JP6787409B2 - 情報処理装置、情報処理システム及び情報処理方法 - Google Patents

情報処理装置、情報処理システム及び情報処理方法 Download PDF

Info

Publication number
JP6787409B2
JP6787409B2 JP2018560277A JP2018560277A JP6787409B2 JP 6787409 B2 JP6787409 B2 JP 6787409B2 JP 2018560277 A JP2018560277 A JP 2018560277A JP 2018560277 A JP2018560277 A JP 2018560277A JP 6787409 B2 JP6787409 B2 JP 6787409B2
Authority
JP
Japan
Prior art keywords
data
behavior
information
sensor
information processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018560277A
Other languages
English (en)
Other versions
JPWO2018127947A1 (ja
Inventor
拓郎 大谷
拓郎 大谷
義典 柳沼
義典 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2018127947A1 publication Critical patent/JPWO2018127947A1/ja
Application granted granted Critical
Publication of JP6787409B2 publication Critical patent/JP6787409B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Fuzzy Systems (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Evolutionary Computation (AREA)
  • Dentistry (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、情報処理装置、情報処理システム及び情報処理方法に関する。
人等の行動をどのように定量化するかについては、さまざまなアプローチがある。例えば、人体の複数部位に複数のセンサを装着して、人体の姿勢を検出する技術が知られている(例えば、特許文献1又は2を参照)。
しかしながら、センサが検出する検出値には、実際の行動とは異なるノイズとなるデータが含まれる。そこで、センサから取得したデータからノイズとなるデータを除去する技術が提案されている。例えば、歩行を検出し、所定の閾値以下の振幅の歩行データを無視することで、歩数をカウントする技術が知られている(例えば、特許文献3を参照)。
特開2011−78728号公報 特開2006−326174号公報 特開2012−65749号公報
しかしながら、上記による閾値の判定では、センサから取得したデータのうちノイズとなるデータなのか否かの判断が困難な場合がある。例えば、身体の状態が良好でない人や老人はそれほど激しい運動をしない場合がある。その場合、所定の閾値を基準に、センサから取得したデータがノイズであるか否かを判定すると、判定結果に誤りが生じ、行動を正しく定量化できなくなる。
そこで、1つの側面では、本発明は、行動を正しく定量化することを目的とする。
1つの実施態様では、対象物に取り付けたセンサから取得した、対象物の動きを示すデータから前記対象物の動きの変化に関する特徴部分のデータを抽出する抽出部と、対象物の行動パターンが記憶された記憶部を参照して、抽出した前記特徴部分のデータに対応する前記対象物の行動を推定する行動推定部と、推定した前記対象物の行動のフォームであって、抽出した前記特徴部分のデータに対応するフォームを推定するフォーム推定部と、を有する情報処理装置が提供される。
1つの側面では、本発明は、行動を正しく定量化することができる。
センサを用いたフォーム推定の一例の課題を説明するための図。 一実施形態に係るセンサを用いたフォーム推定を説明するための図。 一実施形態に係る情報処理装置のハードウェア構成の一例を示す図。 一実施形態に係る情報処理システムの一例を示す図。 一実施形態に係る情報処理装置の機能構成の一例を示す図。 一実施形態に係るセンサ管理テーブルの一例を示す図。 一実施形態に係る体格モデルテーブルの一例を示す図。 一実施形態に係るデータ特定用テーブルの一例を示す図。 一実施形態に係る位置特定用テーブルの一例を示す図。 一実施形態に係る組合せテーブルの一例を示す図。 一実施形態に係る行動学習テーブルの一例を示す図。 一実施形態に係る可動範囲テーブルの一例を示す図。 一実施形態に係る事前処理の一例を示すフローチャート。 一実施形態に係る学習処理の一例を示すフローチャート。 一実施形態に係る学習モードにおける処理の流れを説明するための図。 一実施形態に係るデータ特定用テーブルの一例を示す図。 一実施形態に係るデータ特定用テーブルの波形抽出例を示す図。 一実施形態に係るデータ特定用テーブルと行動学習テーブルの一例を示す図。 一実施形態に係る可動範囲テーブルの一例を示す図。 一実施形態に係るフォーム推定処理の一例を示すフローチャート。 一実施形態に係るフォーム推定モードにおける処理の流れを説明するための図。 一実施形態に係る組合せテーブル、データ特定用テーブル、位置特定用テーブルの一例を示す図。 一実施形態に係るデータ特定用テーブルと行動学習テーブルの一例を示す図。 一実施形態に係るデータ特定用テーブルと位置特定用テーブルの一例を示す図。 一実施形態に係る可動範囲テーブルの一例を示す図。 一実施形態に係る対象物の動きの変化に関する特徴部分の一例を示す図。
以下、本発明の実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省く。
