JP6792836B2 - Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery - Google Patents

Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP6792836B2
JP6792836B2 JP2016057411A JP2016057411A JP6792836B2 JP 6792836 B2 JP6792836 B2 JP 6792836B2 JP 2016057411 A JP2016057411 A JP 2016057411A JP 2016057411 A JP2016057411 A JP 2016057411A JP 6792836 B2 JP6792836 B2 JP 6792836B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016057411A
Other languages
Japanese (ja)
Other versions
JP2017174558A (en
Inventor
一毅 千葉
一毅 千葉
栄部 比夏里
比夏里 栄部
鹿野 昌弘
昌弘 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Honda Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Honda Motor Co Ltd
Priority to JP2016057411A priority Critical patent/JP6792836B2/en
Publication of JP2017174558A publication Critical patent/JP2017174558A/en
Application granted granted Critical
Publication of JP6792836B2 publication Critical patent/JP6792836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池の正極活物質として用いられるリチウム複合酸化物およびその製造方法に関する。さらに、本発明は、当該リチウム複合酸化物を用いたリチウム二次電池用正極活物質およびリチウム二次電池に関する。 The present invention relates to a lithium composite oxide used as a positive electrode active material of a lithium secondary battery and a method for producing the same. Furthermore, the present invention relates to a positive active material and a lithium secondary battery for a lithium secondary battery using the lithium composite oxide.

携帯電話やノートパソコン等の多くの携帯型電子機器に二次電池が搭載されている。リチウム二次電池等の二次電池は、ハイブリッド車両や電力負荷平準化システム等の大型電池としての実用化も期待されており、その重要性がますます高まっている。大型電池としての実用化に向けて、より高容量かつ長寿命の二次電池の開発が求められている。 Secondary batteries are installed in many portable electronic devices such as mobile phones and laptop computers. Secondary batteries such as lithium secondary batteries are also expected to be put into practical use as large batteries for hybrid vehicles and power load leveling systems, and their importance is increasing. Development of a secondary battery with higher capacity and longer life is required for practical use as a large battery.

リチウム二次電池は、正極および負極からなる電極と、非水系電解液を含むセパレータまたは固体電解質とを主要構成要素とする。正極および負極は、いずれも、リチウムを可逆的に吸蔵および放出可能な材料(電極用活物質)を含有する。リチウム二次電池の正極活物質の材料として、Li2/3Ni1/3Mn2/3の組成を有するリチウムニッケルマンガン酸化物の結晶構造および電気化学特性がこれまでに調べられている。 The main components of a lithium secondary battery are an electrode composed of a positive electrode and a negative electrode, and a separator or a solid electrolyte containing a non-aqueous electrolyte solution. Both the positive electrode and the negative electrode contain a material (active material for electrodes) capable of reversibly occluding and releasing lithium. The crystal structure and electrochemical properties of lithium nickel manganese oxide having a composition of Li 2/3 Ni 1/3 Mn 2/3 O 2 have been investigated as a material for the positive electrode active material of a lithium secondary battery. ..

Li2/3Ni1/3Mn2/3は、出発物質であるNa2/3Ni1/3Mn2/3のナトリウムをリチウムに交換することにより得られ、出発物質の構造に応じて、得られるLi2/3Ni1/3Mn2/3の構造が異なる。例えば、出発物質としてP3構造のNa2/3Ni1/3Mn2/3を用いた場合、イオン交換体であるLi2/3Ni1/3Mn2/3は、O3構造を有する。O3構造のLi2/3Ni1/3Mn2/3を熱処理することにより、結晶構造が変化し、電気化学特性が改善されることが報告されている(非特許文献1)。 Li 2/3 Ni 1/3 Mn 2/3 O 2 is obtained by exchanging sodium of Na 2/3 Ni 1/3 Mn 2/3 O 2 which is a starting material with lithium, and the structure of the starting material. The structure of the obtained Li 2/3 Ni 1/3 Mn 2/3 O 2 is different depending on the above. For example, when Na 2/3 Ni 1/3 Mn 2/3 O 2 having a P3 structure is used as a starting material, the ion exchanger Li 2/3 Ni 1/3 Mn 2/3 O 2 has an O3 structure. Has. It has been reported that heat treatment of Li 2/3 Ni 1/3 Mn 2/3 O 2 having an O3 structure changes the crystal structure and improves the electrochemical properties (Non-Patent Document 1).

メタノールやエタノール等の低沸点溶媒にリチウム塩を溶解させた溶液中でP3構造のNa2/3Ni1/3Mn2/3を加熱してイオン交換を実施すると、ナトリウムの一部がリチウムに交換されずに残存した組成式(LiNa2/3−z)Ni1/3Mn2/3で表される酸化物が得られる。このナトリウム残存酸化物(リチウムナトリウム複合酸化物)を熱処理した材料を正極活物質として用いた二次電池は、放電時(リチウム挿入時)の急激な電圧降下が抑制されることが報告されている(非特許文献2)。 When Na 2/3 Ni 1/3 Mn 2/3 O 2 having a P3 structure is heated in a solution in which a lithium salt is dissolved in a low boiling solvent such as methanol or ethanol to perform ion exchange, a part of sodium is released. An oxide having a composition formula (Li z Na 2 / 3-z ) Ni 1/3 Mn 2/3 O 2 remaining without being exchanged with lithium can be obtained. It has been reported that a secondary battery using a material obtained by heat-treating this sodium residual oxide (lithium-sodium composite oxide) as a positive electrode active material suppresses a rapid voltage drop during discharge (when lithium is inserted). (Non-Patent Document 2).

千葉一毅 他、2014年電気化学秋季大会 講演要旨集、1P23(2014)Kazuki Chiba et al., 2014 Electrochemical Autumn Meeting Abstracts, 1P23 (2014) 千葉一毅 他、第55回電池討論会 講演要旨集、2B18、(2014)Kazuki Chiba et al., 55th Battery Discussion Meeting Abstracts, 2B18, (2014)

正極材料として上記非特許文献1のリチウム複合酸化物を用いた二次電池は、放電容量が大きいとの利点を有する。しかし、放電時に電圧が急激に降下する領域が存在するため、充電率の検知が困難となる場合がある。非特許文献2のリチウム複合酸化物を用いることにより、放電時の急激な電圧降下を抑制できる。しかし、この正極材料を用いた二次電池は充電容量が小さいため、グラファイト等の負極材料を用いた場合には、高い充放電容量の実現が困難である。 A secondary battery using the lithium composite oxide of Non-Patent Document 1 as a positive electrode material has an advantage of having a large discharge capacity. However, since there is a region where the voltage drops sharply during discharging, it may be difficult to detect the charge rate. By using the lithium composite oxide of Non-Patent Document 2, a sudden voltage drop at the time of discharge can be suppressed. However, since the secondary battery using this positive electrode material has a small charge capacity, it is difficult to realize a high charge / discharge capacity when a negative electrode material such as graphite is used.

このように、従来のリチウム複合酸化物を用いた正極活物質には更なる改善の余地がある。本発明は、上記に鑑みてなされたものであり、正極活物質として有用なリチウム複合酸化物の提供を目的とする。 As described above, there is room for further improvement in the conventional positive electrode active material using the lithium composite oxide. The present invention has been made in view of the above, and an object of the present invention is to provide a lithium composite oxide useful as a positive electrode active material.

本発明者らは、所定のリチウムナトリウム複合酸化物にリチウムを化学挿入したリチウム複合酸化物を、正極活物質として用いることにより、二次電池の初期充電容量が増大し、高容量化が可能であることを見出し、本発明に至った。 By using a lithium composite oxide in which lithium is chemically inserted into a predetermined lithium sodium composite oxide as a positive electrode active material, the present inventors can increase the initial charge capacity of the secondary battery and increase the capacity. We found that there was, and came to the present invention.

本発明のリチウム複合酸化物は、組成式LiNaNi1/3Mn2/3で表される。式中、0.7≦x≦0.9、0<y≦0.05である。組成式におけるナトリウム量yは、好ましくは、0.001≦y≦0.002を満たす。リチウム複合酸化物は、層状岩塩型構造の結晶構造を有するものが好ましい。 The lithium composite oxide of the present invention is represented by the composition formula Li x N y Ni 1/3 Mn 2/3 O 2 . In the formula, 0.7 ≦ x ≦ 0.9 and 0 <y ≦ 0.05. The amount of sodium y in the composition formula preferably satisfies 0.001 ≦ y ≦ 0.002. The lithium composite oxide preferably has a crystal structure having a layered rock salt structure.

本発明のリチウム複合酸化物は、650〜900ppmの範囲に、Li−NMRの主共鳴ピークの極大を有する。主共鳴ピークの半値幅は200〜450ppmが好ましい。リチウム複合酸化物は、Li−NMRの主共鳴ピークが、波形解析により2以上のピークに分離可能であるものが好ましい。Li−NMRの主共鳴ピークを波形解析により1以上のピークに分離した際に、波形解析により得られたピークの少なくとも1つは、650〜750ppmの範囲にピーク極大を有することが好ましい。 The lithium composite oxide of the present invention has a maximum of the main resonance peak of 6 Li-NMR in the range of 650 to 900 ppm. The half width of the main resonance peak is preferably 200 to 450 ppm. The lithium composite oxide is preferably one in which the main resonance peak of 6 Li-NMR can be separated into two or more peaks by waveform analysis. 6 When the main resonance peak of Li-NMR is separated into one or more peaks by waveform analysis, at least one of the peaks obtained by waveform analysis preferably has a peak maximum in the range of 650 to 750 ppm.

上記のリチウム複合酸化物は、例えば、組成式LiNa2/3−zNi1/3Mn2/3で表され(0.33≦z≦0.63)、結晶構造が層状岩塩型構造であるリチウムナトリウム複合酸化物に、リチウムイオンを化学挿入することにより得られる。リチウムイオンを化学挿入後の組成式におけるリチウム量xと、リチウムイオンを化学挿入前の組成式におけるリチウム量zとの差が、0.2≦x−z≦0.5を満たすことが好ましい。 The above lithium composite oxide is, for example, expressed by a composition formula Li z Na 2/3-z Ni 1/3 Mn 2/3 O 2 (0.33 ≦ z ≦ 0.63), the crystal structure is layered rock salt It is obtained by chemically inserting lithium ions into a lithium-sodium composite oxide having a mold structure. It is preferable that the difference between the amount of lithium x in the composition formula after the chemical insertion of lithium ions and the amount of lithium z in the composition formula before the chemical insertion of lithium ions satisfies 0.2 ≦ x−z ≦ 0.5.

