JP2006326174A - 行動監視システム - Google Patents

行動監視システム Download PDF

Info

Publication number
JP2006326174A
JP2006326174A JP2005157291A JP2005157291A JP2006326174A JP 2006326174 A JP2006326174 A JP 2006326174A JP 2005157291 A JP2005157291 A JP 2005157291A JP 2005157291 A JP2005157291 A JP 2005157291A JP 2006326174 A JP2006326174 A JP 2006326174A
Authority
JP
Japan
Prior art keywords
sensor
acceleration
unit
subject
acceleration data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005157291A
Other languages
English (en)
Inventor
Takashi Katayama
敬止 片山
Hiroshi Ishibashi
博 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEDICAL ELECTRONIC SCIENCE INS
Medical Electronic Science Institute Co Ltd
Original Assignee
MEDICAL ELECTRONIC SCIENCE INS
Medical Electronic Science Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEDICAL ELECTRONIC SCIENCE INS, Medical Electronic Science Institute Co Ltd filed Critical MEDICAL ELECTRONIC SCIENCE INS
Priority to JP2005157291A priority Critical patent/JP2006326174A/ja
Publication of JP2006326174A publication Critical patent/JP2006326174A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡単な構成で被検体の行動状態を監視して該被検体のリハビリによる回復の程度を把握することが可能な行動監視システムを提供することである。
【解決手段】行動監視システムは、被検体10の体表面の所定の箇所に装着されたセンサユニット(A)11〜(B)13と、これらのセンサユニット(A)11〜(B)13からのデータを転送可能に設けられ、上記センサユニット(A)11〜(B)13からのデータに基づいて上記被検体の行動状態を判定するセンタ装置18とを有して構成される。センサユニット(A)11〜(B)13では、それぞれ内蔵された加速度センサよって被検体10の行動に伴って生ずる加速度が検出される。一方、センタ装置18では、センサユニット(A)11〜(B)13から転送された加速度のデータに基づいて、被検体10の行動状態が、立ち状態、座位状態、横臥状態の何れであるかが判定される。
【選択図】 図1

