JP6790946B2 - ポリプロピレン繊維 - Google Patents
ポリプロピレン繊維 Download PDFInfo
- Publication number
- JP6790946B2 JP6790946B2 JP2017053948A JP2017053948A JP6790946B2 JP 6790946 B2 JP6790946 B2 JP 6790946B2 JP 2017053948 A JP2017053948 A JP 2017053948A JP 2017053948 A JP2017053948 A JP 2017053948A JP 6790946 B2 JP6790946 B2 JP 6790946B2
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene
- polypropylene resin
- group
- hafnium
- dichloro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Carpets (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
- Woven Fabrics (AREA)
Description
これまでに、延伸時の高倍率化が可能なポリプロピレン系樹脂組成物として、様々な高溶融張力ポリプロピレン系樹脂を混合する手法が提案されている。しかし、電子線放射により自由末端長鎖分岐を持たせたプロピレン系樹脂を混合する場合(例えば、特許文献1参照。)は、特殊な電子線照射工程を経ることによるコスト増、混合後の分散不良による紡糸時の断糸懸念、リサイクル使用時の再溶融混練によるゲル多発という大きな欠点を有している。また、高分子量のエチレン−α−オレフィン共重合体成分を有するプロピレン系樹脂組成物を混合する場合(例えば、特許文献2参照。)は、ポリプロピレン中に非相溶成分であるエチレン−α−オレフィンが点在する構造を取るために成形体中に界面が多数存在し、高延伸倍率時の強度と伸度の両立が困難となる。
(i)MFR(230℃、2.16kg荷重)が0.1〜30g/10分
(ii)25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満
(iii)13C−NMRによるプロピレン単位3連鎖のmm分率が95%以上
(iv)GPCによる分子量分布において、Mw/Mnが3.0以上10.0以下、かつ、Mz/Mwが2.5以上10.0以下
(v)絶対分子量Mabsが100万における分岐指数g’が0.30以上1.00未満
(vi)溶融張力(MT)(単位:g)が、
log(MT)≧−0.9×log(MFR)+0.7、又は、MT≧15
のいずれかを満たす。
また、本発明の第5の発明によれば、第1又は2の発明のポリプロピレン繊維を用いてなるカーペットが提供される。
また、本発明の第7の発明によれば、第1又は2の発明のポリプロピレン繊維を用いてなるコンクリート補強用繊維が提供される。
得られたポリプロピレン繊維は、高い強度と伸度を有するので、ロープ、織物、カーペット、人工芝、コンクリート補強用繊維等の用途に極めて好適なものである。
[ポリプロピレン樹脂(X)]
本発明で使用するポリプロピレン樹脂(X)は、分岐構造を有するポリプロピレン樹脂であり、下記(i)〜(vi)の特性を満足する。
(i)MFR(230℃、2.16kg荷重)が0.1〜30g/10分
(ii)25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満
(iii)13C−NMRによるプロピレン単位3連鎖のmm分率が95%以上
(iv)GPCによる分子量分布において、Mw/Mnが3.0以上10.0以下、かつ、Mz/Mwが2.5以上10.0以下
(v)絶対分子量Mabsが100万における分岐指数g’が0.30以上1.00未満
(vi)溶融張力(MT)(単位:g)が、
log(MT)≧−0.9×log(MFR)+0.7、又は、MT≧15
のいずれかを満たす。
上記(i)〜(vi)の各特性及びポリプロピレン樹脂(X)の製造方法などについて、具体的に説明する。
本発明に用いるポリプロピレン樹脂(X)のメルトフローレート(MFR)は、0.1〜30g/10分の範囲であることが必要であり、好ましくは0.3〜20.0g/10分、さらに好ましくは0.5〜10.0g/10分である。0.1g/10分以上であると、流動性が十分となり、溶融押出成形加工時において押出機の負荷が高すぎるなどの問題が回避され、一方、30g/10分以下であると、張力が十分となり、高溶融張力材としての特性を満たし、適するものとなる。
MFR値の制御の方法は周知であり、ポリプロピレン樹脂(X)の重合条件である温度や圧力を調節したり、水素等の連鎖移動剤を重合時に添加する連鎖移動剤添加量の制御により、容易に調整を行なうことができる。
なお、本発明において、プロピレン系樹脂のMFRは、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」のA法、条件M(230℃、2.16kg荷重)に準拠して測定され、単位はg/10分である。
本発明に用いるポリプロピレン樹脂(X)は、立体規則性が高く、繊維製品となったときにベタツキやブリードアウトの原因となる低結晶性成分が少ないことが好ましい。この低結晶性成分は、25℃キシレン可溶成分量(CXS)によって評価され、それがポリプロピレン樹脂(X)全量に対して、5.0重量%未満であることが必要であり、好ましくは3.0重量%以下であり、より好ましくは1.0重量%以下であり、さらに好ましくは0.5重量%以下である。下限については、特に制限されないが、通常0.01重量%以上、好ましくは0.03重量%以上である。
2gの試料を300mlのp−キシレン(0.5mg/mlのBHTを含む)に130℃で溶解させ溶液とした後、25℃で12時間放置する。その後、析出したポリマーを濾別し、濾液からp−キシレンを蒸発させ、さらに100℃で12時間減圧乾燥し室温キシレン可溶成分を回収する。この回収成分の重量の仕込み試料重量に対する割合(重量%)をCXSと定義する。
本発明に用いるポリプロピレン樹脂(X)は、立体規則性が高いことを特徴とする。立体規則性の高さは、13C−NMRによって評価することができ、13C−NMRによって得られるプロピレン単位3連鎖のmm分率が95%以上であることを必要とする。
mm分率は、ポリマー鎖中、頭−尾結合からなる任意のプロピレン単位3連鎖中、各プロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合であると定義され、その上限は100%である。このmm分率は、ポリプロピレン分子鎖中のメチル基の立体構造がアイソタクチックに制御されていることを示す値であり、高いほど、高度に制御されていることを意味する。mm分率が95%以上であれば、機械的物性が高いレベルに保たれるので好ましい。
従って、mm分率は、95%以上であり、好ましくは96%以上であり、より好ましくは97%以上である。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2−テトラクロロエタン2.5mlに完全に溶解させた後、125℃においてプロトン完全デカップリング法で測定する。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定する。他の炭素ピークのケミカルシフトはこれを基準とする。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
データポイント数:32768
mm分率の解析は、測定された13C−NMRスペクトルを用いて行う。
スペクトルの帰属は、Macromolecules,(1975年)8卷,687頁やPolymer,30巻、1350頁(1989年)を参考に行う。
なお、mm分率決定のより具体的な方法は、特開2009−275207号公報の段落[0053]〜[0065]に詳細に記載されており、本願発明においても、この方法に従って行うものとする。
