JP6784386B2 - Three-fluid nozzle and spraying method using the three-fluid nozzle - Google Patents

Three-fluid nozzle and spraying method using the three-fluid nozzle Download PDF

Info

Publication number
JP6784386B2
JP6784386B2 JP2016145277A JP2016145277A JP6784386B2 JP 6784386 B2 JP6784386 B2 JP 6784386B2 JP 2016145277 A JP2016145277 A JP 2016145277A JP 2016145277 A JP2016145277 A JP 2016145277A JP 6784386 B2 JP6784386 B2 JP 6784386B2
Authority
JP
Japan
Prior art keywords
gas
passage
liquid
mist
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016145277A
Other languages
Japanese (ja)
Other versions
JP2018015680A (en
Inventor
弘樹 平松
弘樹 平松
邦彦 神吉
邦彦 神吉
俊吾 西垣
俊吾 西垣
志郎 中井
志郎 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Ikeuchi and Co Ltd
Original Assignee
H Ikeuchi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H Ikeuchi and Co Ltd filed Critical H Ikeuchi and Co Ltd
Priority to JP2016145277A priority Critical patent/JP6784386B2/en
Publication of JP2018015680A publication Critical patent/JP2018015680A/en
Application granted granted Critical
Publication of JP6784386B2 publication Critical patent/JP6784386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は三流体ノズルおよび該三流体ノズルを用いた噴霧方法に関し、詳しくは、2つの気体流路と1つの液体流路から供給される三流体を混合噴霧する三流体ノズルに関し、特に、石炭焚きボイラーやゴミ焼却設備の排ガス冷却塔において排ガス冷却用および排気ガス中に含まれる大気汚染物質(HCl、SOx、NOx等)の除去のための反応ガスの噴き込みを兼用できるノズルとして好適に用いられるものである。 The present invention relates to a three-fluid nozzle and a spraying method using the three-fluid nozzle, and more particularly to a three-fluid nozzle that mixes and sprays three fluids supplied from two gas channels and one liquid channel, particularly coal. Suitable as a nozzle that can be used for both exhaust gas cooling and removal of air pollutants (HCl, SOx, NOx, etc.) contained in the exhaust gas in the exhaust gas cooling tower of a burning boiler or garbage incineration facility. Is something that can be done.

従来、ゴミ焼却設備の排ガス冷却塔内には、冷却液(水)と圧搾空気とを混合噴射する二流体ノズルからなる排気ガス冷却用のノズルが設置されている。また、排気ガス中のNOx等の大気汚染物質を除去するためにアンモニアガス等からなる還元用ガスを噴射する一流体ノズルからなる還元用ガス噴射ノズルが設置され、2種類のノズルが設置されている場合がある。 Conventionally, an exhaust gas cooling nozzle including a two-fluid nozzle that mixes and injects a coolant (water) and compressed air is installed in an exhaust gas cooling tower of a garbage incineration facility. In addition, a reduction gas injection nozzle consisting of a one-fluid nozzle that injects a reduction gas made of ammonia gas or the like is installed to remove air pollutants such as NOx in the exhaust gas, and two types of nozzles are installed. There may be.

前記排気ガス冷却用の二流体ノズルと還元用ガス噴射用の1流体ノズルとからなる2種類のノズルを設置している場合、通常、まず、2流体ノズルから排気ガス中に冷却用の気液混合ミストを噴射して排気ガスを水冷し、ついで、1流体ノズルからアンモニアガス等からなる還元用ガスを排気ガス中に噴射している。
しかしながら、最初の二流体ノズルからの冷却用ミストの噴射で排気ガスの冷却が十分になされていないと、つづく還元用の一流体ノズルから噴射するアンモニアガスは高温の排気ガスに接触し、排気ガス中のSOxと反応して硫安が生成する問題がある。よって、還元用ガスを高温の排気ガスと直接接触させないように噴き込むことが好ましい。
かつ、排気ガス冷却用の二流体ノズルと還元用ガス噴射用の一流体ノズルの2種類のノズルを設置すると、コスト高になる問題がある。
When two types of nozzles including the two-fluid nozzle for cooling the exhaust gas and the one-fluid nozzle for injecting the reducing gas are installed, usually, first, the gas and liquid for cooling are first introduced into the exhaust gas from the two-fluid nozzle. The mixed mist is injected to cool the exhaust gas with water, and then a reducing gas composed of ammonia gas or the like is injected into the exhaust gas from a one-fluid nozzle.
However, if the exhaust gas is not sufficiently cooled by the injection of the cooling mist from the first two-fluid nozzle, the ammonia gas injected from the subsequent one-fluid nozzle for reduction comes into contact with the high-temperature exhaust gas, and the exhaust gas. There is a problem that sulfur cheap is generated by reacting with the SOx inside. Therefore, it is preferable to inject the reducing gas so as not to come into direct contact with the high-temperature exhaust gas.
Further, if two types of nozzles, a two-fluid nozzle for cooling the exhaust gas and a one-fluid nozzle for injecting the reducing gas, are installed, there is a problem that the cost becomes high.

前記した問題に対して、本出願人はゴミ焼却設備の排気ガス冷却塔内に設置するスプレーノズルとして、特許第4346380号公報(特許文献1)で、排気ガスの冷却と排気ガス中の大気汚染成分の除去とを兼ねて、2種類の液体と1種類の気体とを混合噴霧する三流体ノズルを提供している。具体的には、図6に示すように、該三流体ノズル100は内管101、中管102、外管103からなる3重管からなり、内管101で囲まれた中心流路111、内管101と中管102との間の中間流路112、中管102と外管103との間の外周流路113を備え、前記中心流路111、中間流路112、外周流路113に第1液体、第2液体、気体をそれぞれ挿通し、これら2種類の液体と圧搾空気とを混合して噴霧している。 In response to the above problems, the applicant has published Patent No. 4346380 (Patent Document 1) as a spray nozzle installed in an exhaust gas cooling tower of a garbage incineration facility to cool exhaust gas and pollute the air in the exhaust gas. Provided is a three-fluid nozzle that mixes and sprays two types of liquids and one type of gas for the purpose of removing components. Specifically, as shown in FIG. 6, the three-fluid nozzle 100 is composed of a triple pipe composed of an inner pipe 101, an inner pipe 102, and an outer pipe 103, and is inside a central flow path 111 surrounded by the inner pipe 101. An intermediate flow path 112 between the pipe 101 and the middle pipe 102 and an outer peripheral flow path 113 between the middle pipe 102 and the outer pipe 103 are provided, and the central flow path 111, the intermediate flow path 112, and the outer peripheral flow path 113 are provided with The first liquid, the second liquid, and the gas are inserted respectively, and these two kinds of liquids and the compressed air are mixed and sprayed.