リチウムイオンの化学挿入は、例えば、リチウムナトリウム複合酸化物を、ヨウ化リチウム等のリチウム塩溶液中、20℃〜200℃で処理することにより行われる。リチウム塩溶液の溶媒としては、アセトニトリル等が好ましく用いられる。 The chemical insertion of lithium ions is carried out, for example, by treating a lithium sodium composite oxide in a lithium salt solution such as lithium iodide at 20 ° C to 200 ° C. Acetonitrile or the like is preferably used as the solvent for the lithium salt solution.

さらに、本発明は上記のリチウム複合酸化物を含む正極活物質、および当該正極活物質を正極材料とする二次電池に関する。 Furthermore, the present invention relates to the above-mentioned positive electrode active material containing a lithium composite oxide, and a secondary battery using the positive electrode active material as a positive electrode material.

本発明のリチウム複合酸化物を、リチウム二次電池の正極活物質として使用することにより、高容量の二次電池が得られる。 By using the lithium composite oxide of the present invention as the positive electrode active material of the lithium secondary battery, a high capacity secondary battery can be obtained.

リチウム複合酸化物の合成経路の一例を示す図である。It is a figure which shows an example of the synthetic pathway of a lithium composite oxide. 二次電池の一例を模式的に示す部分断面図である。It is a partial cross-sectional view schematically showing an example of a secondary battery. 実施例のリチウム複合酸化物のLi‐NMRスペクトルである。 6 Li-NMR spectrum of the lithium composite oxide of the example. 実施例1のリチウム複合酸化物のLi‐NMRスペクトルの波形解析結果である。It is a waveform analysis result of the 6- Li-NMR spectrum of the lithium composite oxide of Example 1. 実施例2のリチウム複合酸化物のLi‐NMRスペクトルの波形解析結果である。It is a waveform analysis result of the 6- Li-NMR spectrum of the lithium composite oxide of Example 2. 実施例3のリチウム複合酸化物のLi‐NMRスペクトルの波形解析結果である。It is a waveform analysis result of the 6- Li-NMR spectrum of the lithium composite oxide of Example 3. 実施例4のリチウム複合酸化物のLi‐NMRスペクトルの波形解析結果である。It is a waveform analysis result of 6 Li-NMR spectrum of the lithium composite oxide of Example 4. リチウム複合酸化物のリチウム挿入前後のLi‐NMRスペクトルである。It is a 6 Li-NMR spectrum before and after lithium insertion of a lithium composite oxide. 出発物質およびイオン交換体の粉末X線回折図形である。It is a powder X-ray diffraction pattern of a starting material and an ion exchanger. 熱処理体の粉末X線回折図形である。It is a powder X-ray diffraction pattern of a heat-treated body. 実施例のリチウム複合酸化物(リチウム挿入体)および比較例のリチウム複合酸化物(熱処理体)の粉末X線回折図形である。It is a powder X-ray diffraction pattern of the lithium composite oxide (lithium insert) of the example and the lithium composite oxide (heat-treated body) of the comparative example. 実施例、参考例および比較例の二次電池の充放電試験結果のグラフである。It is a graph of the charge / discharge test result of the secondary battery of an Example, a reference example and a comparative example. 実施例の二次電池の充放電試験結果のグラフである。It is a graph of the charge / discharge test result of the secondary battery of an Example.

[リチウムナトリウム複合酸化物]
本発明のリチウム複合酸化物は、式LiNaNi1/3Mn2/3で表される組成を有する。式中、0.7≦x≦0.9であり、0<y≦0.05である。本発明のリチウム複合酸化物は、リチウム二次電池の正極活物質として好適に用いられる。
[Lithium sodium composite oxide]
The lithium composite oxide of the present invention has a composition represented by the formula Li x N y Ni 1/3 Mn 2/3 O 2 . In the formula, 0.7 ≦ x ≦ 0.9 and 0 <y ≦ 0.05. The lithium composite oxide of the present invention is suitably used as a positive electrode active material for a lithium secondary battery.

Li,Na,NiおよびMnを含む一般的な複合酸化物は、組成式(LiNa2/3−p)(NiMn1−q)Oで表され、ニッケルとマンガンの合計1モルに対するリチウムとナトリウムの合計が2/3モルであり、リチウム欠損系である。これに対して、本発明のリチウム複合酸化物は、化学挿入等によりリチウムを挿入することにより、リチウム量が2/3を超えているため、初期充電容量が大きいとの特徴を有する。上記組成式におけるリチウム量xは、0.75以上が好ましく、0.8以上がより好ましい。 A general composite oxide containing Li, Na, Ni and Mn is represented by the composition formula (Li p Na 2 / 3-p ) (Ni q Mn 1-q ) O 2 , and a total of 1 mol of nickel and manganese. The total amount of lithium and sodium is 2/3 mol, which is a lithium-deficient system. On the other hand, the lithium composite oxide of the present invention has a feature that the initial charge capacity is large because the amount of lithium exceeds 2/3 by inserting lithium by chemical insertion or the like. The amount of lithium x in the above composition formula is preferably 0.75 or more, more preferably 0.8 or more.

上記組成式におけるナトリウム量yは、0.02以下が好ましい。残存ナトリウム量yを小さくすることにより、リチウム量xが増大し、充電特性が向上する傾向がある。一方、ナトリウムを完全にリチウムに置換することは困難であるため、一般にナトリウム量yは0より大きい。ナトリウム量yは、0.001〜0.02が好ましい。 The sodium amount y in the above composition formula is preferably 0.02 or less. By reducing the residual sodium amount y, the lithium amount x tends to increase and the charging characteristics tend to improve. On the other hand, since it is difficult to completely replace sodium with lithium, the amount of sodium y is generally larger than 0. The amount of sodium y is preferably 0.001 to 0.02.

リチウム複合酸化物には、副生相としてNiOが含まれていてもよい。リチウム複合酸化物は、リチウムサイトまたはナトリウムサイトの一部に水素が存在してもよい。リチウムサイトまたはナトリウムサイトの一部に水素が存在する場合、リチウム複合酸化物は組成式LiNaNi1/3Mn2/3で表される。組成式中の水素量aは0.01以下が好ましく、0.005以下がより好ましく、0.001以下がさらに好ましい。リチウム複合酸化物は、酸素欠損を有していてもよい。酸素欠損を有するリチウム複合酸化物は、組成式LiNaNi1/3Mn2/32―bで表される。組成式中の酸素欠損量bは0.1以下が好ましく、0.01以下がより好ましく、0.005以下がさらに好ましい。 The lithium composite oxide may contain NiO as a by-product phase. The lithium composite oxide may have hydrogen present in a part of lithium sites or sodium sites. If hydrogen is present in a part of the lithium sites or sodium site, lithium composite oxide represented by the composition formula Li x Na y H a Ni 1/3 Mn 2/3 O 2. The amount of hydrogen a in the composition formula is preferably 0.01 or less, more preferably 0.005 or less, and even more preferably 0.001 or less. The lithium composite oxide may have an oxygen deficiency. The lithium composite oxide having an oxygen deficiency is represented by the composition formula Li x N y H w Ni 1/3 Mn 2/3 O 2-b . The oxygen deficiency amount b in the composition formula is preferably 0.1 or less, more preferably 0.01 or less, and even more preferably 0.005 or less.

リチウム複合酸化物の結晶構造は、層状岩塩型構造が好ましい。リチウムに酸素が6配位した配位多面体の層状構造は、空間群R−3mで表される結晶構造を有する。例えば、6つの酸素原子で構成される八面体の中心にリチウムが存在するO3構造が挙げられる。その他に、4つの酸素原子で構成される四面体の中心にリチウムが存在するスピネル構造や、6つの酸素原子で構成される三角柱の中心にリチウムが存在するP3構造が一部に含まれていてもよい。リチウムは、遷移金属酸化物層間のほか、遷移金属酸化物層内に存在してもよい。 The crystal structure of the lithium composite oxide is preferably a layered rock salt type structure. The layered structure of the coordinated polyhedron in which oxygen is coordinated to lithium has a crystal structure represented by the space group R-3 m. For example, there is an O3 structure in which lithium is present in the center of an octahedron composed of six oxygen atoms. In addition, a spinel structure in which lithium is present in the center of a tetrahedron composed of four oxygen atoms and a P3 structure in which lithium is present in the center of a triangular prism composed of six oxygen atoms are partially included. May be good. Lithium may be present in the transition metal oxide layer as well as in the transition metal oxide layer.

本発明のリチウム複合酸化物は、Li−NMRのスペクトル形状が特徴的であり、650〜900ppmの範囲に、Li−NMRの主共鳴ピークの極大を有する。この主共鳴ピークは、ブロードであり、酸素の配位状態が異なるリチウム相が混在していると考えられる。650〜900ppmの範囲に極大を有する主共鳴ピークは、半値幅が200〜450ppmであることが好ましく、270〜430ppmがより好ましく、300〜420ppmがさらに好ましい。 Lithium composite oxide of the present invention, the spectral shape of the 6 Li-NMR is characterized, in the range of 650~900Ppm, having a maximum of the main resonance peak of 6 Li-NMR. This main resonance peak is broad, and it is considered that lithium phases having different oxygen coordination states are mixed. The main resonance peak having a maximum in the range of 650 to 900 ppm preferably has a half width of 200 to 450 ppm, more preferably 270 to 430 ppm, and even more preferably 300 to 420 ppm.

Li−NMRの主共鳴ピークは、波形解析により複数のピークに分離できる場合がある。波形解析により得られたピークの少なくとも1つは、650〜750ppmの範囲にピーク極大を有することが好ましい。 6 The main resonance peak of Li-NMR may be separated into a plurality of peaks by waveform analysis. At least one of the peaks obtained by the waveform analysis preferably has a peak maximum in the range of 650 to 750 ppm.

[リチウム複合酸化物の製造方法]
上記のリチウム複合酸化物の合成経路の一例を図1に示す。図1に示す合成方法では、出発物質としてP3構造のNa2/3Ni1/3Mn2/3が用いられる。出発物質のナトリウムの一部をリチウムにイオン交換することにより、組成式LiNa2/3−zNi1/3Mn2/3で表されるイオン交換体が得られる。このイオン交換体を酸素含有雰囲気下で熱処理することにより熱処理体が得られる。熱処理体にリチウムイオンを化学挿入することにより、組成式LiNaNi1/3Mn2/3で表される上記のリチウム複合酸化物が得られる。
[Manufacturing method of lithium composite oxide]
An example of the synthetic route of the above lithium composite oxide is shown in FIG. In the synthesis method shown in FIG. 1, Na 2/3 Ni 1/3 Mn 2/3 O 2 having a P3 structure is used as a starting material. By ion exchange some of the sodium of the starting materials in lithium ion exchangers represented by the composition formula Li z Na 2/3-z Ni 1/3 Mn 2/3 O 2 can be obtained. A heat-treated body can be obtained by heat-treating this ion exchanger in an oxygen-containing atmosphere. By chemically inserting lithium ions into the heat-treated body, the above-mentioned lithium composite oxide represented by the composition formula Li x N y Ni 1/3 Mn 2/3 O 2 can be obtained.