<はじめに>
人の行動や生体情報をセンシングし、状況や行動を把握して、それに応じたサービスの提供を行うシステムが提案されている。例えば、リハビリ現場において、患者の連続的な姿勢(以下、「フォーム」という。)をセンシングし、患者のフォームを推定して可視化することで、回復度合いや健康状態の定量的な判断が可能になる。また、このようなサービスの提供は、患者本人のモチベーションを向上させるのに役立つ。
そこで、例えば、モーションキャプチャを用いた行動観察により、人の行動を定量化することが考えられる。また、画像センサやウェアラブルセンサを用いて人の行動を定量化することが考えられる。
しかしながら、これらのセンサを用いた行動の定量化では、センサに含まれるノイズの影響で正しいフォームを推定できない場合がある。その一例としては、ウェアラブルセンサのドリフトノイズの影響で、静止していても移動しているように見える場合が挙げられる。この現象を、図1(a)に示すように、例えば、システムの利用者が、足首に位置特定用センサ2(加速度センサ)を付けて歩く場合を例に挙げて説明する。
位置特定用センサ2が検知したy軸方向の加速度を積分すると、図1(b)に示すようにy軸方向の速度の時間変化が算出される。足を上げてから上げた足を地面に着けるまでの動作は、山なりの速度変化(小→大→小の速度変化)を有する特徴部分である。
他方、位置特定用センサ2を付けていない側の足を上げてから上げた足を地面に着けるまでの間、位置特定用センサ2を付けている側の足は地面についている。しかし、この間、ウェアラブルセンサのドリフトノイズの影響で静止していても移動しているように波形が生じている。
更にy軸の速度を積分すると、図1(c)に示すようにy軸方向の位置の時間変化が算出される。これによれば、「a」の部分等に示すように速度の積分によりドリフトノイズが蓄積され、足を地面に着けている状態であるにもかかわらず、足の位置が地面に着いていない結果が出力されている。この結果、図1(d)の左側に示す通常の歩行のフォームに対して、位置特定用センサ2が検出した加速度のデータから推定されるフォームは、図1(d)の右側に示すように、実際とは異なる姿勢となる。
そこで、本実施形態に係る情報処理装置では、対象物に取り付けたセンサから取得した、対象物の動きを示すデータからノイズを除き、行動を正しく定量化し、フォームを精度良く推定する。本実施形態では、可能な限りノイズを抑えるために、センサから取得したデータから特徴部分を有するデータを抽出する。具体的には、本実施形態では、取得したセンサデータから運動エネルギーが小→大→小と遷移する変化部分のデータ(特徴部分のデータ)が抽出される。これにより、運動特有の短期的なエネルギー変化の範囲を特定し、特定した範囲内のセンサデータのみを使用して行動の定量化を図ることができる。
例えば、図2に示すように、データ特定用センサ1及び位置特定用センサ2を右足に付けた利用者が歩行する場合、図2の上段の上下のグラフに示すように、いずれのセンサからもほぼ同じ値の加速度が検出される。この場合、取得した加速度を積分することで、図2の下段の上下のグラフに示すように、ほぼ同じ値の速度が算出される。この場合、本実施形態に係る情報処理装置は、算出したy軸の速度が小→大→小と遷移する範囲A及び範囲Bの速度を抽出する。そして、情報処理装置は、抽出した速度の情報に基づき利用者の行動を定量化し、利用者のフォームを推定する。これにより、各センサが検出した加速度からノイズを取り除き、正しいフォームを推定することができる。図2の例では、本実施形態に係る情報処理装置は、例えば範囲Aのうち、データ特定用センサ1の速度と、事前に学習した歩行時の速度の波形データとを比較してほぼ一致する場合には、行動を「歩行」と推定し、推定した行動についてのフォームを推定する。
なお、データ特定用センサ1とは異なる部位に位置特定用センサ2を取り付けてもよい。以下の説明では、データ特定用センサ1が検出した加速度は、その加速度の積分である速度のうちから運動エネルギーが小→大→小と遷移する特徴部分の速度情報を抽出するために使用される。これに対して、位置特定用センサ2が検出した加速度は、利用者のフォームを推定するために使用される。
[情報処理装置のハードウェア構成]
次に、本発明の一実施形態に係る情報処理装置10のハードウェア構成の一例について、図3を参照しながら説明する。本実施形態に係る情報処理装置10は、PC(Personal Computer)、タブレット端末、スマートフォン、PDA(Personal Digital Assistants)、ウェアラブルデバイスに適用され得る。
情報処理装置10は、プロセッサ4とディスプレイ3を有する。プロセッサ4は、CPU5とメモリ6とを含む。ディスプレイ3は、例えばLCD(Liquid crystal Display)で構成され、推定されたフォームやその他の情報を表示する。
CPU5は、メモリ6から、プログラムやデータを読み出し、事前処理、学習処理、フォーム推定処理を実行することで、装置全体の制御や搭載機能を実現する演算装置である。
メモリ6は、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)から構成され、各種のテーブルや各種のプログラムを格納する。
データ特定用センサ1は、例えば加速度センサであり、利用者に取付けられ、時間的に連続した加速度の情報を情報処理装置10に転送する。データ特定用センサ1から取得したデータは、利用者の行動の運動エネルギーが小→大→小と変化に関する特徴部分のデータを抽出するために使用される。
位置特定用センサ2は、例えば加速度センサであり、利用者に取付けられ、時間的に連続な加速度の情報を情報処理装置10に転送する。位置特定用センサ2から取得したデータは、前記抽出した特徴部分のデータに対応するフォームを推定するために使用される。
