JP2007268355A - Exhaust gas denitrizer - Google Patents

Exhaust gas denitrizer Download PDF

Info

Publication number
JP2007268355A
JP2007268355A JP2006094542A JP2006094542A JP2007268355A JP 2007268355 A JP2007268355 A JP 2007268355A JP 2006094542 A JP2006094542 A JP 2006094542A JP 2006094542 A JP2006094542 A JP 2006094542A JP 2007268355 A JP2007268355 A JP 2007268355A
Authority
JP
Japan
Prior art keywords
exhaust gas
fluid nozzle
pipe
outer tube
ammonia water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006094542A
Other languages
Japanese (ja)
Other versions
JP5170974B2 (en
Inventor
Ryosuke Nakagawa
了介 中川
Tetsuo Hikino
哲郎 引野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006094542A priority Critical patent/JP5170974B2/en
Priority to PCT/JP2007/051994 priority patent/WO2007116602A1/en
Publication of JP2007268355A publication Critical patent/JP2007268355A/en
Application granted granted Critical
Publication of JP5170974B2 publication Critical patent/JP5170974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the problem that an aqueous ammonia jetting nozzle is blocked with regard to an aqueous ammonia direct spraying system. <P>SOLUTION: An exhaust gas denitrizer configured by including a two-fluid nozzle pipe (h) that sprays the aqueous ammonia using a gas in a boiler exhaust gas (a) and a denitrizing catalyst (d) that performs a denitrizing reaction by allowing the exhaust gas containing ammonia to flow, wherein the two-fluid nozzle pipe (h) is internally disposed in an outer pipe (j) having an aperture that discharges spraying at a place opposed to a spout of the two-fluid nozzle pipe (h), purge air is supplied to the outer pipe (j), the axis of a cylindrical flow regulating plate (k) that regulates the exhaust gas flowing around the pipe is aligned in the flow direction of the exhaust gas (a) and the plate is disposed coaxially with the spout. An inner diameter of the plate (k) is made bigger than the outer diameter of the outer pipe (j) and an axial length of the plate (k) is made bigger than the outer diameter of the pipe (j). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は排煙脱硝装置に係り、アンモニア水直接噴霧システムの信頼性を向上し硫黄酸化物含有排ガスにおいてもノズル閉塞の問題を低減し、プラント効率向上に配慮した排煙脱硝装置に関する。   The present invention relates to a flue gas denitration apparatus, and more particularly to a flue gas denitration apparatus that improves the reliability of an ammonia water direct spraying system, reduces the problem of nozzle clogging even in a sulfur oxide-containing exhaust gas, and takes plant efficiency into consideration.

主に発電用ボイラ等に設置される排煙脱硝装置は、ボイラの燃焼排ガス中から窒素酸化物(NOx)を除去するために、ボイラ節炭器出口の排ガスダクト中において脱硝反応の還元剤であるアンモニアを注入し、排ガスと充分な混合後、脱硝触媒上において脱硝反応を行っている。   The flue gas denitration equipment installed mainly in power generation boilers is a reducing agent for denitration reaction in the exhaust gas duct at the boiler economizer outlet in order to remove nitrogen oxides (NOx) from the combustion exhaust gas of the boiler. A certain amount of ammonia is injected, and after sufficient mixing with the exhaust gas, a denitration reaction is performed on the denitration catalyst.

近年、液化アンモニアに比べて保管及び取扱いが容易なことから、アンモニア水が用いられるケースが多く、アンモニア水をボイラ節炭器出口の排ガスダクト中へ噴霧し、蒸発・排ガスとの混合後脱硝反応を行うプラントが増えている。アンモニア水を排ガス中に噴霧する際には、例えば特許文献1、特許文献2に示されているように、通常二流体ノズルが用いられ、アンモニア水を噴霧空気により微粒化し、アンモニア水の蒸発促進を図っている。   In recent years, ammonia water is often used because it is easier to store and handle compared to liquefied ammonia. Ammonia water is sprayed into the exhaust gas duct at the boiler economizer outlet, followed by evaporation and mixing with exhaust gas, followed by denitration reaction. There are an increasing number of plants. When spraying ammonia water into exhaust gas, for example, as shown in Patent Document 1 and Patent Document 2, a two-fluid nozzle is usually used to atomize the ammonia water by spraying air and promote evaporation of the ammonia water. I am trying.

アンモニア水を排ガス中に噴霧する際、排ガス中に硫黄酸化物(以降、SOxと略す)が含まれている場合、二流体ノズル付近の排ガス中のSOxと反応し、酸性硫酸アンモニウム(以降、酸性硫安という)を生成し、ノズル周辺部において結晶を生成しノズルの詰りを引き起こすことが知られている。   When the ammonia water is sprayed into the exhaust gas, if the exhaust gas contains sulfur oxide (hereinafter abbreviated as SOx), it reacts with SOx in the exhaust gas near the two-fluid nozzle to produce acidic ammonium sulfate (hereinafter referred to as acidic ammonium sulfate). It is known that a crystal is generated around the nozzle and causes clogging of the nozzle.

