JP6785710B2 - Rigid Flex Multilayer Printed Circuit Board Manufacturing Method - Google Patents

Rigid Flex Multilayer Printed Circuit Board Manufacturing Method Download PDF

Info

Publication number
JP6785710B2
JP6785710B2 JP2017083264A JP2017083264A JP6785710B2 JP 6785710 B2 JP6785710 B2 JP 6785710B2 JP 2017083264 A JP2017083264 A JP 2017083264A JP 2017083264 A JP2017083264 A JP 2017083264A JP 6785710 B2 JP6785710 B2 JP 6785710B2
Authority
JP
Japan
Prior art keywords
flexible substrate
printed wiring
multilayer printed
router
substrate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017083264A
Other languages
Japanese (ja)
Other versions
JP2018182215A (en
Inventor
裕二 小林
裕二 小林
正幸 塩原
正幸 塩原
孝浩 白井
孝浩 白井
市川 純一
純一 市川
Original Assignee
日本シイエムケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本シイエムケイ株式会社 filed Critical 日本シイエムケイ株式会社
Priority to JP2017083264A priority Critical patent/JP6785710B2/en
Publication of JP2018182215A publication Critical patent/JP2018182215A/en
Application granted granted Critical
Publication of JP6785710B2 publication Critical patent/JP6785710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、折り曲げ可能なフレキシブル基板と硬質なリジッド基板からなるリジッド・フレックス多層プリント配線板の製造方法に関する。 The present invention relates to a method for manufacturing a rigid flex multilayer printed wiring board including a bendable flexible substrate and a rigid rigid substrate.

最近、車載基板関連で、プリント配線板を折り曲げた状態で固定して筐体に搭載するリジッド・フレックス多層プリント配線板が、一部コネクタレスになるように用いられている。
斯かる車載基板関連への対応を考えると、貫通めっきスルーホールの接続信頼性、基板の剛性、厚い板厚が想定される。そんな中、当該リジッド・フレックス多層プリント配線板の生産性を考慮すると、個片のリジッド・フレックス多層プリント配線板を複数個面付けして、生産用のワークサイズを大判化し、取り数を多くすることが求められている。
Recently, in relation to in-vehicle boards, rigid flex multilayer printed wiring boards that are fixed in a bent state and mounted on a housing have been used so as to be partially connectorless.
Considering the correspondence to such an in-vehicle substrate, the connection reliability of the through-hole plating through hole, the rigidity of the substrate, and the thick plate thickness are assumed. Meanwhile, considering the productivity of the rigid flex multi-layer printed wiring board, multiple pieces of rigid flex multi-layer printed wiring board are impositioned to increase the work size for production and increase the number of pieces. Is required.

而して、従来のリッジド・フレックス多層プリント配線板としては、例えば図7〜図12に示すものが既に知られている(特許文献1参照)。 Thus, as a conventional ridged flex multilayer printed wiring board, for example, those shown in FIGS. 7 to 12 are already known (see Patent Document 1).

図7において、60は従来のリジッド・フレックス多層プリント配線板で、コア基板61を備えた硬質のリジッド基板部Rと、折り曲げ可能なフレキシブル基板部Fとから構成されている。
当該コア基板61には、ポリイミド樹脂を使用したフレキシブル基板に導体回路62が形成され、当該導体回路62には、保護層として、カバーレイフィルム63が配置されている。また、当該カバーレイフィルム63の上下には、ガラスクロス64に樹脂を含浸させたプリプレグを重ね積層した絶縁基材65が配置されている。
In FIG. 7, reference numeral 60 denotes a conventional rigid flex multilayer printed wiring board, which is composed of a rigid rigid substrate portion R provided with a core substrate 61 and a bendable flexible substrate portion F.
In the core substrate 61, a conductor circuit 62 is formed on a flexible substrate using a polyimide resin, and a coverlay film 63 is arranged on the conductor circuit 62 as a protective layer. Further, above and below the coverlay film 63, an insulating base material 65 in which a prepreg impregnated with a resin is laminated on a glass cloth 64 is arranged.