本実施形態では、説明の便宜上、データ特定用センサ1及び位置特定用センサ2の2つのセンサを使用するが、本実施形態にて使用するセンサは1つであってもよい。使用するセンサが1つの場合、センサから取得したデータは、データ特定用テーブル23に記憶され、利用者の行動の変化に関する特徴部分のデータを抽出するために使用される。それとともに、センサから取得したデータは、位置特定用テーブル24に記憶され、フォームを推定するために使用される。
[システム構成]
本実施形態により行われるフォームの推定は、図4に一例を示す情報処理システム100によって実現されてもよい。図4の情報処理システム100では、情報処理装置10とサーバ9とがネットワークを介して接続されている。また、サーバ9とデータ特定用センサ1及び位置特定用センサ2とは、無線装置8a、8bを介して接続されている。
サーバ9は、データ特定用センサ1及び位置特定用センサ2が検出した加速度の情報を蓄積するデータベース(DB)9aを有する。DB9aは、サーバ9内の記憶装置に記憶されてもよいし、クラウド上の記憶装置に記憶されていればよい。また、サーバ9は、クラウド上の演算装置であってもよい。
図4では、情報処理装置10は、図3に示すハードウェア構成に加えて通信I/F7を有する。通信I/F7は、情報処理装置10をネットワークに接続するインターフェースである。これにより、情報処理装置10は、通信I/F7を介して、サーバ9等の他の機器とデータ通信を行うことができる。通信I/F7は、DB9aから必要なデータを受信し、CPU5は、受信したデータを用いてフォーム推定のための処理を実行する。
[情報処理装置の機能構成]
次に、一実施形態に係る情報処理装置10の機能構成の一例について、図5を参照しながら説明する。情報処理装置10は、取得部11、速度算出部12、位置算出部13、記憶部14、波形抽出部15、行動推定部16、可動範囲算出部17、フォーム推定部18、情報提示部19及び体格モデル作成部20を有する。
取得部11は、例えば、0.1秒毎に取得される時間的に連続したセンサデータを取得する。本実施形態では、取得部11は、データ特定用センサ1及び位置特定用センサ2が検出した加速度を取得する。
速度算出部12は、データ特定用センサ1及び位置特定用センサ2が検出した加速度を積分して速度を算出する。位置算出部13は、算出した速度を積分して位置を算出する。
記憶部14は、センサ管理テーブル21、体格モデルテーブル22、データ特定用テーブル23、位置特定用テーブル24、組合せテーブル25、行動学習テーブル26、可動範囲テーブル27及び行動波形テーブル28を記憶する。また、記憶部14は、事前処理プログラム、学習処理プログラム及びフォーム推定処理プログラムを記憶する。
図6は、一実施形態に係るセンサ管理テーブル21の一例を示す。センサ管理テーブル21には、利用者に取り付けたデータ特定用センサ1及び位置特定用センサ2の位置が記憶される。本実施形態では、データ特定用センサ1及び位置特定用センサ2を右足首に装着しているものとする。この場合、図6に示すように、センサ管理テーブル21には、センサ管理ID「01」に対応付けて、センサ番号が「1」のデータ特定用センサ1の取付位置とセンサ番号が「2」の位置特定用センサ2の取付位置とに「右足首」が記憶される。
図7は、一実施形態に係る体格モデルテーブルの一例を示す。体格モデルテーブル22には、利用者毎の体格に関する寸法情報が記憶される。体格モデル作成部20は、画像データやモーションキャプチャに基づき利用者毎の体格に関する寸法情報を取得し、体格モデルテーブル22に予め記憶する。
図8は、一実施形態に係るデータ特定用テーブル23の一例を示す。データ特定用テーブル23には、データ特定用センサ1が検出した加速度の情報が記憶される。また、データ特定用テーブル23には、検出した加速度を積分した速度の情報が記憶される。速度は、速度算出部12により算出される。
図9は、一実施形態に係る位置特定用テーブル24の一例を示す。位置特定用テーブル24には、位置特定用センサ2が検出した加速度の情報が記憶される。また、データ特定用テーブル23には、検出した加速度を積分した速度、及び速度を積分した位置の各情報が記憶される。速度は、速度算出部12により算出される。位置は、位置算出部13により算出される。
なお、本実施形態では、データ特定用テーブル23に記憶される速度と、位置特定用テーブル24に記憶される速度及び位置とは、y軸方向の情報のみを表記するが、x軸方向及びz軸方向の情報を加えてもよい。
図10は、一実施形態に係る組合せテーブル25の一例を示す。組合せテーブル25には、カテゴリ毎のセンサ管理ID、行動管理ID及び可動域IDの組合わせが記憶される。
図11は、一実施形態に係る行動学習テーブル26の一例を示す。行動学習テーブル26には、各カテゴリについて0.1秒毎に取得したセンサ値から算出した速度の情報が記憶される。
図12は、一実施形態に係る可動範囲テーブル27の一例を示す。可動範囲テーブル27には、身体の部位ごとに可動範囲の情報が記憶される。本実施形態では、可動範囲テーブル27は、センサが取り付けられる足首だけに可動範囲の情報が記憶される。
行動波形テーブル28には、予め利用者に取付けられたセンサから取得したセンサ値から学習した行動と波形とが関連付けて記憶される(図15参照)。波形は時系列の数値により記憶されてもよい。
図5に戻り、波形抽出部15は、データ特定用センサ1が検出した加速度から使用するデータ領域を絞り込み、絞り込んだ範囲のデータの波形を抽出する。データの絞り込みは、加速度を積分した速度から運動エネルギー変化の特徴部分が小→大→小となる部分、つまり、速度が相対的に低速度から高速度になり、その後低速度になる部分を抽出することにより行われる。
行動推定部16は、取得したセンサデータに対し、絞り込んだ範囲のデータを使用して利用者の行動を推定する。
可動範囲算出部17は、利用者の体格モデルに応じて、推定した行動を行うときの関節可動範囲を算出する。フォーム推定部18は、算出した関節可動範囲と算出した位置情報とから利用者のフォームを推定する。
情報提示部19は、推定した利用者のフォームを表示する。体格モデル作成部20は、利用者の体格情報から利用者の体格モデルを作成する。