Description

本発明は、加速度センサを用いて被検体の行動を監視する行動監視システムに関するものである。
従来より、病院や老人ホーム等でリハビリを行っている患者の行動を把握するために、患者の体表面の所定の箇所にセンサを装着し、このセンサからの出力信号に所定の演算を行って人体の行動状態を判定する装置が知られている。例えば、3軸の加速度センサを被検者の胸、腕及び足にそれぞれ装着し、装着された加速度センサの位置を計測することにより被検者の姿勢、例えば起立状態、座位状態、歩行状態、横臥状態などのそれぞれの状態を検出するものであった(例えば、特許文献1参照)。
特開2005−50290号公報
一般に、人の行動は、立って歩行する、走行する、立ち止まる(立ち状態)、座って作業する、座って休む(座位状態)、横になって休む、就寝する(横臥状態)等が基本になる。
しかしながら、上記特許文献1に記載の技術は、加速度センサを用いて被検者の位置情報を求め、この位置情報から被検者の姿勢、例えば起立状態、座位状態、歩行状態、横臥状態などのそれぞれの状態を検出するものである。通常、加速度センサの計測値からその加速度センサが装着されている部分の位置を求めるには、加速度センサの計測値の時間に関する2階積分を行えば求められることは一般的に知られている。しかし、この場合速度の初期値と位置の初期値を必要とする。そのため、加速度センサの計測値から位置を求めるためには、その都度初期値情報を入手するか、計測開始時から求めていた位置情報、速度情報を初期値情報として記憶し、その都度使用するかの方法が必要となる。前者の場合には、初期値を入手する別手段を必要とし位置情報の検出が複雑になる問題点があり、後者の場合には、計測時間が長くなると累積誤差が増加し正確な位置情報の検出が困難になる問題点があった。
したがって、本発明は上記実情を鑑みてなされたものであり、被検体の姿勢、例えば立ち状態、座位状態、横臥状態などのそれぞれの状態を、別手段の使用、累積誤差の増大などの可能性のある初期値情報入手を必要とせず、加速度センサの計測値から直接、精度よく被検体の姿勢を検出できることが可能な行動監視システムを提供することを目的とする。
すなわち請求項1に記載の発明は、被検体の所定箇所に装着された第1、第2及び第3のセンサユニットと、上記第1、第2及び第3のセンサユニットと通信自在であり上記第1、第2及び第3のセンサユニットからの加速度データに基づいて上記被検体の行動状態を判定するセンタ装置と、を具備する行動監視システムであって、上記第1のセンサユニットは、少なくとも第1の加速度センサを有し、当該第1の加速度センサにより得られた第1の加速度データを出力し、上記第2のセンサユニットは、少なくとも第2の加速度センサを有し、当該第2の加速度センサにより得られた第2の加速度データを出力し、上記第3のセンサユニットは、少なくとも第3の加速度センサを有し、当該第3の加速度センサにより得られた第3の加速度データを出力し、上記センタ装置は、上記第1乃至第3の加速度データに基づいて上記被検体の行動状態が、立ち状態、座位状態、横臥状態の何れであるかを判定することを特徴とする。
請求項2に記載の発明は、被検体の所定箇所に装着された第1、第2及び第3のセンサユニットと、上記第1、第2及び第3のセンサユニットと通信自在であり上記第1、第2及び第3のセンサユニットからの加速度データに基づいて上記被検体の行動状態を判定するセンタ装置と、を具備する行動監視システムであって、上記第1のセンサユニットは、少なくとも第1の加速度データを出力する第1の加速度センサと、当該第1の加速度データをセンシング信号として上記センタ装置に送信する第1の送信手段と、を有し、上記第2のセンサユニットは、少なくとも第2の加速度データを出力する第2の加速度センサと、当該第2の加速度データをセンシング信号として上記センタ装置に送信する第2の送信手段と、を有し、上記第3のセンサユニットは、少なくとも第3の加速度データを出力する第3の加速度センサと、当該第3の加速度データをセンシング信号として上記センタ装置に送信する第3の送信手段と、を有し、上記センタ装置は、上記センシング信号に係る第1の加速度データと上記第2の加速度データとの関係より上記被検体の行動状態が横臥状態であることを判定し、上記センシング信号に係る第2の加速度データと上記第3の加速度データとの関係より上記被検体の行動状態が立ち状態、座位状態の何れであるかを判定する、センサデータ収集処理手段と、を有する、ことを特徴とする。
請求項3に記載の発明は、請求項1若しくは2に記載の発明に於いて、上記第1のセンサユニットは上記被検体の胸部に装着され、上記第2のセンサユニットは上記被検体の一方の大腿部に装着され、上記第3のセンサユニットは上記被検体の他方の大腿部に装着されることを特徴とする。
請求項4に記載の発明は、請求項1若しくは2に記載の発明に於いて、上記センタ装置は、第1乃至第3のセンサユニットを制御することを特徴とする。
本発明によれば、被検体の姿勢、例えば立ち状態、座位状態、横臥状態などのそれぞれの状態を、別手段の使用、累積誤差の増大などの可能性のある初期値情報入手を必要とせず、加速度センサの計測値から直接、精度よく被検体の姿勢を検出できることが可能な行動監視システムを提供することができる。
以下、図面を参照して、本発明の実施形態について説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る行動監視システムの概略構成を示す図である。
監視対象としての被検体は、病院や老人ホーム等でリハビリを行っている患者等が、その対象である。被検体10には、それぞれ後述する加速度センサ37(図4参照)を有した複数のセンサユニットが、該被検体10の体表面の所定箇所に装着される。この場合、センサユニット(A)11が被検体10の胸部付近に、センサユニット(B)12が右脚大腿部の前側に、そしてセンサユニット(C)13が左脚大腿部の前側に、それぞれ装着される。これらセンサユニット(A)11、センサユニット(B)12及びセンサユニット(C)13のそれぞれは、モジュール化されている。また、上記センサユニット(A)11〜(C)13内の加速度センサ37は、本実施形態に於いては3軸の加速度センサで構成されている。したがって、これらのセンサユニット(A)11〜(C)13により、被検体10の身長方向となる上下方向の動きに伴って生ずる加速度が検出される。これは、3軸方向の加速度検出が可能な3軸加速度センサを用いることにより、どの方向からの力を受けてもそれによる加速度変化を高精度で検出できるためである。
また、被検体10の体表面にセンサユニット(A)11から(C)13を貼付する一例として、アクリル系の両面接着テープ等が用いられる。アクリル系両面接着テープは、被検体10の皮膚にかぶれ等の炎症が起きにくい、センサユニット(A)11〜(C)13を被検体10から剥がした時に、センサユニット(A)11〜(C)13や被検体10の表面に接着のりが付着しにくい、接着層を薄くできる等の利点を有している。
上記センサユニット(A)11〜(C)13によって取得された加速度データは、センシング信号として無線ネットワーク等を経て、医療施設や介護施設等に設置されるセンタ装置18に、アンテナ部17を介して送信される。尚、上記センサユニット(A)11〜(C)13から加速度データがセンシング信号としてセンタ装置18に送信される際は、それぞれの送信タイミングをずらして各送信が実施される。