このため、ノズル周辺以外を外装管で覆いノズル部周辺の孔からパージ空気を流すことによりノズル部への硫黄分含有排ガスが直接触れることを防止し、酸性硫安付着を抑制した。また、電気ヒータ等によりパージ空気を100℃以上に加熱することにより酸性硫安の発生を回避し、プラントの信頼性確保を図ってきた。   For this reason, the area around the nozzle was covered with an outer tube, and purge air was allowed to flow through holes around the nozzle to prevent direct contact with the sulfur-containing exhaust gas to the nozzle, thereby suppressing acid ammonium sulfate adhesion. Further, heating of the purge air to 100 ° C. or higher with an electric heater or the like has avoided the generation of acidic ammonium sulfate and has ensured plant reliability.

一方、アンモニア水を噴霧した排ガスには通常偏流が生じており、この偏流の影響を受けた噴霧箇所下流ではアンモニア水の分布を生じ、そのまま蒸発するため、排ガス中にアンモニア分布を引き起こし、脱硝装置の性能低下等の問題が生じていた。   On the other hand, there is usually a drift in the exhaust gas sprayed with ammonia water, and the ammonia water is distributed downstream of the spray location affected by this drift and evaporates as it is. Problems such as performance degradation occurred.

発電用ボイラにおける脱硝装置は、通常、脱硝触媒の性能上300−350℃の排ガス温度が必要なことからボイラ節炭器後流に設置される。これまでは、図2に示されるように、アンモニア水を排ガス中に噴霧する際、排ガス中に硫黄酸化物(以降SOxと略す)が含まれている場合、二流体ノズルおよび連絡管を外装管で覆い、ノズル部の噴出し位置に孔を設けてパージ空気を流すことにより、ノズル部への硫黄分含有排ガスが直接触れることを防止し、酸性硫安付着を抑制した。又、電気ヒータ等によりパージ空気を100℃以上に加熱することにより硫黄分酸性硫酸アンモニウム(以降、酸性硫安という)の析出を回避し、プラントの信頼性確保を図ってきた。   A denitration apparatus in a power generation boiler is usually installed downstream of a boiler economizer because an exhaust gas temperature of 300 to 350 ° C. is necessary for the performance of a denitration catalyst. Until now, as shown in FIG. 2, when ammonia water is sprayed into the exhaust gas, if the exhaust gas contains sulfur oxide (hereinafter abbreviated as SOx), the two-fluid nozzle and the connecting pipe are connected to the outer tube. By covering the surface with a nozzle and forming a hole at the nozzle ejection position and flowing purge air, it was possible to prevent the sulfur-containing exhaust gas from directly touching the nozzle portion and to suppress acid ammonium sulfate adhesion. Further, by heating the purge air to 100 ° C. or higher with an electric heater or the like, precipitation of sulfur-containing acidic ammonium sulfate (hereinafter referred to as acidic ammonium sulfate) has been avoided, and plant reliability has been ensured.

特許第3295419号Japanese Patent No. 3295419 特開平11−333252号公報JP 11-333252 A

一方、アンモニア水が噴霧される排ガスには通常偏流が生じており、この偏流の影響を受けた噴霧箇所下流ではアンモニア水が均等に分布されない。均等に分布していないアンモニア水がそのまま蒸発するため、排ガス中にアンモニアの偏在を引き起こし、脱硝装置の性能低下等の問題が生じていた。   On the other hand, there is usually a drift in the exhaust gas sprayed with the ammonia water, and the ammonia water is not evenly distributed downstream of the spray location affected by the drift. Since ammonia water that is not evenly distributed evaporates as it is, ammonia is unevenly distributed in the exhaust gas, causing problems such as performance degradation of the denitration apparatus.

排ガス偏流低減のために、噴霧ノズル上流にバッフルプレート等の設置も検討されているが、バッフルプレートに下流に発生する乱流の影響によりノズルから噴霧されたアンモニア水が蒸発する前に乱流に巻込まれ、アンモニア水を含む排ガスが逆流することによりアンモニア水が二流体ノズル管に付着、排ガス中のSOxがアンモニア水と反応しノズル管表面に酸性硫安を生成することでノズル付近の閉塞に繋がっていた。   Installation of a baffle plate or the like is also considered upstream of the spray nozzle in order to reduce the exhaust gas drift, but the turbulent flow before the ammonia water sprayed from the nozzle evaporates due to the influence of the turbulent flow generated downstream of the baffle plate. The ammonia gas adheres to the two-fluid nozzle tube when the exhaust gas containing ammonia water flows backward, and the SOx in the exhaust gas reacts with the ammonia water to produce acidic ammonium sulfate on the nozzle tube surface, leading to blockage near the nozzle. It was.