取得部11、速度算出部12、位置算出部13、波形抽出部15、行動推定部16、可動範囲算出部17、フォーム推定部18、情報提示部19及び体格モデル作成部20の機能は、例えばメモリ6にインストールされた事前処理プログラム、学習処理プログラム及びフォーム推定処理プログラムが、CPU5に実行させる処理により実現される。記憶部14の機能は、例えばメモリ6により実現される。情報提示部19の機能は、例えばディスプレイ3により実現される。
[事前処理]
次に、本実施形態に係る事前処理の一例について図13を参照して説明する。図13は、一実施形態に係る事前処理の一例を示すフローチャートである。本処理が開始されると、取得部11は、利用者に取り付けられるデータ特定用センサ1及び位置特定用センサ2の取付位置を取得し、センサ管理テーブル21に記憶する(ステップS10)。本実施形態では、データ特定用センサ1及び位置特定用センサ2は、利用者の右足首に取り付けられる。
次に、体格モデル作成部20は、利用者の体格に関する寸法情報を生成し、体格モデルテーブル22に記憶し(ステップS12)、本処理を終了する。
[学習処理]
次に、本実施形態に係る学習処理の一例について図14を参照して説明する。図14は、一実施形態に係る学習処理の一例を示すフローチャートである。学習処理では、利用者の日常の行動をセンシングし、図15に一例を示すように、利用者の行動毎の波形(速度データ群)を学習する。
本処理が開始されると、取得部11は、データ特定用センサ1及び位置特定用センサ2から加速度の信号を取得する(ステップS20)。データ特定用センサ1が取得した加速度は、データ特定用テーブル23に記憶され、位置特定用テーブル24が取得した位置特定用センサ2の加速度は、位置特定用テーブル24に記憶される。
次に、速度算出部12は、データ特定用センサ1から取得した加速度から速度を算出し、算出した速度をデータ特定用テーブル23に記憶する(ステップS22)。図16は、図16(a)の初期化されたデータ特定用テーブル23に、図16(b)に示すようにデータ特定用センサ1から取得した加速度と、算出した速度の情報を記憶した一例である。
図14に戻り、次に、波形抽出部15は、運動の1周期部分の波形を抽出する(ステップS24)。つまり、波形抽出部15は、データ特定用テーブル23の速度の情報から、小→大→小と変化する速度の特徴部分の情報を抜き出す。学習の段階のため、運動の1周期部分の波形の抽出は、手作業でもよいし、周波数スペクトルから抜き出してもよい。
この結果、図17(a)に示すように、速度が相対的に低速度からピークの速度になった後再び低速度になる運動の1周期部分の情報Eが抽出される。この1周期部分の情報Eは、例えば図2の範囲Aの上側に示す、小→大→小と変化する速度のデータ群に対応する。
図14に戻り、行動推定部16は、運動の1周期部分の情報と行動(歩行、投球等)とを紐付け、行動学習テーブル26に登録する(ステップS26)。例えば、行動推定部16は、図17(a)と同じ内容である図18(a)のデータ特定用テーブル23の運動の1周期部分の情報Eを、利用者が行っている「歩行」行動と紐付け、図18(b)に示すように行動学習テーブル26に記憶する。更に行動に紐付けた1周期部分の情報Eの波形を特定し、行動に紐付けた波形として行動波形テーブル28に記憶してもよい。図15には、データ特定用テーブル23の運動の1周期部分の情報が、行動学習テーブル26に記憶され、運動の1周期部分の情報が示す波形が行動波形テーブル28に記憶される例が示されている。
図14に戻り、位置算出部13は、位置特定用テーブル24に記憶した加速度の情報のうち、データ特定用テーブル23から抽出された運動の1周期部分の情報Eに対応する加速度の情報を用いて、積分により速度と位置を算出する(ステップS28)。記憶部14は、算出した速度と位置の各情報を、図17(b)に示すように位置特定用テーブル24に記憶する。
データ特定用テーブル23に記憶された情報は、行動の波形を抽出するために使用される。そのため、データ特定用テーブル23内の加速度から速度を算出する際には、データ特定用テーブル23内のすべての加速度に基づき速度が算出される。
一方、位置特定用テーブル24に記憶された情報は、利用者に取付けられたセンサの位置を取得するために使用される。そのため、位置特定用テーブル24内の加速度から速度を算出する際には、図17(a)の情報Eに対応する図17(b)の情報Fに含まれる加速度のみを積分して速度が算出される。また、算出された速度を積分して位置が算出される。このように位置の算出では、抽出した情報Fに含まれる加速度以外の加速度を速度の算出に使用しないことで、算出された位置にノイズが含まれる可能性をより低減することができる。
図14に戻り、次に、可動範囲算出部17は、位置特定用テーブル24から抽出した運動の1周期部分の情報から得た位置の情報を取得し、取得した位置の情報に基づき関節の可動範囲を算出し、可動範囲テーブル27に記憶する(ステップS30)。
例えば、図17(a)のデータ特定用テーブル23及び図17(b)の位置特定用テーブル24の例では、データ特定用テーブル23から抽出した運動の1周期部分の情報Eに対応する位置特定用テーブル24の運動の1周期部分の情報Fは、データ特定用センサ1及び位置特定用センサ2が検出する加速度の取得時刻が同一の情報である。しかしながら、データ特定用テーブル23から抽出した運動の1周期部分の情報に対応する位置特定用テーブル24の運動の1周期部分の情報は、これに限らない。例えば、データ特定用テーブル23から抽出した運動の1周期部分の情報に対応する位置特定用テーブル24の運動の1周期部分の情報は、データ特定用センサ1及び位置特定用センサ2が検出する加速度の取得時刻がほぼ同一又は近い情報であってもよい。
可動範囲テーブル27には、足首の可動範囲の初期値として0°〜360°が設定されている。本実施形態の場合、ステップS30が実行されると、例えば図19(a)の位置特定用テーブル24の運動の1周期部分の情報Fの位置情報に対応する、センサが取り付けられた足首の可動範囲10°〜270°が、可動範囲テーブル27の足首の欄に記憶される。なお、センサが足首以外の部位に取り付けられていた場合、センサが取り付けられた部位毎に可動範囲が定められ、可動範囲テーブル27の対応する部位の欄に記憶される。