また、ポリプロピレン樹脂(X)は、分子量分布が比較的広いことが必要であり、ゲルパーミエーションクロマトグラフィー(GPC)によって得られる分子量分布Mw/Mn(ここで、Mwは重量平均分子量、Mnは数平均分子量)が3.0以上10.0以下であることが必要である。また、ポリプロピレン樹脂(X)の分子量分布Mw/Mnは、その好ましい範囲としては3.5〜8.0、更に好ましくは4.1〜6.0の範囲である。
さらに、分子量分布の広さをより顕著に表すパラメータとして、Mz/Mw(ここで、MzはZ平均分子量)が2.5以上10.0以下であることが必要である。Mz/Mwの好ましい範囲は2.8〜8.0、更に好ましくは3.0〜6.0の範囲である。
分子量分布の広いものほど成形加工性が向上するが、Mw/Mn及びMz/Mwがこの範囲にあるものは、溶融押出の成形加工性に特に優れる。
そして、GPCの具体的な測定手法は、以下の通りである。なお、以下の中で測定に使用する装置・検出器はその一例であり、同一原理の装置であればその使用を制限するものではない。
・装置:Waters社製GPC(ALC/GPC 150C)
・検出器:FOXBORO社製MIRAN 1A IR検出器(測定波長:3.42μm)
・カラム:昭和電工(株)製AD806M/S(3本直列)
・移動相溶媒:オルトジクロロベンゼン(ODCB)
・測定温度:140℃
・流速:1.0ml/分
・注入量:0.2ml
・試料の調製:試料はODCB(0.5mg/mLのBHTを含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。
なお、分子量への換算に使用する粘度式[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78
本発明で使用するポリプロピレン樹脂(X)が長鎖分岐構造を有することの直接的な指標として、分岐指数g’を挙げることができる。g’は、長鎖分岐構造を有するポリマーの固有粘度[η]brと同じ分子量を有する線状ポリマーの固有粘度[η]linの比、すなわち、[η]br/[η]linによって与えられ、長鎖分岐構造が存在すると、1よりも小さな値をとる。
定義は、例えば「Developments in Polymer Characterization−4」(J.V.Dawkins ed. Applied Science Publishers,1983)に、記載されており、当業者にとって公知の指標である。
本発明で使用するポリプロピレン樹脂(X)は、光散乱によって求めた絶対分子量Mabsが100万の時に、g’が0.30以上1.00未満であり、好ましくは0.55以上0.98以下、より好ましくは0.75以上0.96以下、さらに好ましくは0.78以上0.95以下の範囲である。
本発明で使用するポリプロピレン樹脂(X)は、分子構造としては好ましくは櫛型鎖が生成していると考えられ、分岐指数g’が0.30未満であると、主鎖が少なく側鎖の割合が極めて多いこととなり、このような場合には、溶融張力が向上しなかったり、ゲルが生成するおそれがあるため、溶融押出成形加工において好ましくない。一方、1.00である場合には、これは長鎖分岐構造が存在しないことを意味し、溶融張力が不足しやすくなり、溶融押出成形加工に適さない。
文献「Encyclopedia of Polymer Science and Engineering vol.2」(John Wiley & Sons 1985 p.485)によると、櫛型ポリマーのg’値は、以下の式で表されている。
また、g’が上記の範囲にある櫛型鎖に近い構造を有する分岐状ポリマーにおいては、混練を繰り返した際の溶融張力の低下度合いが小さく、工業的に十分な繊維強度及び伸度が得られる。
示差屈折計(RI)及び粘度検出器(Viscometer)を装備したGPC装置として、Waters社製のAlliance GPCV2000を用いる。また、光散乱検出器として、多角度レーザー光散乱検出器(MALLS)Wyatt Technology社製のDAWN−Eを用いる。検出器は、MALLS、RI、Viscometerの順で接続する。移動相溶媒は、1,2,4−トリクロロベンゼン(BASFジャパン(株)製酸化防止剤、商品名:Irganox1076を0.5mg/mLの濃度で添加)である。
流量は1mL/分で、カラムは、東ソー(株)製 GMHHR−H(S) HTを直列に2本連結して用いる。カラム、試料注入部及び各検出器の温度は、140℃である。試料濃度は1mg/mLとし、注入量(サンプルループ容量)は0.2175mLである。
1.「Developments in Polymer Characterization−4」(J.V.Dawkins ed. Applied Science Publishers,1983.Chapter1.)
2.Polymer,45,6495−6505(2004)
3.Macromolecules,33,2424−2436(2000)
4.Macromolecules,33,6945−6952(2000)
ポリマー分子に長鎖分岐構造が導入されると、同じ分子量の線状のポリマー分子と比較して慣性半径が小さくなる。慣性半径が小さくなると、極限粘度が小さくなることから、長鎖分岐構造が導入されるに従い同じ分子量の線状ポリマーの極限粘度([η]lin)に対する分岐ポリマーの極限粘度([η]br)の比([η]br/[η]lin)は、小さくなっていく。
したがって、分岐指数(g’=[η]br/[η]lin)が1より小さい値になる場合には、分岐が導入されていることを意味する。ここで、[η]linを得るための線状ポリマーとしては、市販のホモポリプロピレン(日本ポリプロ(株)製、商品名:ノバテックPP、グレード名:FY6)を用いる。線状ポリマーの[η]linの対数は分子量の対数と線形の関係があることは、Mark−Houwink−Sakurada式として公知であるから、[η]linは、低分子量側や高分子量側に適宜外挿して数値を得ることができる。
さらに、本発明で使用するポリプロピレン樹脂(X)は、以下の溶融張力(MT)とMFRの関係式:
log(MT)≧−0.9×log(MFR)+0.7 又は MT≧15
の少なくともいずれか一方を満たすことを必要とする。
ここで、MTは、(株)東洋精機製作所製キャピログラフ1B(又は同一原理の測定装置)を用いて、キャピラリー:直径2.0mm、長さ40mm、シリンダー径:9.55mm、シリンダー押出速度:20mm/分、引き取り速度:4.0m/分、温度:230℃の条件で、測定したときの溶融張力を表し、単位はグラムである。ただし、ポリプロピレン樹脂(X)のMTが極めて高い場合には、引き取り速度4.0m/分では、樹脂が破断してしまう場合があり、このような場合には、引き取り速度を下げ、引き取りのできる最高の速度における張力をMTとする。また、MFRの測定条件、単位は前述の通りである。
このように溶融張力MTをMFRとの関係式で規定する手法は、当業者にとって通常の手法であって、例えば、特開2003−25425号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
log(MS)>−0.61×log(MFR)+0.82
(ここで、MSは、MTと同義である。)
また、特開2003−64193号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
11.32×MFR−0.7854≦MT
さらに、特開2003−94504号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
MT≧7.52×MFR−0.576
log(MT)≧−0.9×log(MFR)+0.7 又は MT≧15
のいずれかを満たせば、充分に溶融張力の高い樹脂といえ、溶融押出成形加工に有用であり、とりわけ、溶融紡糸時の引取り速度を高速化した場合に好ましい。
また、ポリプロピレン樹脂(X)は、以下の関係式:
log(MT)≧−0.9×log(MFR)+0.9 又は MT≧15
を満たすことがより好ましく、以下の関係式を満たすことが更に好ましい。
log(MT)≧−0.9×log(MFR)+1.1 又は MT≧15