(出発物質)
P3構造のNa2/3Ni1/3Mn2/3は、ナトリウムに酸素が6配位した配位多面体の層状構造を有し、空間群R3mで表される。ナトリウムは、6つの酸素原子で構成される三角柱の中心に存在し、単位格子あたり遷移金属酸化物層が3層存在する。出発物質には、副生相としてNiOが含まれていてもよい。
(Starting substance)
Na 2/3 Ni 1/3 Mn 2/3 O 2 having a P3 structure has a layered structure of a coordinated polyhedron in which oxygen is coordinated with sodium, and is represented by a space group R3 m. Sodium exists in the center of a triangular prism composed of six oxygen atoms, and there are three transition metal oxide layers per unit cell. The starting material may contain NiO as a by-product phase.

出発物質としてのP3構造を有するNa2/3Ni1/3Mn2/3は、公知の方法により製造でき、例えば、ナトリウム原料、ニッケル原料およびマンガン原料を、Na:Ni:Mn=2:1:2となるように秤量・混合し、空気中等の酸素ガス存在雰囲気中で加熱することにより得られる。ナトリウムは加熱時に揮発しやすいため、ナトリウム原料の仕込み量が若干過剰となるようにしてもよい。 Na 2/3 Ni 1/3 Mn 2/3 O 2 having a P3 structure as a starting material can be produced by a known method, and for example, a sodium raw material, a nickel raw material and a manganese raw material can be produced as Na: Ni: Mn = 2. It is obtained by weighing and mixing in a ratio of 1: 2 and heating in an atmosphere in which oxygen gas is present, such as in air. Since sodium easily volatilizes when heated, the amount of sodium raw material charged may be slightly excessive.

ナトリウム原料としては、金属ナトリウムおよびナトリウム化合物が挙げられる。ナトリウム化合物としては、CHCOONa、CHCOONa・3HO等の酢酸塩;NaNO等の硝酸塩;NaCO等の炭酸塩;NaOH等の水酸化物;NaO、Na等の酸化物が挙げられる。これらの中では、酢酸塩が好ましく、CHCOONaがより好ましい。 Examples of the sodium raw material include metallic sodium and sodium compounds. Examples of sodium compounds include acetates such as CH 3 COONa and CH 3 COONa · 3H 2 O; nitrates such as NaNO 3 ; carbonates such as Na 2 CO 3 ; hydroxides such as NaOH; Na 2 O, Na 2 O. Oxides of the second magnitude can be mentioned. Of these, acetate is preferred, and CH 3 COONa is more preferred.

ニッケル原料としては、金属ニッケルおよびニッケル化合物が挙げられる。ニッケル化合物としては、NiO等の酸化物;NiOH、Ni(OH)、NiOOH等の水酸化物等が挙げられる。これらの中では、ニッケル水酸化物が好ましく、Ni(OH)がより好ましい。 Nickel raw materials include metallic nickel and nickel compounds. Examples of the nickel compound include oxides such as NiO; hydroxides such as NiOH, Ni (OH) 2 , and NiOOH. Among these, nickel hydroxide is preferable, and Ni (OH) 2 is more preferable.

マンガン原料としては、金属マンガンおよびマンガン化合物が挙げられる。マンガン化合物としては、MnO、Mn、Mn、MnO等の酸化物;MnOH、MnOOH等の水酸化物等が挙げられる。これらの中では、マンガン酸化物等が好ましく、Mnがより好ましい。 Examples of the manganese raw material include metallic manganese and manganese compounds. Examples of the manganese compound include oxides such as MnO, Mn 2 O 3 , Mn 3 O 4 , and MnO 2 ; hydroxides such as MnOH and MnOOH. Among these, manganese oxide and the like are preferable, and Mn 2 O 3 is more preferable.

上記出発物質の製造には、ナトリウム、ニッケルおよびマンガンの中の2種類以上を含有する化合物を用いることもできる。このような原料としては、NaMnO等のナトリウムマンガン酸化物、NaNiO等のナトリウムニッケル酸化物、マンガンニッケル水酸化物等が挙げられる。 A compound containing two or more of sodium, nickel and manganese can also be used in the production of the starting material. Such material, NaMnO 2 and sodium manganese oxide, sodium nickel oxide such as NaNiO 2, include manganese-nickel hydroxide and the like.

原料の混合方法は特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式または乾式で混合すればよい。混合物の焼成温度は、原料に応じて適宜設定すればよく、通常は、400〜900℃程度、好ましくは450〜800℃程度である。焼成時間は、焼成温度等に応じて設定すればよい。冷却方法も特に限定されず、通常は自然放冷(炉内放冷)または徐冷とすればよい。冷却の際、ナトリウムが空気中の水分のプロトンと交換される場合がある。ナトリウムがプロトンに交換された場合、出発物質は、Na2/3−vNi1/3Mn2/3の組成式を有する。一般に、vは0.1以下である。 The method of mixing the raw materials is not particularly limited, and the raw materials may be mixed wet or dry using, for example, a known mixer such as a mixer. The firing temperature of the mixture may be appropriately set according to the raw material, and is usually about 400 to 900 ° C., preferably about 450 to 800 ° C. The firing time may be set according to the firing temperature and the like. The cooling method is not particularly limited, and usually, natural cooling (cooling in a furnace) or slow cooling may be used. During cooling, sodium may be exchanged for protons of moisture in the air. When sodium is exchanged for protons, the starting material has a composition formula of Na 2 / 3-v H v Ni 1/3 Mn 2/3 O 2 . Generally, v is 0.1 or less.

(イオン交換)
上記により得られた出発物質のナトリウムをリチウムに交換するイオン交換反応を実施することにより、組成式LiNa2/3−zNi1/3Mn2/3で表されるイオン交換体が得られる。
(Ion exchange)
By carrying out the ion exchange reaction replacing the sodium of the starting material obtained by the above-mentioned lithium ion exchangers represented by the composition formula Li z Na 2/3-z Ni 1/3 Mn 2/3 O 2 Is obtained.

イオン交換は、例えば、出発物質とリチウム化合物とを加熱することにより行われる。イオン交換に用いられるリチウム化合物としては、硝酸リチウム、塩化リチウム、臭化リチウム、水酸化リチウム、ヨウ化リチウム等のリチウム塩が好ましく、これらを単独または2種以上組み合わせて用いることができる。加熱方法としては、リチウム化合物を含む溶液中に出発物質を加えて加熱する方法(溶液系)、および出発物質をリチウム化合物と混合して加熱する方法(溶融系)が挙げられる。 Ion exchange is carried out, for example, by heating the starting material and the lithium compound. As the lithium compound used for ion exchange, lithium salts such as lithium nitrate, lithium chloride, lithium bromide, lithium hydroxide and lithium iodide are preferable, and these can be used alone or in combination of two or more. Examples of the heating method include a method of adding a starting substance to a solution containing a lithium compound and heating (solution system), and a method of mixing the starting substance with a lithium compound and heating (melting system).

イオン交換体は、出発物質中のナトリウムの一部がリチウムに交換されずに残存していることが好ましい。組成式LiNa2/3−zNi1/3Mn2/3における残存ナトリウム量(2/3−z)は、0.04〜0.37が好ましく、0.08〜0.25がより好ましく、0.1〜0.2がさらに好ましい。これに伴って、リチウム量zは、0.33〜0.63が好ましく、0.45〜0.59がより好ましく、0.47〜0.57がさらに好ましい。出発物質と同様、イオン交換体は、ナトリウムの一部がプロトンに交換されていてもよい。また、イオン交換体には、副生相としてNiOが含まれていてもよい。 In the ion exchanger, it is preferable that a part of sodium in the starting material remains without being exchanged for lithium. The amount of residual sodium (2 / 3-z) in the composition formula Li z Na 2 / 3-z Ni 1/3 Mn 2/3 O 2 is preferably 0.04 to 0.37, preferably 0.08 to 0.25. Is more preferable, and 0.1 to 0.2 is even more preferable. Along with this, the amount of lithium z is preferably 0.33 to 0.63, more preferably 0.45 to 0.59, and even more preferably 0.47 to 0.57. Like the starting material, the ion exchanger may have a portion of sodium exchanged for protons. Further, the ion exchanger may contain NiO as a by-product phase.

ナトリウムを残存させるためには、溶液中でイオン交換を実施する方法や、出発物質に対するリチウム化合物の使用量を少なくする方法が挙げられる。リチウム量および残存ナトリウム量の制御が容易であることから、溶液中でイオン交換を行うことが好ましい。 Examples of residual sodium include a method of performing ion exchange in a solution and a method of reducing the amount of the lithium compound used as a starting material. Since it is easy to control the amount of lithium and the amount of residual sodium, it is preferable to perform ion exchange in the solution.

溶液を用いたイオン交換は、例えば、リチウム化合物を溶解させた溶液中に、出発物質の粉末を分散させ、加熱することにより行われる。溶媒としては、水、エタノール、メタノール、ブタノール、ヘキサノール、プロパノール、テトラヒドロフラン、アセトン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の極性溶媒が好ましく、これらを単独または2種以上組み合わせて用いることができる。これらの中では、エタノールまたはメタノールを用いることが好ましく、メタノールを用いることがより好ましい。 Ion exchange using a solution is carried out, for example, by dispersing the powder of the starting material in a solution in which a lithium compound is dissolved and heating the powder. The solvent is preferably a polar solvent such as water, ethanol, methanol, butanol, hexanol, propanol, tetrahydrofuran, acetone, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, formic acid, etc. Can be used. Among these, ethanol or methanol is preferably used, and methanol is more preferable.

リチウム化合物の使用量および反応温度を調整することにより、イオン交換体のリチウム量および残存ナトリウム量を調整できる。リチウム化合物の使用量は、出発物質に対してモル比で0.1〜3倍が好ましく、0.5〜2.5倍がより好ましく、1〜2倍がさらに好ましい。イオン交換処理の温度は、通常50〜300℃であり、好ましくは60〜200℃の範囲である。処理時間は、通常1〜60時間、好ましくは3〜24時間である。処理温度を一定に保つ観点から、還流加熱によりイオン交換を実施することが好ましい。イオン交換後、生成物をエタノールまたはメタノール等で洗浄し、乾燥させることにより、イオン交換体が得られる。 By adjusting the amount of the lithium compound used and the reaction temperature, the amount of lithium and the amount of residual sodium in the ion exchanger can be adjusted. The amount of the lithium compound used is preferably 0.1 to 3 times, more preferably 0.5 to 2.5 times, and even more preferably 1 to 2 times the molar ratio with respect to the starting material. The temperature of the ion exchange treatment is usually 50 to 300 ° C, preferably 60 to 200 ° C. The treatment time is usually 1 to 60 hours, preferably 3 to 24 hours. From the viewpoint of keeping the treatment temperature constant, it is preferable to carry out ion exchange by reflux heating. After ion exchange, the product is washed with ethanol, methanol, or the like and dried to obtain an ion exchanger.