ただし、ステップS30は、省略してもよい。この場合、センサを取り付けた部位の可動範囲は、位置特定用テーブル24の運動の1周期部分の情報Fの位置情報で示される。
図14に戻り、可動範囲算出部17は、ステップS26にて運動の1周期部分と紐付けられた特定の行動と、算出された各関節の可動範囲とを紐付けて組合せテーブル25に記憶し(ステップS32)、本処理を終了する。これにより、例えば、図10の組合せテーブル25の一行目に示すように、カテゴリが「歩行」、センサ管理IDが「01」、行動管理IDが「01」、関節可動域IDが「01」の組合わせが記憶される。
[フォーム推定処理]
次に、本実施形態に係るフォーム推定処理の一例について図20を参照して説明する。図20は、一実施形態に係るフォーム推定処理の一例を示すフローチャートである。フォーム推定処理は、利用者に付けられたセンサから利用者の行動を推定し、推定した行動に基づきフォームを推定する。本実施形態では、本処理において、既に取得した利用者の体格モデルの情報、データ特定用センサ1及び位置特定用センサ2が利用される。なお、本処理で使用するセンサは、一つであってもよい。その場合には、一のセンサが検出した加速度が、データ特定用テーブル23及び位置特定用テーブル24に記憶される。
フォーム推定処理はリアルタイム処理であり、図21に示すように、本実施形態では、利用者は2つのセンサ(データ特定用センサ1及び位置特定用センサ2)を右足首に取り付け、両方のセンサをセンシングする。データ特定用センサ1が検出した加速度の情報は、データ特定用テーブル23に記憶され、位置特定用センサ2が検出した加速度の情報は、位置特定用テーブル24に記憶される。
そして、利用者の各行動時において、事前に学習された行動波形テーブル28(又は行動学習テーブル26)の短期的フォームの波形と、今回、データ特定用テーブル23に記憶した短期的フォームの波形とを比較する。これにより、短期的フォームで区切られた波形毎に位置特定用テーブル24で使用可能な情報を限定し、限定した情報に基づきフォームを推定する。これにより、位置特定用テーブル24に記憶された情報のうちフォームの推定においてノイズとなる情報を除外することで、正しいフォームを推定することができる。
本処理を開始する前に、取得部11は、図22(a)に示す組合せテーブル25を読み込み、対応するカテゴリのセンサ管理ID、行動管理ID、可動域IDの各IDを取得する。また、データ特定用テーブル23及び位置特定用テーブル24を初期化しておく。
本処理が開始されると、取得部11は、データ特定用センサ1及び位置特定用センサ2から加速度の信号を取得する(ステップS40)。図22(b)に示すように、データ特定用センサ1が取得した加速度は、データ特定用テーブル23に記憶される。また、図22(c)に示すように、位置特定用テーブル24が取得した位置特定用センサ2の加速度は、位置特定用テーブル24に記憶される。次に、速度算出部12は、データ特定用センサ1から取得した加速度から速度を算出し、算出した速度をデータ特定用テーブル23に記憶する(ステップS42)。
次に、行動推定部16は、データ特定用テーブル23に記憶した速度の情報と、行動学習テーブル26に記憶したカテゴリ毎の速度の情報とを比較する。行動推定部16は、比較の結果、行動学習テーブル26に記憶した速度(学習データ)の情報と類似する波形が、データ特定用テーブル23に記憶した速度の情報中にあるかを判定する(ステップS44)。
行動推定部16は、行動学習テーブル26に記憶した速度の情報と類似する波形がデータ特定用テーブル23に記憶した速度の情報中にあると判定した場合、その速度の情報が示す行動のカテゴリを、利用者の行動と推定する(ステップS46)。
例えば、図23(b)に示す行動学習テーブル26に記憶した速度の情報Nと、図23(a)に示すデータ特定用テーブル23に記憶した速度とを順にマッチングしていくと、点線で示す速度の情報Mが速度の情報Nと一致する。この場合、行動学習テーブル26に記憶した速度の情報と類似する波形がデータ特定用テーブル23に記憶した速度の情報中にあると判定され、行動学習テーブル26に記憶した速度の情報Nに対応する行動のカテゴリである「歩行」が利用者の行動と推定される。
図20に戻り、次に、速度算出部12は、位置特定用テーブル24に記憶した加速度を積分して速度を算出し、さらに速度を積分して位置を算出し、算出した速度及び位置の情報を位置特定用テーブル24に記憶する(ステップS48)。このとき、速度算出部12は、図24(a)のデータ特定用テーブル23から抽出された情報Mに含まれる加速度以外の加速度を積分対象に含めず、情報Mに対応する図24(b)の位置特定用テーブル24の情報Pに含まれる加速度のみを積分する。これにより算出された速度を積分して位置が算出される。これにより、センサが検出した加速度からノイズを低減することができる。
次に、可動範囲算出部17は、可動範囲テーブル27に基づき、推定した行動に応じて可動範囲を特定する(ステップS50)。図25(b)に示す可動範囲テーブル27の場合、可動範囲算出部17は、推定した「歩行」行動に応じて、センサの取り付けられた利用者の足首の可動範囲10〜270°を特定する。
ただし、ステップS50は、省略してもよい。この場合、位置特定用テーブル24の運動の1周期部分の情報Pに含まれる位置情報に基づきフォームを判定してもよい。
図20に戻り、次に、フォーム推定部18は、位置特定用テーブル24から抽出した情報Pに含まれる位置の情報に基づき、特定した足首の可動範囲10°〜270°内で行われる歩行行動に関するフォームを推定する(ステップS52)。次に、情報提示部19は、推定したフォームを利用者に提示するかを判定する(ステップS54)。
情報提示部19は、推定したフォームを利用者に提示しないと判定した場合、直ちにステップS40に戻り、ステップS40以降の処理を繰り返す。他方、情報提示部19は、推定したフォームを利用者に提示すると判定した場合、利用者の端末等に推定したフォームを表示し(ステップS56)、ステップS40に戻り、ステップS40以降の処理を繰り返す。