また、二流体ノズル全体を覆うように上流側にバッフルプレートを設置する方法も提案されているが、バッフルプレートにより二流体ノズル周辺部に充分な排ガスが供給されないことから、アンモニア水の蒸発に時間を要し、結果としてダクト流れ方向を長くすることから設置上制約を有していた。   A method of installing a baffle plate on the upstream side so as to cover the entire two-fluid nozzle has also been proposed. However, since sufficient exhaust gas is not supplied to the periphery of the two-fluid nozzle by the baffle plate, it takes time to evaporate the ammonia water. As a result, the duct flow direction is lengthened, resulting in installation limitations.

本発明の課題は、アンモニア水直接噴霧システムに係るアンモニア水噴射ノズルの閉塞問題を解消するアンモニア注入装置を提供することである。   The subject of this invention is providing the ammonia injection apparatus which eliminates the obstruction | occlusion problem of the ammonia water injection nozzle which concerns on an ammonia water direct spraying system.

上記の課題を解決する本発明は、アンモニア水噴霧ノズル部に孔を有する外装管を二流体ノズル管を覆うように設け、この外装管に整流板を設置することを特徴とする。   The present invention for solving the above-described problems is characterized in that an outer tube having a hole in the ammonia water spray nozzle portion is provided so as to cover the two-fluid nozzle tube, and a rectifying plate is installed in the outer tube.

ボイラ出口からの排ガスは、二流体ノズル管を覆う外装管に設置された整流板により整流された後、二流体ノズル外装管周辺に至り、この排ガスに対し二流体ノズルからアンモニア水が噴霧される。排ガス中に噴霧されたアンモニア水は整流された排ガス中にて蒸発後、下流の脱硝触媒層へと流れることから、逆流による外装管への酸性硫安付着を防止できる。   The exhaust gas from the boiler outlet is rectified by a rectifying plate installed in an outer tube covering the two-fluid nozzle tube, and then reaches the periphery of the two-fluid nozzle outer tube, and ammonia water is sprayed from the two-fluid nozzle to the exhaust gas. . Since the ammonia water sprayed in the exhaust gas flows in the rectified exhaust gas and then flows to the downstream denitration catalyst layer, it is possible to prevent acid ammonium sulfate from adhering to the outer tube due to the backflow.

また、二流体ノズル周辺に充分な排ガスが供給されることから短時間でのアンモニア水蒸発が可能となり、アンモニア水直接噴霧システム設置におけるスペース制約問題を解消できる。   In addition, since sufficient exhaust gas is supplied around the two-fluid nozzle, it is possible to evaporate the ammonia water in a short time, and solve the space restriction problem in installing the ammonia water direct spray system.

本発明により、アンモニア水直接噴霧システムに係るアンモニア水噴射ノズルの閉塞問題が解消される。また、配置上制約の多いプラントにおいても、アンモニア水噴霧部周辺の必要スペースが縮小可能となる。   By this invention, the obstruction | occlusion problem of the ammonia water injection nozzle which concerns on an ammonia water direct spraying system is eliminated. In addition, even in a plant with many restrictions on arrangement, the necessary space around the ammonia water spray section can be reduced.

(第1の実施の形態) 以下に本発明の排煙脱硝装置の第1の実施の形態を、図1を用いて説明する。図1に示す排煙脱硝装置は、ボイラ節炭器出口からの排ガスaを導く脱硝装置入口ダクトbと、脱硝装置入口ダクトbに接続され、脱硝触媒dを内装した脱硝装置cと、前記脱硝装置入口ダクトbに内装されたアンモニア注入手段と、前記脱硝装置c出口に設けられた、図示されていないNOx分析計と、を含んで構成されている。 First Embodiment Hereinafter, a first embodiment of a flue gas denitration apparatus of the present invention will be described with reference to FIG. A flue gas denitration apparatus shown in FIG. 1 includes a denitration apparatus inlet duct b for guiding exhaust gas a from a boiler economizer outlet, a denitration apparatus c connected to the denitration apparatus inlet duct b and having a denitration catalyst d built therein, and the denitration apparatus. An ammonia injection means built in the apparatus inlet duct b and a NOx analyzer (not shown) provided at the outlet of the denitration apparatus c are configured.