P3構造を有するNa2/3Ni1/3Mn2/3のナトリウムの略全量がリチウムに交換されたLi2/3Ni1/3Mn2/3はO3構造を有する。O3構造のLi2/3Ni1/3Mn2/3は、リチウムに酸素が6配位した配位多面体の層状構造し、空間群R−3mで表される。リチウムは6つの酸素原子で構成される八面体の中心に存在し、単位格子あたり遷移金属酸化物層が3層存在する。 Li 2/3 Ni 1/3 Mn 2/3 O 2 having a P3 structure in which substantially all of the sodium in Na 2/3 Ni 1/3 Mn 2/3 O 2 has been exchanged for lithium has an O3 structure. Li 2/3 Ni 1/3 Mn 2/3 O 2 having an O3 structure has a layered structure of a coordinated polyhedron in which oxygen is coordinated to lithium, and is represented by a space group R-3 m. Lithium exists in the center of an octahedron composed of six oxygen atoms, and there are three transition metal oxide layers per unit cell.

一方、上記のように出発物質中のナトリウムの一部がリチウムに交換されずに残存している場合、イオン交換体は、粉末X線回折において、P3構造のナトリウム複合酸化物およびO3構造のリチウム複合酸化物のいずれのピークとも合致しないピークが存在する(図9参照)。すなわち、一部のナトリウムが残存したイオン交換体は、P3構造のナトリウム複合酸化物およびO3構造のリチウム複合酸化物の単純な混合物ではなく、両者の中間的な結晶構造を有すると考えられる。 On the other hand, when a part of sodium in the starting material remains without being exchanged for lithium as described above, the ion exchanger is a sodium composite oxide having a P3 structure and lithium having an O3 structure in powder X-ray diffraction. There is a peak that does not match any of the peaks of the composite oxide (see FIG. 9). That is, it is considered that the ion exchanger in which a part of sodium remains is not a simple mixture of a sodium composite oxide having a P3 structure and a lithium composite oxide having an O3 structure, but has an intermediate crystal structure between the two.

(熱処理)
上記により得られたイオン交換体を熱処理することにより、熱処理体が得られる。熱処理温度は、300〜800℃が好ましく、350〜750℃がより好ましく、400〜700℃がさらに好ましい。熱処理雰囲気は特に限定されず、大気中(空気雰囲気)、真空、酸化性雰囲気、還元性雰囲気、不活性雰囲気等が挙げられる。これらの中では、空気雰囲気下または酸化性雰囲気下で熱処理を行うことが好ましい。酸化性雰囲気下で熱処理を行う場合、実質的に酸素のみを含む酸素雰囲気下で熱処理を行ってもよい。熱処理時間は、熱処理温度に応じて適宜設定すればよく、通常は1〜6時間程度であり、好ましくは1〜5時間である。熱処理後の冷却方法としては、自然放冷(炉内放冷)、徐冷等が挙げられる。
(Heat treatment)
A heat-treated body can be obtained by heat-treating the ion exchanger obtained as described above. The heat treatment temperature is preferably 300 to 800 ° C., more preferably 350 to 750 ° C., and even more preferably 400 to 700 ° C. The heat treatment atmosphere is not particularly limited, and examples thereof include an atmosphere (air atmosphere), a vacuum, an oxidizing atmosphere, a reducing atmosphere, and an inert atmosphere. Among these, it is preferable to perform the heat treatment in an air atmosphere or an oxidizing atmosphere. When the heat treatment is performed in an oxidizing atmosphere, the heat treatment may be performed in an oxygen atmosphere containing substantially only oxygen. The heat treatment time may be appropriately set according to the heat treatment temperature, and is usually about 1 to 6 hours, preferably 1 to 5 hours. Examples of the cooling method after the heat treatment include natural cooling (cooling in a furnace) and slow cooling.

熱処理により酸素欠損が導入される場合があることを除いて、熱処理体は、熱処理前のイオン交換体と同様の化学組成を有している。すなわち、熱処理体におけるLi、Na、NiおよびMnの比率は、イオン交換体における比率と略同一である。一方、熱処理により結晶構造には変化がみられ、ナトリウムに酸素が6配位した配位多面体の層状構造およびリチウムに酸素が6配位した配位多面体の層状構造に加えて、リチウムに酸素が4配位したスピネル構造が含まれている(図10参照)。これは、熱処理によって、リチウムに酸素が6配位した配位多面体の層状構造を構成する遷移金属酸化物層がリチウム層に移動するためと考えられる。 The heat-treated body has the same chemical composition as the ion exchanger before the heat treatment, except that oxygen deficiency may be introduced by the heat treatment. That is, the ratio of Li, Na, Ni and Mn in the heat-treated body is substantially the same as the ratio in the ion exchanger. On the other hand, the crystal structure was changed by the heat treatment, and in addition to the layered structure of the coordinated polyhedron in which oxygen was 6-coordinated to sodium and the layered structure of the coordinated polyhedron in which oxygen was 6-coordinated to lithium, oxygen was added to lithium. It contains a 4-coordinated spinel structure (see FIG. 10). It is considered that this is because the transition metal oxide layer forming the layered structure of the coordinated polyhedron in which oxygen is coordinated to lithium is moved to the lithium layer by the heat treatment.

(リチウム挿入)
上記により得られた熱処理体にリチウムを化学挿入することにより、組成式LiNaNi1/3Mn2/3で表されるリチウム挿入体が得られる。リチウム挿入処理では、熱処理体のナトリウムがリチウムに交換されるとともに、空サイトにリチウムが挿入される。そのため、LiNaNi1/3Mn2/3で表されるリチウム挿入体のリチウム量xは2/3よりも大きい。ナトリウム量yは、リチウム挿入前の熱処理体のナトリウム量(2/3−z)よりも小さい。
(Lithium insertion)
By chemically inserting lithium into the heat-treated body obtained as described above, a lithium insert represented by the composition formula Li x N y Ni 1/3 Mn 2/3 O 2 can be obtained. In the lithium insertion process, sodium in the heat-treated body is replaced with lithium, and lithium is inserted into the empty site. Therefore, the lithium amount x of the lithium insert represented by Li x N y Ni 1/3 Mn 2/3 O 2 is larger than 2/3. The sodium amount y is smaller than the sodium amount (2 / 3-z) of the heat-treated body before lithium insertion.

熱処理体へのリチウムの挿入は、例えば、リチウム塩溶液中で行われる。リチウム塩としては、イオン交換に用いられるリチウム化合物として前述したものが好ましく用いられ、中でもヨウ化リチウムが好ましい。ヨウ化リチウムと他のリチウム塩を併用してもよい。溶媒としてはイオン交換に用いられる溶媒として前述したものが好ましく用いられ、中でもアセトニトリルが好ましい。 Insertion of lithium into the heat-treated body is performed, for example, in a lithium salt solution. As the lithium salt, the above-mentioned lithium compound is preferably used as the lithium compound used for ion exchange, and among them, lithium iodide is preferable. Lithium iodide and other lithium salts may be used in combination. As the solvent, the above-mentioned solvent is preferably used as the solvent used for ion exchange, and acetonitrile is particularly preferable.

リチウム塩の使用量および反応温度を調整することにより、リチウム挿入量を調整できる。リチウム塩の使用量は、熱処理体に対してモル比で0.5〜5倍が好ましく、1〜3倍がより好ましい。リチウム挿入処理の温度は、20〜200℃が好ましく、50〜180℃がより好ましい。処理時間は、通常1〜60時間、好ましくは3〜24時間である。処理温度を一定に保つ観点から、還流加熱によりリチウム挿入を実施することが好ましい。リチウム挿入後、生成物をエタノールまたはメタノール等で洗浄し、乾燥させることにより、リチウム挿入体が得られる。 The amount of lithium inserted can be adjusted by adjusting the amount of lithium salt used and the reaction temperature. The amount of the lithium salt used is preferably 0.5 to 5 times, more preferably 1 to 3 times, the molar ratio with respect to the heat-treated body. The temperature of the lithium insertion treatment is preferably 20 to 200 ° C, more preferably 50 to 180 ° C. The treatment time is usually 1 to 60 hours, preferably 3 to 24 hours. From the viewpoint of keeping the treatment temperature constant, it is preferable to insert lithium by reflux heating. After inserting lithium, the product is washed with ethanol, methanol or the like and dried to obtain a lithium insert.

前述のように、組成式LiNaNi1/3Mn2/3で表されるリチウム挿入体のリチウム量xは、2/3より大きく、0.7〜0.9である。リチウム挿入体におけるリチウム量xと、組成式LiNa2/3−zNi1/3Mn2/3で表される熱処理体のリチウム量zとの差、すなわちリチウムの挿入量x−zは、0.2≦x−z≦0.5を満たすことが好ましい。 As described above, the lithium amount x of the lithium insert represented by the composition formula Li x N y Ni 1/3 Mn 2/3 O 2 is larger than 2/3 and is 0.7 to 0.9. The difference between the amount of lithium x, the composition formula Li z Na 2/3-z Ni 1/3 Mn 2/3 O 2 with lithium amount z of heat treatment bodies represented in the lithium insertion material, i.e. the insertion amount of lithium x- It is preferable that z satisfies 0.2 ≦ x−z ≦ 0.5.

リチウム挿入により、熱処理体に残存していたナトリウムの大半がリチウムに交換されるため、リチウム挿入体のX線回折パターンは、組成式Li2/3Ni1/3Mn2/3で表されるO3構造のリチウム複合酸化物のX線回折パターンと類似している。一方、P3構造のNa2/3Ni1/3Mn2/3のイオン交換により導入されたリチウム、熱処理体の残存ナトリウムのイオン交換により導入されたリチウム、および空サイトに導入されたリチウムは、酸素との配位状態(配位の強さや電子密度等)が相違すると考えられる。これに伴って、電子状態の異なるリチウムが存在するために、Li−NMRの主共鳴ピークがブロード化し、波形解析により複数の相(ピーク)が観測されると推定される。 Since most of the sodium remaining in the heat-treated body is replaced with lithium by lithium insertion, the X-ray diffraction pattern of the lithium insert is represented by the composition formula Li 2/3 Ni 1/3 Mn 2/3 O 2 . It is similar to the X-ray diffraction pattern of the lithium composite oxide having an O3 structure. On the other hand, lithium introduced by ion exchange of Na 2/3 Ni 1/3 Mn 2/3 O 2 having a P3 structure, lithium introduced by ion exchange of residual sodium in the heat-treated body, and lithium introduced into an empty site. Is considered to be different from oxygen in the coordination state (coordination strength, electron density, etc.). Along with this, it is estimated that the main resonance peak of 6 Li-NMR becomes broad due to the presence of lithium having different electronic states, and a plurality of phases (peaks) are observed by waveform analysis.