前記三流体ノズルでは、第1液体として排ガス中に含まれる酸性成分(HCl、SOx)を中和する苛性ソーダ等を含む中和剤水溶液、第2液体として第1液体を希釈する排水からなる水を用いている。前記第1液体と第2液体との混合でカルシウム水和物からなるスケールが生成するため外部混合してノズルの目詰まりを防止している。さらに、圧搾空気からなる気体と混合して、水滴の微細化を図って排気ガス中に噴霧し、反応を促進している。 In the three-fluid nozzle, water consisting of a neutralizing agent aqueous solution containing caustic soda or the like that neutralizes acidic components (HCl, SOx) contained in the exhaust gas as the first liquid and wastewater that dilutes the first liquid as the second liquid is used. I am using it. Since a scale made of calcium hydrate is generated by mixing the first liquid and the second liquid, external mixing is performed to prevent clogging of the nozzle. Further, it is mixed with a gas composed of compressed air to make water droplets finer and sprayed into the exhaust gas to promote the reaction.

特許第4346380号公報Japanese Patent No. 4346380

前記のように、特許文献1の三流体ノズルでは、第1液体を中和剤の水溶液としているため、中和剤の水溶液を調整してノズルに供給する必要があり、還元用ガスをガスの状態でノズルに供給する場合と比較して作業手数がかかる問題がある。
しかしながら、還元用ガスを噴射する一流体ノズルを用いて、NOxを除去するためにアンモニアガス等の還元用ガスを排気ガス中に直接吹き込むと、前記のように、反応する前に還元用ガスが熱分解したり、SOxと反応して硫安が生成する問題がある。また、還元用ガスの供給圧力が低いと、還元用ガスを排気ガス中に噴き込んだ際に排気ガスの流れに押し流され、還元用ガスが全体に行き届かず反応効率が悪くなる問題がある。
As described above, in the three-fluid nozzle of Patent Document 1, since the first liquid is an aqueous solution of the neutralizing agent, it is necessary to adjust the aqueous solution of the neutralizing agent and supply it to the nozzle, and the reducing gas is supplied to the nozzle. There is a problem that it takes more work than when it is supplied to the nozzle in the state.
However, when a reduction gas such as ammonia gas is directly blown into the exhaust gas in order to remove NOx by using a one-fluid nozzle that injects the reduction gas, the reduction gas is released before the reaction as described above. There is a problem that it is thermally decomposed or reacts with SOx to generate sulfur cheap. Further, if the supply pressure of the reducing gas is low, when the reducing gas is injected into the exhaust gas, it is swept away by the flow of the exhaust gas, and there is a problem that the reducing gas does not reach the whole and the reaction efficiency deteriorates. ..

本発明は前記問題に鑑みてなされたもので、第一の気体と第二の気体と液体との三流体を混合噴射するノズルにおいて、第一の気体と液体とを混合して気液混合ミストを生成すると共に、該気液混合ミストで第二の気体を囲み、対象流体である排気ガスと気液混合ミストを接触させた後に第二の気体と接触させて反応させることができる三流体ノズルを提供することを課題としている。
具体的には、例えば、第一の気体の圧搾空気と冷却水からなる液体との冷却用の気液混合ミストを排気ガスに噴射するノズルと第二の気体の還元用ガスを排気ガスに噴射するノズルとを別体とせずに1個のノズルとしながら、排気ガスの冷却機能と、該排気ガスに直接接触させない状態で還元用ガスを吹き込んで効率良く反応させることができる機能を有する三流体ノズルを提供することを課題としている。
さらに、第二の気体の還元用ガスの供給圧が低いと、還元用ガスが排気ガスの流れに押し流され冷却塔内で偏流となり、還元用ガスが全体に行き届かず反応効率が悪くなるという問題を解消することを課題としている。
The present invention has been made in view of the above problems, and is a gas-liquid mixing mist in which the first gas and the liquid are mixed in a nozzle for mixing and injecting three fluids of the first gas, the second gas and the liquid. A three-fluid nozzle capable of surrounding the second gas with the gas-liquid mixed mist, contacting the exhaust gas which is the target fluid with the gas-liquid mixed mist, and then contacting the second gas for reaction. The challenge is to provide.
Specifically, for example, a nozzle that injects a gas-liquid mixed mist for cooling a liquid composed of a first gas compressed air and a cooling water into the exhaust gas and a nozzle for injecting a second gas reduction gas into the exhaust gas. A three-fluid that has a function of cooling the exhaust gas and a function of blowing a reducing gas into the nozzle without making direct contact with the exhaust gas so that the nozzle can be reacted efficiently while making one nozzle instead of a separate nozzle. The challenge is to provide a nozzle.
Furthermore, if the supply pressure of the reducing gas of the second gas is low, the reducing gas is swept away by the flow of the exhaust gas and becomes a drift in the cooling tower, and the reducing gas does not reach the whole and the reaction efficiency deteriorates. The challenge is to solve the problem.

前記課題を解決するため、第一の発明として、内管、中管、外管を備えた三重管を備え、前記外管と中管との間の環状の外周通路は第一の気体の通路、前記中管と内管との間の環状の中間通路は液体の通路、前記内管で囲む中心通路は第二の気体の通路とし、噴射側に前記外周通路と中間通路との連通路を備え、該連通路より噴射側に気液混合通路を設けると共に該気液混合通路の噴射側端に前記内管を囲む噴口を設け、
前記内管の先端の噴口から噴射する前記第二の気体を外周に噴射する気液混合ミストと内部混合または外部混合させて噴霧させる構成としている三流体ノズルを提供している。
In order to solve the above problems, as the first invention, a triple pipe including an inner pipe, a middle pipe, and an outer pipe is provided, and the annular outer peripheral passage between the outer pipe and the middle pipe is a passage for the first gas. The annular intermediate passage between the middle pipe and the inner pipe is a liquid passage, the central passage surrounded by the inner pipe is a second gas passage, and a continuous passage between the outer peripheral passage and the intermediate passage is provided on the injection side. In addition, a gas-liquid mixing passage is provided on the injection side of the communication passage, and a nozzle surrounding the inner pipe is provided at the injection side end of the gas-liquid mixing passage.
Provided is a three-fluid nozzle having a configuration in which a gas-liquid mixing mist that injects the second gas that is ejected from a nozzle at the tip of the inner pipe is mixed internally or externally with a gas-liquid mixing mist that is ejected to the outer periphery.