アンモニア注入手段は、脱硝装置c入口側の脱硝装置入口ダクトbの壁面を貫通し、その軸線が、排ガスaの流れに直交するように、かつ先端部を脱硝装置入口ダクトb内に位置させて配置されている複数の二流体ノズル管hと、各二流体ノズル管hを個別に三重管状に覆う外装管jと、外装管jの装着された整流板kと、二流体ノズル管hと外装管jに脱硝装置入口ダクトbの外部で接続されたアンモニア水配管、噴霧空気配管、パージ空気配管を含んで構成されている。   The ammonia injection means passes through the wall surface of the denitration apparatus inlet duct b on the denitration apparatus c inlet side, and its tip is positioned in the denitration apparatus inlet duct b so that its axis is orthogonal to the flow of the exhaust gas a. A plurality of two-fluid nozzle tubes h arranged, an outer tube j individually covering each two-fluid nozzle tube h in a triple tubular shape, a rectifying plate k on which the outer tube j is mounted, a two-fluid nozzle tube h and an outer tube The pipe j includes an ammonia water pipe, an atomizing air pipe, and a purge air pipe connected to the outside of the denitration apparatus inlet duct b.

二流体ノズル管hは、中心にアンモニア水が流れる内管があり、その外側に噴霧空気が流れる外管が二重管をなしてかぶせられて形成されている。そして、二流体ノズル管hの先端部には、吹出し孔が設けられ、アンモニア水が噴霧空気とともに噴出されるようになっている。   The two-fluid nozzle tube h has an inner tube through which ammonia water flows at the center, and an outer tube through which atomized air flows is covered with a double tube on the outside thereof. And the blowing hole is provided in the front-end | tip part of the two fluid nozzle pipe | tube h, and ammonia water is ejected with spraying air.

各二流体ノズル管hは個別に三重管状に外装管jで覆われていて、外装管jの前記二流体ノズル管hの吹出し孔に対向する部分には、該吹出し孔からの噴霧を妨げる惧れのない大きさの円形の開口が設けられている。この開口の直径は、排ガスaの流れに直交する平面に投影したとき、外装管jの直径より小さく、前記外管の直径より大きくしてある。   Each two-fluid nozzle tube h is individually covered in a triple tube with an outer tube j, and the portion of the outer tube j facing the outlet hole of the two-fluid nozzle tube h may hinder spraying from the outlet hole. A circular opening of a size that does not have a gap is provided. The diameter of the opening is smaller than the diameter of the outer tube j and larger than the diameter of the outer tube when projected onto a plane orthogonal to the flow of the exhaust gas a.

また、外装管jには、図示のように、排ガスaの流れに沿う方向を軸線とする円筒状の整流板kが、前記吹出し孔の中心に対して同心をなして装着されている。整流板kの直径(内径)は外装管jの外径よりも大きく、その軸線方向の長さは、外装管jの外径よりも大きくしてある。したがって、整流板kの上流端は外装管jの外周面の上流端よりも上流側に位置し、整流板kの下流端は外装管jの外周面の下流端よりも下流側に位置している。なお、外装管jは整流板kの一方の壁面を貫通し、その先端は、整流板kの他方の壁面の内周面に固着されている。   Further, as shown in the figure, a cylindrical rectifying plate k whose axis is in the direction along the flow of the exhaust gas a is attached to the outer tube j concentrically with the center of the blowout hole. The diameter (inner diameter) of the rectifying plate k is larger than the outer diameter of the outer tube j, and the axial length thereof is larger than the outer diameter of the outer tube j. Therefore, the upstream end of the rectifying plate k is located upstream of the upstream end of the outer peripheral surface of the outer tube j, and the downstream end of the rectifying plate k is positioned downstream of the downstream end of the outer peripheral surface of the outer tube j. Yes. The outer tube j passes through one wall surface of the rectifying plate k, and its tip is fixed to the inner peripheral surface of the other wall surface of the rectifying plate k.

各二流体ノズル管hの内管には、脱硝装置入口ダクトb外部でそれぞれアンモニア水配管eに接続され、外管には、同様に脱硝装置入口ダクトb外部で、それぞれ噴霧空気配管fが接続されている。さらに、外装管jには、脱硝装置入口ダクトb外部で、それぞれパージ空気配管gが接続されている。   The inner pipe of each two-fluid nozzle pipe h is connected to an ammonia water pipe e outside the denitration apparatus inlet duct b, and the outer pipe is connected to the atomizing air pipe f similarly outside the denitration apparatus inlet duct b. Has been. Further, a purge air pipe g is connected to the exterior pipe j outside the denitration apparatus inlet duct b.

ボイラ節炭器出口からの排ガスaは、脱硝装置入口ダクトbにて二流体ノズル管hの先端の吹出し孔によりアンモニア水を噴霧される。排ガスaは、噴霧されたアンモニア水の蒸発に要する距離を経た後、脱硝反応器cへ流入し、脱硝触媒d上で脱硝反応を行う。脱硝反応によりNOxを除去処理された排ガスが脱硝反応器cより排出される。   Exhaust gas a from the boiler economizer outlet is sprayed with ammonia water through a blowout hole at the tip of the two-fluid nozzle tube h in the denitration device inlet duct b. The exhaust gas a passes through a distance required for evaporation of the sprayed ammonia water, and then flows into the denitration reactor c to perform a denitration reaction on the denitration catalyst d. The exhaust gas from which NOx has been removed by the denitration reaction is discharged from the denitration reactor c.