以上に説明したように、一実施形態に係る情報処理装置10によれば、時間的に連続なセンサデータを取得し、生物のフォーム(時間的に連続な姿勢)を推定することができる。特に、短期的に小→大→小となる運動変化を特徴量とし、センサデータのうちから行動やフォームの推定に使用するデータと使用しないデータとを区別する。これにより、フォームの推定の精度を向上させることができる。つまり、利用者に取り付けたセンサが検出したセンサデータから利用者の歩く速度が小→大→小と遷移する特徴部分を抽出することで、運動特有の短期的なエネルギー変化の範囲を特定し、特定した範囲内のセンサデータのみを使用して利用者の行動を定量化する。これにより、センサデータからノイズを取り除いた状態で、利用者の行動を精度良く定量化することができる。この結果、利用者のフォームを正しく推定することができる。
そして、本実施形態に係る情報処理装置10の利用により、病院やリハビリ施設のみでなく、自宅でのリハビリ中にその効果を測定することができる。つまり、ウェアラブルセンサを利用者に取り付けて、利用者の日常の行動を測定することで、センサを取り付けた利用者の行動を定量化して、その行動に対するフォームを精度良く推定することができる。また、ウェアラブルセンサを利用者の複数の関節にそれぞれ取り付けることで、身体全体のフォームの可視化が可能になる。特に、利用者が骨折等によって入院し、リハビリにより、ケガする前の最適なフォーム(連続的な姿勢)を取り戻すことを支援することができる。
利用者が最適なフォームを理解しやすいように、図20のステップS56において推定したフォームを表示する方法としては、正しいフォームと推定したフォームとを重ね合わせて表示してもよい。これにより、利用者は、自己のフォームの状態をより正確に把握し、自己のフォームの改善点をより容易に理解することができる。
また、ケガをする前の利用者のフォームとケガをした後の利用者のフォームを重ね合わせて表示してもよい。これにより、支援者は、ケガの前後のフォームの違いを画面上で指摘しながら、利用者が元のフォームを取り戻すための適切なアドバイスをすることが可能になる。また、利用者自身も、自己のフォームを客観的に把握し、より容易にその改善点を見つけることができる。利用者がリハビリ中の患者の場合には、ケガの前後のフォームの表示を見て利用者自身が自己の回復度合いを知り、今後のリハビリの励みにすることができる。
また、本実施形態に係る情報処理装置10を、ネットワークを介して病院のサーバや端末と接続することで、推定したフォームの情報を病院関係者に知らせることができる。これにより、病院関係者は、利用者の現状の状態を把握し、利用者の今後のリハビリの方針や治療方針に役立てることができる。
以上、情報処理装置、情報処理システム及び情報処理方法を上記実施形態により説明したが、本発明に係る情報処理装置、情報処理システム及び情報処理方法は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。また、上記実施形態及び変形例が複数存在する場合、矛盾しない範囲で組み合わせることができる。
例えば、本発明に使用するセンサは、加速度センサ等のウェアラブルセンサに限らず、例えば、利用者の特定の部位を撮影可能なカメラや赤外線センサであってもよい。カメラや赤外線センサから取得した画像データから対象物の輪郭や特徴部分等を抽出し、その輪郭や特徴部分の位置の移動から位置の微分値である速度を算出し、本実施形態を適用してもよい。また、上記実施形態では、フォームの推定の対象物として人を例に挙げたが、これに限らず、例えば、ペット等の動物であってもよい。
利用者は、上記実施形態では、学習時とフォーム推定時とで身体の同じ部位にセンサを取り付けた。しかしながら、利用者が、学習時とフォーム推定時とで身体の異なる部位にセンサを取り付けている場合が考えられる。例えば図26の上段に示すように、学習時には左足首にデータ特定用センサ1及び位置特定用センサ2を取り付け、下段に示すように、フォーム推定時には右足首にデータ特定用センサ1及び位置特定用センサ2を取り付けている場合である。
この場合、データ特定用センサ1及び位置特定用センサ2から取得する加速度から算出した速度の小→大→小の変化を有する特徴部分の出現タイミングは、図26の上段の学習時のy軸の速度と下段のフォーム推定時のy軸の速度とでは、半歩分ずれる。
よって、この場合、データ特定用テーブル23から抽出した運動の1周期部分の情報に対応する位置特定用テーブル24の運動の1周期部分の情報は、データ特定用センサ1及び位置特定用センサ2が検出する加速度の取得時刻が同一の情報とはならない。この場合、位置特定用テーブル24の運動の1周期部分の情報は、データ特定用テーブル23から抽出した特徴部分の運動の1周期部分の情報と半歩ずつタイミングがずれた情報となる。図26の場合には、データ特定用テーブル23から抽出した運動の1周期部分の情報Qに対応して、半歩タイミングがずれた位置特定用テーブル24の運動の1周期部分の情報Rが抽出される。
その他、手首と足首のように、学習時とフォーム推定時において異なる部位にセンサを付けた場合には、予め定められたタイミングのずれや速度の振幅のずれを考慮して、データ特定用テーブル23から抽出した運動の1周期部分の情報に対応する位置特定用テーブル24の運動の1周期部分の情報が抽出される。
1:データ特定用センサ
2:位置特定用センサ
3:ディスプレイ
4:プロセッサ
5:CPU
6:メモリ
7:通信I/F
9:サーバ
10:情報処理装置
11:取得部
12:速度算出部
13:位置算出部
14:記憶部
15:波形抽出部
16:行動推定部
17:可動範囲算出部
18:フォーム推定部
19:情報提示部
20:体格モデル作成部
21:センサ管理テーブル
22:体格モデルテーブル
23:データ特定用テーブル
24:位置特定用テーブル
25:組合せテーブル
26:行動学習テーブル
27:可動範囲テーブル
28:行動波形テーブル

Claims (4)