[二次電池用正極活物質および二次電池]
本発明の二次電池用正極活物質は、リチウム二次電池の正極に用いられ、上記リチウム複合酸化物(リチウム挿入体)を主成分とする。正極活物質における上記リチウム複合酸化物の含有量は、51重量%以上が好ましく、70重量%以上がより好ましく、90重量%以上がさらに好ましい。本発明の機能を損なわない限りにおいて、二次電池用正極活物質には、主成分以外の成分が含まれていてもよい。二次電池用正極活物質は、上記のリチウム複合酸化物を1種のみ含んでいてもよく、2種以上含んでいてもよい。
[Positive electrode active material for secondary batteries and secondary batteries]
The positive electrode active material for a secondary battery of the present invention is used for the positive electrode of a lithium secondary battery, and contains the above lithium composite oxide (lithium insert) as a main component. The content of the lithium composite oxide in the positive electrode active material is preferably 51% by weight or more, more preferably 70% by weight or more, still more preferably 90% by weight or more. As long as the function of the present invention is not impaired, the positive electrode active material for a secondary battery may contain components other than the main component. The positive electrode active material for a secondary battery may contain only one type of the above lithium composite oxide, or may contain two or more types.

本発明の二次電池は、正極、負極、電解質、および必要に応じて他の電池要素を含み、正極に上記の正極活物質を含有する。本発明の二次電池は、上記リチウム複合酸化物を主成分とする正極活物質を正極に含有する以外は、従来公知の二次電池の電池要素をそのまま採用できる。本発明の二次電池は、コイン型、ボタン型、円筒型、全固体型のいずれの構成であってもよい。 The secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolyte, and if necessary, other battery elements, and the positive electrode contains the above-mentioned positive electrode active material. In the secondary battery of the present invention, the battery elements of the conventionally known secondary battery can be adopted as they are, except that the positive electrode contains the positive electrode active material containing the lithium composite oxide as a main component. The secondary battery of the present invention may have any of a coin type, a button type, a cylindrical type, and an all-solid type configuration.

図2は、リチウム二次電池の一例を模式的に示す部分断面図である。リチウム二次電池1は、負極端子2と、負極3と、電解液が含浸されたセパレータ4と、絶縁パッキング5と、正極6と、正極缶7とにより構成される。図2に示す形態では、正極缶7が下側に配置され、負極端子2が上側に配置されている。正極缶7と負極端子2とにより、リチウム二次電池1の外形が形成されている。 FIG. 2 is a partial cross-sectional view schematically showing an example of a lithium secondary battery. The lithium secondary battery 1 is composed of a negative electrode terminal 2, a negative electrode 3, a separator 4 impregnated with an electrolytic solution, an insulating packing 5, a positive electrode 6, and a positive electrode can 7. In the form shown in FIG. 2, the positive electrode can 7 is arranged on the lower side, and the negative electrode terminal 2 is arranged on the upper side. The outer shape of the lithium secondary battery 1 is formed by the positive electrode can 7 and the negative electrode terminal 2.

正極缶7と負極端子2との間には、下側から順に正極6と負極3とが層状に設けられる。正極6と負極3との間には、双方を互いに隔てる電解液が含浸されたセパレータ4が介在している。正極缶7と負極端子2は、絶縁パッキング5で電気的に絶縁されている。 Between the positive electrode can 7 and the negative electrode terminal 2, the positive electrode 6 and the negative electrode 3 are provided in layers in order from the bottom. A separator 4 impregnated with an electrolytic solution that separates the positive electrode 6 and the negative electrode 3 is interposed between the positive electrode 6 and the negative electrode 3. The positive electrode can 7 and the negative electrode terminal 2 are electrically insulated by the insulating packing 5.

正極6は、上述の正極活物質に、必要に応じて導電剤や結着剤等を配合して正極合材を調製し、これを集電体に圧着することにより作製できる。集電体としては、ステンレスメッシュ、アルミ箔等を用いることができる。導電剤としては、アセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、テトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。正極合材における正極活物質、導電剤および結着剤等の配合は特に限定されない。例えば、導電剤が1〜30重量%程度(好ましくは5〜25重量%)、結着剤が0〜30重量%(好ましくは3〜10重量%)とし、残部が正極活物質となるように配合される。 The positive electrode 6 can be produced by blending the above-mentioned positive electrode active material with a conductive agent, a binder, or the like as necessary to prepare a positive electrode mixture, which is then pressure-bonded to a current collector. As the current collector, a stainless mesh, aluminum foil, or the like can be used. As the conductive agent, acetylene black, Ketjen black and the like can be used. As the binder, tetrafluoroethylene, polyvinylidene fluoride or the like can be used. The composition of the positive electrode active material, the conductive agent, the binder and the like in the positive electrode mixture is not particularly limited. For example, the conductive agent is about 1 to 30% by weight (preferably 5 to 25% by weight), the binder is 0 to 30% by weight (preferably 3 to 10% by weight), and the balance is the positive electrode active material. It is mixed.

上記正極に対する対極としては、負極として機能し、リチウムを吸蔵・放出可能な公知のものを採用でき、その材料としては、金属リチウム、リチウム合金等の金属系材料や、黒鉛、MCMB(メソカーボンマイクロビーズ)等の炭素系材料が挙げられる。 As the counter electrode to the positive electrode, a known material that functions as a negative electrode and can occlude and release lithium can be adopted, and the material thereof is a metallic material such as metallic lithium or lithium alloy, graphite, MCMB (mesocarbon micro). Examples include carbon-based materials such as beads).

セパレータ、電池容器等には、公知の電池要素を採用できる。電解質としても公知の電解液や固体電解質等を採用できる。例えば、電解液としては、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)等の溶媒に溶解させたものを用いることができる。全固体型二次電池では、電解質として、例えば、ポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖またはポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物等のポリマー系固体電解質の他、硫化物系固体電解質、酸化物系固体電解質等を用いることができる。 Known battery elements can be used for the separator, battery container, and the like. As the electrolyte, a known electrolyte, a solid electrolyte, or the like can be adopted. For example, as the electrolytic solution, an electrolyte such as lithium perchlorate or lithium hexafluorophosphate is used as a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), and diethyl carbonate (DEC). A dissolved product can be used. In the all-solid type secondary battery, as the electrolyte, for example, a polymer-based solid electrolyte such as a polyethylene oxide-based polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain, and a sulfide. A system-based solid electrolyte, an oxide-based solid electrolyte, or the like can be used.

本発明のリチウム複合酸化物を正極活物質として使用することにより、二次電池を高容量化できることに加えて、放電時の急激な電圧降下を抑制できる。そのため、放電時に電圧が急激に降下しない領域では、二次電池を実装した際の充電率の検知を容易かつ低コストで行うことができる。 By using the lithium composite oxide of the present invention as the positive electrode active material, in addition to being able to increase the capacity of the secondary battery, it is possible to suppress a sudden voltage drop during discharge. Therefore, in a region where the voltage does not drop sharply during discharging, it is possible to easily detect the charge rate when the secondary battery is mounted and at low cost.

以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。以下において、酸化物の組成は、ICP発光分光分析装置(島津製作所製、ICPS-8000)により分析した。粉末X線回折は、ブルカー製、D8 ADVANCEにより測定した。 Examples of the present invention will be described below, but the present invention is not limited to these examples. In the following, the composition of the oxide was analyzed by an ICP emission spectrophotometer (ICPS-8000, manufactured by Shimadzu Corporation). Powder X-ray diffraction was measured by Bruker's D8 ADVANCE.

[出発物質の合成]
純度98.5%以上の酢酸ナトリウム(CHCOONa)粉末と、純度99.9%以上の水酸化ニッケル(II)(Ni(OH))粉末と、純度99.9%以上の酸化マンガン(III)(Mn)とを、モル比Na:Ni:Mn=0.687:0.333:0.667となるように秤量した。これらを乳鉢中でエタノールに分散させて混合後、ペレット化し、JIS規格金製るつぼに充填した。管状電気炉を用いて、酸素雰囲気中、650℃で10時間焼成した。
[Synthesis of starting material]
Sodium acetate (CH 3 COONa) powder with a purity of 98.5% or more, nickel (II) hydroxide (Ni (OH) 2 ) powder with a purity of 99.9% or more, and manganese oxide with a purity of 99.9% or more ( III) (Mn 2 O 3 ) was weighed so that the molar ratio was Na: Ni: Mn = 0.687: 0.333: 0.667. These were dispersed in ethanol in a mortar, mixed, pelletized, and filled in a JIS standard gold crucible. It was fired at 650 ° C. for 10 hours in an oxygen atmosphere using a tubular electric furnace.

得られた試料の化学組成は、Na:Ni:Mn=0.67:0.33:0.67であり、Na2/3Ni1/3Mn2/3の化学式で妥当であることが確認された。X線回折図形(図9参照)の回折パターンから、得られた試料は、菱面体晶系で空間群R3mの層状岩塩型構造であることが確認された。最小二乗法により求められた格子定数は、a=2.8865Å(誤差:0.0001Å以内)、c=16.781Å(誤差:0.001Å以内)であり、P3構造を有する公知のNa2/3Ni1/3Mn2/3の値とよく一致していた(例えば、Z. Lu et al., Chem. Mater., 12, 3583 (2000) 参照)。 The chemical composition of the obtained sample is Na: Ni: Mn = 0.67: 0.33: 0.67, and the chemical formula of Na 2/3 Ni 1/3 Mn 2/3 O 2 is valid. Was confirmed. From the diffraction pattern of the X-ray diffraction pattern (see FIG. 9), it was confirmed that the obtained sample had a layered rock salt structure of a space group R3 m in a rhombic crystal system. The lattice constants obtained by the least squares method are a = 2.8865 Å (error: within 0.0001 Å) and c = 16.781 Å (error: within 0.001 Å), and known Na 2 / having a P3 structure. It was in good agreement with the value of 3 Ni 1/3 Mn 2/3 O 2 (see, for example, Z. Lu et al., Chem. Mater., 12, 3583 (2000)).