MTの上限値については、これを特に設ける必要はないが、MTが40gを超えるような場合には、上記測定手法では引き取り速度が著しく遅くなり、測定が困難となる。このような場合は、樹脂の延展性も悪化しているものと考えられるため、好ましくは40g以下、さらに好ましくは35g以下、もっとも好ましくは30g以下である。
本発明に係る分岐構造を有するポリプロピレン樹脂(X)の更なる付加的特徴として、歪み速度0.1s−1での伸長粘度の測定における歪硬化度(λmax(0.1))が6.0以上であることが挙げられる。
歪硬化度(λmax(0.1))は、溶融時強度を表す指標であり、この値が大きいと、溶融張力が向上する効果がある。その結果、溶融押出成形(溶融紡糸)加工を行う際に高スウェル比を維持することができ、歪硬化度は、6.0以上であることが好ましく、より好ましくは8.0以上である。
温度180℃、歪み速度=0.1s−1の場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で歪み硬化を起こす直前の粘度を直線で近似する。
具体的には、まず伸張粘度を時間に対してプロットした際の各々の時刻での傾きを求めるが、それに当っては伸張粘度の測定データは離散的であることを考慮し、種々の平均法を利用する。たとえば隣接データの傾きをそれぞれ求め、周囲数点の移動平均をとる方法等が挙げられる。
伸張粘度は、低歪み量の領域では、単純増加関数となり、次第に一定値に漸近し、歪み硬化がなければ充分な時間経過後にトルートン粘度に一致するが、歪み硬化のある場合には、一般的に歪み量(=歪み速度×時間)1程度から、伸張粘度が時間と共に増大を始める。すなわち、上記傾きは、低歪み領域では時間と共に減少傾向があるが、歪み量1程度から逆に増加傾向となり、伸張粘度を時間に対してプロットした際の曲線上に、変曲点が存在する。そこで歪み量が0.1〜2.5程度の範囲で、上記で求めた各々の時刻の傾きが最小値をとる点を求めて、その点で接線を引き、直線を歪み量が4.0となるまで外挿する。歪み量4.0となるまでの伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの上記近似直線上の粘度をηlinとする。ηmax/ηlinを、λmax(0.1)と定義する。
分岐構造を有するポリプロピレン樹脂(X)は、上記した(i)〜(vi)の特性を満たす限り、特に製造方法を限定するものではないが、前述のように、低い低結晶性成分量、高い立体規則性、比較的広い分子量分布、分岐指数g’の範囲、高い溶融張力の全ての条件を満足するための好ましい製造方法は、メタロセン触媒の組み合わせを利用したマクロマー共重合法を用いる方法である。このような方法の例としては、例えば、特開2009−57542号公報に開示される方法が挙げられる。
この手法は、マクロマー生成能力を有する特定の構造の触媒成分と、高分子量でマクロマー共重合能力を有する特定の構造の触媒成分とを組み合わせた触媒を用いて、長鎖分岐構造を有するポリプロピレンを製造する方法であり、これによれば、バルク重合や気相重合といった工業的に有効な方法で、特に実用的な圧力温度条件下の単段重合で、しかも、分子量調整剤である水素を用いて、目的とする物性を有する長鎖分岐構造を有するポリプロピレン樹脂の製造が可能である。
また、上記手法を用いれば、重合特性の大きく異なる二種の触媒を使用することで、分子量分布を広くでき、本発明に用いる分岐構造を有するポリプロピレン樹脂(X)に必要な前記(iv)〜(vi)の特性を同時に満たすことが可能であり、好ましい。
分岐構造を有するポリプロピレン樹脂(X)を製造する好ましい方法として、プロピレン重合触媒に下記の触媒成分(A)、(B)及び(C)を用いるプロピレン系重合体の製造方法が挙げられる。
(A):下記一般式(a1)で表される化合物である成分[A−1]から少なくとも1種類と、
後記一般式(a2)で表される化合物である成分[A−2]から少なくとも1種類の、2種以上の周期表4族の遷移金属化合物。
(B):イオン交換性層状珪酸塩
(C):有機アルミニウム化合物
(1)触媒成分(A)
(i)成分[A−1]:下記一般式(a1)で表される化合物
また、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基の置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基、トリアルキルシリル基等が挙げられる。これらのうち、メチル基、トリメチルシリル基が好ましく、メチル基が特に好ましい。
さらに、R11及びR12として、特に好ましくは、2−(5−メチル)−フリル基である。また、R11及びR12は、互いに同一である場合が好ましい。
上記R13及びR14の炭素数6〜16の、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン、又は、これらから選択される複数のヘテロ元素を含有してもよい、アリール基としては、炭素数6〜16になる範囲で、アリール環状骨格上に、1つ以上の、炭素数1〜6の炭化水素基、炭素数1〜6の珪素含有炭化水素基、炭素数1〜6のハロゲン含有炭化水素基を置換基として有していてもよい。
上記のQ11の具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン等のアルキレン基;ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基などを挙げることが出来る。これらの中では、炭素数1〜20の炭化水素基を有するシリレン基、又は、炭素数1〜20の炭化水素基を有するゲルミレン基が好ましく、アルキルシリレン基、アルキルゲルミレン基が特に好ましい。
ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−トリメチルシリル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−フェニル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(4,5−ジメチル−2−フリル)−4−フェニル−インデニル}]ハフニウムジクロライド、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−ベンゾフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−メチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−iプロピルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリメチルシリルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フルフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−フルオロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリフルオロメチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウムなどを挙げることができる。
ただし、以下は、煩雑な多数の例示を避けて代表的例示化合物のみ記載しており、本発明はこれら化合物に限定して解釈されるものではなく、種々の配位子や架橋結合基又は補助配位子を任意に使用し得ることは自明なことである。また、以下では、中心金属がハフニウムの化合物を記載したが、ジルコニウムに代替した化合物も本願明細書に開示されたものとして取り扱われる。
ポリプロピレン樹脂(X)を製造するのに好ましく使用される触媒成分(B)は、イオン交換性層状珪酸塩である。
(i)イオン交換性層状珪酸塩の種類
イオン交換性層状珪酸塩(以下、単に珪酸塩と略記することもある。)とは、イオン結合などによって構成される面が、互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然では主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、触媒成分(B)に含まれる。