前記外部混合では、内管の噴射側先端を前記中管および外管の噴射側先端より外部に突出させ、前記内管を囲む環状の噴口より噴射する気液混合ミストの中心部分に前記第二の気体を吹き込んで外部混合させる構成としていることが好ましい。 In the external mixing, the injection-side tip of the inner pipe is projected to the outside from the injection-side tip of the inner pipe and the outer pipe, and the second is placed in the central portion of the gas-liquid mixing mist to be injected from the annular nozzle surrounding the inner pipe. It is preferable that the gas is blown into the gas and mixed externally.

前記中間通路は旋回部を備え、前記液体を旋回させながら流通させると共に、前記外周通路と中間通路との連通路は旋回流路とし、前記外周通路の前記第一の気体を旋回させながら前記液体に衝突混合させて微細化させる構成としていることが好ましい。 The intermediate passage is provided with a swirling portion, and the liquid is circulated while swirling, and the continuous passage between the outer peripheral passage and the intermediate passage is a swirling passage, and the liquid is swirled while swirling the first gas in the outer peripheral passage. It is preferable that the structure is such that the mixture is collidatively mixed with the gas to make it finer.

前記第一の発明の三流体ノズルは、石炭焚きボイラー設備やゴミ焼却設備の排気ガス冷却塔内に取り付けられ、前記中心通路に供給する前記第二の気体は排気ガス中の大気汚染物質と反応して還元する還元用ガス、前記中間通路に供給する液体は排気ガスの冷却水、前記外周通路に供給する第一の気体は圧搾空気としていることが好ましい。 The three-fluid nozzle of the first invention is installed in an exhaust gas cooling tower of a coal-fired boiler facility or a garbage incineration facility, and the second gas supplied to the central passage reacts with air pollutants in the exhaust gas. It is preferable that the reducing gas to be reduced, the liquid supplied to the intermediate passage is the cooling water of the exhaust gas, and the first gas supplied to the outer peripheral passage is compressed air.

また、第二の発明として、前記第一の発明の三流体ノズルを用い、前記液体と前記第一の気体との気液混合ミストで前記第二の気体を囲んだ状態で噴霧する噴霧方法を提供している。
前記第一の気体と第二の気体とは異なる種類の気体であっても、同種の気体であってもよい。
Further, as a second invention, there is a spraying method in which the three-fluid nozzle of the first invention is used and a gas-liquid mixed mist of the liquid and the first gas is sprayed while surrounding the second gas. providing.
The first gas and the second gas may be different types of gases or the same type of gas.

前記三流体ノズルはゴミ焼却設備等の排気ガス冷却塔内に取り付けられ、
前記外周通路を流通させる第一の気体は圧搾空気、前記中心通路を流通させる第二の気体は還元用ガス、前記中間通路を流通させる液体はガス冷却用の冷却水とし、
前記圧搾空気と冷却水とを内部混合して排気ガス冷却用の気液混合ミストを生成させ、 前記気液混合ミストの環状の噴口の中心を通して還元用ガスの噴口を外部に突出させ、該噴口より噴射する還元用ガスを前記気液混合ミストで囲み、排気ガスを前記混合ミストで冷却した後に前記還元用ガスと接触させることが好ましい。
The three-fluid nozzle is installed in an exhaust gas cooling tower of a garbage incineration facility, etc.
The first gas flowing through the outer peripheral passage is compressed air, the second gas flowing through the central passage is a reducing gas, and the liquid flowing through the intermediate passage is cooling water for gas cooling.
The compressed air and the cooling water are internally mixed to generate a gas-liquid mixed mist for cooling the exhaust gas, and the jet of the reducing gas is projected to the outside through the center of the annular nozzle of the gas-liquid mixed mist. It is preferable that the reducing gas to be injected is surrounded by the gas-liquid mixed mist, and the exhaust gas is cooled by the mixed mist and then brought into contact with the reducing gas.

前記のように、本発明の三流体ノズルを用い、第一の気体の圧搾空気と冷却水からなる液体を内部混合した排気ガス冷却用の気液混合ミストの中心部に、還元用ガスの第二の気体を噴射して外部混合することにより、高温の排気ガスを気液混合ミストで冷却するとともに、スプレーパターンの中心部の第二の気体の還元用ガスにより排気ガス中の大気汚染物質を還元することができる。かつ、第二の気体の還元用ガスは、第一の気体と液体の気液混合ミストの勢いに乗って、排気ガス中に吹き込まれるため、排気ガスに流されることなく、排気ガス冷却塔の中心まで行き届くため、第二の気体の還元用ガスの供給圧力が低圧でも良く、かつ、化学当量比に抑えることができる。 As described above, using the three-fluid nozzle of the present invention, the reduction gas is placed in the center of the gas-liquid mixing mist for cooling the exhaust gas, which is an internal mixture of a liquid consisting of the compressed air of the first gas and the cooling water. By injecting the second gas and externally mixing it, the high-temperature exhaust gas is cooled by the gas-liquid mixing mist, and the air pollutants in the exhaust gas are removed by the reducing gas of the second gas in the center of the spray pattern. It can be reduced. In addition, the reducing gas of the second gas is blown into the exhaust gas by the momentum of the gas-liquid mixed mist of the first gas and the liquid, so that it is not flown into the exhaust gas and is not flown into the exhaust gas. Since it reaches the center, the supply pressure of the reducing gas of the second gas may be low, and the chemical equivalent ratio can be suppressed.

噴霧対象に応じて前記外部混合に代えて、前記気液混合通路の環状の噴口の内部側に前記中心通路の噴口を位置させ、該中心通路の噴口より噴射する第二の気体の外周に気液混合ミストを噴射して内部混合としてもよい。 Instead of the external mixing, the injection port of the central passage is located on the inner side of the annular nozzle of the gas-liquid mixing passage according to the spray target, and the gas is blown around the outer periphery of the second gas injected from the injection port of the central passage. Liquid mixing mist may be sprayed for internal mixing.

本発明の三流体ノズルを用いて噴霧すると、従来の二流体ノズルと比べて、噴霧パターンは狭角となり、流速・噴霧の勢いが増大する。これは、狭いダクト内で広角の噴霧パターンだと壁面が濡れてしまう場合や、排気ガスの流れが高速で従来の二流体ノズルでは勢い不足の場合などに好適に用いることができる。 When spraying using the three-fluid nozzle of the present invention, the spray pattern becomes narrower and the flow velocity and the momentum of spraying increase as compared with the conventional two-fluid nozzle. This can be suitably used when the wall surface gets wet with a wide-angle spray pattern in a narrow duct, or when the exhaust gas flow is high and the conventional two-fluid nozzle lacks momentum.