アンモニア水は、脱硝装置出口のNOx分析計により必要な量が計算され、二流体ノズル管hの先端部の吹出し孔を経て脱硝装置入口ダクトb内に注入される。このとき、アンモニア水は、その蒸発を促進するために、外管に供給される噴霧空気により、ノズル先端部の吹出し孔で霧滴状態となって脱硝装置入口ダクトb内に注入される。二流体ノズル管hおよびノズル先端部は外装管jにて覆われているので直接排ガスに曝されることはない。   A necessary amount of the ammonia water is calculated by a NOx analyzer at the outlet of the denitration apparatus, and is injected into the denitration apparatus inlet duct b through the blowout hole at the tip of the two-fluid nozzle tube h. At this time, the ammonia water is injected into the denitration apparatus inlet duct b by the sprayed air supplied to the outer tube in a mist droplet state at the outlet hole of the nozzle in order to promote the evaporation. Since the two-fluid nozzle tube h and the nozzle tip are covered with the outer tube j, they are not directly exposed to the exhaust gas.

外装管jへは、ボイラ押込み空気ファンからの一部の空気若しくは専用ファン等から送られる空気が、パージ空気配管gを経由してパージ空気として供給され、前記開口から脱硝装置入口ダクトb内にアンモニア水と共に注入される。このパージ空気は、図示されていない加熱手段により、100℃以上に加熱されている。   A part of the air from the boiler pushing air fan or air sent from the dedicated fan or the like is supplied to the outer tube j as purge air through the purge air pipe g, and the denitration apparatus inlet duct b is supplied from the opening. Injected with ammonia water. This purge air is heated to 100 ° C. or higher by a heating means (not shown).

脱硝装置入口ダクトbにおける排ガスaは、外装管jに設置された整流板kにより、二流体ノズル噴射方向と平行な流れを保つように整流される。アンモニア水は整流板kを通過した排ガスと平行する方向に、二流体ノズル管hの吹出し孔から正確に下流に向けて噴射されるから、アンモニア水蒸発後においても排ガス中のアンモニアの偏在が抑制される。   The exhaust gas a in the denitration device inlet duct b is rectified by a rectifying plate k installed in the outer tube j so as to keep a flow parallel to the two-fluid nozzle injection direction. Ammonia water is injected accurately downstream from the outlet of the two-fluid nozzle pipe h in a direction parallel to the exhaust gas that has passed through the rectifying plate k, so that uneven distribution of ammonia in the exhaust gas is suppressed even after the ammonia water has evaporated. Is done.

また、整流板kにより二流体ノズル管先端部周辺における排ガス流れの逆流が抑制されるために、排ガス乱流による酸性硫安生成も防止される。   In addition, since the backflow of the exhaust gas flow around the tip of the two-fluid nozzle tube is suppressed by the rectifying plate k, acid ammonium sulfate generation due to exhaust gas turbulence is also prevented.

更に、外装管jの存在により、アンモニア水を噴霧する二流体ノズルに常に高温排ガスを供給可能となり、高温排ガスを供給することでアンモニア水の蒸発時間を短縮でき、結果としてダクト長さ或いは装置全体のコンパクト化が可能である。   Furthermore, the presence of the outer tube j makes it possible to always supply high-temperature exhaust gas to the two-fluid nozzle that sprays ammonia water, and by supplying the high-temperature exhaust gas, the evaporation time of the ammonia water can be shortened. Can be made compact.

本実施の形態によれば、ボイラ出口からの排ガスaは、二流体ノズル管hを覆う外装管jに設置された整流板kにより整流され、この整流された排ガスaに対し二流体ノズル管hからアンモニア水が噴霧される。排ガスa中に噴霧されたアンモニア水は整流された排ガスa中にて蒸発後、下流の脱硝触媒dへと流れることから、逆流による外装管jへの酸性硫安付着を防止できる。   According to the present embodiment, the exhaust gas a from the boiler outlet is rectified by the rectifying plate k installed in the outer tube j covering the two-fluid nozzle tube h, and the two-fluid nozzle tube h with respect to the rectified exhaust gas a. Ammonia water is sprayed from. Since the ammonia water sprayed in the exhaust gas a evaporates in the rectified exhaust gas a and flows to the downstream denitration catalyst d, it is possible to prevent acid ammonium sulfate from adhering to the outer tube j due to the reverse flow.