使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよく、また、それらを含んでもよい。
すなわち、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群等である。
珪酸塩は、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。層間カチオンの種類は、特に限定されないが、工業原料として比較的容易に且つ安価に入手し得る観点から、アルカリ金属又はアルカリ土類金属を層間カチオンの主成分とする珪酸塩が好ましい。
触媒成分(B)のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。ここでイオン交換性層状珪酸塩の化学処理とは、表面に付着している不純物を除去する表面処理と粘土の構造に影響を与える処理のいずれをも用いることができ、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。
酸処理は、表面の不純物を取り除くほか、結晶構造のAl、Fe、Mg等の陽イオンの一部又は全部を溶出させることができる。
酸処理で用いられる酸は、好ましくは塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸から選択される。
処理に用いる塩類(次項で説明する)及び酸は、2種以上であってもよい。塩類及び酸による処理条件は、特には制限されないが、通常、塩類及び酸濃度は、0.1〜50重量%、処理温度は、室温〜沸点、処理時間は、5分〜24時間の条件を選択して、イオン交換性層状珪酸塩から成る群より選ばれた少なくとも一種の化合物を構成している物質の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類及び酸は、一般的には水溶液で用いられる。
なお、以下の酸類、塩類を組み合わせたものを処理剤として用いてもよい。また、これら酸類、塩類の組み合わせであってもよい。
塩類で処理される前の、イオン交換性層状珪酸塩の含有する交換可能な1族金属の陽イオンの好ましくは40%以上、より好ましくは60%以上を、下記に示す塩類より解離した陽イオンと、イオン交換することが好ましい。
このようなイオン交換を目的とした塩類処理で用いられる塩類は、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸及び有機酸から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物であり、更に好ましくは、2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、Cl、Br、I、F、PO4、SO4、NO3、CO3、C2O4、ClO4、OOCCH3、CH3COCHCOCH3、OCl2、O(NO3)2、O(ClO4)2、O(SO4)、OH、O2Cl2、OCl3、OOCH、OOCCH2CH3、C2H4O4及びC5H5O7等から成る群から選ばれる少なくとも一種の陰イオンとから成る化合物である。
さらに、Zn(OOCCH3)2、Zn(CH3COCHCOCH3)2、ZnCO3、Zn(NO3)2、Zn(ClO4)2、Zn3(PO4)2、ZnSO4、ZnF2、ZnCl2、AlF3、AlCl3、AlBr3、AlI3、Al2(SO4)3、Al2(C2O4)3、Al(CH3COCHCOCH3)3、Al(NO3)3、AlPO4、GeCl4、GeBr4、GeI4等が挙げられる。
酸、塩処理の他に、必要に応じて下記のアルカリ処理や有機物処理を行ってもよい。アルカリ処理で用いられる処理剤としては、LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2などが例示される。
また、有機物処理に用いられる有機処理剤の例としては、トリメチルアンモニウム、トリエチルアンモニウム、N,N−ジメチルアニリニウム、トリフェニルホスホニウム等が挙げられる。
また、有機物処理剤を構成する陰イオンとしては、塩類処理剤を構成する陰イオンとして例示した陰イオン以外にも、例えば、ヘキサフルオロフォスフェート、テトラフルオロボレート、テトラフェニルボレートなどが例示されるが、これらに限定されるものではない。
これらイオン交換性層状珪酸塩には、通常、吸着水及び層間水が含まれる。本発明においては、これらの吸着水及び層間水を除去して触媒成分(B)として使用するのが好ましい。
ここで用いられる造粒法は、例えば攪拌造粒法、噴霧造粒法が挙げられるが、市販品を利用することもできる。
また、造粒の際に、有機物、無機溶媒、無機塩、各種バインダ−を用いてもよい。
上記のようにして得られた球状粒子は、重合工程での破砕や微粉の生成を抑制するためには0.2MPa以上、特に好ましくは0.5MPa以上の圧縮破壊強度を有することが望ましい。このような粒子強度の場合には、特に予備重合を行う場合に、粒子性状改良効果が有効に発揮される。
触媒成分(C)は、有機アルミニウム化合物である。触媒成分(C)として用いられる有機アルミニウム化合物は、一般式:(AlR31 qZ3−q)p で示される化合物が適当である。
本発明では、この式で表される化合物を単独で、複数種混合して又は併用して使用することができることはいうまでもない。この式中、R31は、炭素数1〜20の炭化水素基を示し、Zは、ハロゲン、水素、アルコキシ基又はアミノ基を示す。qは1〜3の、pは1〜2の整数を各々表す。
R31としては、アルキル基が好ましく、またZは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。
これらのうち、好ましくは、p=1、q=3のトリアルキルアルミニウム及びp=1、q=2のジアルキルアルミニウムヒドリドである。さらに好ましくは、R31が炭素数1〜8のアルキル基であるトリアルキルアルミニウムである。
触媒は、上記の各触媒成分(A)〜(C)を(予備)重合槽内で、同時に若しくは連続的に、又は一度に若しくは複数回にわたって、接触させることによって形成させることができる。
各成分の接触は、脂肪族炭化水素又は芳香族炭化水素溶媒中で行うのが普通である。接触温度は、特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては、合目的的な任意の組み合わせが可能であるが、特に好ましいものを各成分について示せば、次の通りである。
触媒成分(C)を使用する場合、(1)触媒成分(A)と触媒成分(B)を接触させる前に、触媒成分(A)と、触媒成分(B)と、若しくは触媒成分(A)及び触媒成分(B)の両方とに触媒成分(C)を接触させること、(2)触媒成分(A)と触媒成分(B)を接触させるのと同時に触媒成分(C)を接触させること、又は(3)触媒成分(A)と触媒成分(B)を接触させた後に触媒成分(C)を接触させることが可能であるが、好ましくは、(1)触媒成分(A)と触媒成分(B)を接触させる前に、触媒成分(C)と触媒成分(A)及び触媒成分(B)の少なくとも一つに接触させる方法である。
また、各成分を接触させた後、脂肪族炭化水素又は芳香族炭化水素溶媒にて洗浄することが可能である。
この割合を変化させることで、溶融物性と触媒活性のバランスを調整することが可能である。つまり、成分[A−1]からは、低分子量の末端ビニルマクロマーを生成し、成分[A−2]からは、一部マクロマーを共重合した高分子量体を生成する。したがって、成分[A−1]の割合を変化させることで、生成する重合体の平均分子量、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、分岐指数g’や歪硬化度λmax、溶融張力、延展性といった溶融物性を制御することができる。
また、上記範囲で成分[A−1]を使用することにより、水素量に対する、平均分子量と触媒活性のバランスを調整することが可能である。
予備重合温度、時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合の量は、予備重合ポリマー量が触媒成分(B)に対し、重量比で好ましくは0.01〜100、さらに好ましくは0.1〜50である。また、予備重合時に触媒成分(C)を添加、又は追加することもできる。また、予備重合終了後に洗浄することも可能である。