斯かるリジッド・フレックス多層プリント配線板を生産するための基板のワークサイズを大判化すると、基板の取り数が増えるため生産性は向上するが、次のような問題が発生している。
すなわち、従来のリジッド・フレックス多層プリント配線板60は、上述のように、硬質のリジッド基板部Rとフレキシブル基板部Fが接続されている。リジッド基板部Rは、ガラスクロスに樹脂が含浸、硬化された基材を用い、フレキシブル基板部Fは、主に、ポリイミド樹脂からなるベースフィルムが用いられている。両者は、プリント配線板の製造工程における熱処理工程、例えば、積層工程で基材の熱による収縮率が異なるため、図8に示すように、寸法変化が大きく、特に、基板の取り数を多くしワークサイズを大判化すると、基材の収縮率の差が顕著になり、貫通めっきスルーホールなどで位置ズレが生じ、当該貫通めっきスルーホールの接続信頼性にも悪影響を及ぼしていた。また、予めランドを大きく形成しなければならなくなり、設計上の制約を受けるなどの問題も発生していた。
If the work size of the substrate for producing such a rigid flex multilayer printed wiring board is increased, the productivity is improved because the number of substrates is increased, but the following problems occur.
That is, in the conventional rigid flex multilayer printed wiring board 60, the rigid rigid substrate portion R and the flexible substrate portion F are connected as described above. The rigid substrate portion R uses a base film obtained by impregnating a glass cloth with a resin and curing it, and the flexible substrate portion F mainly uses a base film made of a polyimide resin. Both have different shrinkage rates due to heat of the base material in the heat treatment process in the manufacturing process of the printed wiring board, for example, the laminating process. Therefore, as shown in FIG. 8, the dimensional change is large, and in particular, the number of substrates is increased. When the work size was increased, the difference in shrinkage ratio of the base material became remarkable, and the position shift occurred in the through-plating through-holes and the like, which adversely affected the connection reliability of the through-plating through-holes. In addition, it is necessary to form a large land in advance, which causes problems such as design restrictions.

また、車載基板に要求される剛性については、フレキシブル基材としてポリイミド樹脂からなるベースフィルムでは、ガラスクロス等の補強材料が含まれていないため、フレキシブル基板の変形や横の捩れなどに弱く、導体回路が断線するケースも見られた。
特に、車載基板の場合、貫通めっきスルーホールの接続信頼性として、冷熱衝撃試験に3000サイクル投入しても貫通めっきスルーホールの抵抗値変化20%以下が求められている。冷熱衝撃試験の条件としては、高温125℃、低温−65℃各30分を1サイクルとして3000サイクル実施するが、従来のリジッド・フレックス多層プリント配線板60では、板厚が厚くなればなるほど、Z方向(厚み方向)の熱収縮応力がコア基板61のフレキシブル基板に掛かるため図9に示すように、フレキシブル基板に応力が集中し、コア基板61の貫通めっきスルーホール内壁68から銅めっき69クラックや剥がれが発生し、貫通めっきスルーホールの導通抵抗値が上昇する問題が生じていた。
Regarding the rigidity required for in-vehicle substrates, the base film made of polyimide resin as a flexible substrate does not contain reinforcing materials such as glass cloth, so it is vulnerable to deformation and lateral twisting of the flexible substrate, and is a conductor. In some cases, the circuit was broken.
In particular, in the case of an in-vehicle substrate, the resistance value change of the through-hole plating through hole is required to be 20% or less even if 3000 cycles are applied to the thermal shock test as the connection reliability of the through-hole plating through hole. As a condition of the thermal shock test, 3000 cycles are carried out with 30 minutes each of high temperature 125 ° C and low temperature -65 ° C as one cycle, but in the conventional rigid flex multilayer printed wiring board 60, the thicker the board, the more Z Since the heat shrinkage stress in the direction (thickness direction) is applied to the flexible substrate of the core substrate 61, the stress is concentrated on the flexible substrate, and the copper plating 69 cracks from the through-hole plating through hole inner wall 68 of the core substrate 61 and the like. There was a problem that peeling occurred and the conduction resistance value of the through-hole plating through hole increased.

更に、図10に示すように、フレキシブル基板部Fの絶縁基材を折り曲げ可能な厚さまで切削加工する際に、まずザグリ加工施す面の外周にルータビットを作動させて切削加工を施し、次いで、ザグリ加工面の中心部から逆時計回りで渦巻き形状にて切削加工するのが生産性などを考慮すると一般的であった。因みに、当該切削加工は、図10に示される番号で1番から順に10番までルータを移動させて行なわれる。
尚、当該図10は、リジッド・フレックス多層プリント配線板60を5個面付けした状態のワークシートを示している。
Further, as shown in FIG. 10, when cutting the insulating base material of the flexible substrate portion F to a thickness that can be bent, first, a router bit is operated on the outer periphery of the surface to be counterclockwise to perform cutting, and then cutting is performed. Considering productivity, it was common to cut in a spiral shape counterclockwise from the center of the counterbore machined surface. Incidentally, the cutting process is performed by moving the router from No. 1 to No. 10 in order with the numbers shown in FIG.
Note that FIG. 10 shows a worksheet in which five rigid flex multilayer printed wiring boards 60 are impositioned.

通常は、プリント配線坂のシートを複数面付けした大判化したワークボードに合わせて切削加工を行うためフレキシブル基板部Fの折り曲げ時の屈曲部ライン(以下「折り曲げライン」と云う)は考慮せず、生産性の向上のみを考えて加工していた。 Normally, since cutting is performed according to a large-sized work board on which multiple sheets of printed wiring boards are impositioned, the bending line (hereinafter referred to as "bending line") at the time of bending the flexible substrate F is not considered. , I was processing only to improve productivity.

しかし、樹脂含浸ガラスクロスを含む基材を用いるため、どうしてもガラスクロスの網目に対して小さな凹凸ができ、絶縁基板を積層した際の基材の熱収縮の影響を受け易い傾向にあった。ルータ加工による切削加工は、ある程度精度よく加工できるものの、樹脂含浸ガラスクロスを使用した絶縁基材特有のバラツキを制御することは難しかった。 However, since a base material containing a resin-impregnated glass cloth is used, small irregularities are inevitably formed on the mesh of the glass cloth, and there is a tendency that the base material is easily affected by heat shrinkage when the insulating substrates are laminated. Although the cutting process by router processing can be processed with a certain degree of accuracy, it is difficult to control the variation peculiar to the insulating base material using the resin-impregnated glass cloth.

図11は、従来のリジッド・フレックス多層プリント配線板の断面図で、当該リジッド・フレックス多層プリント配線板Sの切削加工面46から逆時計回りで渦巻状に切削加工を施した状態を示している。また、図12において、47の点線部は切削加工面におけるフレキシブル基板部Fの外縁部を示している。
当該切削加工の際、使用するルータのドリルビットにより、切削加工面にルータビット加工線(溝)48が形成されることがあるが、ルータの移動方向が、フレキシブル基板部Fの折り曲げラインと平行である場合、当該ルータビット加工線(溝)48がフレキシブル基板部Fの折り曲げライン(図12中、矢印ライン)と平行方向に形成されるため、当該ルータビット加工線(溝)48を起点として、基板を折り曲げた際に基材が簡単に割れることがあった。
FIG. 11 is a cross-sectional view of a conventional rigid flex multilayer printed wiring board, showing a state in which the rigid flex multilayer printed wiring board S is spirally machined counterclockwise from the machined surface 46. .. Further, in FIG. 12, the dotted line portion of 47 indicates the outer edge portion of the flexible substrate portion F on the machined surface.
During the cutting process, a router bit processing line (groove) 48 may be formed on the machined surface by the drill bit of the router used, but the moving direction of the router is parallel to the bending line of the flexible substrate portion F. In the case of, since the router bit processing line (groove) 48 is formed in the direction parallel to the bending line (arrow line in FIG. 12) of the flexible substrate portion F, the router bit processing line (groove) 48 is used as a starting point. , The base material was easily cracked when the substrate was bent.

特開2002−158445号公報JP-A-2002-158445

本発明は、上記の如き従来の問題と実状に鑑みてなされたものであり、基材の熱収縮率の差が生じにくく、フレキシブル基板の変形や横の捩れに強い剛性を確保し、接続信頼性に優れるリジッド・フレックス多層プリント配線板を得るために、ルータを作動せしめてフレキシブル基板部を折り曲げ可能な厚さまで切削加工する際に、仮に、切削加工面にルータビット加工線(溝)が形成されても、基板を折り曲げた際にフレキシブル基板部の基材が割れることを抑制することができるリジッド・フレックス多層プリント配線板を提供することを課題としている。 The present invention has been made in view of the above-mentioned conventional problems and actual conditions, and the difference in the heat shrinkage rate of the base material is unlikely to occur, the flexibility is ensured to be strong against deformation and lateral twist of the flexible substrate, and the connection reliability is ensured. In order to obtain a rigid flex multilayer printed wiring board with excellent properties, when the router is operated and the flexible substrate is cut to a thickness that can be bent, a router bit machined line (groove) is temporarily formed on the machined surface. Even so, it is an object of the present invention to provide a rigid flex multilayer printed wiring board capable of suppressing cracking of the base material of the flexible substrate portion when the substrate is bent.

本発明者は、上記の課題を解決すべく種々研究を重ねた結果、フレキシブル基板部を折り曲げ可能な厚さまで切削加工する際に、ルータをフレキシブル基板部の折り曲げラインと直交する方向に移動しつつ作動せしめれば、仮に、ルータビット加工線(溝)が形成されても、折り曲げラインと直交状態となるので、基材の割れを抑制できることを見い出し、本発明を完成した。 As a result of conducting various studies to solve the above problems, the present inventor moves the router in a direction orthogonal to the bending line of the flexible substrate portion when cutting the flexible substrate portion to a thickness that allows bending. If it is operated, even if a router bit processing line (groove) is formed, it will be in a state orthogonal to the bending line, so that it is possible to suppress cracking of the base material, and the present invention has been completed.

すなわち、本発明は、リジッド基板部の絶縁基材とフレキシブル基板部の絶縁基材に樹脂含浸ガラスクロスが用いられているリジッド・フレックス多層プリント配線板の製造方法であって、ルータを作動しつつフレキシブル基板部の折り曲げラインと直交する方向に移動させて、当該ルータのドリルビットにより前記フレキシブル基板部の絶縁基材を、折り曲げ可能な厚さまで切削加工してフレキシブル基板部を形成する工程を有することを特徴とするリジッド・フレックス多層プリント配線板により上記課題を解決したものである。 That is, the present invention is a method for manufacturing a rigid flex multilayer printed wiring board in which a resin-impregnated glass cloth is used for the insulating base material of the rigid substrate portion and the insulating base material of the flexible substrate portion, while operating the router. It has a step of moving in a direction orthogonal to the bending line of the flexible substrate portion and cutting the insulating base material of the flexible substrate portion to a foldable thickness by a drill bit of the router to form the flexible substrate portion. The above problem is solved by a rigid flex multilayer printed wiring board characterized by.

本発明の製造方法によれば、得られたリジッド・フレックス多層プリント配線板は、フレキシブル基板の絶縁基材としてリジッド基板の絶縁基材と同一の樹脂含浸ガラスクロスが用いられているので、当該基材間に熱収縮率の差が生じにくいため、貫通めっきスルーホールなどでの位置ズレが生じず、その接続信頼性を確保できると共に、予めランドを大きく形成する必要がないので、設計上の制約を受けることもない。
また、本発明におけるフレキシブル基板の絶縁基材にガラスクロスが含まれているため、強い剛性が確保され、フレキシブル基板の変形や横の捩れに強く、導体回路が断線することもない。
According to the manufacturing method of the present invention, the obtained rigid flex multilayer printed wiring board uses the same resin-impregnated glass cloth as the insulating base material of the rigid substrate as the insulating base material of the flexible substrate. Since there is little difference in heat shrinkage between the materials, there is no positional deviation in through-hole plating through holes, etc., the connection reliability can be ensured, and it is not necessary to form a large land in advance, which is a design restriction. I will not receive it.
Further, since the insulating base material of the flexible substrate in the present invention contains a glass cloth, strong rigidity is ensured, the flexible substrate is resistant to deformation and lateral twist, and the conductor circuit is not broken.

更に、フレキシブル基板部を折り曲げ可能な厚さまで、折り曲げラインと直交する方向にルータを移動しつつ切削加工しているので、仮に、ルータのドリルビットによりルータビット加工線(溝)が形成されても、折り曲げラインと直交状態となっているので、フレキシブル基板部の基材が割れることを抑制することができる。 Furthermore, since the flexible substrate portion is cut while moving the router in the direction orthogonal to the bending line to a thickness that allows bending, even if a router bit processing line (groove) is formed by the drill bit of the router. Since it is orthogonal to the bending line, it is possible to prevent the base material of the flexible substrate portion from cracking.

本発明のリジッド・フレックス多層プリント配線板の製造例を示す断面工 程図である。It is sectional drawing which shows the manufacturing example of the rigid flex multilayer printed wiring board of this invention. 図1に引き続く、本発明のリジッド・フレックス多層プリント配線板の製造例を示す断面工程図である。It is sectional drawing which shows the manufacturing example of the rigid flex multilayer printed wiring board of this invention following FIG. 本発明におけるルータによる切削加工の作動例を、複数のリジッド・フレックス多層プリント配線板を面付けしたワークシート上に示した模式図である。It is a schematic diagram which showed the operation example of the cutting process by a router in this invention on the worksheet which impositioned a plurality of rigid flex multilayer printed wiring boards. 本発明の製造方法で得られたリジッド・フレックス多層プリント配線板の断面図である。It is sectional drawing of the rigid flex multilayer printed wiring board obtained by the manufacturing method of this invention. 図4に示すリジッド・フレックス多層プリント配線板におけるフレキシブル基板部の切削加工面を示す底面図である。It is a bottom view which shows the cut surface of the flexible substrate part in the rigid flex multilayer printed wiring board shown in FIG. 図4に示すリジッド・フレックス多層プリント配線板の熱工程による絶縁層の収縮差を示すリジッド基板部の断面図である。It is sectional drawing of the rigid substrate part which shows the shrinkage difference of the insulating layer by the thermal process of the rigid flex multilayer printed wiring board shown in FIG. 従来のリジッド・フレックス多層プリント配線板の断面図である。It is sectional drawing of the conventional rigid flex multilayer printed wiring board. 図7に示すリジッド・フレックス多層プリント配線板の熱工程による絶縁層の収縮差を示すリジッド基板部の断面図である。It is sectional drawing of the rigid substrate part which shows the shrinkage difference of the insulating layer by the thermal process of the rigid flex multilayer printed wiring board shown in FIG. 7. 図7に示すリジッド・フレックス多層プリント配線板の冷熱衝撃試験1000時間後におけるリジッド基板部の断面図である。It is sectional drawing of the rigid substrate part after 1000 hours of the thermal shock test of the rigid flex multilayer printed wiring board shown in FIG. 7. 従来の加工方法におけるルータによる切削加工の作動例を、複数のリジッド・フレックス多層プリント配線板を面付けしたワークシート上に示した模式図である。It is a schematic diagram which showed the operation example of the cutting process by a router in the conventional processing method on the worksheet which impositioned a plurality of rigid flex multilayer printed wiring boards. 図10に示す、従来の加工方法で切削加工を施したリジッド・フレックス多層プリント配線板の断面図である。FIG. 10 is a cross-sectional view of a rigid flex multilayer printed wiring board that has been machined by a conventional machining method, as shown in FIG. 図11に示すリジッド・フレックス多層プリント配線板部におけるフレキシブル基板部の切削加工面を示す底面図である。It is a bottom view which shows the cut surface of the flexible substrate part in the rigid flex multilayer printed wiring board part shown in FIG.

以下本発明の実施の形態を図面と共に説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2を用いて、本発明のリジッド・フレックス多層プリント配線板の製造方法について説明する。 The method for manufacturing the rigid flex multilayer printed wiring board of the present invention will be described with reference to FIGS. 1 and 2.

まず、ガラスクロス12に樹脂を含浸したプリプレグの上下に銅箔を積層し、絶縁基材13を形成する。次いで、当該銅箔を写真法にて、露光・現像を行い回路形成を施すことによって、導体回路15を形成し、コア基板16を得る(図1(a))。
次いで、当該コア基板16の上下に、ガラスクロス12に樹脂を含浸せしめ、該絶縁樹脂が半硬化状態のプリプレグを配置し、更に、その上下に、銅箔17を配置し、セットアップ工程を経て、積層した(図1(b))。その後、ドリル加工やレーザ加工を用いて貫通孔18を形成する(図1(c))。
First, copper foils are laminated on top and bottom of a prepreg impregnated with a resin in a glass cloth 12 to form an insulating base material 13. Next, the copper foil is exposed and developed by a photographic method to form a circuit to form a conductor circuit 15 and obtain a core substrate 16 (FIG. 1A).
Next, the glass cloth 12 is impregnated with resin above and below the core substrate 16, prepregs in which the insulating resin is semi-cured are arranged, and copper foils 17 are arranged above and below the prepreg, and the setup process is performed. They were laminated (FIG. 1 (b)). After that, the through hole 18 is formed by drilling or laser machining (FIG. 1 (c)).

次いで、全面に銅からなるパネルめっき19(無電解・電解銅めっき)を施した(図2(d))。その後、写真法にて露光・現像を行い、導体回路20を施す(図2e)。 Next, panel plating 19 (electroless / electrolytic copper plating) made of copper was applied to the entire surface (FIG. 2 (d)). After that, exposure and development are performed by a photographic method, and a conductor circuit 20 is applied (FIG. 2e).

次に、ルータの切削加工により、フレキシブル基板部Fを設ける開口部21(図2(f))を形成する。当該開口部21は、フレキシブル基板部Fが折り曲げ可能な厚さまでルータにより絶縁基材を切削加工して形成されるが、当該ルータを作動しつつ、フレキシブル基板部Fの折り曲げラインと直交する方向に移動させて、当該ルータのドリルビットにより前記フレキシブル基板部の絶縁基材を切削加工して形成する必要がある。斯様に、当該ルータの移動方向を、フレキシブル基板部Fの折り曲げラインと直交する方向に切削加工することにより、仮に、ルータビット加工線(溝)が形成されても折り曲げラインと直交状態で形成されるため、当該ルータビット加工線(溝)に折り曲げ時に応力が掛かることが無く、基材にクラックが発生するのを抑制する効果がある。 Next, the opening 21 (FIG. 2 (f)) in which the flexible substrate portion F is provided is formed by cutting the router. The opening 21 is formed by cutting an insulating base material with a router to a thickness that allows the flexible substrate portion F to be bent. While operating the router, the opening 21 is formed in a direction orthogonal to the bending line of the flexible substrate portion F. It is necessary to move the insulating base material of the flexible substrate portion by cutting it with a drill bit of the router. In this way, by cutting the moving direction of the router in a direction orthogonal to the bending line of the flexible substrate portion F, even if a router bit processing line (groove) is formed, it is formed in a state orthogonal to the bending line. Therefore, no stress is applied to the router bit processing line (groove) at the time of bending, and there is an effect of suppressing the occurrence of cracks in the base material.

図3は、斯かるフレキシブル基板部Fの絶縁基材を切削加工する際のルータの作動例を示す模式図で、当該ルータが作動しつつフレキシブル基板部Fの折り曲げラインと直交する方向に、1番から順に6番まで移動しつつ加工していることを示している。 FIG. 3 is a schematic view showing an operation example of the router when cutting the insulating base material of the flexible substrate portion F, in a direction orthogonal to the bending line of the flexible substrate portion F while the router is operating. It shows that processing is performed while moving from No. 6 to No. 6.

仮に、切削加工の際のルータのドリルビットの刃先などの影響で、フレキシブル基板部Fにルータビット加工線(溝)が形成されたとしても、当該フレキシブル基板部Fの折り曲げラインと直交する方向に形成されるため、当該ルータビット加工線(溝)に折り曲げ時の負荷が掛かることがないため、絶縁基材が割れることを抑制することが可能となる。 Even if a router bit processing line (groove) is formed in the flexible substrate portion F due to the influence of the cutting edge of the router drill bit during cutting, the direction is orthogonal to the bending line of the flexible substrate portion F. Since it is formed, no load is applied to the router bit machined wire (groove) at the time of bending, so that it is possible to suppress cracking of the insulating base material.

更に、ルータの移動は、例えば図3に示されているように、隣接する加工部に対して1番から2番、2番から3番へと、順次切削加工位置を変更しつつ往復移動、且つ、当該変更位置を密にして移動するのが、よりルータ加工の切削加工によるバラツキを押さえ精度よく加工できる点で好ましい。特に、当該ルータの変更位置を密にすることで、ルータビット加工線(溝)の発生そのものを抑制する効果がある。 Further, as shown in FIG. 3, for example, the movement of the router reciprocates while sequentially changing the cutting processing position from No. 1 to No. 2 and No. 2 to No. 3 with respect to the adjacent processing portion. In addition, it is preferable to move the change position densely because it is possible to suppress the variation due to the cutting process of the router processing and process it with high accuracy. In particular, by making the change position of the router dense, there is an effect of suppressing the generation of the router bit processed line (groove) itself.

次いで、図示しないが、当該導体回路20に、ソルダーレジストなどの保護層を設けてリジッド・フレックス多層プリント配線板(図2(f))を得る。 Next, although not shown, a protective layer such as a solder resist is provided on the conductor circuit 20 to obtain a rigid flex multilayer printed wiring board (FIG. 2 (f)).

図4において、Pは本発明の製造方法により得られたリジッド・フレックス多層プリント配線板で、硬質のリジッド基板部Rと、折り曲げ可能なフレキシブル基板部Fとから構成されている。
少なくとも当該リジッド基板部Rは、貫通めっきスルーホール11を備え、その絶縁基材13は、ガラスクロス12に樹脂を含浸せしめたものの積層体から成ると共に、当該積層工程の熱プレスにより硬化されている。当該絶縁基材13には、全層同様な基材が使用されているため、例えば、プリント配線板の製造工程の一つである積層プレス工程では、180℃、1時間積層するが、図8に示す如く、絶縁基材13の収縮差に差が生じない結果、基板の取り数を多くし、大判化しても貫通めっきスルーホール11の位置ズレの影響もなく、また設計的な制約を受けることもないので、ランドが高密度で配置された、精度の高いプリント配線板となっている。
In FIG. 4, P is a rigid flex multilayer printed wiring board obtained by the manufacturing method of the present invention, and is composed of a rigid rigid substrate portion R and a bendable flexible substrate portion F.
At least the rigid substrate portion R includes a through-hole plating through hole 11, and the insulating base material 13 is made of a laminated body of a glass cloth 12 impregnated with a resin and is cured by a hot press in the laminating step. .. Since the same base material as all layers is used for the insulating base material 13, for example, in the through-hole pressing process, which is one of the manufacturing processes of the printed wiring board, the layers are laminated at 180 ° C. for 1 hour. As shown in the above, as a result of no difference in shrinkage difference of the insulating base material 13, the number of substrates taken is increased, and even if the size is increased, there is no influence of the positional deviation of the through-hole plating through hole 11, and there are design restrictions. Since there is no such thing, it is a highly accurate printed wiring board with lands arranged at high density.

また、フレキシブル基板部Fも、リジッド基板部Rと同様に、フレキシブル基板の絶縁基材13は、ガラスクロス12に樹脂を含浸せしめ、予め硬化したものが用いられ、更にその切削加工により、折り曲げ可能な厚みまで薄く加工されている。特に、車載基板で要求される剛性を保つためには、フレキシブル基板部Fにもガラスクロスに樹脂を含浸した絶縁基材13を使用することが必要である。すなわち、斯かる絶縁基材13を使用すれば、当該リジッド・フレックス多層プリント配線板Pを、フレキシブル基板部Fを中心に折り曲げて筐体に収納し固定する際の横の捩れに対しても強く、絶縁基材13上の導体回路15が断線するのを防止することができる。 Further, as for the flexible substrate portion F, similarly to the rigid substrate portion R, the insulating base material 13 of the flexible substrate is a glass cloth 12 impregnated with resin and pre-cured, and can be further bent by cutting. It is thinly processed to a large thickness. In particular, in order to maintain the rigidity required for the in-vehicle substrate, it is necessary to use the insulating base material 13 in which the glass cloth is impregnated with the resin also in the flexible substrate portion F. That is, if such an insulating base material 13 is used, the rigid flex multilayer printed wiring board P is strongly resistant to lateral twist when it is bent around the flexible substrate portion F and stored in the housing and fixed. , It is possible to prevent the conductor circuit 15 on the insulating base material 13 from being disconnected.

図5において、22の点線部は切削加工面におけるフレキシブル基板部Fの外縁部を示している。当該フレキシブル基板部Fの切削加工面にはルータのドリルビットによるルータビット加工線(溝)23が形成されている。当該ルータビット加工線(溝)23は、フレキシブル基板部Fの折り曲げライン(図5中、矢印ライン)と直交する方向に形成されている。 In FIG. 5, the dotted line portion of 22 indicates the outer edge portion of the flexible substrate portion F on the machined surface. A router bit processing line (groove) 23 formed by a router drill bit is formed on the machined surface of the flexible substrate portion F. The router bit processing line (groove) 23 is formed in a direction orthogonal to the bending line (arrow line in FIG. 5) of the flexible substrate portion F.

11、41:貫通めっきスルーホール
12、42:ガラスクロス
13、43:絶縁基材
15、20、45:導体回路
16:コア基板
17:銅箔
18:貫通孔
19:銅めっき
21:開口部
22、47:フレキシブル基板部の外縁部
23、48:ルータビット加工線(溝)
60:リジッド・フレックス多層プリント配線板
61:コア基板
62:導体回路
63:カバーレイ
64:ガラスクロス
65:絶縁基材
68:貫通めっきスルーホール内壁
69:銅めっき
P :リジッド・フレックス多層プリント配線板
S :従来の切削加工法によるリジッド・フレックス多層プリント配線板
R :リジッド基板部
F :フレキシブル基板部
11, 41: Through plating through holes 12, 42: Glass cloth 13, 43: Insulating base materials 15, 20, 45: Conductor circuit 16: Core substrate 17: Copper foil 18: Through holes 19: Copper plating 21: Opening 22 , 47: Outer edge of flexible substrate 23, 48: Router bit machined wire (groove)
60: Rigid flex multilayer printed wiring board 61: Core substrate 62: Conductor circuit 63: Coverlay 64: Glass cloth 65: Insulation base material 68: Through-hole plating Through-hole inner wall 69: Copper plating P: Rigid flex multilayer printed wiring board S: Rigid flex multi-layer printed wiring board by conventional cutting method R: Rigid board part F: Flexible board part

Claims (2)

リジッド基板部の絶縁基材とフレキシブル基板部の絶縁基材に樹脂含浸ガラスクロスが用いられているリジッド・フレックス多層プリント配線板の製造方法であって、ルータを作動しつつフレキシブル基板部の折り曲げラインと直交する方向に移動させて、当該ルータのドリルビットにより前記フレキシブル基板部の絶縁基材を、折り曲げ可能な厚さまで切削加工してフレキシブル基板部を形成する工程を有することを特徴とするリジッド・フレックス多層プリント配線板の製造方法。 This is a method for manufacturing a rigid flex multilayer printed wiring board in which a resin-impregnated glass cloth is used for the insulating base material of the rigid substrate portion and the insulating substrate of the flexible substrate portion, and the bending line of the flexible substrate portion while operating the router. The rigid substrate is moved in a direction orthogonal to the above, and the insulating substrate of the flexible substrate portion is cut to a foldable thickness by a drill bit of the router to form the flexible substrate portion. How to manufacture a flex multi-layer printed wiring board. 前記ルータを、順次切削加工位置を変更しつつ往復移動させて、且つ、当該変更位置を密にして切削加工することを特徴とする請求項1記載のリジッド・フレックス多層プリント配線板の製造方法。 The method for manufacturing a rigid flex multilayer printed wiring board according to claim 1, wherein the router is reciprocally moved while sequentially changing the cutting processing position, and the changing position is densely cut.
JP2017083264A 2017-04-20 2017-04-20 Rigid Flex Multilayer Printed Circuit Board Manufacturing Method Active JP6785710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083264A JP6785710B2 (en) 2017-04-20 2017-04-20 Rigid Flex Multilayer Printed Circuit Board Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083264A JP6785710B2 (en) 2017-04-20 2017-04-20 Rigid Flex Multilayer Printed Circuit Board Manufacturing Method

Publications (2)

Publication Number Publication Date
JP2018182215A JP2018182215A (en) 2018-11-15
JP6785710B2 true JP6785710B2 (en) 2020-11-18

Family

ID=64276219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083264A Active JP6785710B2 (en) 2017-04-20 2017-04-20 Rigid Flex Multilayer Printed Circuit Board Manufacturing Method

Country Status (1)

Country Link
JP (1) JP6785710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597144B (en) * 2021-07-28 2024-09-06 恒赫鼎富(苏州)电子有限公司 Manufacturing process of multi-layer FPC circuit board

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148653U (en) * 1975-05-23 1976-11-29
JPS5388157A (en) * 1977-01-13 1978-08-03 Matsushita Electric Ind Co Ltd Printed circuit board
JPS63193875U (en) * 1987-05-29 1988-12-14
JPH04336486A (en) * 1991-05-13 1992-11-24 Toshiba Corp Printed-circuit board
JP3209772B2 (en) * 1991-07-08 2001-09-17 株式会社フジクラ Manufacturing method of rigid flex wiring board
JP2007096131A (en) * 2005-09-29 2007-04-12 Toshiba Corp Printed wiring board
JP2007324208A (en) * 2006-05-30 2007-12-13 Toshiba Corp Printed wiring board, method of manufacturing the same and electronic device
KR101437494B1 (en) * 2014-03-07 2014-09-03 메이코 일렉트로닉스 컴파니 리미티드 Method of bending back rigid printed wiring board with flexible portion
JP6338444B2 (en) * 2014-05-09 2018-06-06 日本シイエムケイ株式会社 Rigid flex multilayer printed wiring board
JP2017022183A (en) * 2015-07-07 2017-01-26 矢崎総業株式会社 Electronic component unit substrate, and electronic component unit

Also Published As

Publication number Publication date
JP2018182215A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP5352005B2 (en) Wiring board and manufacturing method thereof
CN101299911B (en) Method for making a multilayered circuitized substrate
US10064292B2 (en) Recessed cavity in printed circuit board protected by LPI
US10772220B2 (en) Dummy core restrict resin process and structure
CN105744739A (en) Printed Circuit Board And Method Of Manufacturing The Same
JP6866229B2 (en) Rigid flex multi-layer printed wiring board
JP6785710B2 (en) Rigid Flex Multilayer Printed Circuit Board Manufacturing Method
JP6674016B2 (en) Printed wiring board and manufacturing method thereof
JP2018190765A (en) Rigid-flex multilayer printed wiring substrate
KR20090085406A (en) Multi-layer board and manufacturing method thereof
JP2018166168A (en) Rigid/flexible multilayer printed wiring board
KR101097504B1 (en) The method for preparing multi layered circuit board
US20120152595A1 (en) Multilayer printed circuit board and method of manufacturing the same
JP6911242B2 (en) Printed circuit board and its manufacturing method
KR101395904B1 (en) Manufacturing multilayer flexible printed circuit board
JP6417765B2 (en) Laminate for wiring board, wiring board using the same, and manufacturing method thereof
CN110337197B (en) Manufacturing method of rigid-flexible circuit board and rigid-flexible circuit board
JP2018137333A (en) Rigid flex multilayer printed wiring board
US9839126B2 (en) Printed circuit board and method of manufacturing the same
JP2002158442A (en) Multilayer printed board and its laminating method
KR101251749B1 (en) The printed circuit board and the method for manufacturing the same
CN114466532A (en) Preparation method of odd-layer blind hole plate and odd-layer blind hole plate
KR101170747B1 (en) Method for manufacturing multi layer printed circuit board
JP2001332855A (en) Method for manufacturing multi-layered wiring board
JP2008205434A (en) Working panel for multilayer circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250