ここで、無線ネットワークとしては、例えばBT(BlueTooth)(登録商標)等の近距離データ通信システムや、無線LAN(Local Area Network)、PHS(Personal Handyphone System)(登録商標)、携帯電話システム等が使用される。
また、センタ装置18は、受信部と、送信部と、センサデータ収集処理部と、センサ制御部等を有して構成される。アンテナ部17は、センタ装置18からセンサユニット(A)11〜(C)13へ制御信号を送信する送信アンテナ機能と、センサユニット(A)11〜(C)13からセンシング信号を受信する受信機能とを有している。このアンテナ部17の機能の切り替えは、該アンテナ部17に接続されセンタ装置18の図示されない信号分配部によって行われる。
図2は、センサユニット(A)11〜(C)13が装着された被検体10の行動状態の例を示した図である。本実施形態に於いては、図2(a)に示されるように、立って歩行するまたは走行する状態や立ち止まった状態を「立ち状態」、図2(b)に示されるように、座っている状態を「座位状態」とし、図2(c)に示されるように、横になって休むまたは就寝する状態を「横臥状態」と称することとする。センサユニット(A)11は被検体10の胸部に、センサユニット(B)12は被検体10の左大腿部に、センサユニット(C)13は被検体10の右大腿部に装着され、これらのセンサユニットからの加速度データにより、「立ち状態」、「座位状態」、「横臥状態」の各状態の判定が可能となる。詳細な説明は後で述べる。
図3は、本発明の第1の実施形態によるセンサユニット(A)11〜(C)13の概略構成を示したブロック図である。尚、センサユニット(B)12、センサユニット(C)13の構成は、センサユニット(A)11と同じであるため、ここではセンサユニット(A)11を参照するものとして、各センサユニットの同一の部分には同一の参照番号を付して、図示及びその説明は省略する。
このセンサユニット(A)11は、センタ装置18と送受信可能なもので、センサ本体21と、センサ駆動制御部22と、センシング信号送信部23と、送受信信号分配部24と、アンテナ部25と、センサ駆動信号受信部26及びバッテリ27とを備えている。
センサ本体21は、被検体10の身長方向(前後方向)、身長方向の中心線に対して直角な方向(左右方向)の動きを検出する。
センサ駆動制御部22は、センサユニット(A)11の制御動作を司るもので、上述した加速度センサを有するセンサ本体21で検出された加速度データをセンシング信号送信部23に出力する。センシング信号送信部23に出力された加速度データはセンシング信号として、送受信信号分配部24及びアンテナ部25を介して、センタ装置18に送信される。また、センタ装置18よりアンテナ部25を介して送信されてきたセンサユニット(A)11に対する制御信号は、送受信信号分配部24で分配されてセンサ駆動信号受信部26に入力される。このセンサ駆動信号受信部26に入力された制御信号に基づいて、センサ駆動制御部22がセンサ本体21の駆動を制御するようになっている。
図4は、図3のセンサ本体21及びセンサ駆動制御部22の構成を示したブロック図である。
図4に示されるように、センサ本体21は被検体10の行動状態を検出する加速度センサ37から構成される。また、センサ駆動制御部22は、中央処理装置(CPU)31と、サーバ・プログラミング・インターフェース(SPI)32と、記憶部33と、クロック信号発生部34及びA/D変換部35と、を備えている。
クロック信号発生部34は、CPU31のクロック制御信号に基いて所定周期のクロック信号を発生する。記憶部33は、CPU31により実行されるプログラムを記憶している。CPU31は、センサ本体21の加速度センサ37を始めとして、図3に示されるセンシング信号送信部23、センサ駆動信号受信部26を駆動制御するもので、上述したセンタ装置18から送られてくるセンシング開始や終了、センシング周期等の指令の内容を図示しないメモリに記憶する。そして、以後、この保存された指令と記憶部33に記憶された設定データに基づいてクロック制御信号を生成してクロック信号発生部34に出力する。クロック信号発生部34より発生されるクロック信号により、駆動信号として、センシング開始及び終了、センシング周期などに関する信号を生成する。
A/D変換部35は、CPU31からの制御信号により駆動される加速度センサ37からの検出データをデジタル信号に変換するもので、CPU31よりSPI32を介してセンシング信号として出力する。
尚、CPU31から加速度センサ37に供給する駆動信号としては、スタンバイ信号が用いられる。加速度センサ37は、スタンバイ信号が“H(ハイ)”レベル(例えば0.9mA程度)になるとセンシングを行う動作状態となり、”L(ロー)“レベル(例えば0.1μA以下)になると非動作状態、つまり電力消費量の少ないスタンバイ状態となる。
バッテリ27は、例えば釦型リチウム電池から成るもので、このバッテリ27から発生するDC電圧を、センサ本体21、センサ駆動制御部22、センシング信号送信部23及びセンサ駆動信号受信部26に駆動電源として供給するようになっている。
図5は、図3に示されるセンサユニット(A)11〜(C)13内のセンシング信号送信部23及びセンサ駆動信号受信部26の構成を示したブロック図である。
センシング信号送信部23は、SPI41と、デジタル信号制御部42と、信号変調部43と、混合部44及び電力増幅部45とを備えている。また、センサ駆動信号受信部26は、水晶発振器51と、位相安定化回路52と、電圧制御型発振器53と、低雑音増幅部54と、混合部55と、信号復調部56と、デジタル信号制御部57及びSPI58とを備えている。
センシング信号送信部23は、センサ駆動制御部22からのセンシング信号を、SPI41を介してデジタル信号制御部42に取り込む。更に、信号変調部43でデジタル変調、例えばQPSK(Quadrature Phase Shift Keying)変調し、混合部44を介して所定のフォーマットに変換してセンシングデータを作成する。そして、この作成されたセンシングデータを電力増幅部45にて電力増幅して、送受信信号分配部24よりアンテナ部25を介して、センタ装置18に向け送信させる。
一方、センサ駆動信号受信部26は、センタ装置18から送られた制御信号をアンテナ部25で受信すると、送受信信号分配部24、低雑音増幅部54を介して混合部55に取り込む。この混合部55で、制御信号を電圧制御型発振器53の出力と混合した所定周波数に変換した後、信号復調部56でデジタル復調する。更に、このデジタル復調により得られた制御信号を、デジタル信号制御部57よりSPI58を介してセンサ駆動制御部22に供給する。
図6は、アンテナ部17と、センタ装置18の構成を示したブロック図である。センタ装置18は、信号分配部61と、受信部62と、センサデータ収集部63と、センサ制御部65及び送信部66とを有して構成されたものである。アンテナ部17は、センタ装置18のセンサ制御部65からの制御信号を送信する送信アンテナ機能と、センサユニット15からのセンシング信号を受信する受信アンテナ機能とを有したもので、この機能の切り替えは、センタ装置18のサーキュレータなどからなる信号分配部61で行われる。