[比較例]
<イオン交換>
上記で得られた出発物質Na0.67Ni0.33Mn0.67多結晶体と、純度99%以上の硝酸リチウム(LiNO)粉末および純度99%以上の塩化リチウム(LiCl)の混合物(モル比88:12)とを、重量比でNa0.67Ni0.33Mn0.67:(LiNO+LiCl)=1:7となるように秤量した。これらを乳鉢中で混合した後、アルミナ製るつぼに充填し、空気雰囲気下260℃の電気炉中で1時間保持して、リチウムイオン交換処理を実施した。その後、熱水で洗浄し、自然乾燥してイオン交換体を得た。
[Comparison example]
<Ion exchange>
The starting material Na 0.67 Ni 0.33 Mn 0.67 O 2 polycrystal obtained above, lithium nitrate (LiNO 3 ) powder having a purity of 99% or more, and lithium chloride (LiCl) having a purity of 99% or more. The mixture (molar ratio 88:12) was weighed so that the weight ratio was Na 0.67 Ni 0.33 Mn 0.67 O 2 : (LiNO 3 + LiCl) = 1: 7. After mixing these in a mortar, they were filled in an alumina crucible and kept in an electric furnace at 260 ° C. in an air atmosphere for 1 hour to carry out a lithium ion exchange treatment. Then, it was washed with hot water and air-dried to obtain an ion exchanger.

イオン交換体の化学組成は、Na:Li:Ni:Mn:=0.0018:0.66:0.33:0.66であった。このイオン交換体は、出発物質中のナトリウムのほぼ全量がリチウムに置換されており、Li2/3Ni1/3Mn2/3の化学式で妥当であることが確認された。粉末X線回折測定の回折パターン(図9)から、イオン交換体は、菱面体晶系で空間群R−3mの層状岩塩型構造であることが確認された。格子定数は、a=2.8666Å(誤差:0.0001Å以内)、c=14.470Å(誤差:0.001Å以内)であり、O3構造を有する公知のLi2/3Ni1/3Mn2/3の値とよく一致していた(例えば、Z. Lu et al., Chem. Mater., 12, 3583(2000) 参照)。 The chemical composition of the ion exchanger was Na: Li: Ni: Mn: = 0.0018: 0.66: 0.33: 0.66. In this ion exchanger, almost all of the sodium in the starting material was replaced with lithium, and it was confirmed that the chemical formula of Li 2/3 Ni 1/3 Mn 2/3 O 2 was valid. From the diffraction pattern of the powder X-ray diffraction measurement (FIG. 9), it was confirmed that the ion exchanger was a rhombic crystal system and had a layered rock salt structure of the space group R-3 m. The lattice constants are a = 2.8666 Å (error: within 0.0001 Å) and c = 14.470 Å (error: within 0.001 Å), and known Li 2/3 Ni 1/3 Mn 2 having an O3 structure. It was in good agreement with the value of / 3 O 2 (see, for example, Z. Lu et al., Chem. Mater., 12, 3583 (2000)).

<熱処理>
上記で得られたイオン交換体の多結晶体を粉砕し、アルミナ製るつぼに充填した。空気雰囲気下、500℃の電気炉中で5時間保持して、熱処理を行った。その後、炉内放冷により室温に戻して、熱処理体を得た。
<Heat treatment>
The polycrystal of the ion exchanger obtained above was pulverized and filled in an alumina crucible. The heat treatment was carried out by holding the mixture in an electric furnace at 500 ° C. for 5 hours in an air atmosphere. Then, the temperature was returned to room temperature by allowing to cool in the furnace to obtain a heat-treated body.

熱処理体の化学組成は、Na:Li:Ni:Mn:=0.0019:0.66:0.33:0.68であり、熱処理前のイオン交換体の組成を維持していた。粉末X線回折測定の回折パターン(図10参照)から、熱処理体は、熱処理前と同様、菱面体晶系で空間群R−3mの層状岩塩型構造を有していることが分かった。格子定数は、a=2.8855Å(誤差:0.0002Å以内)、c=14.238Å(誤差:0.002Å以内)であり、熱処理前に比べてa軸の格子定数が増加し、c軸の格子定数が減少していた。 The chemical composition of the heat-treated body was Na: Li: Ni: Mn: = 0.0019: 0.66: 0.33: 0.68, and the composition of the ion exchanger before the heat treatment was maintained. From the diffraction pattern of the powder X-ray diffraction measurement (see FIG. 10), it was found that the heat-treated body had a layered rock salt structure having a space group R-3 m in a rhombic crystal system as in the case before the heat treatment. The lattice constants are a = 2.8855 Å (error: within 0.0002 Å) and c = 14.238 Å (error: within 0.002 Å), and the lattice constant of the a-axis increases compared to before the heat treatment, and the c-axis The lattice constant of was decreasing.

[実施例1〜4および参考例]
<イオン交換>
純度99.9%以上の臭化リチウム(LiBr)粉末を純度99.8%の脱水メタノール15gに溶解させた溶液を準備した。この溶液に、上記で得られた出発物質(Na0.67Ni0.33Mn0.67の多結晶体)1.1gを投入した。LiBrメタノール溶液の調製に際しては、出発物質であるNa0.67Ni0.33Mn0.67とLiBrとが、モル比で1:AとなるようにLiBr濃度を調整した(実施例1ではA=0.4、実施例2ではA=0.8、実施例3および参考例ではA=1.6、実施例4ではA=2.0とした)。
[Examples 1 to 4 and reference example]
<Ion exchange>
A solution was prepared in which 15 g of dehydrated methanol having a purity of 99.8% was dissolved in lithium bromide (LiBr) powder having a purity of 99.9% or more. 1.1 g of the starting material (polycrystal of Na 0.67 Ni 0.33 Mn 0.67 O 2 ) obtained above was added to this solution. In the preparation of the LiBr methanol solution, the LiBr concentration was adjusted so that the starting materials Na 0.67 Ni 0.33 Mn 0.67 O 2 and LiBr had a molar ratio of 1: A (Example 1). In Example 2, A = 0.8 in Example 2, A = 1.6 in Example 3 and Reference Example, and A = 2.0 in Example 4).

次いで、ジムロート冷却器を用いて110℃で5時間還流加熱して、リチウムイオン交換処理を実施した。その後、メタノールで洗浄し、自然乾燥して、表1に示す組成のイオン交換体を得た。イオン交換体は、いずれも組成式L2/3−zNaNi1/3Mn2/3で表すことができ、出発物質中のナトリウムがリチウムに置換され、ナトリウムの一部が置換されずに残存していた。 Next, a lithium ion exchange treatment was carried out by reflux heating at 110 ° C. for 5 hours using a Dimroth condenser. Then, it was washed with methanol and air-dried to obtain an ion exchanger having the composition shown in Table 1. Each of the ion exchangers can be represented by the composition formula L 2 / 3-z Na z Ni 1/3 Mn 2/3 O 2 , in which sodium in the starting material is replaced with lithium and a part of sodium is replaced. It remained without being.

<熱処理>
上記で得られたイオン交換体の多結晶体を粉砕し、粉砕物をアルミナ製るつぼに充填した。酸素雰囲気下、500℃の電気炉中で5時間保持して、熱処理を行った。その後、炉内放冷により室温に戻して、熱処理体を得た。得られた熱処理体は、いずれも、熱処理前のイオン交換体と同一の組成を有していた。A=1.6で上記のイオン交換を行い、この熱処理までを実施したものを参考例とした。
<Heat treatment>
The polycrystal of the ion exchanger obtained above was pulverized, and the pulverized product was filled in an alumina crucible. The heat treatment was carried out by holding the mixture in an electric furnace at 500 ° C. for 5 hours in an oxygen atmosphere. Then, the temperature was returned to room temperature by allowing to cool in the furnace to obtain a heat-treated body. All of the obtained heat-treated bodies had the same composition as the ion exchanger before the heat treatment. The above-mentioned ion exchange was carried out at A = 1.6, and the heat treatment was carried out as a reference example.

<リチウム挿入>
純度99.9%以上のヨウ化リチウム(LiI)粉末を純度99.5%のアセトニトリル15gに溶解させた溶液を準備した。この溶液に、上記で得られた熱処理体1.0gを投入した。LiIのアセトニトリル溶液の調製に際しては、熱処理体であるL2/3−zNaNi1/3Mn2/3とLiIとが、モル比で1:2となるようにLiI濃度を調整した。次いで、ジムロート冷却器を用いて140℃で10時間還流加熱して、リチウムイオン挿入処理を実施した。その後、メタノールで洗浄し、自然乾燥して、表1に示す組成のリチウム挿入体を得た。
<Lithium insertion>
A solution was prepared in which lithium iodide (LiI) powder having a purity of 99.9% or more was dissolved in 15 g of acetonitrile having a purity of 99.5%. 1.0 g of the heat-treated body obtained above was added to this solution. When preparing the acetonitrile solution of LiI, the LiI concentration was adjusted so that the heat-treated L 2 / 3-z Na z Ni 1/3 Mn 2/3 O 2 and Li I had a molar ratio of 1: 2. did. Next, a lithium ion insertion treatment was carried out by reflux heating at 140 ° C. for 10 hours using a Dimroth condenser. Then, it was washed with methanol and air-dried to obtain a lithium insert having the composition shown in Table 1.

[評価]
Li‐NMR>
下記の条件により、実施例1〜4で得られたリチウム複合酸化物、ならびに実施例1および実施例4のリチウム挿入前の熱処理体の、Li固体NMR(Li MAS−NMR)を測定した。化学シフトは、1.0MのLiCl水溶液に対する相対値として記録した。
測定装置: ブルカー製 AVANCE 300 (Li共鳴周波数:44MHz)
温度: 室温
回転速度: 50kHz
パルス幅: 3.6μs(π/2パルス)
パルスシーケンス: rotor-synchronized spin-echo pulse sequence
[Evaluation]
< 6 Li-NMR>
Under the following conditions, 6 Li solid-state NMR ( 6 Li MAS-NMR) of the lithium composite oxides obtained in Examples 1 to 4 and the heat-treated bodies of Examples 1 and 4 before lithium insertion was measured. .. Chemical shifts were recorded as relative to 1.0 M aqueous 6 LiCl solution.
Measuring device: Bruker AVANCE 300 ( 6 Li resonance frequency: 44 MHz)
Temperature: Room temperature Rotation speed: 50kHz
Pulse width: 3.6 μs (π / 2 pulse)
Pulse sequence: rotor-synchronized spin-echo pulse sequence

実施例1〜4のリチウム複合酸化物の組成、ならびにLi‐NMRのピーク(極大)およびピーク半値幅を表1に示す。実施例1〜4および比較例1のリチウム複合酸化物のLi‐NMRスペクトルを図3に示す。また、実施例1および実施例4のリチウム複合酸化物のリチウム挿入前後のLi‐NMRスペクトルを、比較例1のリチウム複合酸化物のLi‐NMRスペクトルとともに図8に示す。出発物質であるNa2/3Ni1/3Mn2/3およびイオン交換体の粉末X線回折図形を図9、熱処理体の粉末X線回折図形を図10、リチウム挿入体の粉末X線回折図形を図11に示す。 Table 1 shows the composition of the lithium composite oxides of Examples 1 to 4, and the peak (maximum) and peak width at half maximum of 6 Li-NMR. The 6 Li-NMR spectra of the lithium composite oxides of Examples 1 to 4 and Comparative Example 1 are shown in FIG. Further, the 6 Li-NMR spectra of the lithium composite oxides of Examples 1 and 4 before and after lithium insertion are shown in FIG. 8 together with the 6 Li-NMR spectra of the lithium composite oxide of Comparative Example 1. The starting material Na 2/3 Ni 1/3 Mn 2/3 O 2 and the powder X-ray diffraction pattern of the ion exchanger are shown in FIG. 9, the powder X-ray diffraction pattern of the heat-treated body is shown in FIG. 10, and the lithium insert powder X is shown. The line diffraction pattern is shown in FIG.