  1. 対象物に取り付けたセンサから取得した、対象物の動きを示すデータから前記対象物の動きの変化に関する特徴部分のデータを抽出する抽出部と、
    対象物の行動パターンが記憶された記憶部を参照して、抽出した前記特徴部分のデータに対応する前記対象物の行動を推定する行動推定部と、
    推定した前記対象物の行動のフォームであって、抽出した前記特徴部分のデータに対応するフォームを推定するフォーム推定部と、
    を有し、
    前記抽出部は、前記対象物の動きの速度が相対的に低速度から高速度になった後再び低速度になる特徴部分のデータを抽出する、
    情報処理装置。
  2. 前記抽出部は、前記取得したデータ以外のデータであって、前記対象物に取り付けたセンサから取得した、対象物の動きを示すデータから前記対象物の動きの変化に関する特徴部分のデータを前もって抽出し、
    前記記憶部は、前もって抽出した前記特徴部分のデータと、該データを取得したときの前記対象物の行動とを関連付けた前記対象物の行動パターンを記憶する、
    請求項1に記載の情報処理装置。
  3. サーバと情報処理装置とが接続された情報処理システムであって、
    前記情報処理装置は、
    対象物に取り付けたセンサから取得した、対象物の動きを示すデータから前記対象物の動きの変化に関する特徴部分のデータを抽出する抽出部と、
    対象物の行動パターンが記憶された記憶部を参照して、抽出した前記特徴部分のデータに対応する前記対象物の行動を推定する行動推定部と、
    推定した前記対象物の行動のフォームであって、抽出した前記特徴部分のデータに対応するフォームを推定するフォーム推定部と、を有し、
    前記抽出部は、前記対象物の動きの速度が相対的に低速度から高速度になった後再び低速度になる特徴部分のデータを抽出する、
    情報処理システム。
  4. 対象物に取り付けたセンサから取得した、対象物の動きを示すデータから前記対象物の動きの変化に関する特徴部分のデータを抽出し、
    対象物の行動パターンが記憶された記憶部を参照して、抽出した前記特徴部分のデータに対応する前記対象物の行動を推定し、
    推定した前記対象物の行動のフォームであって、抽出した前記特徴部分のデータに対応するフォームを推定し、
    前記対象物の動きの変化に関する特徴部分のデータの抽出では、前記対象物の動きの速度が相対的に低速度から高速度になった後再び低速度になる特徴部分のデータを抽出する、
    ことをコンピュータが実行する情報処理方法。
JP2018560277A 2017-01-04 2017-01-04 情報処理装置、情報処理システム及び情報処理方法 Active JP6787409B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000046 WO2018127947A1 (ja) 2017-01-04 2017-01-04 情報処理装置、情報処理システム及び情報処理方法

Publications (2)

Publication Number Publication Date
JPWO2018127947A1 JPWO2018127947A1 (ja) 2019-11-07
JP6787409B2 true JP6787409B2 (ja) 2020-11-18

Family

ID=62791016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018560277A Active JP6787409B2 (ja) 2017-01-04 2017-01-04 情報処理装置、情報処理システム及び情報処理方法

Country Status (3)

Country Link
EP (1) EP3566648A4 (ja)
JP (1) JP6787409B2 (ja)
WO (1) WO2018127947A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326174A (ja) 2005-05-30 2006-12-07 Medical Electronic Science Inst Co Ltd 行動監視システム
JP4877909B2 (ja) * 2005-09-15 2012-02-15 シャープ株式会社 運動測定装置
WO2008129442A1 (en) * 2007-04-20 2008-10-30 Philips Intellectual Property & Standards Gmbh System and method of assessing a movement pattern
JP4992043B2 (ja) * 2007-08-13 2012-08-08 株式会社国際電気通信基礎技術研究所 行動識別装置、行動識別システムおよび行動識別方法
JP2011078728A (ja) 2009-03-10 2011-04-21 Shinsedai Kk 身体状態評価装置、状態推測装置、歩幅推測装置、及び、健康管理システム
JP5492723B2 (ja) 2010-09-22 2014-05-14 シチズンホールディングス株式会社 体動検出装置
DE102011121259B3 (de) * 2011-12-15 2013-05-16 Fabian Walke Verfahren und Vorrichtung zur mobilen Trainingsdatenerfassung und Analyse von Krafttraining
US8951165B2 (en) * 2013-03-05 2015-02-10 Microsoft Corporation Personal training with physical activity monitoring device
JP2014217693A (ja) * 2013-05-10 2014-11-20 オムロンヘルスケア株式会社 歩行姿勢計およびプログラム