本発明の三流体ノズルによれば、第一の気体と液体との気液混合ミストで第二の気体を囲んだ状態で噴射している。これにより、排気ガス冷却塔に本発明の三流体ノズルを取り付けると、排気ガスに冷却用ミストを噴射するノズルと大気汚染物質を除去する還元用ガスを噴射するノズルとを別体とせずに1個のノズルとしながら、排気ガスを冷却した後に該冷却した排気ガスに還元用ガスを接触させることができる。即ち、高温の排気ガスに直接接触させない状態で還元用ガスを排気ガス中に吹き込んで効率良く反応させることができる。
かつ、第二の気体は第一の気体と液体の気液混合ミストの勢いに乗って噴射されるため、排気ガスに流されることなく、冷却塔の中心から奥へと行き届く。よって、第二の気体の還元用ガスの供給圧力は低圧でも足り、化学当量比に抑えることができる。また、排気ガスが気液混合ミストにより目的の温度まで冷却されるまでは、第二の気体は気液混合ミストで周りを覆われているため、熱分解されずに済む。さらに、排気ガス冷却用と還元用ガス噴き込み用のノズルを1個のノズルで賄えるので、設備コストを抑えることができる。
According to the three-fluid nozzle of the present invention, a gas-liquid mixed mist of a first gas and a liquid is used to enclose a second gas for injection. As a result, when the three-fluid nozzle of the present invention is attached to the exhaust gas cooling tower, the nozzle that injects the cooling mist into the exhaust gas and the nozzle that injects the reducing gas that removes air pollutants are not separated. After cooling the exhaust gas, the reducing gas can be brought into contact with the cooled exhaust gas while using the number of nozzles. That is, the reducing gas can be blown into the exhaust gas and reacted efficiently without being in direct contact with the high-temperature exhaust gas.
Moreover, since the second gas is injected by the force of the gas-liquid mixed mist of the first gas and the liquid, it reaches from the center to the back of the cooling tower without being flowed by the exhaust gas. Therefore, the supply pressure of the reducing gas of the second gas is sufficient even at a low pressure, and can be suppressed to the chemical equivalent ratio. Further, until the exhaust gas is cooled to a target temperature by the gas-liquid mixed mist, the second gas is covered with the gas-liquid mixed mist, so that it is not thermally decomposed. Further, since the nozzles for cooling the exhaust gas and for injecting the reducing gas can be covered by one nozzle, the equipment cost can be suppressed.

本発明の第一実施形態の三流体ノズルの断面図である。It is sectional drawing of the three fluid nozzles of 1st Embodiment of this invention. 図1の噴射側部分の拡大断面図である。It is an enlarged cross-sectional view of the injection side part of FIG. 図2のA−A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 三流体の噴射状態を示す断面図である。It is sectional drawing which shows the injection state of three fluids. 第二実施形態の三流体ノズルの噴射側部分の拡大断面図である。It is an enlarged sectional view of the injection side part of the three-fluid nozzle of the second embodiment. 従来の三流体ノズルの断面図である。It is sectional drawing of the conventional three-fluid nozzle.

以下、本発明の実施形態を図面を参照して説明する。
図1乃至図4に外部混合型の第1実施形態の三流体ノズルを示す。
該実施形態の三流体ノズル1はゴミ焼却設備の排気ガス冷却塔内に取り付けるノズルであり、排気ガスに冷却ミストを噴霧すると共に、排気ガス中の大気汚染物質を除去するため還元用ガスを冷却ミストと同時に噴霧するノズルである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show the three-fluid nozzle of the first embodiment of the external mixing type.
The three-fluid nozzle 1 of the embodiment is a nozzle installed in an exhaust gas cooling tower of a dust incineration facility, and sprays a cooling mist on the exhaust gas and cools the reducing gas in order to remove air pollutants in the exhaust gas. It is a nozzle that sprays at the same time as mist.

三流体ノズル1は、内管2、中管3、外管4を同心状に重ねた3重管構造である。外管4と中管3との間の環状通路を第一の気体A1を流通させる外周通路5としている。前記中管3と内管2との間の環状通路を液体Qを流通させる中間通路6としている。前記内管2で囲まれる通路を第二の気体A2を流通させる中心通路7としている。本実施形態では、前記第一の気体A1は圧搾空気(コンプレッサーエア)とし、第二の気体A2はアンモニアガス等からなる還元用ガスとしている。液体Qは排気ガスを冷却する液であり、ゴミ焼却炉あるいは/および溶融炉で発生する排水からなる。 The three-fluid nozzle 1 has a triple tube structure in which an inner tube 2, an inner tube 3, and an outer tube 4 are concentrically stacked. The annular passage between the outer pipe 4 and the inner pipe 3 is an outer peripheral passage 5 through which the first gas A1 flows. The annular passage between the middle pipe 3 and the inner pipe 2 is an intermediate passage 6 through which the liquid Q is circulated. The passage surrounded by the inner pipe 2 is a central passage 7 through which the second gas A2 flows. In the present embodiment, the first gas A1 is compressed air (compressor air), and the second gas A2 is a reducing gas composed of ammonia gas or the like. The liquid Q is a liquid that cools the exhaust gas, and is composed of wastewater generated in a garbage incinerator and / or a melting furnace.

図1に示すように、第一の気体A1(以下、圧搾空気A1と称す)は外周通路5と連通させて外管4に設けた流入口5iに配管50を連結させて供給している。排水からなる冷却用液体Q(以下、冷却水Qと称す)は外周通路5の供給側閉鎖部より突出する中間通路6と連通させて外管4に設けた流入口6iに配管51を連結して供給している。還元用ガスからなる第二の気体A2(以下、還元用ガスA2と称す)は中心通路7の供給側端の開口を流入口7iとし、配管52を連結して供給している。 As shown in FIG. 1, the first gas A1 (hereinafter referred to as compressed air A1) is supplied by communicating with the outer peripheral passage 5 and connecting the pipe 50 to the inflow port 5i provided in the outer pipe 4. The cooling liquid Q (hereinafter referred to as cooling water Q) composed of drainage is communicated with the intermediate passage 6 protruding from the supply side closing portion of the outer peripheral passage 5, and the pipe 51 is connected to the inflow port 6i provided in the outer pipe 4. Is being supplied. The second gas A2 made of the reducing gas (hereinafter referred to as the reducing gas A2) is supplied by connecting the pipes 52 with the opening at the supply side end of the central passage 7 as the inflow port 7i.

外周通路5、中間通路6、中心通路7は供給側(X1)から噴射側(X2)に向けて直線状に延在させている。噴射側端は外管4に設けた噴射側先端壁4aで外周通路5を閉鎖すると共に中管3の噴射側環状端3aに当接させている。前記噴射側先端壁4aの中心に設けた穴4bの中央に内管2の噴射側部2aを隙間をあけて外部に突出させている。前記隙間が圧搾空気A1と冷却水Qとの混合ミストの噴口8となり、外部に突出した内管2の噴射側先端開口が還元用ガスA2の噴口9となる。即ち、噴口8から噴霧する冷却ミストの中央に噴口9から噴霧する還元用ガスA2が噴射されるようにしている。 The outer peripheral passage 5, the intermediate passage 6, and the central passage 7 extend linearly from the supply side (X1) to the injection side (X2). The injection side end closes the outer peripheral passage 5 with the injection side tip wall 4a provided on the outer pipe 4 and is in contact with the injection side annular end 3a of the inner pipe 3. The injection side portion 2a of the inner pipe 2 is projected to the outside with a gap in the center of the hole 4b provided in the center of the injection side tip wall 4a. The gap becomes the injection port 8 of the mixed mist of the compressed air A1 and the cooling water Q, and the injection-side tip opening of the inner pipe 2 protruding to the outside becomes the injection port 9 of the reducing gas A2. That is, the reducing gas A2 sprayed from the nozzle 9 is injected into the center of the cooling mist sprayed from the nozzle 8.

前記噴口8に近接した位置の中管3に、図3に示すように、外周通路5と中間通路6とを連続させる旋回流路10からなる連通路を設け、外周通路5を流れる圧搾空気A1を旋回させながら中間通路6に流れる冷却水Qに吹き込んでいる。該旋回流路10は、図2および図3に示すように、円環状の中管3に流路方向に隣接して2組の旋回流路10A、10Bを設けている。各組の旋回流路10A、10Bはそれぞれ中管3の外周面から内周面にかけて偏芯して直線状に延在させた4つの貫通穴10Aー1〜10Aー4、10B−1〜10B−4からなり、貫通穴10A−1〜10A−4と10B−1〜10B−4とは周方向位置をずらせている。このように、中管3の外周面から内周面にかけて穿設した合計8つの貫通穴を通して外周通路5の圧搾空気A1を中間通路6に旋回させて流入させている。これにより旋回流路10より下流の中間通路6を気液混合通路6hとしている。 As shown in FIG. 3, a continuous passage including a swirling passage 10 that connects the outer peripheral passage 5 and the intermediate passage 6 is provided in the middle pipe 3 located close to the nozzle 8, and the compressed air A1 flowing through the outer peripheral passage 5 is provided. Is blown into the cooling water Q flowing through the intermediate passage 6 while turning. As shown in FIGS. 2 and 3, the swirling flow path 10 is provided with two sets of swirling flow paths 10A and 10B adjacent to the annular middle pipe 3 in the flow path direction. The swirling flow paths 10A and 10B of each set are eccentric from the outer peripheral surface to the inner peripheral surface of the middle pipe 3 and extend linearly. Four through holes 10A-1 to 10A-4, 10B-1 to 10B It is composed of -4, and the through holes 10A-1 to 10A-4 and 10B-1 to 10B-4 are displaced in the circumferential direction. In this way, the compressed air A1 of the outer peripheral passage 5 is swirled into the intermediate passage 6 through a total of eight through holes drilled from the outer peripheral surface to the inner peripheral surface of the inner pipe 3 to flow into the intermediate passage 6. As a result, the intermediate passage 6 downstream from the swirling passage 10 is designated as the gas-liquid mixing passage 6h.

また、前記圧搾空気A1の旋回流路10より上流の中間通路6に最小断面積の絞り部6bを設けている。さらに、絞り部6bの上流に中間通路6の内周壁となる内管2の外周面2cに円弧状突出部からなるワーラー部2dを設け、該ワーラー部2dを中管3の拡径部3eの内周面に当接させて中間通路6に旋回部6cを設けている。該中間通路6を流入する冷却水Qは旋回部6cで旋回させながら噴射側へと流通させている。 Further, a throttle portion 6b having a minimum cross-sectional area is provided in the intermediate passage 6 upstream of the swirling flow path 10 of the compressed air A1. Further, a waller portion 2d composed of an arcuate protruding portion is provided on the outer peripheral surface 2c of the inner pipe 2 serving as the inner peripheral wall of the intermediate passage 6 upstream of the throttle portion 6b, and the waller portion 2d is used as the diameter-expanded portion 3e of the middle pipe 3. A swivel portion 6c is provided in the intermediate passage 6 in contact with the inner peripheral surface. The cooling water Q flowing into the intermediate passage 6 is circulated to the injection side while being swirled by the swirling portion 6c.

このように、中間通路6を旋回しながら流れる冷却水Qに、噴射側の貫通穴10A−1〜10A−4、10B−1〜10B−4を通して圧搾空気A1を外周から流入して衝突混合させ、冷却水Qを微細化して気液混合ミストMを生成している。この気液混合ミストMは気液混合通路6hを旋回しながら噴射側へと流通し、環状の噴口8から噴霧している。 In this way, the compressed air A1 flows into the cooling water Q flowing while swirling in the intermediate passage 6 from the outer periphery through the through holes 10A-1 to 10A-4 and 10B-1 to 10B-4 on the injection side to collide and mix. , The cooling water Q is refined to generate a gas-liquid mixed mist M. The gas-liquid mixing mist M flows to the injection side while swirling in the gas-liquid mixing passage 6h, and is sprayed from the annular nozzle 8.

内管2の内部の中心通路7には還元用ガスA2を供給しており、内管2は噴射側に向けて流路面積を段階的に減少している。内管2の噴射側部2aは最小断面積として環状の噴口8の中心を通して外部に突出させ、突出端の噴口9より噴射する還元用ガスA2が外周の環状の噴口8より噴射される気液混合ミストMの中心に吹き込まれるようにしている。 The reduction gas A2 is supplied to the central passage 7 inside the inner pipe 2, and the inner pipe 2 gradually reduces the flow path area toward the injection side. The injection side portion 2a of the inner pipe 2 is projected to the outside through the center of the annular nozzle 8 as the minimum cross-sectional area, and the reducing gas A2 injected from the ejection port 9 at the protruding end is injected from the outer annular nozzle 8 gas-liquid. It is made to be blown into the center of the mixed mist M.