表1に示すように、イオン交換体および熱処理体の組成は、イオン交換時に使用したリチウム塩の量Aの増加に伴ってリチウム量が多くなり、ナトリウム量が小さくなる傾向がみられた。これに対応して、X線回折パターン(図9および図10)にも、差がみられ、ナトリウム残存量が多いほど、2θ(°/CuKα)=17°付近における中間構造(O3構造およびP3構造のいずれでもない構造)のピークが大きくなっていた。 As shown in Table 1, the compositions of the ion-exchanger and the heat-treated body tended to increase the amount of lithium and decrease the amount of sodium as the amount A of the lithium salt used during the ion exchange increased. Correspondingly, there is a difference in the X-ray diffraction patterns (FIGS. 9 and 10), and the larger the residual amount of sodium, the more the intermediate structure (O3 structure and P3) near 2θ (° / CuKα) = 17 °. The peak of the structure (structure that is neither of the structures) was large.

熱処理体にリチウムイオンを化学挿入したリチウム挿入体では、イオン交換体および熱処理体における残存ナトリウム量が多いほど、リチウム挿入体における残存ナトリウム量が多い傾向がみられたが、その差はわずかであった。また、リチウム挿入体におけるリチウム量には明確な傾向はみられなかった。X線回折パターン(図11)では、中間構造のピークが消失しており、回折ピーク角にわずかな差がみられたが、実施例1〜4のリチウム複合酸化物は、いずれも比較例の熱処理体(HT‐O3‐Li0.67Ni0.33Mn0.67)と同等の回折パターンを示した。 In the lithium insert in which lithium ions were chemically inserted into the heat-treated body, the larger the amount of residual sodium in the ion exchanger and the heat-treated body, the larger the amount of residual sodium in the lithium insert tended to be, but the difference was small. Ion. In addition, there was no clear tendency for the amount of lithium in the lithium insert. In the X-ray diffraction pattern (FIG. 11), the peak of the intermediate structure disappeared and a slight difference was observed in the diffraction peak angle, but the lithium composite oxides of Examples 1 to 4 were all comparative examples. The diffraction pattern equivalent to that of the heat-treated body (HT-O3-Li 0.67 Ni 0.33 Mn 0.67 O 2 ) was shown.

一方、リチウム挿入体のLi‐NMRスペクトル(図3)には、明確な差がみられた。比較例1の焼結体は、725ppm付近に実施例1〜4に比べてシャープなピークが観測されたのに対して、実施例1〜4のリチウム挿入体は、500〜1000ppm付近の主共鳴ピークがブロードな形状であり、実施例1〜3では、主共鳴ピークの低磁場側にショルダーが観測された。 On the other hand, a clear difference was observed in the 6 Li-NMR spectrum (FIG. 3) of the lithium insert. In the sintered body of Comparative Example 1, a sharper peak was observed at around 725 ppm as compared with Examples 1 to 4, whereas in the lithium inserts of Examples 1 to 4, the main resonance was around 500 to 1000 ppm. The peak had a broad shape, and in Examples 1 to 3, a shoulder was observed on the low magnetic field side of the main resonance peak.

Dmfit softwareにより、実施例1〜4のリチウム挿入体のLi‐NMRスペクトルの関数分解による波形解析(decomposition)を行い、ピーク位置、ピーク高さ、ピーク幅およびピーク面積比を算出した。解析結果を図4〜7に示す。実施例1〜3では、主共鳴ピークが2つのピークに分離され、リチウム挿入前の熱処理体におけるナトリウム量が多いほど、低磁場側のピーク面積が大きくなる傾向がみられた。 Waveform analysis (decomposition) by functional decomposition of the 6 Li-NMR spectrum of the lithium inserts of Examples 1 to 4 was performed by Dmfit software, and the peak position, peak height, peak width and peak area ratio were calculated. The analysis results are shown in FIGS. 4 to 7. In Examples 1 to 3, the main resonance peak was separated into two peaks, and the larger the amount of sodium in the heat-treated body before lithium insertion, the larger the peak area on the low magnetic field side tended to be.

リチウム挿入前の熱処理体のLi‐NMRスペクトル(図8の破線)では、比較例1と同様高磁場側に強いピークがみられるのに対して、リチウム挿入後には低磁場のピーク強度が大きくなりピークがブロード化する傾向がみられた。残存ナトリウム量の少ない実施例4の焼結体(リチウム挿入前)は750ppm付近にピーク極大を有していた。一方、残存ナトリウム量の少ない実施例1の焼結体は560ppm付近にピーク極大を有しており、ピーク極大が高磁場シフトしていた。 In the 6 Li-NMR spectrum (broken line in FIG. 8) of the heat-treated body before lithium insertion, a strong peak is observed on the high magnetic field side as in Comparative Example 1, whereas the peak intensity of the low magnetic field is large after lithium insertion. There was a tendency for the peak to become broader. The sintered body of Example 4 (before lithium insertion) having a small amount of residual sodium had a peak maximum around 750 ppm. On the other hand, the sintered body of Example 1 having a small amount of residual sodium had a peak maximum near 560 ppm, and the peak maximum was shifted to a high magnetic field.

熱処理体におけるナトリウム残存量が相違する場合、リチウム挿入後のX線回折には大きな差がみられなかったのに対して、Li‐NMRのピーク形状に相違がみられた。これは、リチウムに対する酸素の配位状態の影響が大きいと考えられる。すなわち、図10に示すようにリチウム挿入前の熱処理体のナトリウム残存量の相違に起因して、O3構造、P3構造および中間構造の比率が異なり、これに伴って図8に示すようにLi‐NMRのピーク形状や化学シフトに相違がみられる。リチウム挿入前の焼結体における構造やリチウムへの酸素の配位状態が相違するために、化学挿入によりリチウムが挿入されるサイトや挿入されたリチウムへの酸素の配位状態が相違し、これがLi‐NMRのピーク形状の差をもたらしたと考えられる。 When the residual amount of sodium in the heat-treated body was different, there was no significant difference in the X-ray diffraction after lithium insertion, whereas there was a difference in the peak shape of 6 Li-NMR. It is considered that this is largely influenced by the coordination state of oxygen on lithium. That is, as shown in FIG. 10, the ratios of the O3 structure, the P3 structure and the intermediate structure are different due to the difference in the residual amount of sodium in the heat-treated body before lithium insertion, and as shown in FIG. 8, 6 Li -There are differences in the peak shape and chemical shift of NMR. Due to the difference in the structure of the sintered body before lithium insertion and the coordination state of oxygen to lithium, the site where lithium is inserted by chemical insertion and the coordination state of oxygen to the inserted lithium are different. 6 It is considered that the difference in the peak shape of Li-NMR was caused.

[リチウム二次電池の作製および評価]
実施例1〜4で得られたリチウム複合酸化物(リチウム挿入体)、参考例および比較例1で得られたリチウム複合酸化物(熱処理体)のそれぞれを正極活物質とし、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比で5:5:1となるように混合し、Alメッシュに圧着させ電極を作成した。それぞれの電極に対して、リチウム金属を対極、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒(体積比1:2)に溶解させた1M溶液を電解液とする、リチウム二次電池(コイン型セル)を作製した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
[Manufacturing and evaluation of lithium secondary batteries]
Each of the lithium composite oxide (lithium insert) obtained in Examples 1 to 4 and the lithium composite oxide (heated body) obtained in Reference Example and Comparative Example 1 was used as a positive electrode active material, and acetylene black was used as a conductive agent. , Tetrafluoroethylene as a binder was mixed so as to have a weight ratio of 5: 5: 1 and pressure-bonded to an Al mesh to prepare an electrode. For each electrode, a 1M solution prepared by dissolving lithium metal as a counter electrode and lithium hexafluorophosphate in a mixed solvent (volume ratio 1: 2) of ethylene carbonate (EC) and dimethyl carbonate (DMC) is used as an electrolytic solution. A lithium secondary battery (coin-type cell) was produced. The battery was manufactured according to a known cell configuration / assembly method.

作製した各リチウム二次電池について、25℃の温度条件下で、電流密度15mA/g、4.8V〜2.0Vのカットオフ電位で充放電試験(電気化学的リチウム挿入・脱離試験)を行い、充放電特性を評価した。充放電試験は充電(リチウム脱離)から開始した。 A charge / discharge test (electrochemical lithium insertion / removal test) was performed on each of the manufactured lithium secondary batteries at a current density of 15 mA / g and a cutoff potential of 4.8 V to 2.0 V under a temperature condition of 25 ° C. The charging / discharging characteristics were evaluated. The charge / discharge test started with charging (lithium desorption).

実施例3のリチウム挿入体(実施例)、実施例3のリチウム挿入前の熱処理体(参考例)、および比較例1の熱処理体(比較例)を正極活物質としたリチウム二次イオン電池の充放電試験結果を図12に示す。また、実施例1〜4のリチウム挿入体を正極活物質としたリチウム二次イオン電池の充放電試験結果を図13に示す。 A lithium secondary ion battery using the lithium insert of Example 3 (Example), the heat-treated body before lithium insertion of Example 3 (reference example), and the heat-treated body of Comparative Example 1 (Comparative Example) as the positive electrode active material. The charge / discharge test results are shown in FIG. Further, FIG. 13 shows the charge / discharge test results of the lithium secondary ion battery using the lithium inserts of Examples 1 to 4 as the positive electrode active material.