また、二流体ノズル管h周辺に充分な排ガスが供給されることから短時間でのアンモニア水蒸発が可能となり、アンモニア水直接噴霧システム設置におけるスペース制約問題を解消できる。
(第2の実施の形態) 本発明の第2の実施の形態を、図2を用いて説明する。本実施の形態が前記第1の実施の形態と異なるのは、円筒状の整流板kの上流端に、整流板kを塞ぐように、円板状の多孔板lが設置されている点であり、他の構成は前記第1の実施の形態と同じであるので説明を省略する。
In addition, since sufficient exhaust gas is supplied around the two-fluid nozzle tube h, ammonia water can be evaporated in a short time, and the space restriction problem in installing the ammonia water direct spray system can be solved.
Second Embodiment A second embodiment of the present invention will be described with reference to FIG. The present embodiment is different from the first embodiment in that a disc-shaped perforated plate l is installed at the upstream end of the cylindrical rectifying plate k so as to close the rectifying plate k. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

本実施の形態においては、多孔板lは、整流板kの断面の形状をし、同じ大きさの6個の孔が円周方向に均等に分散配置されている。これら6個の孔は、整流板kの断面中心からの半径方向距離が同じ位置に、かつ、二流体ノズル管hの軸線に対し、対称に配置されている。また、整流板kの内径を2R、多孔板lの孔の径をdとしたとき、d/Rは、約0.45としてある。   In the present embodiment, the perforated plate 1 has a cross-sectional shape of the rectifying plate k, and six holes of the same size are uniformly distributed in the circumferential direction. These six holes are arranged symmetrically with respect to the axis of the two-fluid nozzle tube h at the same radial distance from the cross-sectional center of the current plate k. Further, d / R is about 0.45 where the inner diameter of the rectifying plate k is 2R and the diameter of the hole of the porous plate 1 is d.

脱硝装置入口ダクトbに流入する排ガス中の偏流影響が大きい場合、整流板kの上流端に多孔板lを設けることにより、排ガスの偏流影響を低減し、アンモニア水蒸発後の排ガス中のアンモニアの偏在が抑制される。   When the drift effect in the exhaust gas flowing into the denitration apparatus inlet duct b is large, the drift effect of the exhaust gas is reduced by providing the porous plate 1 at the upstream end of the rectifying plate k, and the ammonia in the exhaust gas after the ammonia water evaporation is reduced. Uneven distribution is suppressed.

孔の径、数、配置は、本実施の形態の孔の径、数、配置に限らず、排ガス中の偏流の程度に応じて適宜選定することが望ましい。   The diameter, number, and arrangement of the holes are not limited to the diameter, number, and arrangement of the holes in the present embodiment, and are preferably selected as appropriate according to the degree of drift in the exhaust gas.

本発明の第1の実施の形態に係る排煙脱硝装置の断面図である。It is sectional drawing of the flue gas denitration apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る排煙脱硝装置の断面図である。It is sectional drawing of the flue gas denitration apparatus which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

a ボイラ排ガス
b 脱硝装置入口ダクト
c 脱硝装置
d 脱硝触媒
e アンモニア水配管
f 噴霧空気配管
g パージ空気配管
h 二流体ノズル管
j 外装管
k 整流板
l 多孔板
a boiler exhaust gas b denitration device inlet duct c denitration device d denitration catalyst e ammonia water piping f spraying air piping g purge air piping h two-fluid nozzle tube j exterior tube k current plate l porous plate

Claims (3)

ボイラ排ガス中に気体を用いてアンモニア水を噴霧する二流体ノズル管と、アンモニアを含む排ガスを通過させて脱硝反応を行わせる脱硝触媒とを有してなり、前記二流体ノズル管は、該二流体ノズル管の吹出し孔に対向する箇所に噴霧を通過させる開口を備えた外装管に内装され、前記外装管には、パージ空気が供給されるとともにその周囲を流れる排ガスを整流する整流板が装着されている排煙脱硝装置。   The two-fluid nozzle tube includes a two-fluid nozzle tube that sprays ammonia water using gas in the boiler exhaust gas, and a denitration catalyst that causes the exhaust gas containing ammonia to pass through to perform a denitration reaction. Built in an outer tube with an opening that allows spray to pass through the location facing the outlet of the fluid nozzle tube, the outer tube is equipped with a rectifying plate that supplies purge air and rectifies the exhaust gas flowing around it A flue gas denitration device. 請求項1に記載の排煙脱硝装置において、前記整流板は、円筒状に形成され、その軸線を排ガスの流れ方向に一致させ、前記吹出し孔と同心に前記外装管に装着されているとともに、その内径は前記外装管の外径よりも大きく、その軸線方向の長さは前記外装管の外径よりも大きいことを特徴とする排煙脱硝装置。   In the flue gas denitration device according to claim 1, the rectifying plate is formed in a cylindrical shape, and its axis is aligned with the flow direction of the exhaust gas, and is attached to the outer tube concentrically with the blowout hole, The flue gas denitration apparatus characterized in that the inner diameter is larger than the outer diameter of the outer tube and the axial length thereof is larger than the outer diameter of the outer tube. 請求項2に記載の排煙脱硝装置において、前記円筒状の整流板の上流端に、複数の開口を設けた多孔板が、整流板の上流側開口を塞ぐように装着されていることを特徴とする排煙脱硝装置。
3. The flue gas denitration apparatus according to claim 2, wherein a perforated plate provided with a plurality of openings is mounted at an upstream end of the cylindrical rectifying plate so as to close the upstream opening of the rectifying plate. A flue gas denitration device.
JP2006094542A 2006-03-30 2006-03-30 Flue gas denitration equipment Expired - Fee Related JP5170974B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006094542A JP5170974B2 (en) 2006-03-30 2006-03-30 Flue gas denitration equipment
PCT/JP2007/051994 WO2007116602A1 (en) 2006-03-30 2007-02-06 Flue gas denitration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094542A JP5170974B2 (en) 2006-03-30 2006-03-30 Flue gas denitration equipment