受信部62は、センサユニット(A)11〜(C)13から送信されたセンシング信号をアンテナ部17を介して受信した後復調し、この復調により得られるセンシング信号をセンサデータ収集処理部63へ出力する。送信部66は、センサ制御部65から出力された制御信号を変調した後、アンテナ部17からセンサユニットへ向けて送信する。本実施の形態では、被検体10の行動状態を検出することで、リハビリによる回復の程度を把握することが目的であるので、センタ装置18は、各センサユニット(A)11〜(C)13からのセンシング信号を継続して受信する。
センサ制御部65は、例えばCPUやDSPを備えたもので、(A)11〜(C)13によるセンシング開始及び終了、センシング周期などに関する指令を含む制御信号を出力する。
センサデータ収集処理部63は、受信したセンシング信号により被検体10の行動状況を判定する。このセンサデータ収集処理部63は、加速度データ識別部71と、加速度データA記憶部72a、加速度データB記憶部72b、加速度データC記憶部72cと、データ平均化処理部73a、73b、73c及び行動状態判定部74とを有して構成される。上記加速度データA記憶部72a、加速度データB記憶部72b、加速度データC記憶部72cと、データ平均化処理部73a、73b、73cは、センサユニット(A)11〜(C)13内の加速度センサからの加速度データに対応している。データ平均化処理部73a、73b、73cは、受信したセンシング信号の加速度データのばらつきが大きい時は必要であるが、加速度データのばらつきが小さい時は必ずしも必要ではない。
センサユニット(A)11〜(C)13からの加速度センサのセンサ計測値は、これらの加速度センサが被検者の姿勢により傾いている場合、重力加速度に対する傾斜角度成分となる。すなわち、被検体10が立っている場合、胸に装着されたセンサユニットの加速度センサは重力と同じ方向になるため重力加速度の値を示し、マイナス(−)方向の最大値付近の値となる。一方、被検体10が横になっていると、胸に装着されたセンサユニットの加速度センサは重力と直角の方向になり加速度は0近傍の値となる。
次に、行動状態判定部74による加速度データに基づいた判定基準について説明する。
図7(a)は、縦軸に胸部に設置したセンサユニット(A)11の加速度データの値を、横軸に左大腿部に設置したセンサユニット(B)12の加速度データの値を表している。
領域Pは、センサユニット(A)11及び(B)12の何れの加速度センサも、センサ計測値はマイナス(−)方向の最大値付近の値になっており、この状態は、センサユニット(A)11の加速度センサ、センサユニット(B)12の加速度センサ共、垂直方向を向いており、図2(a)に示される「立ち状態」とみなされる。
また、領域Qは、センサユニット(A)11の加速度センサのセンサ計測値はマイナス(−)方向の最大値付近の値になっており、センサユニット(B)12の加速度センサの計測値が0近傍の値となっている。この状態は、図2(b)に示される「座位状態」とみなされる。
さらに、領域Rは、センサユニット(A)11及びセンサユニット(B)12からの加速度センサのセンサ計測値は共に0近傍になっている。この状態は図2(c)に示される「横臥状態」とみなされる。そのため、図7(a)の図から領域Rの識別は容易であるが、領域Pと領域Qは一部が重なっており両者の識別は難しい。
図7(b)は、縦軸に右大腿部に設置したセンサユニット(C)13の加速度データの値を、横軸に左大腿部に設置したセンサユニット(B)12の加速度データの値を表している。
領域Pは、センサユニット(C)13とセンサユニット(B)12の加速度データの値が共にマイナス(−)方向の最大値付近の値になっている。この状態は図2(a)に示される「立ち状態」とみなされる。また、領域Qは、センサユニット(C)13とセンサユニット(B)12の加速度データの値が共に0付近になっている。この状態は図2(b)に示される「座位状態」とみなされる。さらに領域Rも領域Qと同様に、センサユニット(C)13とセンサユニット(B)12の加速度データの値が共に0付近になっている。この状態は図2(c)に示される「横臥状態」とみなされる。そのため、図7(b)の図から、領域Pの識別は容易であるが、領域Qと領域Rは一部が重なっており両者の識別は難しい。
しかし、図7(a)と図7(b)を組み合わせると、領域P、領域Q及び領域Rの識別が可能となる。すなわち、図7(a)の結果から領域Rを識別し、次に図7(b)の結果から領域Pを識別し、最後に領域Qが識別される。以上の結果から、本実施形態は、加速度センサの計測値を時間に関する2階積分を行い、さらに速度と位置の初期値情報を必要とする従来技術の方法と比較し、加速度センサの重力加速度に対する傾斜角度成分のみを計測することにより、容易に被検体10の姿勢を求めることができる特徴を有している。
図8(a)及び(b)は、図7(a)及び(b)の加速度データの出力値を基にして領域判定を行うための判定基準を示した図である。
上記領域判定を行うには、先ず、図8(a)に示されるように、胸部の加速度であるセンサユニット(A)11内の加速度センサの出力値と、左大腿部の加速度であるセンサユニット(B)12内の加速度センサの出力値とから、得られた加速度データが領域R内であるか否かが判定される。そして、領域R内でない場合は、図8(b)に示されるように、右大腿部の加速度であるセンサユニット(C)13内の加速度センサの出力値と、左大腿部の加速度であるセンサユニット(B)12内の加速度センサの出力値とから、領域Pが判定され、最後に領域Qが判定される。
次に、図9のフローチャートを参照して、センサデータ収集処理部63の動作について説明する。
先ず、ステップS1にてセンサユニット(A)11〜(C)13からの加速度データが受信される。次いで、ステップS2及びS3に於いて、その加速度データの種類が識別される。すなわち、加速度データ識別部71にて識別されたデータがセンサユニット(A)11からの加速度データAであった場合はステップS4へ、識別されたデータがセンサユニット(B)12からの加速度データBであった場合はステップS5へ、更に識別されたデータがセンサユニット(C)13からの加速度データCであった場合はステップS6へ、それぞれ移行する。
ステップS4では、加速度データAが加速度データA記憶部72aに一旦記憶される。同様に、ステップS5では、加速度データBが加速度データB記憶部72bに一旦記憶される。更に、ステップS6では、加速度データCが加速度データC記憶部72cに一旦記憶される。次いで、ステップS7、S8及びS9にて、上記加速度データ記憶部72a、72b及び72cに記憶されているそれぞれの加速度データA、B及びCに対し、データ平均化処理部73a、73b及び73cにて、移動平均等の手法により平均化が行われる。
次に、平均化された加速度データについて、上述した判定基準に基づいて、行動状態判定部74による判定がなされる。先ず、ステップS10に於いては、上記ステップS7で平均化された加速度データAと上記ステップS8で平均化された加速度データBとから得られる計測値が、上述した判定基準の領域R内であるか否かが判定される。ここで、上記計測値が領域R内に存在する場合は、ステップS11へ移行して、被検体は「横臥状態」であるとされる。一方、上記ステップS10に於いて、計測値が領域R内ではないと判定された場合は、ステップS12へ移行する。