図12に示すように、比較例のリチウム複合酸化物を用いたリチウム二次電池は、初期放電容量が高いものの、放電カーブの容量70〜90mAh/g付近で急激な電圧降下が生じていた。リチウム挿入前の複合酸化物を用いたリチウム二次電池は、放電カーブにおける急激な電圧降下が抑制されていたが、比較例に比べて初期放電容量がわずかに小さく、初期充電容量が大幅に小さくなっていた。これに対して、リチウム挿入後の複合酸化物を用いたリチウム二次電池は、放電カーブが参考例と類似しており、急激な電圧降下が抑制されていた。また、実施例では比較例および参考例に比べて初期電容量が大幅に増加していた。 As shown in FIG. 12, the lithium secondary battery using the lithium composite oxide of the comparative example has a high initial discharge capacity, but a sharp voltage drop occurs in the vicinity of the capacity of the discharge curve of 70 to 90 mAh / g. The lithium secondary battery using the composite oxide before lithium insertion suppressed a sharp voltage drop in the discharge curve, but the initial discharge capacity was slightly smaller and the initial charge capacity was significantly smaller than in the comparative example. It was. On the other hand, the lithium secondary battery using the composite oxide after inserting lithium had a discharge curve similar to that of the reference example, and a sudden voltage drop was suppressed. In the embodiment the initial charging capacity was significantly increased in comparison with Comparative Examples and Reference Examples.

図13に示すように、実施例3以外のリチウム複合酸化物を用いたリチウム二次電池も、実施例3と同様、電圧降下が抑制され、かつ高い初期充電容量を有していた。これらの結果から、本発明のリチウム複合酸化物を正極活物質とする二次電池は、電圧降下が抑制されているために充電率の検知が容易であり、かつ高容量であることが分かる。 As shown in FIG. 13, the lithium secondary battery using the lithium composite oxide other than Example 3 also had a voltage drop suppressed and a high initial charge capacity as in Example 3. From these results, it can be seen that the secondary battery using the lithium composite oxide of the present invention as the positive electrode active material has a high capacity and is easy to detect the charge rate because the voltage drop is suppressed.

Claims (12)

リチウム二次電池の正極活物質として用いられるリチウム複合酸化物であって、
組成式LiNaNi1/3Mn2/3で表され、式中、0.75≦x≦0.90、0<y≦0.05であり、
650〜900ppmの範囲に、Li−NMRの主共鳴ピークの極大を有し、前記主共鳴ピークの半値幅が200〜450ppmであり、O3構造を有する、正極活物質用リチウム複合酸化物。
A lithium composite oxide used as a positive electrode active material for lithium secondary batteries.
The composition formula is represented by Li x Na y Ni 1/3 Mn 2/3 O 2 , and in the formula, 0.75 ≦ x ≦ 0.90 and 0 <y ≦ 0.05.
A lithium composite oxide for a positive electrode active material having a maximum of 6 Li-NMR main resonance peaks in the range of 650 to 900 ppm, a half width of the main resonance peaks of 200 to 450 ppm, and an O3 structure.
前記Li−NMRの主共鳴ピークを波形解析により1以上のピークに分離した際に、波形解析により得られたピークの少なくとも1つが、650〜750ppmの範囲にピーク極大を有する、請求項1に記載の正極活物質用リチウム複合酸化物。 According to claim 1, when the main resonance peak of 6 Li-NMR is separated into one or more peaks by waveform analysis, at least one of the peaks obtained by waveform analysis has a peak maximum in the range of 650 to 750 ppm. The lithium composite oxide for the positive electrode active material described. 前記Li−NMRの主共鳴ピークが、波形解析により2以上のピークに分離可能である、請求項1または2に記載の正極活物質用リチウム複合酸化物。 The lithium composite oxide for a positive electrode active material according to claim 1 or 2, wherein the main resonance peak of 6 Li-NMR can be separated into two or more peaks by waveform analysis. 前記組成式におけるナトリウム量yが、0.001≦y≦0.02を満たす、請求項1〜3のいずれか1項に記載の正極活物質用リチウム複合酸化物。 The lithium composite oxide for a positive electrode active material according to any one of claims 1 to 3, wherein the sodium amount y in the composition formula satisfies 0.001 ≦ y ≦ 0.02. リチウム二次電池の正極活物質として用いられるリチウム複合酸化物の製造方法であって、
前記リチウム複合酸化物は、組成式LiNaNi1/3Mn2/3で表され、式中、0.75≦x≦0.90、0<y≦0.05であ
組成式LiNa2/3−zNi1/3Mn2/3で表され、式中、0.33≦z≦0.63であり、結晶構造が層状岩塩型構造である複合酸化物に、リチウムイオンを化学挿入することを特徴とする、正極活物質用リチウム複合酸化物の製造方法。
A method for producing a lithium composite oxide used as a positive electrode active material for a lithium secondary battery.
The lithium composite oxide is represented by the composition formula Li x Na y Ni 1/3 Mn 2/3 O 2, wherein Ri 0.75 ≦ x ≦ 0.90,0 <y ≦ 0.05 der ,
The composition formula is represented by Li z Na 2 / 3-z Ni 1/3 Mn 2/3 O 2 , 0.33 ≤ z ≤ 0.63 in the formula, and the crystal structure is a layered rock salt type complex oxidation. A method for producing a lithium composite oxide for a positive electrode active material , which comprises chemically inserting lithium ions into a product.
組成式LiNa2/3−zNi1/3Mn2/3で表される前記複合酸化物を、リチウム塩溶液中、20℃〜200℃の温度範囲で処理することにより、前記リチウムイオンの化学挿入が実施される、請求項5に記載の正極活物質用リチウム複合酸化物の製造方法。 The composite oxide represented by the composition formula Li z Na 2 / 3-z Ni 1/3 Mn 2/3 O 2 is treated in a lithium salt solution in a temperature range of 20 ° C. to 200 ° C. to obtain the above. The method for producing a lithium composite oxide for a positive electrode active material according to claim 5, wherein chemical insertion of lithium ions is carried out. 前記リチウム塩がヨウ化リチウムを含む、請求項6に記載の正極活物質用リチウム複合酸化物の製造方法。 The method for producing a lithium composite oxide for a positive electrode active material according to claim 6, wherein the lithium salt contains lithium iodide. 前記リチウム塩溶液の溶媒がアセトニトリルを含む、請求項6または7に記載の正極活物質用リチウム複合酸化物の製造方法。 The method for producing a lithium composite oxide for a positive electrode active material according to claim 6 or 7, wherein the solvent of the lithium salt solution contains acetonitrile. リチウムイオンを化学挿入後の組成式におけるリチウム量xと、リチウムイオンを化学挿入前の組成式におけるリチウム量zとの差が、0.2≦x−z≦0.5を満たす、請求項5〜8のいずれか1項に記載の正極活物質用リチウム複合酸化物の製造方法。 Claim 5 that the difference between the amount of lithium x in the composition formula after chemical insertion of lithium ions and the amount of lithium z in the composition formula before chemical insertion of lithium ions satisfies 0.2 ≦ x−z ≦ 0.5. The method for producing a lithium composite oxide for a positive electrode active material according to any one of 8 to 8. 組成式Na2/3Ni1/3Mn2/3で表されP3構造を有する出発物質のナトリウムをリチウムに交換するイオン交換を行い、得られたイオン交換体を300〜800℃で熱処理することにより、組成式LiNa2/3−zNi1/3Mn2/3で表される前記複合酸化物を作製する、請求項5〜9のいずれか1項に記載の正極活物質用リチウム複合酸化物の製造方法。 Composition formula Na 2/3 Ni 1/3 Mn 2/3 O 2 The starting material sodium represented by P3 structure is exchanged for lithium for ion exchange, and the obtained ion exchanger is heat-treated at 300 to 800 ° C. by to produce the composite oxide represented by the compositional formula Li z Na 2/3-z Ni 1/3 Mn 2/3 O 2, as claimed in any one of claims 5-9 positive A method for producing a lithium composite oxide for an active material . 請求項1〜4のいずれか1項に記載のリチウム複合酸化物を主成分とする、リチウム二次電池用正極活物質。 A positive electrode active material for a lithium secondary battery containing the lithium composite oxide according to any one of claims 1 to 4 as a main component. 正極、負極、および電解質を含み、
前記正極が、請求項11に記載の正極活物質を含有する、リチウム二次電池。
Includes positive, negative, and electrolyte
A lithium secondary battery in which the positive electrode contains the positive electrode active material according to claim 11.
JP2016057411A 2016-03-22 2016-03-22 Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery Active JP6792836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057411A JP6792836B2 (en) 2016-03-22 2016-03-22 Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057411A JP6792836B2 (en) 2016-03-22 2016-03-22 Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2017174558A JP2017174558A (en) 2017-09-28
JP6792836B2 true JP6792836B2 (en) 2020-12-02

Family

ID=59973201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057411A Active JP6792836B2 (en) 2016-03-22 2016-03-22 Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6792836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112410B (en) * 2019-05-29 2022-05-24 新乡学院 Modified lithium ion battery positive electrode material and preparation method thereof
CN115367804B (en) * 2022-09-23 2024-04-16 东莞理工学院 Preparation method of air-stable manganese-based sodium ion battery positive electrode material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313337A (en) * 2001-04-13 2002-10-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP5259078B2 (en) * 2006-11-22 2013-08-07 パナソニック株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5425505B2 (en) * 2009-03-27 2014-02-26 三洋電機株式会社 Lithium ion secondary battery
JP5540281B2 (en) * 2009-05-01 2014-07-02 国立大学法人九州大学 Method for producing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5668537B2 (en) * 2010-03-31 2015-02-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6478090B2 (en) * 2013-09-30 2019-03-06 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US9705131B2 (en) * 2013-10-04 2017-07-11 Nissan Motor Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2017174558A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP4856847B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5819200B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102782911B (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101450422B1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101450421B1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP6830120B2 (en) Lithium sodium composite oxide, positive electrode active material for secondary batteries and secondary batteries
EP1189296A2 (en) Lithiated oxide materials and methods of manufacture
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
Huang et al. Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi 0.6 Co 0.2 Mn 0.2− x Mg x O 2 for lithium ion batteries
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP6541115B2 (en) Positive electrode material and lithium secondary battery using the same for positive electrode
TW201339098A (en) Mixed phase lithium metal oxide compositions with desirable battery performance
JP7412264B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP6460511B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP6792836B2 (en) Lithium composite oxide for positive electrode active material and its manufacturing method, positive electrode active material for lithium secondary battery and lithium secondary battery
JP3975502B2 (en) Non-aqueous electrolyte secondary battery
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
US10305103B2 (en) Stabilized electrodes for lithium batteries
Zhao et al. Layered Li (Ni 0.2 Mn 0.2 Co 0.6) O 2 synthesized by a molten salt method for lithium-ion batteries
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP6395051B2 (en) Lithium composite oxide, method for producing lithium composite oxide, positive electrode active material for lithium secondary battery, and lithium secondary battery
WO2016080471A1 (en) Lithium sodium complex oxide, method for manufacturing lithium sodium complex oxide, cathode active material for secondary battery and secondary battery
KR102618005B1 (en) Method for manufacturing positive electrode active material
JP2017168218A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6792836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250