重合様式は、前記触媒成分(A)、触媒成分(B)及び触媒成分(C)を含むオレフィン重合用触媒とモノマーが効率よく接触するならば、あらゆる様式を採用し得る。
具体的には、不活性溶媒を用いるスラリー重合法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いる、所謂バルク重合法、溶液重合法又は実質的に液体溶媒を用いず各モノマーをガス状に保つ気相重合法などの重合方法が採用できる。また、連続重合、回分式重合を行う方法も適用される。また、単段重合以外に、2段以上の多段重合することも可能である。
スラリー重合法の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。
さらに、気相重合法を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は100℃以下が好ましく、更に好ましくは90℃以下である。
重合圧力は、1.0MPa以上5.0MPa以下であることが好ましい。特に、バルク重合法を用いる場合には、1.5MPa以上が好ましく、更に好ましくは2.0MPa以上である。また上限は4.0MPa以下が好ましく、更に好ましくは3.5MPa以下である。
さらに、分子量調節剤として、また活性向上効果のために、補助的に水素をプロピレンに対してモル比で、好ましくは1.0×10−6以上、1.0×10−2以下の範囲で用いることができる。
そこで水素は、プロピレンに対するモル比で、1.0×10−6以上で用いるのが好ましく、より好ましくは1.0×10−5以上であり、さらに好ましくは1.0×10−4以上用いるのがよい。また上限に関しては、1.0×10−2以下で用いるのが好ましく、より好ましくは0.9×10−2以下であり、更に好ましくは0.8×10−2以下である。
そこで、本発明に用いるポリプロピレン樹脂(X)として、触媒活性と溶融物性のバランスの良好なものを得るためには、エチレン及び/又は1−ブテンを、プロピレンに対して15モル%以下で使用することが好ましく、より好ましくは10モル%以下であり、更に好ましくは7モル%以下である。
上述の分岐構造を有するポリプロピレン樹脂(X)とともに含有される、本発明のポリプロピレン繊維の原料樹脂組成物であるポリプロピレン系樹脂組成物の主成分であるポリプロピレン樹脂(X)を除くポリプロピレン樹脂(Y)は、ポリプロピレン樹脂(X)と異なるポリプロピレン樹脂である。すなわち、上記した(i)〜(vi)の特性の少なくとも一つを満たさないポリプロピレン樹脂である限りその種類に特に制限はなく、プロピレン単独重合体、プロピレンランダム共重合体やプロピレンブロック共重合体のいずれのものでも使用することができる。
これらのうち、より高強度なポリプロピレン繊維を得るためには、ポリプロピレン樹脂(Y)は、プロピレン単独重合体であることが望ましい。
なお、MFRは、JIS K7210に準拠して230℃、2.16kg荷重にて測定する値である。
本発明における前記ポリプロピレン樹脂(X)と上記ポリプロピレン樹脂(Y)の割合は、(X)及び(Y)の合計100重量部基準で、ポリプロピレン樹脂(X)3〜50重量部、好ましくは4〜40重量部、より好ましくは5〜30重量部、ポリプロピレン樹脂(Y)97〜50重量部、好ましくは96〜60重量部、より好ましくは95〜70重量部である。このような範囲の樹脂組成物を用いることで、繊度あたりの繊維強度及び伸度のバランスに優れた延伸糸、すなわち高強度化と伸度低下抑制が両立されたポリプロピレン繊維を得ることができる。
本発明に用いられるポリプロピレン系樹脂組成物には、必要に応じて、ポリプロピレン樹脂(X)及びポリプロピレン樹脂(Y)以外のその他の樹脂(例えば、ポリエチレン系重合体、各種エラストマー等)、また、酸化防止剤、中和剤、耐候安定剤、滑剤、帯電防止剤、無機充填剤及びブロッキング防止剤、離型剤、難燃剤、ワックス、防かび剤、抗菌剤、発泡剤などの添加剤を配合してもよい。
本発明に用いられるポリプロピレン系樹脂組成物は、上記のポリプロピレン樹脂(X)及びポリプロピレン樹脂(Y)及び必要に応じてその他の樹脂及び/又は添加剤をヘンシェルミキサー(商品名)、vブレンダー、リボンブレンダー、タンブラーブレンダー等で混合後、単軸押出機、多軸押出機、ニーダー、バンバリミキサー等の混練機により溶融混練する方法により得られる。
本発明のポリプロピレン繊維は、溶融紡糸法、具体的にはマルチフィラメント成形法、モノフィラメント成形法やヤーン成形法等によって得られる。
特に、モノフィラメント成形法では繊維径が10〜10,000dtexの糸を得るのに適した製法として広く用いられている。その成形概要は、以下の通りである。
原料を押出機により溶融させた後、孔径0.3mm 〜3mm、孔数数十〜数百の紡糸ノズルヘッドから、溶融ストランドが押し出される。溶融ストランドは、紡糸ノズル直下10〜500mmに据え付けてある冷却水槽へ導入され冷却固化される。冷却固化されたストランドは複数の繰出ロールにより延伸槽へと運ばれる。繰出ロール速度は通常数m〜数十m/分で実施される。延伸槽でストランドは効率よく延伸される。延伸槽は、湿式と乾式タイプがあり、湿式の場合は通常60〜100℃の加熱水が用いられる。乾式の場合では熱板又はオーブンが用いられ、温度は通常60〜160℃の範囲内である。延伸されたストランドは、場合によっては熱セットを施された後に巻き取り機へと運ばれる。
本発明のポリプロピレン繊維は、繊度が10〜10,000dtexの範囲であることが好ましく、20〜5,000dtexの範囲であることがより好ましく、30〜2,500dtexの範囲にあることがさらに好ましい。
繊度が10dtex以上である場合、その直径は40μmを満たす程に太く、繊維一本あたりの強度が向上するために本発明による効果の確認が容易となる。また、10,000dtex以下である場合、その直径は1mm以下である程に細くなるため、繊維一本あたりの強度が十分な強度レベルを保ったまま、しなやかさを維持するために繊維製品として応用することが容易となり好ましい。
なお、繊度は、JIS−L1013に定められた繊度測定法の「B法(簡便法)」に準じて測定した。
(i)メルトフローレートMFR(単位:g/10分):
JIS K7210:1999のA法、条件M(230℃、2.16kg荷重)に準拠して測定した。
(ii)25℃パラキシレン可溶成分量(CXS、単位:重量%):
前述した方法に従って、測定した。
(iii)mm分率:
日本電子(株)製超伝導核磁気共鳴装置GSX−400(400MHz)、FT−NMRを用い、前述したとおり、特開平2009−275207号公報の段落[0053]〜[0065]に記載の方法で測定した。
前述した方法に従って、GPC測定により求めた。
(v)分岐指数g’:
前述したように、示差屈折計(RI)、粘度検出器(Viscometer)、光散乱検出器(MALLS)を検出器として備えたGPCによって求めた。
(株)東洋精機製作所製キャピログラフを用いて、以下の条件で測定した。
・キャピラリー:直径2.0mm、長さ40mm
・シリンダー径:9.55mm
・シリンダー押出速度:20mm/分
・引き取り速度:4.0m/分
・温度:230℃
MTが極めて高い場合には、引き取り速度4.0m/分では、樹脂が破断してしまう場合があり、このような場合には、引取り速度を下げ、引き取りのできる最高の速度における張力をMTとする。
伸張粘度測定は以下の条件で行った。
・装置:Rheometorics社製Ares
・冶具:ティーエーインスツルメント社製Extentional Viscosity Fixture
・測定温度:180℃
・歪み速度:0.1/sec
・試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
λmaxの算出法の詳細は、前述した通りである。
示差走査熱量計(DSC)を用い、一旦200℃まで温度を上げて熱履歴を消去した後、10℃/分の降温速度で40℃まで温度を降下させ、再び昇温速度10℃/分にて測定した際の、吸熱ピークトップの温度を融点とした。
(i)紡糸性