Publications (2)

Publication Number Publication Date
JP2007268355A true JP2007268355A (en) 2007-10-18
JP5170974B2 JP5170974B2 (en) 2013-03-27

Family

ID=38580905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094542A Expired - Fee Related JP5170974B2 (en) 2006-03-30 2006-03-30 Flue gas denitration equipment

Country Status (2)

Country Link
JP (1) JP5170974B2 (en)
WO (1) WO2007116602A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046579A (en) * 2008-08-20 2010-03-04 Babcock Hitachi Kk Flue gas denitrizer
KR100986358B1 (en) * 2008-04-03 2010-10-08 현대자동차주식회사 Exhaust Pipe With NOx Selective Catalytic Reduction
JP2012011316A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
EP2444144A1 (en) * 2009-06-17 2012-04-25 Mitsubishi Heavy Industries, Ltd. System for removing mercury and method of removing mercury from mercury-containing high-temperature discharge gas
EP2444143A1 (en) * 2009-06-17 2012-04-25 Mitsubishi Heavy Industries, Ltd. System for removing mercury and method of removing mercury from mercury-containing high-temperature discharge gas
JP2017124398A (en) * 2017-02-20 2017-07-20 三菱日立パワーシステムズ株式会社 Nozzle cleaning device
JP2017150790A (en) * 2016-02-26 2017-08-31 三菱日立パワーシステムズ株式会社 Exhaust duct and boiler, and method of removing solid particulate
CN109821415A (en) * 2019-02-20 2019-05-31 山东莱钢永锋钢铁有限公司 A kind of coal-burning boiler SCR denitrating flue gas two-fluid heat gun system
CN113559705A (en) * 2021-08-05 2021-10-29 西安热工研究院有限公司 Drainage type SCR denitration urea direct injection system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014230A (en) * 2014-06-20 2014-09-03 北京中冶隆生环保科技发展有限公司 Wet flue gas denitration process
CN108714367B (en) * 2018-06-12 2021-03-02 辽宁基伊能源科技有限公司 Online autocatalytic denitration device for sintering smoke
JP7261019B2 (en) * 2019-01-21 2023-04-19 三菱重工業株式会社 Denitration equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144928U (en) * 1984-03-07 1985-09-26 バブコツク日立株式会社 Ammonia injection nozzle structure for exhaust gas denitrification equipment
JPS63283726A (en) * 1987-05-13 1988-11-21 Mitsubishi Heavy Ind Ltd Gas denitration device by ammonia reduction
JPH04118025A (en) * 1990-09-06 1992-04-20 Babcock Hitachi Kk Device for supplying ammonia to denitrifying device
JPH09225259A (en) * 1996-02-22 1997-09-02 Hitachi Zosen Corp Spray nozzle device in refuse disposal equipment
JPH09313891A (en) * 1996-05-29 1997-12-09 Babcock Hitachi Kk Ammonia injection device for waste gas denitrification device
JPH11300164A (en) * 1998-04-20 1999-11-02 Mitsubishi Heavy Ind Ltd Boiler plant having denitration device, and denitration method
JPH11333252A (en) * 1998-05-29 1999-12-07 Babcock Hitachi Kk Apparatus for denitrating exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144928U (en) * 1984-03-07 1985-09-26 バブコツク日立株式会社 Ammonia injection nozzle structure for exhaust gas denitrification equipment
JPS63283726A (en) * 1987-05-13 1988-11-21 Mitsubishi Heavy Ind Ltd Gas denitration device by ammonia reduction
JPH04118025A (en) * 1990-09-06 1992-04-20 Babcock Hitachi Kk Device for supplying ammonia to denitrifying device
JPH09225259A (en) * 1996-02-22 1997-09-02 Hitachi Zosen Corp Spray nozzle device in refuse disposal equipment
JPH09313891A (en) * 1996-05-29 1997-12-09 Babcock Hitachi Kk Ammonia injection device for waste gas denitrification device
JPH11300164A (en) * 1998-04-20 1999-11-02 Mitsubishi Heavy Ind Ltd Boiler plant having denitration device, and denitration method
JPH11333252A (en) * 1998-05-29 1999-12-07 Babcock Hitachi Kk Apparatus for denitrating exhaust gas