前記構造とした三流体ノズル1では、図4に示すように、環状の噴口8から噴霧される気液混合ミストMの中心に還元用ガスA2が噴出され、外部混合状態としている。この状態で中央の還元用ガスA2は外周の気液混合ミストMに囲まれた状態で排気ガス中に噴射される。よって、排気ガスは気液混合ミストMと接触して冷却され、温度が低下した排気ガスに還元用ガスA2が接触することとなる。よって、還元用ガスA2が高温の排気ガスと接触して反応前に熱分解したり、SOxとアンモニアガスとが反応して硫安を生成することを防止できる。 In the three-fluid nozzle 1 having the above structure, as shown in FIG. 4, the reducing gas A2 is ejected to the center of the gas-liquid mixing mist M sprayed from the annular nozzle 8 to be in an externally mixed state. In this state, the central reduction gas A2 is injected into the exhaust gas while being surrounded by the gas-liquid mixed mist M on the outer circumference. Therefore, the exhaust gas comes into contact with the gas-liquid mixed mist M and is cooled, and the reducing gas A2 comes into contact with the exhaust gas whose temperature has dropped. Therefore, it is possible to prevent the reduction gas A2 from coming into contact with the high-temperature exhaust gas and thermally decomposing before the reaction, or the SOx and the ammonia gas reacting with each other to generate ammonium sulfate.

前記圧搾空気A1と冷却水Qとの供給圧は略同圧のP1とし、還元用ガスA2の供給圧P2を、P1>P2としている。このように、還元用ガスA2の供給圧を低減しても、外周の気液混合ミストMの勢いに乗せて還元用ガスA2を排気ガス中に吹き込むことができる。その結果、還元用ガスA2を低い圧力で吹き込んでも排気ガスの流れに押されることはなく、冷却塔の全体に還元用ガスを行きわたらせて排気ガス中の大気汚染物質と還元用ガスを反応させることができる。よって、還元用ガスの供給量を化学当量比に抑えることができ、還元用ガスが高価であるためコスト低減が図れる。かつ、還元用ガスを過剰に吹き込むと副生成物が発生し後処理の手数がかかるが、化学当量比としているため副生成物は殆ど発生せず後処理の手数を省くことができる。
特に、排気ガス冷却用のノズルと還元用ガス吹き込み用のノズルを1個のノズルで共用できるため、設備コストを大幅に低減できる。
The supply pressure of the compressed air A1 and the cooling water Q is P1 having substantially the same pressure, and the supply pressure P2 of the reducing gas A2 is P1> P2. In this way, even if the supply pressure of the reducing gas A2 is reduced, the reducing gas A2 can be blown into the exhaust gas with the momentum of the gas-liquid mixed mist M on the outer circumference. As a result, even if the reduction gas A2 is blown at a low pressure, the reduction gas is not pushed by the flow of the exhaust gas, and the reduction gas is distributed throughout the cooling tower to react the air pollutants in the exhaust gas with the reduction gas. be able to. Therefore, the supply amount of the reducing gas can be suppressed to the chemical equivalent ratio, and the cost can be reduced because the reducing gas is expensive. In addition, if the reducing gas is excessively blown, by-products are generated and the post-treatment is troublesome. However, since the chemical equivalent ratio is used, almost no by-products are generated and the post-treatment can be omitted.
In particular, since the nozzle for cooling the exhaust gas and the nozzle for blowing the reducing gas can be shared by one nozzle, the equipment cost can be significantly reduced.

図5に内部混合型の第2実施形態の三流体ノズル1−Bを示す。
該内部混合型の三流体ノズル1−Bは、内管2の噴出側先端の噴口9−Bを外周の気液混合ミストMの噴口8より手前の内部側に位置させている。他の構成は第1実施形態の三流体ノズル1と同様であり、同一部号を付して説明を省略する。かつ、外周通路5に圧搾空気からなる第一の気体A1、中間通路6に排気ガス冷却水からなる液体Q、中心通路7に還元用ガスからなる第二の気体A2を別々の配管から供給している。
FIG. 5 shows the three-fluid nozzle 1-B of the second embodiment of the internal mixing type.
In the internal mixing type three-fluid nozzle 1-B, the nozzle 9-B at the tip of the inner pipe 2 on the ejection side is located on the inner side in front of the nozzle 8 of the gas-liquid mixing mist M on the outer circumference. Other configurations are the same as those of the three-fluid nozzle 1 of the first embodiment, and the same part number is added and the description thereof will be omitted. Further, the first gas A1 made of compressed air is supplied to the outer peripheral passage 5, the liquid Q made of exhaust gas cooling water is supplied to the intermediate passage 6, and the second gas A2 made of reducing gas is supplied to the central passage 7 from separate pipes. ing.

噴口8の内部中央に噴口9−Bを位置させているため、噴口9−Bから噴射する還元用ガスの第二の気体A2は気液混合ミストMで囲む状態で外部に噴射され、排気ガス中に吹き込まれる。このように、排気ガス冷却用の気液混合ミストMと還元用ガスとを内部混合とすることにより、還元用ガスは冷却水の微粒化用気体としての効果が増大する。したがって、微粒化性能が増大した分だけ、第一の気体の供給量を低減でき、ランニングコストの低減を図ることができる。かつ、同気水比とした場合は、従来の二流体ノズルを用いる場合と比べて微粒化を促進できる。 Since the injection port 9-B is located in the center of the inside of the injection port 8, the second gas A2 of the reduction gas injected from the injection port 9-B is injected to the outside while being surrounded by the gas-liquid mixed mist M, and is exhaust gas. Blowed in. By internally mixing the gas-liquid mixing mist M for cooling the exhaust gas and the reducing gas in this way, the effect of the reducing gas as a gas for atomizing the cooling water is increased. Therefore, the supply amount of the first gas can be reduced by the amount of the increased atomization performance, and the running cost can be reduced. Moreover, when the aquatic water ratio is used, atomization can be promoted as compared with the case where a conventional two-fluid nozzle is used.