US9681827B2 (en) * 2013-10-09 2017-06-20 LEDO Networks, Inc. Systems, methods, applications for smart sensing, motion activity monitoring, and motion activity pattern recognition

Also Published As

Publication number Publication date
JPWO2018127947A1 (ja) 2019-11-07
EP3566648A1 (en) 2019-11-13
EP3566648A4 (en) 2020-03-18
WO2018127947A1 (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
CN112603295B (zh) 一种基于可穿戴传感器的康复评估方法和系统
EP3205269B1 (en) System and method for analyzing gait and postural balance of a person
Chen et al. Toward pervasive gait analysis with wearable sensors: A systematic review
De Pessemier et al. Heart rate monitoring, activity recognition, and recommendation for e-coaching
CN112970074A (zh) 身体活动量化和监测
Bessone et al. Validation of a new inertial measurement unit system based on different dynamic movements for future in-field applications
US11403882B2 (en) Scoring metric for physical activity performance and tracking
Merchán-Baeza et al. Reliability in the parameterization of the functional reach test in elderly stroke patients: a pilot study
EP3649940A1 (en) Information processing device, information processing program, and information processing method
US11331006B2 (en) System and method for human motion detection and tracking
Milosevic et al. Wearable inertial sensor for jump performance analysis
Cudejko et al. Validity and reliability of accelerations and orientations measured using wearable sensors during functional activities
JP2016144598A (ja) 運動機能診断装置及び方法、並びにプログラム
US20170181689A1 (en) System and Method for Measuring the Muscle Tone
US20230355135A1 (en) Intelligent gait analyzing apparatus
Senanayake et al. A computational method for reliable gait event detection and abnormality detection for feedback in rehabilitation
Janidarmian et al. Affordable erehabilitation monitoring platform
Viana et al. GymApp: A real time physical activity trainner on wearable devices
JP6787409B2 (ja) 情報処理装置、情報処理システム及び情報処理方法
Boccanfuso et al. Collecting heart rate using a high precision, non-contact, single-point infrared temperature sensor
Cikajlo et al. Efficient FES triggering applying Kalman filter during sensory supported treadmill walking
Han et al. Using MEMS-based inertial sensor with ankle foot orthosis for telerehabilitation and its clinical evaluation in brain injuries and total knee replacement patients
Sumaiya et al. Wearable sleeve for physiotherapy assessment using ESP32 and IMU sensor
Vairis et al. Gait analysis using non-contact method for disabled people in marginalized communities
JP6486200B2 (ja) 移動運動解析装置及びシステム並びにプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6787409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150