ステップS12に於いては、上記ステップS8で平均化された加速度データBと上記ステップS9で平均化された加速度データCとから得られる計測値について、上述した判定基準の領域P内であるか否かが判定される。ここで、上記計測値が領域P内に存在する場合は、ステップS13へ移行して、被検体は「立ち状態」であるとされる。一方、上記ステップS12に於いて、計測値が領域P内ではないと判定された場合は、ステップS14へ移行する。
ステップS14に於いては、上記領域P内には存在しないと判定された計測値について、上述した領域Q内であるか否かが判定される。その結果、計測値が領域Q内に存在する場合は、ステップS15に移行して被検体は「座位状態」であるとされる。一方、上記ステップS14に於いて、計測値が領域Q内に存在しないと判定された場合は、上記ステップS1に移行して上述した動作が繰り返される。
このように、上述した実施形態によれば、被検体10に軽量なセンサユニットを装着することにより、被検体10はセンサユニットを意識することなく、日常の自然な行動を監視することが可能になる。更に、被検体10の一定期間内の行動を自動的に監視することができる。そして、この監視の結果得られた行動状態から、被検体10のリハビリによる行動内容を把握することができ、その後のリハビリに役立てることが可能になる。したがって、例えば、被検体10の担当医師は、該被検体10の回復の状態に応じて、新たなリハビリのメニューを与えるようにすればよい。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。
上述した第1の実施形態は、センサユニット(A)11〜(C)13とセンタ装置18との間で送受信可能な構成としていたが、本発明はこれに限られるものではない。本第2の実施形態では、センサユニット(A)11′〜(C)13′からセンタ装置18へ送信する機能のみを有する構成としている。この場合、センサ駆動制御部への制御信号には予めCPUに設定されたデータが用いられる。
図10は、本発明の第2の実施形態に係る行動監視システムの概略構成を示す図である。
図10に於いて、被検体10の体表面の所定箇所に複数のセンサユニット、この場合センサユニット(A)11′〜(C)13′が装着される。これらのセンサユニット(A)11′〜(C)13′は、センタ装置18へ加速度データを送信する機能のみを有する。この、センタ装置18へ加速度データを送信する機能以外の、センサユニット(A)11′〜(C)13′とセンタ装置18の構成及び動作については、上述した第1の実施形態と同じであるので、第1の実施形態の説明を参照するものとしてここでの説明は省略する。
図11は、本発明の第2の実施形態によるセンサユニット(A)11′〜(C)13′の概略構成を示したブロック図である。
このセンサユニット(A)11′は、センサ本体21と、センサ駆動制御部22と、センシング信号送信部23と、アンテナ部25及びバッテリ27とを備えている。つまり、図3に示される第1の実施形態と異なり、センサユニット(A)11′は、センサ送受信分配部24と、センサ駆動信号受信部26とを有しない。
したがって、センシング信号送信部23は、図5に示されるセンサ駆動信号受信部26内の水晶発振器51と、位相安定化回路52と、電圧制御型発振器53に相当する各部を設けている。
また、図6に示されるセンタ装置18の送信部66と、センサ制御部65も不要となる。
したがって、本発明の第2の実施形態に従った行動監視システムによっても、被検体10の一定期間内の行動を自動的に監視することができるので、被検体10のリハビリによる回復の程度を把握することができる。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。
上述した第1及び第2の実施形態では、何れもセンサユニットからセンタ装置へは無線ネットワーク等でセンシング信号が送信されるものであった。しかしながら、本発明はこれに限られるものではなく、この第3の実施形態では、センサユニットが送信部を持たず、加速度データを記憶した後、オフラインにてセンタ装置18に送るような構成となっている。
図12は、本発明の第3の実施形態によるセンサユニット(A)11″〜(C)13″の概略構成を示したブロック図である。尚、センサユニット(B)12″、センサユニット(C)13″の構成は、センサユニット(A)11″と同じであるため、ここではセンサユニット(A)11″を参照するものとして、各センサユニットの同一の部分には同一の参照番号を付して、図示及びその説明は省略する。
このセンサユニット(A)11″は、送信部を持たず、加速度データを記憶した後、オフラインにてセンタ装置18に送るような構成となっている。すなわち、このセンサユニット(A)11″は、センサ本体21と、センサ駆動制御部22と、検出された加速度データを記憶するセンシング信号蓄積部28及びバッテリ27とを備えている。尚、このセンサユニット(A)11″の各部の動作は、図3及び図11に示されるセンサユニット(A)11、11′と同様であるので、同一の部分には同一の参照番号を付して説明は省略する。
図13は、図12のセンサ本体21及びセンサ駆動部22の構成を示したブロック図である。尚、この第3の実施形態に於けるセンサ本体21及びセンサ駆動部22の構成及び基本的な動作については、上述した第1及び第2の実施形態と同様であるので説明は省略する。そして、第1及び第2の実施形態と異なるのは、サーバ・プログラミング・インターフェース(SPI)32からセンシング信号蓄積部28に信号が供給されることと、バッテリ27からセンシング信号蓄積部28、センサ駆動制御部22、センサ本体21に電源が供給される点である。
このように、本第3の実施形態は、上述した第1及び第2の実施形態とは、センサユニット内の構成とセンタ装置の構成が一部異なっているが、基本的な動作については、上述した第1の実施形態と同様であるので説明は省略する。そして、第1の実施形態と異なる動作は、図9のフローチャートのステップS1に於いて、加速度データ受信に対して、オフラインでセンタ装置に持ち込まれたセンサユニット(A)11″〜(C)13″から加速度データを取り込むことである。
したがって、本発明の第3の実施形態に従った行動監視システムによっても、被検体10の一定期間内の行動を自動的に監視することができるので、被検体10のリハビリによる回復の程度を把握することができる。
このように、第3の実施形態によれば、上述した第1及び第2の実施形態に比べて、データの送受信を行う部分が不要になる。
(第4の実施形態)
上述した第1乃至第2の実施形態は、センサユニットから無線ネットワーク等により直接センタ装置とデータを送受信するようにしている。しかしながら、本発明はこれに限られるものではなく、センサユニットとセンタ装置の間の中継器を介してデータを送受信するようにしてもよい。
図14は、本発明の第4の実施形態に係る行動監視システムの概略構成を示す図である。
図14に於いて、被検体10に装着された各センサユニット(A)11〜(C)13とセンタ装置18の間には、中継器19が設けられている。この中継器19は、センサユニット(A)11〜(C)13が、上述した第1乃至第2の実施形態の何れの形態をとるかに応じて、送信部、受信部の他、センサ制御部やセンサデータ収集処理部を設けるようにしてもよい。センサユニット(A)11〜(C)13と中継器19との間の無線通信方式としては、上述したBTや無線LAN等の微弱または小電力型の方式が、一方、中継器19とセンタ装置18との間の無線通信方式としては携帯電話システム等の長距離通信が可能な方式が、それぞれ使用される。
尚、この第4の実施形態では、中継器19が加わる以外、センサユニットとセンタ装置の構成及び動作については、上述した第1乃至第2の実施形態と同じであるので、第1乃至第2の実施形態の説明を参照するものとしてここでの説明は省略する。
(第5の実施形態)
本第5の実施形態は、上述した第4の実施形態と同様に、センサユニットから中継器を介してセンタ装置にデータを送信するようにしたもので、上述した第2の実施形態と同じく受信機能を有していないセンサユニットを用いた例である。
図15は、本発明の第5の実施形態に係る行動監視システムの概略構成を示す図である。
図15に於いて、被検体10に装着された各センサユニット(A)11′〜(C)13′とセンタ装置18の間には、中継器19が設けられている。センサユニット(A)11′〜(C)13′と中継器19との間の無線通信方式としては、上述したBTや無線LAN等の微弱または小電力型の方式が、一方、中継器19とセンタ装置18との間の無線通信方式としては携帯電話システム等の長距離通信が可能な方式が、それぞれ使用される。
尚、この第5の実施形態では、中継器19が加わる以外、センサユニットとセンタ装置の構成及び動作については、上述した第1乃至第4の実施形態と同じであるので、第1乃至第4の実施形態の説明を参照するものとしてここでの説明は省略する。
また、上述した実施形態に於いては、被検体10の行動を判定するために、胸部の加速度であるセンサユニット(A)11の出力値と左脚大腿部の加速度であるセンサユニット(C)13の出力値のグラフ(図8(a))と、右脚大腿部の加速度であるセンサユニット(B)12の出力値と左脚大腿部の加速度であるセンサユニット(C)13の出力値のグラフ( 図8(b))を使用しているが、これに限られるものではない。例えば、縦軸に胸部の加速度である加速度センサ(A)11の出力値を、横軸に右脚大腿部の加速度である加速度センサ(B)12の出力値を表しているグラフを用い、領域P、Q、Rの判定を行うようにしてもよいのは勿論である。
尚、上述した実施形態に於いて、センサユニット及びセンタ装置の構成については、本発明の要旨を逸脱しない範囲で種々変形して実施できる。要するに本発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。
更に、上記実施形態には、種々の段階の発明が含まれており、開示されている複数の構成要件に於ける適宜な組み合わせにより種々の発明が抽出できる。例えば、実施形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決することができ、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出することができる。
また、上述した実施形態では、センサユニット(A)11〜(C)13を被検体10の胸部と左右の大腿部に装着する例を示したが、これに限定されることなく、被検体10の腕や肩等、上記計測に関わる種々の箇所に装着可能である。
また、3箇所以上に設置された中継器を介してセンタ装置18と各センサユニット(A)11〜(C)13との間の通信が中継される場合には、中継器同士の連携により、三角測量の原理を用いて、センサユニット(A)11〜(C)13の位置情報、つまりは被検体10の位置情報を求め、センタ装置18に併せて送信するようにすることも可能である。
尚、本実施形態では、加速度センサを3軸のものとして説明したが、これに限られずに1軸、2軸の加速度センサを採用し、当該1軸、2軸の加速度センサの出力を処理して行動を監視することが可能なように構成することができるのは勿論である。
本発明の行動監視システムによれば、病院、老人ホーム等でリハビリを行っている患者等にセンサユニットを装着し、センタ装置で1日や半日等、一定期間の行動を監視することによって、患者のリハビリによる回復の程度を把握することができる。
また、被検体が装着する加速度センサ(センサユニット)は軽量であるので、被検体がセンサを意識することなく、日常の自然な行動を監視することが容易となる。
更に、被検体の一定期間の行動を自動的に監視することができる。
本発明の第1の実施形態に係る行動監視システムの概略構成を示す図である。 センサユニット(A)11〜(C)13が装着された被検体10の行動状態の例を示した図である。 本発明の第1の実施形態によるセンサユニット(A)11〜(C)13の概略構成を示したブロック図である。 図3のセンサ本体21及びセンサ駆動部22の構成を示したブロック図である。 図3に示されるセンサユニット(A)11〜(C)13内のセンシング信号送信部23及びセンサ駆動信号受信部26の構成を示したブロック図である。 図1のセンタ装置18の構成を示したブロック図である。 行動状態判定部74による加速度データに基づいた判定基準について説明する図である。
図7(a)は、センサユニット(A)11内の加速度センサとセンサユニット(B)12内の加速度センサによる加速度データの出力値を示したグラフであり、縦軸に胸部の加速度であるセンサユニット(A)11内の加速度センサの出力値を、横軸に左大腿部の加速度であるセンサユニット(B)12内の加速度センサの出力値を表している。
図7(a)及び(b)の加速度データの出力値を基にして領域判定を行うための判定基準を示した図である。 図6のセンタ装置18内のセンサデータ収集処理部63の動作について説明するフローチャートである。 本発明の第2の実施形態に係る行動監視システムの概略構成を示す図である。 本発明の第2の実施形態によるセンサユニット(A)11′〜(C)13′の概略構成を示したブロック図である。 本発明の第3の実施形態によるセンサユニット(A)11″〜(C)13″の概略構成を示したブロック図である。 図12のセンサ本体21及びセンサ駆動部22の構成を示したブロック図である。 本発明の第4の実施形態に係る行動監視システムの概略構成を示す図である。 本発明の第5の実施形態に係る行動監視システムの概略構成を示す図である。
符号の説明
10…被検体、11…センサユニット(A)、12…センサユニット(B)、13…センサユニット(C)、17…アンテナ部、18…センタ装置、19…中継器、21…センサ本体、22…センサ駆動制御部、23…センシング信号送信部、24…送受信信号分配部、25…アンテナ部、26…センサ駆動信号受信部、27…バッテリ、28…センシング信号蓄積部、31…中央処理装置(CPU)、37…加速度センサ、63…センサデータ収集部、71…加速度データ識別部、72a…加速度データA記憶部、72b…加速度データB記憶部、72c…加速度データC記憶部、73a、73b、73c…データ平均化処理部、74…行動状態判定部。

Claims (4)

  1. 被検体の所定箇所に装着された第1、第2及び第3のセンサユニットと、上記第1、第2及び第3のセンサユニットと通信自在であり上記第1、第2及び第3のセンサユニットからの加速度データに基づいて上記被検体の行動状態を判定するセンタ装置と、を具備する行動監視システムであって、
    上記第1のセンサユニットは、少なくとも第1の加速度センサを有し、当該第1の加速度センサにより得られた第1の加速度データを出力し、
    上記第2のセンサユニットは、少なくとも第2の加速度センサを有し、当該第2の加速度センサにより得られた第2の加速度データを出力し、
    上記第3のセンサユニットは、少なくとも第3の加速度センサを有し、当該第3の加速度センサにより得られた第3の加速度データを出力し、
    上記センタ装置は、上記第1乃至第3の加速度データに基づいて上記被検体の行動状態が、立ち状態、座位状態、横臥状態の何れであるかを判定する
    ことを特徴とする行動監視システム。
  2. 被検体の所定箇所に装着された第1、第2及び第3のセンサユニットと、上記第1、第2及び第3のセンサユニットと通信自在であり上記第1、第2及び第3のセンサユニットからの加速度データに基づいて上記被検体の行動状態を判定するセンタ装置と、を具備する行動監視システムであって、
    上記第1のセンサユニットは、少なくとも第1の加速度データを出力する第1の加速度センサと、当該第1の加速度データをセンシング信号として上記センタ装置に送信する第1の送信手段と、を有し、
    上記第2のセンサユニットは、少なくとも第2の加速度データを出力する第2の加速度センサと、当該第2の加速度データをセンシング信号として上記センタ装置に送信する第2の送信手段と、を有し、
    上記第3のセンサユニットは、少なくとも第3の加速度データを出力する第3の加速度センサと、当該第3の加速度データをセンシング信号として上記センタ装置に送信する第3の送信手段と、を有し、
    上記センタ装置は、上記センシング信号に係る第1の加速度データと上記第2の加速度データとの関係より上記被検体の行動状態が横臥状態であることを判定し、上記センシング信号に係る第2の加速度データと上記第3の加速度データとの関係より上記被検体の行動状態が立ち状態、座位状態の何れであるかを判定する、センサデータ収集処理手段と、を有する、
    ことを特徴とする行動監視システム。
  3. 上記第1のセンサユニットは上記被検体の胸部に装着され、上記第2のセンサユニットは上記被検体の一方の大腿部に装着され、上記第3のセンサユニットは上記被検体の他方の大腿部に装着されることを特徴とする請求項1若しくは2に記載の行動監視システム。
  4. 上記センタ装置は、第1乃至第3のセンサユニットを制御することを特徴とする請求項1若しくは2に記載の行動監視システム。
JP2005157291A 2005-05-30 2005-05-30 行動監視システム Pending JP2006326174A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157291A JP2006326174A (ja) 2005-05-30 2005-05-30 行動監視システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157291A JP2006326174A (ja) 2005-05-30 2005-05-30 行動監視システム

Publications (1)

Publication Number Publication Date
JP2006326174A true JP2006326174A (ja) 2006-12-07

Family

ID=37548496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157291A Pending JP2006326174A (ja) 2005-05-30 2005-05-30 行動監視システム

Country Status (1)

Country Link
JP (1) JP2006326174A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870961B1 (ko) 2007-01-30 2008-12-01 연세대학교 산학협력단 휴대용 신체활동 모니터링 시스템
JP2010524094A (ja) * 2007-04-04 2010-07-15 マグネットー・イナーシャル・センシング・テクノロジー・インコーポレイテッド ダイナミックに構成可能な無線センサネットワーク
JP2011141284A (ja) * 2006-03-15 2011-07-21 Qualcomm Inc センサベースのオリエンテーションシステム
JP2013094434A (ja) * 2011-11-01 2013-05-20 Seiko Epson Corp 不安全動作検出装置及び不安全動作検出方法
WO2018127947A1 (ja) 2017-01-04 2018-07-12 富士通株式会社 情報処理装置、情報処理システム及び情報処理方法
WO2018154626A1 (ja) * 2017-02-21 2018-08-30 富士通株式会社 動作検出システム、動作検出装置及び動作検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141284A (ja) * 2006-03-15 2011-07-21 Qualcomm Inc センサベースのオリエンテーションシステム
US8910522B2 (en) 2006-03-15 2014-12-16 Qualcomm Incorporated Sensor-based orientation system
KR100870961B1 (ko) 2007-01-30 2008-12-01 연세대학교 산학협력단 휴대용 신체활동 모니터링 시스템
JP2010524094A (ja) * 2007-04-04 2010-07-15 マグネットー・イナーシャル・センシング・テクノロジー・インコーポレイテッド ダイナミックに構成可能な無線センサネットワーク
JP2013094434A (ja) * 2011-11-01 2013-05-20 Seiko Epson Corp 不安全動作検出装置及び不安全動作検出方法
WO2018127947A1 (ja) 2017-01-04 2018-07-12 富士通株式会社 情報処理装置、情報処理システム及び情報処理方法
WO2018154626A1 (ja) * 2017-02-21 2018-08-30 富士通株式会社 動作検出システム、動作検出装置及び動作検出方法
JPWO2018154626A1 (ja) * 2017-02-21 2019-11-07 富士通株式会社 動作検出システム、動作検出装置及び動作検出方法
EP3586741A4 (en) * 2017-02-21 2020-01-22 Fujitsu Limited DISPLACEMENT DETECTION SYSTEM, DISPLACEMENT DETECTION DEVICE, AND DISPLACEMENT DETECTION METHOD

Similar Documents

Publication Publication Date Title
US10130304B2 (en) System, method and apparatus for orientation control
EP2419057B1 (en) System and apparatus for orientation control
JP2006326174A (ja) 行動監視システム
US20070296571A1 (en) Motion sensing in a wireless rf network
JP4358861B2 (ja) 位置識別能力を有する移動式患者モニタリングシステム
US20080252445A1 (en) Dynamically Configurable Wireless Sensor Networks
JP2008047097A (ja) 患者異常通知システム
JP2006334087A (ja) 睡眠状態判定システム及び睡眠状態判定方法
JP2007151617A (ja) 生体情報モニタシステム
KR101986088B1 (ko) 비정상 생체 신호 감지를 위한 사물 인터넷 디바이스 연동 시스템 및 그 제어방법
KR102036552B1 (ko) 애완견 배변배뇨 훈련 및 활동량 측정시스템
JP4404838B2 (ja) 状態解析装置
JP2006230789A (ja) 睡眠状態検出システム及び睡眠状態検出装置
JP2006230791A (ja) 睡眠状態検出システム及び睡眠状態検出装置
JP2007097821A (ja) 行動監視システム
JP2006230790A (ja) 睡眠状態検出システム及び睡眠状態検出装置
JP2006340985A (ja) 運動量推定システム
JP2006318187A (ja) 消防士活動支援システム
WO2006090876A1 (ja) 睡眠状態検出システム及び睡眠状態検出装置
GB2618269A (en) Data-analyzing smart insole apparatus and method
JP2006252171A (ja) 遠隔センシングシステム及びセンサユニット
JP2006318188A (ja) 山岳登山者支援システム
JP6837942B2 (ja) 測定装置、送信方法およびプログラム
JP5184288B2 (ja) センサ制御システム
JP5454925B2 (ja) ナースコールシステム