前記第1、第2実施形態の三流体ノズルはゴミ焼却設備の排気ガス冷却塔に取り付け、排気ガス冷却用と大気汚染物質の除去用を兼ねるものであるが、石炭焚きボイラー等の他の用途にも好適に利用できる。他用途に用いる場合、三流体ノズルから噴射する三流体の第一の気体A1、第二の気体A2、および液体Qの種類は変更される。また、第二の気体の必要圧力は第一の気体と同一圧力でなくてもよく低圧でもよく、かつ、第一の気体に混合して使用できない第二の気体も利用できる。例えば、PSA副生成物として窒素ガスが余剰にある設備であれば、第一の気体として圧搾空気(コンプレッサーエアー)、第二の気体として窒素ガスを用い、窒素ガスの分だけ圧搾空気の使用量を削減することができる。 The three-fluid nozzles of the first and second embodiments are attached to an exhaust gas cooling tower of a waste incineration facility and are used for cooling exhaust gas and removing air pollutants, but are used for other purposes such as a coal-fired boiler. It can also be suitably used for. When used for other purposes, the types of the first gas A1, the second gas A2, and the liquid Q of the three fluids injected from the three fluid nozzles are changed. Further, the required pressure of the second gas does not have to be the same as that of the first gas and may be a low pressure, and a second gas that cannot be mixed with the first gas and cannot be used can also be used. For example, in the case of equipment with excess nitrogen gas as a PSA by-product, compressed air (compressor air) is used as the first gas, nitrogen gas is used as the second gas, and the amount of compressed air used is the same as the nitrogen gas. Can be reduced.

また、第一の気体と第二の気体を同じ種類の気体、例えば圧搾空気としてもよい。つまり、三流体ノズルを二流体ノズルとして用いることで、従来の二流体ノズルを用いる場合と比べて、気水比の低減(ランニングコストの低減)を図ることもできる。
また、三流体ノズルでは、従来の二流体ノズルと比べて、噴霧パターンは狭角となり、流速・噴霧の勢いが増大する。これは、狭いダクト内で広角の噴霧パターンだと壁面が濡れてしまう場合や、排気ガスの流れが高速で従来の二流体ノズルでは勢い不足の場合などに好適に用いることができる。
Further, the first gas and the second gas may be the same type of gas, for example, compressed air. That is, by using the three-fluid nozzle as the two-fluid nozzle, it is possible to reduce the air-water ratio (reduce the running cost) as compared with the case of using the conventional two-fluid nozzle.
Further, in the three-fluid nozzle, the spray pattern becomes narrower and the flow velocity and the momentum of spraying increase as compared with the conventional two-fluid nozzle. This can be suitably used when the wall surface gets wet with a wide-angle spray pattern in a narrow duct, or when the exhaust gas flow is high and the conventional two-fluid nozzle lacks momentum.

1、1−B 三流体ノズル
2 内管
3 中管
4 外管
5 外周通路
6 中間通路
6c 旋回部
7 中心通路
8、9 噴口
10(10A、10B) 旋回流路
50、51、52 配管
A1 第一の気体(圧搾空気)
A2 第二の気体(還元用ガス)
Q 液体(冷却水)
1, 1-B Three-fluid nozzle 2 Inner pipe 3 Middle pipe 4 Outer pipe 5 Outer pipe 5 Outer passage 6 Intermediate passage 6c Swing part 7 Central passage 8, 9 Nozzle 10 (10A, 10B) Swirling flow path 50, 51, 52 Piping A1 No. One gas (compressed air)
A2 Second gas (reduction gas)
Q Liquid (cooling water)

Claims (6)

内管、中管、外管を備えた三重管を備え、前記外管と中管との間の環状の外周通路は第一の気体の通路、前記中管と内管との間の環状の中間通路は液体の通路、前記内管で囲む中心通路は第二の気体の通路とし、噴射側に前記外周通路と中間通路との連通路を備え、該連通路より噴射側に気液混合通路を設けると共に該気液混合通路の噴射側端に前記内管を囲む噴口を設け、
前記外周通路と中間通路との連通路は旋回流路とし、
前記内管の先端の噴口から噴射する前記第二の気体を外周に噴射する気液混合ミストと内部混合または外部混合させて噴霧させる構成としている三流体ノズル。
A triple tube with an inner tube, a middle tube, and an outer tube is provided, and the annular outer peripheral passage between the outer tube and the middle tube is a first gas passage, and the annular path between the middle tube and the inner tube. The intermediate passage is a liquid passage, the central passage surrounded by the inner pipe is a second gas passage, a communication passage between the outer peripheral passage and the intermediate passage is provided on the injection side, and a gas-liquid mixing passage is provided on the injection side from the communication passage. And a nozzle surrounding the inner pipe is provided at the injection side end of the gas-liquid mixing passage.
The continuous passage between the outer peripheral passage and the intermediate passage is a swirling passage.
A three-fluid nozzle having a configuration in which a gas-liquid mixing mist that injects the second gas that is injected from a nozzle at the tip of the inner pipe is internally or externally mixed and sprayed.
前記内管の噴射側先端を前記中管および外管の噴射側先端より外部に突出させ、前記内管を囲む環状の前記噴口より噴射する気液混合ミストの中心部分に前記第二の気体を吹き込んで外部混合させる構成としている請求項1に記載の三流体ノズル。 The injection-side tip of the inner pipe is projected outward from the injection-side tip of the inner pipe and the outer pipe, and the second gas is applied to the central portion of the gas-liquid mixing mist to be injected from the annular nozzle surrounding the inner pipe. The three-fluid nozzle according to claim 1, which is configured to blow in and mix externally. 前記中間通路は旋回部を備え、前記液体を旋回させながら流通させると共に、前記外周通路の前記第一の気体を旋回させながら前記液体に衝突混合させて微細化させる構成としている請求項1または請求項2に記載の三流体ノズル。 The middle passage comprises a swivel unit, the circulating while swirling the liquid, before Kigaishu the first claim gas colliding mixed with the liquid while swirling and is configured to miniaturization of passages 1 or The three-fluid nozzle according to claim 2. 請求項1乃至請求項3のいずれか1項に記載の三流体ノズルを用い、前記液体と前記第
一の気体との気液混合ミストで前記第二の気体を囲んだ状態で噴霧する噴霧方法。
A spraying method in which the second gas is surrounded by a gas-liquid mixed mist of the liquid and the first gas using the three-fluid nozzle according to any one of claims 1 to 3. ..
内管、中管、外管を備えた三重管を備え、前記外管と中管との間の環状の外周通路は第一の気体の通路、前記中管と内管との間の環状の中間通路は液体の通路、前記内管で囲む中心通路は第二の気体の通路とし、噴射側に前記外周通路と中間通路との連通路を備え、該連通路より噴射側に気液混合通路を設けると共に該気液混合通路の噴射側端に前記内管を囲む噴口を設け、前記内管の先端の噴口から噴射する前記第二の気体を外周に噴射する気液混合ミストと内部混合または外部混合させて噴霧させる構成としている三流体ノズルを用い、A triple tube with an inner tube, a middle tube, and an outer tube is provided, and the annular outer peripheral passage between the outer tube and the middle tube is a first gas passage, and the annular path between the middle tube and the inner tube The intermediate passage is a liquid passage, the central passage surrounded by the inner pipe is a second gas passage, a communication passage between the outer peripheral passage and the intermediate passage is provided on the injection side, and a gas-liquid mixing passage is provided on the injection side from the communication passage. And an injection port surrounding the inner pipe is provided at the injection side end of the gas-liquid mixing passage, and internal mixing or internal mixing with a gas-liquid mixing mist that injects the second gas injected from the injection port at the tip of the inner pipe to the outer periphery. Using a three-fluid nozzle that is configured to be externally mixed and sprayed
前記液体と前記第一の気体との気液混合ミストで前記第二の気体を囲んだ状態で噴霧する噴霧方法。A spraying method in which a gas-liquid mixed mist of the liquid and the first gas is sprayed while surrounding the second gas.
前記三流体ノズルはゴミ焼却設備等の排気ガス冷却塔内に取り付けられ、
前記外周通路を流通させる第一の気体は圧搾空気、前記中心通路を流通させる第二の気体は還元用ガス、前記中間通路を流通させる液体はガス冷却用の冷却水とし、
前記圧搾空気と冷却水とを内部混合して排気ガス冷却用の気液混合ミストを生成させ、
前記気液混合ミストの環状の噴口の中心を通して前記還元用ガスの噴口を外部に突出させ、該噴口より噴射する還元用ガスを前記気液混合ミストで囲み、排気ガスを前記混合ミストで冷却した後に前記還元用ガスと接触させる請求項4または5に記載の霧方法。
The three-fluid nozzle is installed in an exhaust gas cooling tower of a garbage incineration facility, etc.
The first gas flowing through the outer peripheral passage is compressed air, the second gas flowing through the central passage is a reducing gas, and the liquid flowing through the intermediate passage is cooling water for gas cooling.
The compressed air and cooling water are internally mixed to generate a gas-liquid mixed mist for cooling the exhaust gas.
The injection port of the reduction gas was projected to the outside through the center of the annular nozzle of the gas-liquid mixing mist, the reduction gas injected from the injection port was surrounded by the gas-liquid mixing mist, and the exhaust gas was cooled by the mixing mist. mists method according to claim 4 or 5 is contacted with the reducing gas after.
JP2016145277A 2016-07-25 2016-07-25 Three-fluid nozzle and spraying method using the three-fluid nozzle Active JP6784386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145277A JP6784386B2 (en) 2016-07-25 2016-07-25 Three-fluid nozzle and spraying method using the three-fluid nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145277A JP6784386B2 (en) 2016-07-25 2016-07-25 Three-fluid nozzle and spraying method using the three-fluid nozzle