紡糸ノズル直下における糸の走行状態を15分間目視にて観察し、以下の判定基準に則って紡糸性の格付けを行った。
○:糸揺れはなく、糸切れもない。安定して紡糸可能。
△:糸揺れが見られるものの、糸切れはなく紡糸可能。
×:糸切れが多発し、安定した紡糸が困難。
(ii)繊維強度及び繊維伸度
得られた延伸糸を、(株)エー・アンド・デイ製テンシロン万能材料試験機にて引張試験を行った。破断に至る迄の最大強度(N)を繊度(dtex)で除した値を繊維強度(cN/dtex)とした。また、破断時の伸び(mm)をチャック間距離(mm)で除した値を百分率で表し、繊維伸度(%)とした。
チャック間距離:100mm
クロスヘッド速度:100mm/分
測定温度:23℃
なお、ここでは繊度の単位として、tex(テックス)の10分の1を意味するdtex(デシテックス)を用いた。
実施例及び比較例に使用したポリプロピレン樹脂(X)としては、後記製造例で製造されたポリプロピレン樹脂(X−1)〜(X−3)及び市販の分岐構造を有する高溶融張力ポリプロピレン樹脂(X−4)、(X−5)、さらには分岐構造を有しない高溶融張力ポリプロピレン樹脂(X−6)を使用した。
X−4;
バゼル社製、商品名:「PF814」
X−5;
ボレアリス社製、商品名:「WB140HMS」
X−6;
日本ポリプロ(株)製、商品名:ニューフォーマー、グレード名:FB3312
MFR=3.5、Mw/Mn=8.5、Mz/Mw=7.0、MT=7.0
Y−1;
日本ポリプロ(株)製、商品名:ノバテックPP、グレード名:FY4
チーグラー・ナッタ触媒によるプロピレン単独重合体
MFR=5.0、Mw/Mn=4.0
Y−2;
日本ポリプロ(株)製、商品名:ノバテックPP、グレード名:FY6H
チーグラー・ナッタ触媒によるプロピレン単独重合体
MFR=2.0、Mw/Mn=4.0
<触媒成分(A)の合成例1>
ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウム(成分[A−1](錯体1)の合成):
(i)4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に、4−i−プロピルフェニルボロン酸15g(91mmol)、ジメトキシエタン(DME)200mlを加え、炭酸セシウム90g(0.28mol)と水100mlの溶液を加え、4−ブロモインデン13g(67mmol)、テトラキストリフェニルホスフィノパラジウム5g(4mmol)を順に加え、80℃で6時間加熱した。
放冷後、反応液を蒸留水500ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで抽出した。エーテル層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−i−プロピルフェニル)インデンの無色液体15.4g(収率99%)を得た。
500mlのガラス製反応容器に4−(4−i−プロピルフェニル)インデン15.4g(67mmol)、蒸留水7.2ml、DMSO:200mlを加え、ここにN−ブロモスクシンイミド17g(93mmol)を徐々に加えた。そのまま室温で2時間撹拌し、反応液を氷水500ml中に注ぎ入れ、トルエン100mlで3回抽出した。トルエン層を飽和食塩水で洗浄し、p−トルエンスルホン酸2g(11mmol)を加え、水分を除去しながら3時間加熱還流した。反応液を放冷後、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−ブロモ−4−(4−i−プロピルフェニル)インデンの黄色液体19.8g(収率96%)を得た。
500mlのガラス製反応容器に、2−メチルフラン6.7g(82m1mol)、DME:100mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.59mol/Lのn−ブチルリチウム−n−ヘキサン溶液51ml(81mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、そこにトリイソプロピルボレート20ml(87mmol)とDME50mlの溶液を滴下した。滴下後、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水50mlを加え加水分解した後、炭酸カリウム223gと水100mlの溶液、2−ブロモ−4−(4−i−プロピルフェニル)インデン19.8gg(63mmol)を順に加え、80℃で加熱し、低沸分を除去しながら3時間反応させた。
放冷後、反応液を蒸留水300ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで3回抽出した、エーテル層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデンの無色液体19.6g(収率99%)を得た。
500mlのガラス製反応容器に、2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデン9.1g(29mmol)、THF200mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.66mol/Lのn−ブチルリチウム−ヘキサン溶液17ml(28mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、1−メチルイミダゾール0.1ml(2mmol)、ジメチルジクロロシラン1.8g(14mmol)を順に加え、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水を加え、分液ロートに移し食塩水で中性になるまで洗浄し、硫酸ナトリウムを加え反応液を乾燥させた。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シランの淡黄色固体8.6g(収率88%)を得た。
500mlのガラス製反応容器に、ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シラン8.6g(13mmol)、ジエチルエーテル300mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.66mol/Lのn−ブチルリチウム−n−ヘキサン溶液15ml(25mmol)を滴下し、3時間撹拌した。反応液の溶媒を減圧で留去し、トルエン400ml、ジエチルエーテル40mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム4.0g(13mmol)を加えた。その後、徐々に室温に戻しながら一夜撹拌した。
溶媒を減圧留去し、ジクロロメタン−ヘキサンで再結晶を行い、ジメチルシリレンビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)ハフニウムジクロライドのラセミ体を黄色結晶として7.6g(収率65%)得た。
1H−NMR(C6D6)測定結果:
ラセミ体:δ0.95(s,6H),δ1.10(d,12H),δ2.08(s,6H),δ2.67(m,2H),δ5.80(d,2H),δ6.37(d,2H),δ6.74(dd,2H),δ7.07(d,2H),δ7.13(d,4H),δ7.28(s,2H),δ7.30(d,2H),δ7.83(d,4H)。
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(成分[A−2](錯体2)の合成):
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成は、特開平11―240909号公報の実施例1に記載の方法と同様にして、実施した。
(i)イオン交換性層状珪酸塩の化学処理
セパラブルフラスコ中で蒸留水2,264gに96%硫酸(668g)を加えその後、層状珪酸塩としてモンモリロナイト(水澤化学工業(株)製、商品名:ベンクレイSL、平均粒径19μm)400gを加えた。このスラリーを90℃で210分加熱した。この反応スラリーに蒸留水4,000gを加えた後にろ過したところ、ケーキ状固体810gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム432g、蒸留水1,924gを加え硫酸リチウム水溶液としたところへ、上記ケーキ状固体を全量投入した。このスラリーを室温で120分反応させた。このスラリーに蒸留水4Lを加えた後にろ過し、更に蒸留水でpH5〜6まで洗浄し、ろ過を行ったところ、ケーキ状固体760gを得た。
得られた固体を窒素気流下100℃で一昼夜予備乾燥後、53μm以上の粗大粒子を除去し、更に200℃、2時間、減圧乾燥することにより、化学処理スメクタイト220gを得た。
この化学処理スメクタイトの組成は、Al:6.45重量%、Si:38.30重量%、Mg:0.98重量%、Fe:1.88重量%、Li:0.16重量%であり、Al/Si=0.175[mol/mol]であった。
3つ口フラスコ(容積1L)中に、上記で得られた化学処理スメクタイト20gを入れ、ヘプタン(132mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(25mmol:濃度143mg/mLのヘプタン溶液を68.0mL)を加えて1時間攪拌後、ヘプタンで残液率が1/100になるまで洗浄し、全容量を100mLとした。
また、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例1で作製した前記触媒成分[A−1]の錯体1、rac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウム(210μmol)をトルエン(42mL)に溶解し(溶液1)、更に、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例2で作製した前記触媒成分[A−2]の錯体2、rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(90μmol)をトルエン(18mL)に溶解した(溶液2)。
その後、ヘプタンを338mL追加し、このスラリーを、1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのち、プロピレンを10g/時の速度でフィードし、4時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、1時間残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、残った部分に、トリイソブチルアルミニウム(6mmol:濃度143mg/mLのヘプタン溶液を17.0mL)を加えて5分攪拌した。
この固体を1時間減圧乾燥することにより、乾燥予備重合触媒52.8gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.64であった。
以下、このものを「予備重合触媒1」という。
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン40kgを導入した。これに水素4.4リットル(標準状態の体積として)、トリイソブチルアルミニウム0.12mol(濃度50g/Lのヘプタン溶液)を加えた後、内温を70℃まで昇温した。次いで、予備重合触媒1を2.4g(予備重合ポリマーを除いた重量で)、アルゴンで圧入して重合を開始させ、内部温度を70℃に維持した。2時間経過後に、エタノールを100ml圧入し、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより重合を停止した。
得られたポリマーを90℃窒素気流下で1時間乾燥し、16.5kgのプロピレン重合体(以下、「X−1」という)を得た。
触媒活性は、6,880(g−PP/g−cat)であった。MFRは1.0g/10分であった。
添加する水素を6.6リットル、使用する予備重合触媒1を1.9g(予備重合ポリマーを除いた重量で)で行う以外は、製造例1と同様に実施した。16.5kgのプロピレン重合体(以下、「X−2」という。)を得た。
触媒活性は、8,050(g−PP/g−cat)であった。MFRは4.6g/10分であった。
添加する水素を9.2リットル、使用する予備重合触媒1を2.1g(予備重合ポリマーを除いた重量で)で行う以外は、製造例1と同様に実施した。18.8kgのプロピレン重合体(以下、「X−3」という。)を得た。
触媒活性は、9,000(g−PP/g−cat)であった。MFRは7.5g/10分であった。
上記製造例1〜3で製造したプロピレン系樹脂(X−1)〜(X−3)各々100重量部に対し、フェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010、BASFジャパン(株)製)0.125重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168、BASFジャパン(株)製)0.125重量部を配合し、高速攪拌式混合機(商品名:ヘンシェルミキサー)を用い室温下で3分間混合した後、二軸押出機にて溶融混練して、ポリプロピレン樹脂(X−1)〜(X−3)のペレットを得た。
なお、二軸押出機には、テクノベル社製KZW−25を用い、スクリュー回転数は400RPM、混練温度は、ホッパ下から80、160、210、230(以降、ダイス出口まで同温度)℃設定とした。
評価結果を表1に示した。
ポリプロピレン樹脂(X)と、ポリプロピレン樹脂(Y)を、表2に示す割合でヘンシェルミキサー(商品名)にて混合した後、スクリュー径50mmφの押出機を用いて230℃の温度で溶融押出してペレット化した。
得られたペレットを下記の条件によりモノフィラメント成形し、繊度500dtexの延伸糸を得た。
押出機スクリュー系:40mmφ (L/D:24)
紡糸ノズル径:1.0mmφ 、孔数:10孔
紡糸温度:C1/C2/C3/A/D=210/230/230/210/210 ℃
吐出量:3kg/h
延伸槽温度:95℃(沸騰水)
糸繰出速度:11.1m/分(9倍延伸)
巻取(延伸)速度: 100m/分
得られたモノフィラメントについての物性を、前記測定法に準拠し測定した。表2にその評価結果を掲載する。
表2における実施例1〜6から明らかなように、本発明による分岐構造を有する特定のポリプロピレン樹脂(X)及びポリプロピレン樹脂(Y)を含有した組成物を使用することにより、紡糸性・延伸性に優れ、延伸後の繊度あたりの繊維強度及び伸度のバランスに優れたポリプロピレン繊維が提供される。
一方で、ポリプロピレン樹脂(X)の含有量が過剰となる組成物である場合、紡糸ノズル直下における糸の走行状態が安定せず、断糸や糸揺れが発生しまうために繊維成形には不適である(比較例1、2)。ポリプロピレン樹脂(X)の含有量が少ない又は含まない組成物については、繊維成形は可能であるものの、繊度あたりの繊維強度は十分に高くなく、かつ、伸度も劣る(比較例3、7、8)。
なお、ポリプロピレン樹脂(X)として、本発明の特性を満たさない樹脂(X−4、X−5)を用いた場合、紡糸時の安定性に劣り、繊維成形には不適な組成物となる(比較例4、5)。
また、ポリプロピレン樹脂(X)として、分岐構造を持たず、高分子量のエチレン−α−オレフィン共重合体成分の存在により高溶融張力を有する高溶融張力ポリプロピレン樹脂(X−6)を用いた場合は、紡糸性の悪化は見られないものの、延伸工程において高強度を発現するのに十分に高い倍率では断糸してしまう(比較例6)。
以上の結果より、本発明の各実施例においては、各比較例に比して、ポリプロピレン繊維の各性能が、バランス良くおしなべて顕著に優れており、本発明の構成の合理性と有意性及び従来技術に対する卓越性を明示しているといえる。
Claims (7)
- 以下の(i)〜(vi)の特性を満たす分岐構造を有するポリプロピレン樹脂(X)3〜50重量部及びポリプロピレン樹脂(X)を除くポリプロピレン樹脂(Y)97〜50重量部を含有するポリプロピレン系樹脂組成物からなることを特徴とするポリプロピレン繊維。
(i)MFR(230℃、2.16kg荷重)が0.1〜30g/10分
(ii)25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満
(iii)13C−NMRによるプロピレン単位3連鎖のmm分率が95%以上
(iv)GPCによる分子量分布において、Mw/Mnが3.0以上10.0以下、かつ、Mz/Mwが2.5以上10.0以下
(v)絶対分子量Mabsが100万における分岐指数g’が0.30以上1.00未満
(vi)溶融張力(MT)(単位:g)が、
log(MT)≧−0.9×log(MFR)+0.7、又は、MT≧15
のいずれかを満たす。 - ポリプロピレン樹脂(Y)がプロピレン単独重合体である請求項1に記載のポリプロピレン繊維。
- 請求項1又は2に記載のポリプロピレン繊維を用いてなるロープ。
- 請求項1又は2に記載のポリプロピレン繊維を用いてなる織物。
- 請求項1又は2に記載のポリプロピレン繊維を用いてなるカーペット。
- 請求項1又は2に記載のポリプロピレン繊維を用いてなる人工芝。
- 請求項1又は2に記載のポリプロピレン繊維を用いてなるコンクリート補強用繊維。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053948A JP6790946B2 (ja) | 2017-03-21 | 2017-03-21 | ポリプロピレン繊維 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053948A JP6790946B2 (ja) | 2017-03-21 | 2017-03-21 | ポリプロピレン繊維 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018154949A JP2018154949A (ja) | 2018-10-04 |
JP6790946B2 true JP6790946B2 (ja) | 2020-11-25 |
Family
ID=63716335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017053948A Active JP6790946B2 (ja) | 2017-03-21 | 2017-03-21 | ポリプロピレン繊維 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6790946B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7155608B2 (ja) * | 2018-05-25 | 2022-10-19 | 日本ポリプロ株式会社 | ポリプロピレン系モノフィラメント用樹脂組成物及びポリプロピレン系モノフィラメントの製造方法 |
JP7155609B2 (ja) * | 2018-05-25 | 2022-10-19 | 日本ポリプロ株式会社 | ポリプロピレン系モノフィラメント用樹脂組成物及びポリプロピレン系モノフィラメントの製造方法 |
CN113767145B (zh) * | 2019-04-24 | 2023-10-27 | 住友化学株式会社 | 丙烯树脂组合物以及成型体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2007145355A (ru) * | 2005-06-07 | 2009-06-20 | Базелль Полиолефин Италия С.Р.Л. (It) | Полиолефиновые нанокомпозитные материалы |
JP2007262631A (ja) * | 2006-03-29 | 2007-10-11 | Japan Polypropylene Corp | プロピレン系共重合体又はその組成物から成形された繊維及びその繊維製品 |
JP2011195988A (ja) * | 2010-03-19 | 2011-10-06 | Japan Polypropylene Corp | ポリプロピレン繊維、その製造方法およびそれを用いた製品 |
US9505894B2 (en) * | 2012-02-23 | 2016-11-29 | Japan Polypropylene Corporation | Polypropylene-based resin composition and foam sheet |
JP6375655B2 (ja) * | 2013-03-19 | 2018-08-22 | 日本ポリプロ株式会社 | 繊維強化ポリプロピレン系難燃樹脂組成物及びそれを用いた成形体 |
JP2015054919A (ja) * | 2013-09-12 | 2015-03-23 | 日本ポリプロ株式会社 | 溶断シール用ポリプロピレン系樹脂組成物及びポリプロピレン系フィルム |
-
2017
- 2017-03-21 JP JP2017053948A patent/JP6790946B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018154949A (ja) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4553966B2 (ja) | プロピレン系重合体 | |
JP6098274B2 (ja) | プロピレン−エチレン共重合体樹脂組成物並びにフィルム | |
JP6209953B2 (ja) | インフレーションフィルム成形用ポリプロピレン系樹脂組成物およびフィルムの製造方法 | |
JP6481279B2 (ja) | シーラント用ポリプロピレン系樹脂組成物とそれからなるフィルム | |
JP5624851B2 (ja) | 発泡シート成形用ポリプロピレン系樹脂組成物および発泡シート | |
JP5211012B2 (ja) | 結晶性ポリプロピレン樹脂組成物 | |
JP5297838B2 (ja) | ポリプロピレン系発泡延伸フィルム | |
JP5140625B2 (ja) | プロピレン系樹脂組成物及びそれを用いた食品容器、医療部材 | |
JP5052490B2 (ja) | 結晶性ポリプロピレン樹脂組成物及びその自動車用内外装部品 | |
JP5342922B2 (ja) | 押出発泡成形用樹脂組成物およびそれを用いた発泡体 | |
JP2015054919A (ja) | 溶断シール用ポリプロピレン系樹脂組成物及びポリプロピレン系フィルム | |
JP6790946B2 (ja) | ポリプロピレン繊維 | |
JP4990218B2 (ja) | プロピレン系樹脂組成物およびその成形体 | |
JP5862486B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP5297834B2 (ja) | ポリプロピレン系発泡フィルム | |
JP5124517B2 (ja) | ポリプロピレン系ブロー成形体 | |
JP5849913B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP6213176B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP6787070B2 (ja) | 二軸延伸ポリプロピレンシート | |
JP5175668B2 (ja) | プロピレン系重合体およびその製造方法 | |
JP6332093B2 (ja) | プロピレン系重合体 | |
JP5880369B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 | |
JP6840929B2 (ja) | ポリプロピレン系樹脂組成物及びそれを用いた成形体 | |
JP5915502B2 (ja) | 異形押出成形体用ポリプロピレン系樹脂組成物およびそれを用いた成形体 | |
JP6213180B2 (ja) | 押出しラミネート用ポリプロピレン系樹脂組成物および積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191211 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6790946 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |