JP6785381B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6785381B2
JP6785381B2 JP2019530913A JP2019530913A JP6785381B2 JP 6785381 B2 JP6785381 B2 JP 6785381B2 JP 2019530913 A JP2019530913 A JP 2019530913A JP 2019530913 A JP2019530913 A JP 2019530913A JP 6785381 B2 JP6785381 B2 JP 6785381B2
Authority
JP
Japan
Prior art keywords
pressure
expansion valve
difference
electronic expansion
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019530913A
Other languages
English (en)
Other versions
JPWO2019017084A1 (ja
Inventor
矢口 正彦
正彦 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Publication of JPWO2019017084A1 publication Critical patent/JPWO2019017084A1/ja
Application granted granted Critical
Publication of JP6785381B2 publication Critical patent/JP6785381B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明に係る実施形態は、冷凍サイクル装置に関する。
油分離器からアキュムレータに冷凍機油を流すバイパス回路に設けられる油循環量調整用膨張弁を備える冷凍サイクル装置が知られている。この従来の冷凍サイクル装置は、圧縮機の吐出側に設けられる吐出圧力検出手段と、吸入側に設けられる吸入圧力検出手段と、を備えている。従来の冷凍サイクル装置は、それぞれの圧力検出手段の信号を基に圧縮機の吐出側と吸入側との圧力差を演算し、この演算結果を基に油循環量調整用膨張弁の開度を制御する。
従来の冷凍サイクル装置は、吐出側と吸入側との圧力差に応じて油循環量調整用膨張弁の開度を調整し、(バイパス回路を流れる冷凍機油の循環量)>(アキュムレータから圧縮機に戻る油単体の循環量)をぎりぎり満足する状態を常に保ち、冷凍サイクルの能力を低下させることなく冷凍サイクルの効率を常に最大にする。
特開2009−228976号公報
ところで、所謂チラー(chiller)のような冷凍サイクル装置がある。この種の冷凍サイクル装置では、その始動の過渡期や、例えば、利用側の要求水温と外気温との差が極めて大きい状況のような使用環境の過酷さによって、冷凍サイクル装置が使用範囲を一時的に逸脱したり、圧縮機の回転数の急激な変更にともなう圧縮機の吐出圧力と吸込圧力との差、つまり圧力差が圧縮機の使用範囲を逸脱したりする。このような圧縮機の使用範囲の逸脱は、圧縮機の寿命を著しく短縮したり、圧縮機の損傷を誘引したりするので好ましくない。
そこで、本発明は、圧縮機の吐出圧力と吸込圧力との圧力差が圧縮機の使用範囲から逸脱しそうな状況、および逸脱した状況において速やかに適正な使用範囲へ制御可能な冷凍サイクル装置を提案する。
前記の課題を解決するため本発明の実施形態に係る冷凍サイクル装置は、圧縮機と、凝縮器と、電子膨張弁と、蒸発器と、前記圧縮機、前記凝縮器、前記電子膨張弁、および前記蒸発器を接続して冷媒を流通させる冷媒配管と、前記圧縮機と前記凝縮器との間の前記冷媒配管に設けられて前記圧縮機の吐出圧力を検知する高圧圧力検知器と、前記蒸発器と前記圧縮機との間の前記冷媒配管に設けられて前記圧縮機の吸込圧力を検知する低圧圧力検知器と、前記蒸発器の入口の前記冷媒の温度を検知する第一温度検知器と、前記蒸発器から前記圧縮機の間の前記冷媒配管に設けられて前記圧縮機の吸込み側の温度を検知する第二温度検知器と、前記高圧圧力検知器と前記低圧圧力検知器との検知圧力の差異が予め定める所定の閾値よりも大きい場合には、前記第二温度検知器と前記第一温度検知器との検知温度の差異に基づいて前記電子膨張弁を開く、または閉じることによって前記電子膨張弁の開度を調整し、前記検知圧力の差異が前記閾値以下の場合には、前記電子膨張弁を開くことを禁じ、前記第二温度検知器と前記第一温度検知器との検知温度の差異に基づいて前記電子膨張弁を閉じることによって前記電子膨張弁の開度を調整する制御部と、を備え、前記制御部は、(前記高圧圧力検知器の検知圧力)−(前記低圧圧力検知器の検知圧力)が負値の場合には、前記検知圧力の差異は、前記高圧圧力検知器の検知圧力と前記低圧圧力検知器の検知圧力との差の絶対値を用いる。
本発明の実施形態に係る冷凍サイクル装置の前記制御部は、前記検知圧力の差異が前記閾値以下の場合には、前記検知圧力の差異が小さいほど前記電子膨張弁の開度の調整を要するか否かの判定をより短い時間間隔で行うことが好ましい。
また、本発明の実施形態に係る冷凍サイクル装置の前記制御部は、前記検知圧力の差異が前記閾値以下の場合には、前記検知圧力の差異が小さいほど前記電子膨張弁の開度をより大きく閉じることが好ましい。
本発明の実施形態に係る冷凍サイクル装置のブロック図。 本実施形態に係る冷凍サイクル装置の圧力差に基づく電子膨張弁の閉制御における判定値を示す図。
本発明に係る冷凍サイクル装置の実施形態について、図1から図2を参照して説明する。なお、複数の図面中、同一または相当する構成には同一の符号を付している。
図1は、本発明の実施形態に係る冷凍サイクル装置のブロック図である。
図1に示すように、本実施形態に係る冷凍サイクル装置1は、例えば所謂チラー(chiller)である。冷凍サイクル装置1は、冷凍サイクル装置1を循環する冷媒と空気との間で熱交換を行う、空気熱交換器としての第一熱交換器5と、冷凍サイクル装置1を循環する冷媒と利用側100を流通する水やブライン(brine)との間で熱交換を行う、水熱交換器としての第二熱交換器6と、を備えている。なお、冷凍サイクル装置1は、空気調和機であっても良い。
冷凍サイクル装置1は、圧縮機7と、第一熱交換器5と、電子膨張弁8と、第二熱交換器6と、第一熱交換器5、第二熱交換器6、圧縮機7、および電子膨張弁8を接続して冷媒を流通させる冷媒配管9と、を備えている。
また、冷凍サイクル装置1は、圧縮機7から吐出される冷媒を第一熱交換器5および第二熱交換器6の一方へ送り、かつ第一熱交換器5および第二熱交換器6の他方を通過した冷媒を再び圧縮機7へ吸い込ませる四方弁11と、四方弁11と圧縮機7との間の冷媒配管9に設けられるアキュムレータ12と、電子膨張弁8と第二熱交換器6との間の冷媒配管9に設けられる消音器13と、を備えている。
第一熱交換器5および第二熱交換器6は、例えばフィンアンドチューブ型である。第一熱交換器5は、冷凍サイクル装置1を冷却運転する際、凝縮器として機能し、冷凍サイクル装置1を加熱運転する際、蒸発器として機能する。第二熱交換器6は、冷凍サイクル装置1を冷却運転する際、蒸発器として機能し、冷凍サイクル装置1を加熱運転する際、凝縮器として機能する。なお、冷却運転中の冷凍サイクル装置1は、利用側100を流通する水やブライン等の流体を第二熱交換器6で冷却し、加熱運転中の冷凍サイクル装置1は、利用側100を流通する水やブライン等の流体を第二熱交換器6で加熱する。ここで、利用側100を流通する流体は、水やブライン等の流体の他にも洗浄液や油等の種々の液体であってもよく、その他の流体であってもよい。
圧縮機7は、冷媒を圧縮し、昇圧して吐出する。圧縮機7は、例えば公知のインバータ制御によって運転周波数を変更可能なものであっても良いし、運転周波数を変更できないものであっても良い。
電子膨張弁8は、例えばPMV(Pulse Motor Valve)である。電子膨張弁8は、弁の開度を調節できる。図示は省略するが、電子膨張弁8は、例えば、貫通孔を有する弁本体と、貫通孔に対して進退可能なニードルと、ニードルを進退させる動力源と、を備えている。電子膨張弁8は、貫通孔をニードルで塞いだとき、冷媒配管9の冷媒の流通を止める(遮断する)。このとき、電子膨張弁8は閉じた状態になり、電子膨張弁8の開度は最も小さい。一方、電子膨張弁8は、ニードルが貫通孔から最も離れたとき、冷媒配管9の冷媒が最も流れやすい。このとき、電子膨張弁8は開いた状態になり、電子膨張弁8の開度は最も大きい。
動力源は、例えば、ステッピングモータである。ステッピングモータに入力されるパルス数が0パルスのとき、電子膨張弁8は閉じた状態になる。ステッピングモータに入力されるパルス数が最大パルスのとき、電子膨張弁8は完全に開いた状態になる。最大パルス数は、例えば数百パルスである。本実施形態では、最大パルス数を500パルスとする。
冷媒配管9は、圧縮機7、四方弁11、第一熱交換器5、電子膨張弁8、および第二熱交換器6を順次に接続している。冷媒配管9は、圧縮機7の吐出側と四方弁11とを繋ぐ第一冷媒配管9aと、圧縮機7の吸込側と四方弁11とを繋ぐ第二冷媒配管9bと、四方弁11と第一熱交換器5とを繋ぐ第三冷媒配管9cと、第一熱交換器5と第二熱交換器6とを繋ぐ第四冷媒配管9dと、第二熱交換器6と四方弁11とを繋ぐ第五冷媒配管9eと、を含んでいる。電子膨張弁8および消音器13は、第四冷媒配管9dの途中に設けられている。
四方弁11は、冷媒配管9を流れる冷媒の向きを切替える。冷凍サイクル装置1を加熱運転(図1中、実線で示す冷媒の流れ)して利用側100の水温を上昇させるとき、四方弁11は、第一冷媒配管9aから第五冷媒配管9eへ冷媒を流通させ、かつ第三冷媒配管9cから第二冷媒配管9bへ冷媒を流通させる。冷凍サイクル装置1を冷却運転(図1中、破線で示す冷媒の流れ)して利用側100の水温を下降させるとき、四方弁11は、第一冷媒配管9aから第三冷媒配管9cへ冷媒を流通させ、かつ第五冷媒配管9eから第二冷媒配管9bへ冷媒を流通させる。
また、冷凍サイクル装置1は、電子膨張弁8、四方弁11に信号線(図示省略)を介して電気的に接続される制御部15を備えている。制御部15は、運転周波数を変更可能な圧縮機7に接続されていても良い。
制御部15は、中央演算処理装置(図示省略)と、中央演算処理装置が実行する各種演算プログラム、パラメータなどを記憶する記憶装置(図示省略)と、を備えている。制御部15は、各種制御プログラムを補助記憶装置から主記憶装置へ読み込み、主記憶装置に読み込まれた各種制御プログラムを中央演算処理装置で実行する。
制御部15は、利用側100の要求に基づいて四方弁11の状態を切り替えて、冷凍サイクル装置1の冷却運転と加熱運転とを切り替える。
冷却運転の際(図1中、破線で示す冷媒の流れ)、冷凍サイクル装置1は、圧縮された高温高圧の冷媒を圧縮機7から吐出し、四方弁11を介してこの冷媒を第一熱交換器5へ送る。第一熱交換器5は、空気とチューブ内を通る冷媒との間で熱交換を行い、冷媒を冷却して高圧の液状態にする。つまり、冷却運転時、第一熱交換器5は、凝縮器として機能する。第一熱交換器5を通過した冷媒は、電子膨張弁8を通過して減圧され低圧の気液二相冷媒になって第二熱交換器6に到達する。第二熱交換器6は、利用側100の水とチューブ内を通る冷媒との間で熱交換を行い、水を冷却する。このとき、第二熱交換器6は、冷媒を蒸発させて気体状態にする蒸発器として機能する。第二熱交換器6を通過した冷媒は、圧縮機7へ吸い込まれて戻る。
他方、加熱運転の際(図1中、実線で示す冷媒の流れ)、冷凍サイクル装置1は、四方弁11を反転させて冷凍サイクルに冷却時の冷媒の流れと逆向きの冷媒の流れを生じさせ、第二熱交換器6を凝縮器として機能させ、第一熱交換器5を蒸発器として機能させる。
なお、冷凍サイクル装置1は、四方弁11を備えない、冷却専用のものであってもよい。この場合、圧縮機7の吐出側は冷媒配管9を通じて第一熱交換器5に接続され、圧縮機7の吸込側は冷媒配管9を通じて第二熱交換器6に接続される。
冷凍サイクル装置1は、蒸発器の入口の冷媒の温度を検知する第一温度検知器21と、蒸発器から圧縮機7の間の冷媒配管9に設けられて圧縮機7の吸込み側の温度を検知する第二温度検知器22と、を備えている。第一温度検知器21および第二温度検知器22は、信号線(図示省略)を介して制御部15に接続されている。第一温度検知器21および第二温度検知器22の検知結果は、信号線を介して制御部15に送信される。
第一温度検知器21は、冷却運転における蒸発器、つまり第二熱交換器6の入口の冷媒の温度を検知する冷却運転用第一温度検知器23aと、加熱運転における蒸発器、つまり第一熱交換器5の入口の冷媒の温度を検知する加熱運転用第一温度検知器23bと、を含んでいる。
第二温度検知器22は、第二冷媒配管9bに設けられている。第二温度検知器22は、蒸発器の出口側の冷媒の温度を検知している。つまり、第二温度検知器22は、冷却運転において第二熱交換器6から圧縮機7へ戻る冷媒の温度を検知し、加熱運転において第一熱交換器5から圧縮機7へ戻る冷媒の温度を検知する。
制御部15は、第一温度検知器21の検知温度と第二温度検知器22の検知温度との差異、つまり温度差が予め定める温度差設定範囲に収まるよう、電子膨張弁8の開度を調整する。この制御を「温度差に基づく電子膨張弁8の開閉制御」と呼ぶ。温度差設定範囲は、第一熱交換器5が晒される外気温、利用側100から要求される水温、つまり冷凍サイクル装置1の設定温度、および圧縮機7の回転数に関係づけられている。
また、冷凍サイクル装置1は、第一冷媒配管9aに設けられて圧縮機7の吐出圧力を検知する高圧圧力検知器25と、第二冷媒配管9bに設けられて圧縮機7の吸込圧力を検知する低圧圧力検知器26と、を備えている。高圧圧力検知器25および低圧圧力検知器26は、信号線(図示省略)を介して制御部15に接続されている。高圧圧力検知器25および低圧圧力検知器26の検知結果は、信号線を介して制御部15に送信される。
高圧圧力検知器25は、圧縮機7と凝縮器(冷却運転における第一熱交換器5であり、加熱運転における第二熱交換器6)との間の冷媒配管9に設けられている。
低圧圧力検知器26は、蒸発器(冷却運転における第二熱交換器6であり、加熱運転における第一熱交換器5)と圧縮機7との間の冷媒配管9に設けられている。低圧圧力検知器26は、アキュムレータ12と圧縮機7とを繋ぐ冷媒配管9に設けられている。
ところで、冷凍サイクル装置1の始動の過渡期や、例えば、利用側100の要求水温と外気温との差が極めて大きい状況のような使用環境の過酷さによって、冷凍サイクル装置1では、冷凍サイクル装置1が使用範囲を一時的に逸脱したり、圧縮機7の回転数の急激な変更にともなう圧縮機7の吐出圧力と吸込圧力との差、つまり圧力差が圧縮機7の使用範囲から逸脱したりしてしまう。
そこで、冷凍サイクル装置1の制御部15は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異に基づいて電子膨張弁8の開閉を制御する。この制御を「圧力差に基づく電子膨張弁8の閉制御」と呼ぶ。
図2は、本実施形態に係る冷凍サイクル装置の圧力差に基づく電子膨張弁の閉制御における判定値を示す図である。
図2に示すように、本実施形態に係る冷凍サイクル装置1の制御部15は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異、つまり圧力差ΔPと、圧縮機7の回転数との関係に基づいて、電子膨張弁8の開閉を制御する。
図2の実線Aは、基準値である。圧力差ΔPが基準値以上であれば、圧縮機7は、適正な使用範囲で運転することが可能である。換言すると、基準値Aは、圧縮機7を適正な使用範囲で運転することが可能なように設定されている。
図2の破線Bは、基準値に対して例えば20パーセントから30パーセント高く、好ましくは25パーセント高い。この破線Bを基準値+αと呼ぶ。図2の破線Cは、基準値に対して例えば20パーセントから30パーセント低く、好ましくは25パーセント低い。この破線Cを基準値−βと呼ぶ。α値とβ値とは同じであっても良いし、異なっていても良い。α値とβ値とは、圧縮機7の使用範囲、冷凍サイクル装置1に求められるシステム条件、余裕度などを考慮して設定される。
圧力差ΔPが基準値−β(破線C)以下の範囲を領域Aと呼ぶ。圧力差ΔPが基準値−β(破線C)より大きく、かつ基準値(実線A)以下の範囲を領域Bと呼ぶ。圧力差ΔPが基準値(実線A)より大きく、かつ基準値+α(破線B)以下の範囲を領域Cと呼ぶ。圧力差ΔPが基準値+α(破線B)より高い範囲を領域Dと呼ぶ。
そして、制御部15は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が予め定める所定の閾値(基準値+α、破線B)よりも大きい場合(つまり領域Dの場合)には、第二温度検知器22と第一温度検知器21との検知温度の差異に基づいて電子膨張弁8を開く、または閉じることによって電子膨張弁8の開度を調整する。また、制御部15は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が予め定める所定の閾値(基準値+α、破線B)以下の場合(つまり領域A、領域B、または領域Cの場合)には、電子膨張弁8を開くことを禁じ、第二温度検知器22と第一温度検知器21との検知温度の差異に基づいて電子膨張弁8を閉じることによって電子膨張弁8の開度を調整する。
換言すると、制御部15は、圧力差ΔPが領域Dにある場合には、第二温度検知器22と第一温度検知器21との温度差に基づく電子膨張弁8の開閉制御(いわゆる通常の制御)を実行する。また、制御部15は、圧力差ΔPが領域C、領域B、および領域Aにある場合には、電子膨張弁8の温度差に基づく電子膨張弁8の開閉制御を抑制して電子膨張弁8を開くことを禁じる一方、電子膨張弁8の温度差に基づく電子膨張弁8の開閉制御のうち電子膨張弁8を閉じる制御、つまり圧力差に基づく電子膨張弁8の閉制御を実行する。
圧力差ΔPが領域Dにある場合には、圧縮機7は、その使用範囲で運転可能である。そこで、冷凍サイクル装置1は、圧力差ΔPが領域Dにある場合には、第一温度検知器21と第二温度検知器22との温度差が予め定める温度差設定範囲に収まるよう、電子膨張弁8の開度を調整する。換言すると、冷凍サイクル装置1は、圧力差ΔPが領域Dにある場合には、第一温度検知器21と第二温度検知器22との温度差が予め定める温度差設定範囲に収まるよう、温度差に基づく電子膨張弁8の開閉制御を実行する。
また、圧力差ΔPが領域C、領域B、および領域Aにある場合には、圧縮機7は、その使用範囲から逸脱して運転される可能性が高まり、または現に使用範囲から逸脱して運転される(領域B、領域A)。そこで、冷凍サイクル装置1は、圧力差ΔPが領域C、領域B、および領域Aにある場合には、電子膨張弁8を開くことを禁じる一方、電子膨張弁8を閉じる制御、つまり圧力差に基づく電子膨張弁8の閉制御を実行する。冷凍サイクル装置1は、大きな圧力差ΔPを必要としない状況(領域D以外)で冷媒の流量の増加を禁じる一方、冷媒の流量を減少させる。換言すると、冷凍サイクル装置1は、圧力差ΔPが領域C、領域B、および領域Aにある場合に、圧縮機7に吸い込まれる冷媒の増加を抑制し、ひいては圧縮機7が使用範囲から逸脱して運転することを回避する。つまり、制御部15は、温度差に基づく開閉制御において電子膨張弁8の開度を開く側の制御を禁じる。
また、制御部15は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が予め定める所定の閾値(基準値+α)以下の場合には、圧力差ΔPが小さいほど電子膨張弁8の開度の調整を要すか否かの判定をより短い時間間隔で行う。
換言すると、制御部15は、圧力差ΔPが領域C、領域B、および領域Aには、圧力差ΔPが小さいほど電子膨張弁8の開度の調整を要すか否かの判定をより短い時間間隔で行う。制御部15は、圧力差ΔPが領域Aにある場合には、電子膨張弁8の開度の調整を要すか否かの判定を最も短い時間間隔、例えば10秒間隔で行う。制御部15は、圧力差ΔPが領域Bにある場合には、電子膨張弁8の開度の調整を要すか否かの判定を、領域Aにおける判断よりも長い時間間隔、例えば20秒間隔で行う。
なお、制御部15は、圧力差ΔPが領域Cにある場合に、電子膨張弁8の開度の調整を要すか否かの判定を、通常の温度差に基づく開閉制御における時間間隔で行っている。この時間間隔は、領域Bにおける判断よりも長い時間間隔、例えば30秒間隔に設定されている。
圧力差ΔPが領域B、および領域Aにある場合には、圧縮機7は、現にその使用範囲から逸脱して運転される。そこで、冷凍サイクル装置1は、圧縮機7の使用範囲を早急に正常な範囲に収めるため、圧力差ΔPが領域Dから離れた領域にあるほど、より短い時間間隔で電子膨張弁8の開度の調整を要するか否かの判定を行い、現に電子膨張弁8の開度を調整する(閉じる方向へのみ制御する)。
制御部15は、圧力差ΔPが領域Aにある場合には、例えば、電子膨張弁8の開度を30パルス絞り、その10秒後に未だ圧力差ΔPが領域Aにある場合には、再度、電子膨張弁8の開度を30パルス絞る。制御部15は、圧力差ΔPが領域Aから脱するまで、これを繰り返す。また、制御部15は、圧力差ΔPが領域Bにある場合には、例えば、電子膨張弁8の開度を30パルス絞り、その20秒後に未だ圧力差ΔPが領域Bにある場合には、再度、電子膨張弁8の開度を30パルス絞る。制御部15は、圧力差ΔPが領域Bから脱するまで、これを繰り返す。換言すると、制御部15は、圧力差ΔPが基準値以上、つまり領域C、および領域Dに達するまで電子膨張弁8を徐々に絞る。
なお、毎回の電子膨張弁8の開度の変更量、つまり電子膨張弁8の絞り量は、一定(例示の30パルス毎)でなくても良い。毎回の電子膨張弁8の絞り量は、絞り動作前の開度によって異なっていても良い。例えば、毎回の電子膨張弁8の絞り量は、絞り動作前の開度が大きいほど、より大きく設定される。電子膨張弁8の絞り量は、例えば、絞り動作前の開度が100パルスを超えていれば30パルスに設定され、絞り動作前の開度が100パルス以下であれば15パルスに設定される。
また、電子膨張弁8の開度の変更量、つまり電子膨張弁8の絞り量は、領域毎に異なっていても良い。電子膨張弁8の絞り量は、圧力差ΔPが小さいほど、より大きく設定される。例えば、領域Aにおける電子膨張弁8の絞り量は、45パルスに設定され、領域Bにおける電子膨張弁8の絞り量は、30パルスに設定される。換言すると、制御部15は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が予め定める所定の閾値(基準値+α)以下の場合には、検知圧力の差異が小さいほど電子膨張弁8の開度をより大きく閉じる
高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異、つまり圧力差ΔPは、(高圧圧力検知器25の検知圧力)−(低圧圧力検知器26の検知圧力)が負値の場合には、その絶対値で評価される。(高圧圧力検知器25の検知圧力)−(低圧圧力検知器26の検知圧力)が負値の場合には、高圧圧力検知器25、および低圧圧力検知器26の少なくとも一方が故障していたり、それらから制御部15へ検知結果を送信する信号線が断線していたりする虞がある。このような場合、圧力差ΔPを誤検知して電子膨張弁8を絞りすぎると、圧縮機7の使用範囲を逸脱する虞が生じる。そこで、制御部15は、(高圧圧力検知器25の検知圧力)−(低圧圧力検知器26の検知圧力)が負値の場合には、圧力差ΔPを絶対値で評価し、電子膨張弁8の絞りすぎることを回避する。
一般的な冷凍サイクル装置では、蒸発器(冷却運転における第二熱交換器6であり、加熱運転における第一熱交換器5)の入口側と出口側との温度差に基づく電子膨張弁8の開度の調整制御、所謂スーパーヒート制御(本実施形態に係る温度差に基づく電子膨張弁8の開閉制御に相当)が行われる。しかしながら、外気温度の使用範囲が広い(例えば摂氏マイナス数十度から摂氏プラス数十度)冷凍サイクル装置や、利用側100の設定温度範囲が広い冷凍サイクル装置では、従来のスーパーヒート制御を適用すると、圧縮機の吐出圧力と吸込圧力との圧力差が小さくなって、圧縮機の適正な使用範囲を逸脱する虞があった。
そこで、本実施形態に係る冷凍サイクル装置1は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が予め定める所定の閾値(基準値+α)よりも大きい場合には、第二温度検知器22と第一温度検知器21との検知温度の差異に基づいて電子膨張弁8を開く、または閉じることによって電子膨張弁8の開度を調整し、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が予め定める所定の閾値(基準値+α)以下の場合には、電子膨張弁8を開くことを禁じ、第二温度検知器22と第一温度検知器21との検知温度の差異に基づいて電子膨張弁8を閉じることによって電子膨張弁8の開度を調整する。そのため、冷凍サイクル装置1は、外気温度の使用範囲が広かったり、利用側100の設定温度範囲が広かったりしていても、始動の過渡期や、圧縮機7の回転数の急激な変化時に、圧縮機7を適正な使用範囲で運転するために必要な吐出側と吸込側との圧力差を確保することができる。
また、本実施形態に係る冷凍サイクル装置1は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が所定の閾値(基準値+α)以下の場合には、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が小さいほど電子膨張弁8の開度の調整を要すか否かの判定をより短い時間で行う。そのため、冷凍サイクル装置1は、圧力差ΔPが領域Dから離れた領域(つまり、領域Cよりも領域B、領域Bよりも領域A)にあるほど、より短い時間間隔で電子膨張弁8の開度の調整を要するか否かの判定を行い、電子膨張弁8の開度を調整して(閉じる方向へのみ制御して)圧縮機7の使用範囲を早急に正常な範囲に収めることができる。
さらに、本実施形態に係る冷凍サイクル装置1は、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が所定の閾値(基準値+α)以下の場合には、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異が小さいほど電子膨張弁8の開度をより大きく閉じる。そのため、冷凍サイクル装置1は、圧力差ΔPが領域Dから離れた領域(つまり、領域Cよりも領域B、領域Bよりも領域A)にあるほど、冷媒の流量をより大きく絞って圧縮機7の使用範囲を早急に正常な範囲に収めることができる。
さらにまた、本実施形態に係る冷凍サイクル装置1は、(高圧圧力検知器25の検知圧力)−(低圧圧力検知器26の検知圧力)が負値の場合には、高圧圧力検知器25と低圧圧力検知器26との検知圧力の差異を、その絶対値で評価する。そのため、冷凍サイクル装置1は、高圧圧力検知器25、および低圧圧力検知器26の少なくとも一方が万が一にも故障していたり、それらから制御部15へ検知結果を送信する信号線が断線していたりしていても、電子膨張弁8を絞りすぎることを防ぎ、圧縮機7の使用範囲を逸脱させることがない。
したがって、本実施形態に係る冷凍サイクル装置1によれば、圧縮機7の吐出圧力と吸込圧力との圧力差が圧縮機7の使用範囲から逸脱しそうな状況、および逸脱した状況において速やかに適正な使用範囲へ制御することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…冷凍サイクル装置、5…第一熱交換器、6…第二熱交換器、7…圧縮機、8…電子膨張弁、9…冷媒配管、9a…第一冷媒配管、9b…第二冷媒配管、9c…第三冷媒配管、9d…第四冷媒配管、9e…第五冷媒配管、11…四方弁、12…アキュムレータ、13…消音器、15…制御部、21…第一温度検知器、22…第二温度検知器、23a…冷却運転用第一温度検知器、23b…加熱運転用第一温度検知器、25…高圧圧力検知器、26…低圧圧力検知器、100…利用側。

Claims (3)

  1. 圧縮機と、
    凝縮器と、
    電子膨張弁と、
    蒸発器と、
    前記圧縮機、前記凝縮器、前記電子膨張弁、および前記蒸発器を接続して冷媒を流通させる冷媒配管と、
    前記圧縮機と前記凝縮器との間の前記冷媒配管に設けられて前記圧縮機の吐出圧力を検知する高圧圧力検知器と、
    前記蒸発器と前記圧縮機との間の前記冷媒配管に設けられて前記圧縮機の吸込圧力を検知する低圧圧力検知器と、
    前記蒸発器の入口の前記冷媒の温度を検知する第一温度検知器と、
    前記蒸発器から前記圧縮機の間の前記冷媒配管に設けられて前記圧縮機の吸込み側の温度を検知する第二温度検知器と、
    前記高圧圧力検知器と前記低圧圧力検知器との検知圧力の差異が予め定める所定の閾値よりも大きい場合には、前記第二温度検知器と前記第一温度検知器との検知温度の差異に基づいて前記電子膨張弁を開く、または閉じることによって前記電子膨張弁の開度を調整し、前記検知圧力の差異が前記閾値以下の場合には、前記電子膨張弁を開くことを禁じ、前記第二温度検知器と前記第一温度検知器との検知温度の差異に基づいて前記電子膨張弁を閉じることによって前記電子膨張弁の開度を調整する制御部と、を備え
    前記制御部は、(前記高圧圧力検知器の検知圧力)−(前記低圧圧力検知器の検知圧力)が負値の場合には、前記検知圧力の差異は、前記高圧圧力検知器の検知圧力と前記低圧圧力検知器の検知圧力との差の絶対値を用いる冷凍サイクル装置。
  2. 前記制御部は、前記検知圧力の差異が前記閾値以下の場合には、前記検知圧力の差異が小さいほど前記電子膨張弁の開度の調整を要するか否かの判定をより短い時間間隔で行う請求項1に記載の冷凍サイクル装置。
  3. 前記制御部は、前記検知圧力の差異が前記閾値以下の場合には、前記検知圧力の差異が小さいほど前記電子膨張弁の開度をより大きく閉じる請求項1または2に記載の冷凍サイクル装置。
JP2019530913A 2017-07-19 2018-05-31 冷凍サイクル装置 Active JP6785381B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017140190 2017-07-19
JP2017140190 2017-07-19
PCT/JP2018/021062 WO2019017084A1 (ja) 2017-07-19 2018-05-31 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2019017084A1 JPWO2019017084A1 (ja) 2020-04-09
JP6785381B2 true JP6785381B2 (ja) 2020-11-18

Family

ID=65015174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019530913A Active JP6785381B2 (ja) 2017-07-19 2018-05-31 冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP6785381B2 (ja)
WO (1) WO2019017084A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126945A (ja) * 1990-09-17 1992-04-27 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2002295915A (ja) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp 空気調和機
JP2005351494A (ja) * 2004-06-08 2005-12-22 Daikin Ind Ltd 冷凍装置
JP6536392B2 (ja) * 2015-12-18 2019-07-03 株式会社富士通ゼネラル 空気調和装置

Also Published As

Publication number Publication date
WO2019017084A1 (ja) 2019-01-24
JPWO2019017084A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6580149B2 (ja) 冷凍サイクル装置
JP6595205B2 (ja) 冷凍サイクル装置
JP6792057B2 (ja) 冷凍サイクル装置
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
JP2010054186A (ja) 冷凍装置
WO2017038161A1 (ja) 冷凍サイクル装置及び冷凍サイクル装置の制御方法
JP6618609B2 (ja) 冷凍装置
JP2006071137A (ja) 冷凍装置
JPWO2019026270A1 (ja) 冷凍サイクル装置および熱源ユニット
JP2007010220A (ja) 冷凍装置及びその冷凍装置を備えた冷蔵庫
JP2009139041A (ja) 空気調和装置
JP2020165647A (ja) 冷凍サイクル装置
JP2018132224A (ja) 二元冷凍システム
JP2019184232A (ja) 冷却装置
JP2006242392A (ja) 流量調整装置及び空気調和装置
JP5113776B2 (ja) 冷凍装置
KR20190041091A (ko) 공기조화기
JP6785381B2 (ja) 冷凍サイクル装置
JPWO2018096580A1 (ja) 冷凍サイクル装置
JP2010060181A (ja) 冷凍装置
KR20140093846A (ko) 공기 조화기 및 그 제어방법
WO2020064351A1 (en) A method for controlling a vapour compression system at a reduced suction pressure
JP2013092293A (ja) 冷凍装置
WO2017098655A1 (ja) 冷凍サイクル装置
JP6881424B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6785381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150