Publications (2)

Publication Number Publication Date
JP2018015680A JP2018015680A (en) 2018-02-01
JP6784386B2 true JP6784386B2 (en) 2020-11-11

Family

ID=61075532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145277A Active JP6784386B2 (en) 2016-07-25 2016-07-25 Three-fluid nozzle and spraying method using the three-fluid nozzle

Country Status (1)

Country Link
JP (1) JP6784386B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109395563B (en) * 2018-12-12 2023-08-29 中国华能集团清洁能源技术研究院有限公司 Efficient liquid atomization spraying device and method
CN109987771B (en) * 2019-05-10 2021-09-10 成都三顶环保科技有限公司 Desulfurization wastewater treatment method and equipment
CN110093192B (en) * 2019-05-30 2024-03-08 宁夏神耀科技有限责任公司 Multi-stage combustion combined burner capable of mixing waste liquid
CN112476042B (en) * 2020-10-31 2022-04-22 华南理工大学 Quantitative high-pressure high-speed oil-gas cooling and lubricating nozzle
CN112933866B (en) * 2021-03-22 2022-07-22 哈尔滨工程大学 Gas-liquid two-phase ejector capable of being used for purifying harmful gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159889A (en) * 2000-11-24 2002-06-04 Ikeuchi:Kk Two-fluid nozzle
JP4346380B2 (en) * 2003-08-28 2009-10-21 株式会社いけうち Three-fluid nozzle and waste treatment apparatus equipped with the three-fluid nozzle
JP2013010089A (en) * 2011-06-30 2013-01-17 Sumitomo Osaka Cement Co Ltd Denitration apparatus, and supply nozzle
JP6393473B2 (en) * 2013-11-19 2018-09-19 公立大学法人大阪府立大学 Gas treatment apparatus and exhaust gas treatment method

Also Published As

Publication number Publication date
JP2018015680A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6784386B2 (en) Three-fluid nozzle and spraying method using the three-fluid nozzle
EP2265357B1 (en) Systems and methods for removing gaseous pollutants from a gas stream
CN106984459B (en) Spraying device
KR101960976B1 (en) Device for injecting a liquid into an exhaust gas flow and exhaust gas aftertreatment system
JP2010167330A (en) Wet two-stage desulfurization equipment
KR101619098B1 (en) Exhaust gas purification device
JP6478105B2 (en) Two-fluid nozzle
JP2005127271A (en) Urea water vaporizer
JP2007268355A (en) Exhaust gas denitrizer
CN104399615A (en) Atomization injection device
KR100741497B1 (en) Two-Fluid Injection Nozzle
KR200404745Y1 (en) Two-Fluid Injection Nozzle
JP4346380B2 (en) Three-fluid nozzle and waste treatment apparatus equipped with the three-fluid nozzle
WO2015035709A1 (en) Two-stage atomizing double fluid spraying device
WO2011152444A1 (en) Combustion apparatus provided with spray nozzle
JP2007040118A (en) Aqueous urea nozzle device
JP2002224592A (en) Nozzle
WO2002002210A1 (en) Water-ammonia mixture sprayer and exhaust gas desulfurizer using the same
WO2018181771A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP6393473B2 (en) Gas treatment apparatus and exhaust gas treatment method
CN204220331U (en) Atomization jetting device
CN107469608A (en) Reducing agent sprayer unit for denitrating flue gas
JP6356577B2 (en) Spray nozzle
CN210138756U (en) Shower nozzle and denitration spray gun
KR100386862B1 (en) The spray nozzle assembly

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6784386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250