is, for example, a range (0 to 255) that can be represented by 8 bits, and is normalized (compression processing or decompression processing) so that the range of the actual cumulative number of pulses falls within the range that can be represented by 8 bits. .. In this case, the three transparent image data can be saved as one RGB color image data. Therefore, the storage area of the transparent image data can be saved. Further, since the data format is general RGB color image data, image processing and image display can be easily performed.

また、このように各領域に異なる色を割当て、その色の輝度をパルス信号の累積数で表すデータ保存形式を用いれば、各領域の透過画像をそれぞれ異なる色の画像で表すことができ、それらを図示しない表示装置に並列的に並べて表示する場合の識別性が非常に高くなる。 Further, by using a data storage format in which different colors are assigned to each region and the brightness of the color is represented by the cumulative number of pulse signals, the transparent image of each region can be represented by an image of a different color. The distinctiveness is very high when the images are displayed side by side on a display device (not shown).

20……異物検出装置、21……搬送装置、22……X線発生部、30……ラインセンサ、31〜31……X線センサ、40……透過画像データ生成手段、41〜41……A/D変換器、42〜42……波高値検出手段、43〜43……領域判定手段、44〜44……領域別累積手段、45……透過画像データメモリ、50……判定手段、60……厚さ検出手段、70……X線線量可変手段 20 ... Foreign matter detection device, 21 ... Conveyor device, 22 ... X-ray generator, 30 ... Line sensor, 31 1 to 31 N ... X-ray sensor, 40 ... Transmission image data generation means, 41 1 to 41 N …… A / D converter, 42 1 to 42 N …… Crest value detecting means, 43 1 to 43 N …… Area determination means, 44 1 to 44 N …… Cumulative means by area, 45 …… Transparent image Data memory, 50 ... determination means, 60 ... thickness detection means, 70 ... X-ray dose variable means

Claims (3)

被検査物が通過する通過路にX線を出射するX線発生部(22)と、
前記X線発生部から前記通過路に出射されて被検査物を透過したX線を受ける位置で、被検査物の通過方向と交差する方向に並ぶように配置され、それぞれがX線を受けて電気信号に変換する複数のX線センサ(31〜31)と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する透過画像データ生成手段(40)と、
前記透過画像データ生成手段によって生成された透過画像データに基づいて、被検査物内の異物の有無を判定する判定手段(50)とを有する異物検出装置において、
前記X線センサは、X線の光子が入力される毎に該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型であって、
前記透過画像データ生成手段は、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成するように構成され、
前記判定手段は、
前記透過画像データ生成手段で得られる複数の透過画像データに対するサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定するように構成されており、
さらに、
前記X線発生部が出射するX線に照射される位置に進入する前の被検査物のX線透過方向の厚さを検出する厚さ検出手段(60)と、
前記厚さ検出手段によって検出された被検査物の厚さに基づいて、該被検査物を透過して前記X線センサに入射されて出力される前記所定期間内の前記パルス信号入力数が所定の下限値と上限値により設定された適正範囲に入るように前記X線発生部が出射するX線の線量を可変するX線線量可変手段(70)とを設けたことを特徴とする異物検出装置。
An X-ray generator (22) that emits X-rays into the passage path through which the object to be inspected passes,
At the position where the X-ray is emitted from the X-ray generating portion to the passing path and passes through the inspected object, the X-rays are arranged so as to intersect the passing direction of the inspected object, and each receives the X-ray. Multiple X-ray sensors (31 1 to 31 N ) that convert to electrical signals,
While the object to be inspected is passing between the X-ray generating unit and the plurality of X-ray sensors, the signals output from the plurality of X-ray sensors are separated by a predetermined period and a predetermined signal processing is performed. , A transparent image data generation means for generating transparent image data of an inspected object, which is composed of two-dimensional position information determined by the passing direction of the inspected object and the arrangement direction of the X-ray sensors and signal processing results for each position. (40) and
In a foreign matter detecting device having a determination means (50) for determining the presence or absence of a foreign matter in an object to be inspected based on the transparent image data generated by the transparent image data generation means.
The X-ray sensor is a photon detection type that outputs a pulse signal having a peak value corresponding to the energy of the photon each time an X-ray photon is input.
The transparent image data generation means
For each of the X-ray sensors, it is determined in advance which of the regions in which the peak value of the pulse signal output from the X-ray sensor is divided into a plurality of predetermined ranges within the predetermined period, and within the predetermined period. The number of pulse signal inputs of the above is accumulated for each region, and the cumulative result for each region is used to generate a plurality of transmitted image data having different X-ray transmission energies.
The determination means
It is configured to determine the presence or absence of foreign matter in the object to be inspected by performing predetermined image processing including subtraction processing on a plurality of transparent image data obtained by the transparent image data generation means.
further,
A thickness detecting means (60) for detecting the thickness of the object to be inspected in the X-ray transmission direction before entering the position where the X-ray generating portion emits X-rays, and
Based on the thickness of the object to be inspected detected by the thickness detecting means, the number of pulse signal inputs within the predetermined period, which is transmitted through the object to be inspected and incident on the X-ray sensor and output, is predetermined. Foreign matter detection is provided with an X-ray dose variable means (70) that changes the dose of X-rays emitted by the X-ray generating unit so as to fall within an appropriate range set by the lower limit value and the upper limit value of. apparatus.
前記適正範囲の前記下限値は、1つの前記X線センサが前記所定期間内に出力することができる規格上の最大パルス数の4割であり、
前記適正範囲の前記上限値は、前記最大パルス数の6割であることを特徴とする請求項1記載の異物検出装置。
The lower limit of the appropriate range is 40% of the standard maximum number of pulses that one X-ray sensor can output within the predetermined period.
The foreign matter detecting device according to claim 1 , wherein the upper limit value in the appropriate range is 60% of the maximum number of pulses .
X線発生部(22)から被検査物が通過する通過路にX線を出射する段階と、
前記通過路に出射されて被検査物を透過したX線を、被検査物の通過方向と交差する方向に並んだ複数のX線センサ(31〜31)で受けて電気信号に変換する段階と、
前記X線発生部と前記複数のX線センサとの間を被検査物が通過している間に前記複数のX線センサからそれぞれ出力される信号を所定期間ずつ区切って所定の信号処理を行い、被検査物の通過方向と前記X線センサの並び方向とで決まる2次元の位置の情報と、該位置毎の信号処理結果からなる被検査物の透過画像データを生成する段階と、
前記生成された透過画像データに基づいて、被検査物内の異物の有無を判定する段階とを含む異物検出方法において、
前記X線センサとして、X線の光子が入力される毎に、該光子のエネルギーに対応した波高値のパルス信号を出力する光子検出型を用い、
前記透過画像データを生成する段階では、
前記各X線センサについて、該X線センサから前記所定期間内に出力されるパルス信号の波高値が、予め所定範囲内を複数に区分けした領域のいずれに入るかを判定し、前記所定期間内のパルス信号入力数を前記領域毎に累積し、該領域毎の累積結果を用いて、X線透過エネルギーが異なる複数の透過画像データを生成し、
前記被検査物内の異物の有無を判定する段階では、
前記生成された複数の透過画像データに対してサブトラクション処理を含む所定の画像処理を行なうことで、被検査物内の異物の有無を判定し、
さらに、前記X線の照射位置に被検査物が進入する前に、その被検査物のX線透過方向の厚さを検出し、該検出した厚さに応じて、前記X線センサに入射されて出力される前記所定期間内の前記パルス信号入力数が所定の下限値と上限値により設定された適正範囲となるように前記X線発生部から出射されるX線の線量を可変することを特徴とする異物検出方法。
The stage of emitting X-rays from the X-ray generator (22) to the passage path through which the object to be inspected passes, and
The X-rays emitted from the passage path and transmitted through the object to be inspected are received by a plurality of X-ray sensors (31 1 to 31 N ) arranged in a direction intersecting the passing direction of the object to be inspected and converted into an electric signal. Stages and
While the object to be inspected is passing between the X-ray generating unit and the plurality of X-ray sensors, the signals output from the plurality of X-ray sensors are separated by a predetermined period and a predetermined signal processing is performed. , A step of generating transparent image data of the inspected object consisting of two-dimensional position information determined by the passing direction of the inspected object and the arrangement direction of the X-ray sensors and the signal processing result for each position.
In the foreign matter detection method including the step of determining the presence or absence of foreign matter in the object to be inspected based on the generated transparent image data.
As the X-ray sensor, a photon detection type that outputs a pulse signal of a peak value corresponding to the energy of the photon each time an X-ray photon is input is used.
At the stage of generating the transparent image data,
For each of the X-ray sensors, it is determined in advance which of the regions in which the peak value of the pulse signal output from the X-ray sensor is divided into a plurality of predetermined ranges within the predetermined period, and within the predetermined period. The number of pulse signal inputs of is accumulated for each region, and the cumulative result for each region is used to generate a plurality of transmitted image data having different X-ray transmission energies.
At the stage of determining the presence or absence of foreign matter in the object to be inspected,
By performing predetermined image processing including subtraction processing on the plurality of generated transparent image data, the presence or absence of foreign matter in the object to be inspected is determined.
Further, before the object to be inspected enters the X-ray irradiation position, the thickness of the object to be inspected in the X-ray transmission direction is detected, and the object is incident on the X-ray sensor according to the detected thickness. The dose of X-rays emitted from the X-ray generator is changed so that the number of pulse signal inputs within the predetermined period to be output is within the appropriate range set by the predetermined lower limit value and upper limit value. Characteristic foreign matter detection method.
JP2016065496A 2016-03-29 2016-03-29 Foreign matter detection device and foreign matter detection method Active JP6797539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016065496A JP6797539B2 (en) 2016-03-29 2016-03-29 Foreign matter detection device and foreign matter detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065496A JP6797539B2 (en) 2016-03-29 2016-03-29 Foreign matter detection device and foreign matter detection method

Publications (2)

Publication Number Publication Date
JP2017181161A JP2017181161A (en) 2017-10-05
JP6797539B2 true JP6797539B2 (en) 2020-12-09

Family

ID=60006818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065496A Active JP6797539B2 (en) 2016-03-29 2016-03-29 Foreign matter detection device and foreign matter detection method

Country Status (1)

Country Link
JP (1) JP6797539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702408B (en) * 2021-09-18 2024-04-09 中国航空制造技术研究院 X-ray detection method for variable-thickness silicon carbide fiber composite material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113631A (en) * 1995-10-13 1997-05-02 Ishida Co Ltd Foreign matter detector using x ray
JP2002148214A (en) * 2000-11-14 2002-05-22 Ishida Co Ltd X-ray inspecting apparatus
JP2003288853A (en) * 2002-03-27 2003-10-10 Toshiba Corp X-ray device
US7218706B2 (en) * 2004-12-20 2007-05-15 General Electric Company Energy discrimination radiography systems and methods for inspecting industrial components
JP5340524B2 (en) * 2006-03-23 2013-11-13 浜松ホトニクス株式会社 Radiation detector and radiation detection method
JP5297142B2 (en) * 2008-10-09 2013-09-25 アンリツ産機システム株式会社 Foreign object detection method and apparatus
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus
JP5775415B2 (en) * 2011-10-13 2015-09-09 アンリツ産機システム株式会社 X-ray foreign object detection device
GB201300896D0 (en) * 2013-01-18 2013-03-06 Ideal Boilers Ltd Flue pipe mounting apparatus
JP6450075B2 (en) * 2014-02-24 2019-01-09 アンリツインフィビス株式会社 X-ray inspection equipment
JP6625470B2 (en) * 2016-03-30 2019-12-25 アンリツインフィビス株式会社 Foreign object detection device and foreign object detection method

Also Published As

Publication number Publication date
JP2017181161A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US10718725B2 (en) X-ray inspection apparatus and correction method for X-ray inspection apparatus
JP6663374B2 (en) X-ray inspection equipment
EP3048440B1 (en) Inspection device
JP7001327B2 (en) Foreign matter detection device and foreign matter detection method
CN109804239B (en) X-ray inspection apparatus
JP6625470B2 (en) Foreign object detection device and foreign object detection method
JP5452131B2 (en) X-ray detector and X-ray inspection apparatus
EP3567406B1 (en) Afterglow detection device and afterglow detection method
JP6797539B2 (en) Foreign matter detection device and foreign matter detection method
JP7060446B2 (en) X-ray line sensor and X-ray foreign matter detection device using it
JP6491125B2 (en) Foreign object detection device and foreign object detection method
JP5356184B2 (en) Inspection equipment
US11079344B2 (en) Radiation detection device, radiation image acquisition device, and radiation image acquisition method
JP6606454B2 (en) Foreign object detection device and foreign object detection method
KR20240028334A (en) Radiation image acquisition device, radiation image acquisition system, and radiation image acquisition method
KR20230083222A (en) X-ray inspection apparatus, x-ray inspection system and x-ray inspection method
JP6655570B2 (en) Article inspection apparatus and method of switching inspection target varieties
JP6587645B2 (en) Article inspection apparatus and inspection condition switching method thereof
JP2009300295A (en) Photon count detector
JP2023056656A (en) X-ray inspection device and program
JP7193493B2 (en) X-ray inspection device and X-ray inspection method
EP3719483A1 (en) Inspection apparatus
KR20230003484A (en) Radiation image processing method, learned model, radiation image processing module, radiation image processing program, radiation image processing system, and machine learning method
TW202307465A (en) Radiographic image processing method, learning completion model, radiographic image processing module, radiographic image processing program, radiographic image processing system, and machine learning method capable of effectively removing noise of radiographic images of object
TW202234049A (en) Radiographic image acquiring device, radiographic image acquiring system, and radiographic image acquisition method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6797539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250