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986358B1 (en) * 2008-04-03 2010-10-08 현대자동차주식회사 Exhaust Pipe With NOx Selective Catalytic Reduction
JP2010046579A (en) * 2008-08-20 2010-03-04 Babcock Hitachi Kk Flue gas denitrizer
JPWO2010146671A1 (en) * 2009-06-17 2012-11-29 三菱重工業株式会社 Mercury removal system and mercury removal method for mercury-containing high-temperature exhaust gas
EP2444144A1 (en) * 2009-06-17 2012-04-25 Mitsubishi Heavy Industries, Ltd. System for removing mercury and method of removing mercury from mercury-containing high-temperature discharge gas
EP2444143A1 (en) * 2009-06-17 2012-04-25 Mitsubishi Heavy Industries, Ltd. System for removing mercury and method of removing mercury from mercury-containing high-temperature discharge gas
JPWO2010146670A1 (en) * 2009-06-17 2012-11-29 三菱重工業株式会社 Mercury removal system and mercury removal method for mercury-containing high-temperature exhaust gas
EP2444144A4 (en) * 2009-06-17 2013-07-24 Mitsubishi Heavy Ind Ltd System for removing mercury and method of removing mercury from mercury-containing high-temperature discharge gas
EP2444143A4 (en) * 2009-06-17 2013-07-24 Mitsubishi Heavy Ind Ltd System for removing mercury and method of removing mercury from mercury-containing high-temperature discharge gas
JP5456038B2 (en) * 2009-06-17 2014-03-26 三菱重工業株式会社 Mercury removal system and mercury removal method for mercury-containing high-temperature exhaust gas
JP2012011316A (en) * 2010-06-30 2012-01-19 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
JP2017150790A (en) * 2016-02-26 2017-08-31 三菱日立パワーシステムズ株式会社 Exhaust duct and boiler, and method of removing solid particulate
JP2017124398A (en) * 2017-02-20 2017-07-20 三菱日立パワーシステムズ株式会社 Nozzle cleaning device
CN109821415A (en) * 2019-02-20 2019-05-31 山东莱钢永锋钢铁有限公司 A kind of coal-burning boiler SCR denitrating flue gas two-fluid heat gun system
CN109821415B (en) * 2019-02-20 2023-12-08 山东莱钢永锋钢铁有限公司 SCR flue gas denitration double-fluid heating spray gun system of coal-fired boiler
CN113559705A (en) * 2021-08-05 2021-10-29 西安热工研究院有限公司 Drainage type SCR denitration urea direct injection system

Also Published As

Publication number Publication date
WO2007116602A1 (en) 2007-10-18
JP5170974B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5170974B2 (en) Flue gas denitration equipment
US9453444B2 (en) Device for distributing fluids in exhaust systems
US9810123B2 (en) Exhaust gas aftertreatment device with injection section
US8173088B2 (en) Method, system and apparatus for liquid injection into a gas system
US9617895B2 (en) Device for exhaust-gas purification and motor vehicle having the device
JP4519173B2 (en) Device for supplying a liquid medium in an exhaust gas conduit of an internal combustion engine
JP5791569B2 (en) Exhaust system
US10188994B2 (en) Method, apparatus and system for aftertreatment of exhaust gas
JP2005127271A (en) Urea water vaporizer
US9249708B2 (en) Nozzle arrangement
JP6108427B2 (en) Urea water injection nozzle
US11767783B2 (en) System for mixing a liquid spray into a gaseous flow and exhaust aftertreatment device comprising same
WO2015164356A1 (en) Perforated mixing pipe with swirler
FI125946B (en) Exhaust after-treatment device
US10066526B2 (en) Exhaust gas line section for supplying liquid additive
US8096701B2 (en) Method and apparatus for mixing a gaseous fluid with a large gas stream, especially for introducing a reducing agent into a flue gas containing nitrogen oxides
KR20210113676A (en) Device for supplying chemical reactants to the exhaust system of an internal combustion engine
CN105561783A (en) Novel vortex street strong-mixing ammonia spraying device
JP2008075603A (en) Structure of liquid reducer jetting nozzle
JP4264792B2 (en) Exhaust gas cooling device
JP2731384B2 (en) Water injection cooling device
CN208627647U (en) A kind of protection sleeve pipe of spray gun tail end
RU2796611C2 (en) Device for supplying chemical reagent into exhaust gas flow of internal combustion engine
CN110073083B (en) Exhaust gas aftertreatment device for a motor vehicle
JP2016109004A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5170974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees