JP6784159B2 - Manufacturing method of insulated wire and preparation method of replenishing paint used for it - Google Patents

Manufacturing method of insulated wire and preparation method of replenishing paint used for it Download PDF

Info

Publication number
JP6784159B2
JP6784159B2 JP2016235827A JP2016235827A JP6784159B2 JP 6784159 B2 JP6784159 B2 JP 6784159B2 JP 2016235827 A JP2016235827 A JP 2016235827A JP 2016235827 A JP2016235827 A JP 2016235827A JP 6784159 B2 JP6784159 B2 JP 6784159B2
Authority
JP
Japan
Prior art keywords
paint
coating material
neutralizing agent
wire
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016235827A
Other languages
Japanese (ja)
Other versions
JP2018092812A (en
Inventor
研 林井
研 林井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016235827A priority Critical patent/JP6784159B2/en
Publication of JP2018092812A publication Critical patent/JP2018092812A/en
Application granted granted Critical
Publication of JP6784159B2 publication Critical patent/JP6784159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

本発明は、絶縁電線の製造方法及びそれに用いる補充塗料の調製方法に関する。 The present invention relates to a method for manufacturing an insulated electric wire and a method for preparing a supplementary coating material used therein.

導線を絶縁被覆層で被覆した絶縁電線の製造方法として、導線を電着塗料に連続的に通して表面を電着塗装した後、その電着塗装した導線を加熱して表面に電着塗装による塗膜を焼き付けることにより絶縁被覆層を形成することが知られている。そして、かかる絶縁電線の製造方法において用いる電着塗料として、例えば、特許文献1には、帯電樹脂粒子としてのブロック共重合ポリイミド樹脂粒子と、それが有するアニオン性基を中和する中和剤としての塩基性化合物とを含有する分散液が開示されている。 As a method for manufacturing an insulated wire in which a wire is coated with an insulating coating layer, the wire is continuously passed through an electrodeposition coating to be electrodeposited on the surface, and then the electrodeposited wire is heated and the surface is electrodeposited. It is known that an insulating coating layer is formed by baking a coating film. Then, as an electrodeposition coating material used in the method for manufacturing such an insulated electric wire, for example, in Patent Document 1, as a block copolymerized polyimide resin particle as a charged resin particle and a neutralizing agent for neutralizing an anionic group contained therein. A dispersion containing the basic compound of the above is disclosed.

特開2015−156378号公報Japanese Unexamined Patent Publication No. 2015-156378

ところで、図7に示すように、導線11’を電着塗料P’に連続的に通して表面を電着塗装する場合、電着塗料P’に含まれる帯電樹脂粒子が消費されるため、電着塗装を行いながら、補充塗料SP’の補充を行う必要がある。このとき、電着塗装では基本的に中和剤n’は消費されないので、初期に仕込んだ電着塗料P’を濃縮した補充塗料SP’を補充したのでは、電着塗料P’における中和剤n’の濃度が上昇し、それによって導線11’への帯電樹脂粒子の析出が阻害されて外観不良を生じるという問題がある。 By the way, as shown in FIG. 7, when the conductive wire 11'is continuously passed through the electrodeposition coating material P'and the surface is electrodeposited, the charged resin particles contained in the electrodeposition coating material P'are consumed, so that electricity is applied. It is necessary to replenish the replenishing paint SP'while performing the painting. At this time, since the neutralizing agent n'is basically not consumed in the electrodeposition coating, if the replenishing paint SP'concentrated with the electrodeposition coating P'prepared at the initial stage is replenished, the neutralizing in the electrodeposition coating P' There is a problem that the concentration of the agent n'is increased, which hinders the precipitation of charged resin particles on the lead wire 11'and causes a poor appearance.

本発明の課題は、電着塗料への補充塗料の補充に起因した電着塗装での外観不良を抑制することである。 An object of the present invention is to suppress appearance defects in electrodeposition coating due to replenishment of replenishment paint to electrodeposition coating.

本発明は、導線を塗料槽に入れた電着塗料に連続的に通して前記導線の表面を電着塗装した後、前記電着塗装した前記導線を加熱して前記導線の表面に前記電着塗装による塗膜を焼き付けて絶縁被覆層を形成する絶縁電線の製造方法であって、前記電着塗料は、帯電樹脂粒子と、前記帯電樹脂粒子が有する電荷の逆電荷に帯電する中和剤とを含有する分散液であり、前記導線を前記電着塗料に通過させながら、前記塗料槽に、前記帯電樹脂粒子及び前記中和剤を含有する元塗料を希釈した後に前記中和剤を減量して調製した補充塗料を補充する。 In the present invention, the conductor is continuously passed through an electrodeposition paint placed in a coating tank to electrodeposit the surface of the conductor, and then the electrodeposited wire is heated to electrodeposit on the surface of the conductor. A method for manufacturing an insulating electric wire for forming an insulating coating layer by baking a coating film by painting, wherein the electrodeposition coating material contains charged resin particles and a neutralizing agent that charges the reverse charge of the charge of the charged resin particles. The neutralizing agent is reduced after diluting the charged resin particles and the original coating material containing the neutralizing agent in the coating tank while passing the lead wire through the electrodeposition coating material. Replenish the replenishment paint prepared in the above.

本発明は、連続的に電着塗装する際に電着塗料に補充する補充塗料の調製方法であって、前記電着塗料は、帯電樹脂粒子と、前記帯電樹脂粒子が有する電荷の逆電荷に帯電する中和剤とを含有する分散液であり、前記帯電樹脂粒子及び前記中和剤を含有する元塗料を希釈した後に前記中和剤を減量する。 The present invention is a method for preparing a replenishing paint to be replenished with an electrodeposition paint during continuous electrodeposition coating, wherein the electrodeposition paint is a reverse charge of a charged resin particle and a charge possessed by the charged resin particle. It is a dispersion liquid containing a chargeable neutralizing agent, and the amount of the neutralizing agent is reduced after diluting the charged resin particles and the original coating material containing the neutralizing agent.

本発明によれば、元塗料から中和剤を減量して調製した補充塗料を塗料槽に補充するので、補充塗料が補充された電着塗料における中和剤の濃度が高くなりすぎるのを抑えることができ、それによって電着塗料への補充塗料の補充に起因した電着塗装での外観不良を抑制することができる。 According to the present invention, the replenishing paint prepared by reducing the amount of the neutralizing agent from the original paint is replenished in the paint tank, so that the concentration of the neutralizing agent in the electrodeposition paint replenished with the replenishing paint is suppressed from becoming too high. This makes it possible to suppress appearance defects in electrodeposition coating due to replenishment of the replenishment paint to the electrodeposition paint.

絶縁電線の斜視図である。It is a perspective view of an insulated wire. 他の絶縁電線の斜視図である。It is a perspective view of another insulated wire. 実施形態に係る絶縁電線の製造方法の工程順を示す図である。It is a figure which shows the process order of the manufacturing method of the insulated electric wire which concerns on embodiment. 絶縁被覆工程を示す図である。It is a figure which shows the insulation coating process. 電着塗料への補充塗料の補充を示す説明図である。It is explanatory drawing which shows the replenishment of the replenishment paint to the electrodeposition paint. 元塗料から補充塗料の調製を示す説明図である。It is explanatory drawing which shows the preparation of the supplementary paint from the original paint. 元塗料から希釈塗料を経由する補充塗料の調製を示す説明図である。It is explanatory drawing which shows the preparation of the replenishing paint which goes from the original paint to the diluted paint. 従来の電着塗料への補充塗料の補充を示す説明図である。It is explanatory drawing which shows the replenishment of the replenishment paint to the conventional electrodeposition paint.

以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.

(絶縁電線10)
図1A及び1Bは、実施形態に係る製造方法で製造する絶縁電線10を示す。絶縁電線10は、図1Aに示すように上下面及び両側面が平坦面に形成された断面形状が扁平な矩形のものであっても、また、図1Bに示すように上下面が平坦面に形成され且つ両側面が外側に膨出した曲面に形成された断面形状が扁平なものであっても、どちらでもよい。これらの絶縁電線10は、例えば、電気・電子機器分野における電子基板上に実装されるコイル、ノイズフィルタ、インダクタ、リアクトル等に用いられるものである。
(Insulated wire 10)
1A and 1B show an insulated wire 10 manufactured by the manufacturing method according to the embodiment. Even if the insulated wire 10 has a rectangular cross-sectional shape in which the upper and lower surfaces and both side surfaces are flat as shown in FIG. 1A, the upper and lower surfaces are flat as shown in FIG. 1B. It does not matter whether the cross-sectional shape formed on the curved surface formed and the both side surfaces bulge outward is flat. These insulated wires 10 are used, for example, in coils, noise filters, inductors, reactors and the like mounted on electronic substrates in the field of electrical and electronic equipment.

絶縁電線10は、扁平な断面形状を有する平角導線11と、その外周面を被覆する絶縁被覆層12とを備える。 The insulated wire 10 includes a flat conducting wire 11 having a flat cross-sectional shape and an insulating coating layer 12 that covers the outer peripheral surface thereof.

平角導線11は、例えば純度4N以上の高純度銅で形成されている。平角導線11の厚さは例えば0.01mm以上1mm以下、及び幅は例えば0.2mm以上4.0mm以下である。 The flat lead wire 11 is made of, for example, high-purity copper having a purity of 4N or more. The thickness of the flat lead wire 11 is, for example, 0.01 mm or more and 1 mm or less, and the width is, for example, 0.2 mm or more and 4.0 mm or less.

絶縁被覆層12は樹脂で形成されている。絶縁被覆層12は、単一処理層で構成されていることが好ましい。絶縁被覆層12の厚さは例えば1.5μm以上30μm以下である。 The insulating coating layer 12 is made of resin. The insulating coating layer 12 is preferably composed of a single treated layer. The thickness of the insulating coating layer 12 is, for example, 1.5 μm or more and 30 μm or less.

(絶縁電線10の製造方法)
実施形態に係る絶縁電線10の製造方法は、図2に示すように、伸線加工工程、冷間加工工程、焼鈍工程、油分除去工程、及び絶縁被覆工程を含む。なお、これらの工程は、それぞれの工程をバッチ式で行ってもよく、また、全ての工程を連続式で行ってもよく、更には、例えば伸線加工工程及び冷間加工工程を連続式で行った後、焼鈍工程のみをバッチ式で行い、それ以降の油分除去工程及び絶縁被覆工程を連続式で行う場合のようにバッチ式と連続式とを組み合わせて行ってもよい。
(Manufacturing method of insulated wire 10)
As shown in FIG. 2, the method for manufacturing the insulated wire 10 according to the embodiment includes a wire drawing step, a cold machining step, an annealing step, an oil removal step, and an insulation coating step. In these steps, each step may be performed in a batch manner, all steps may be carried out in a continuous manner, and for example, a wire drawing step and a cold working step may be carried out in a continuous manner. After that, only the annealing step may be performed by the batch method, and the batch method and the continuous method may be combined as in the case where the subsequent oil removal step and the insulation coating step are continuously performed.

<伸線加工工程>
伸線加工工程では、母線としての荒引線を細径化して横断面が円形の丸線に伸線加工する。伸線加工としては、一般的には、荒引線を伸線ダイスに通す加工が挙げられる。荒引線の外径は例えば8.0mmであり、伸線後の丸線の外径は例えば0.05mm以上0.2mm以下である。なお、伸線加工は通常は多段階で行い、例えば、まず外径が8.0mmの荒引き線を外径が2.6mm以上3.2mm以下となるように伸線し、次いで0.6mm以上0.8mm以下となるように伸線し、更に0.05mm以上0.2mm以下となるように伸線する。
<Wire drawing process>
In the wire drawing process, the rough drawn wire as a bus is reduced in diameter and drawn into a round wire having a circular cross section. The wire drawing process generally includes a process of passing a rough drawn wire through a wire drawing die. The outer diameter of the rough drawn wire is, for example, 8.0 mm, and the outer diameter of the round wire after drawing is, for example, 0.05 mm or more and 0.2 mm or less. The wire drawing process is usually performed in multiple steps. For example, a rough drawn wire having an outer diameter of 8.0 mm is first drawn so that the outer diameter is 2.6 mm or more and 3.2 mm or less, and then 0.6 mm. The wire is drawn so as to be 0.8 mm or more and 0.8 mm or less, and further drawn so as to be 0.05 mm or more and 0.2 mm or less.

<冷間加工工程>
冷間加工工程では、伸線工程で伸線した丸線を、外周面に平行な一対の平坦面を含む平角導線11に冷間加工する。冷間加工としては、例えば、丸線を圧延機のローラー間に通す圧延加工、丸線をダイスに通す加工等が挙げられる。図1Aに示すような上下面及び両側面が平坦面に形成された断面形状が扁平な矩形の絶縁電線10を製造する場合、丸線を厚さ方向及び幅方向のそれぞれで圧延加工することにより同様の断面形状の平角導線11を得ることができる。また、図1Bに示すような上下面が平坦面に形成され且つ両側面が外側に膨出した曲面に形成された断面形状が扁平の絶縁電線10を製造する場合、丸線を厚さ方向で圧延加工することにより同様の断面形状の平角導線11を得ることができる。
<Cold processing process>
In the cold working step, the round wire drawn in the wire drawing step is cold-worked into a flat conducting wire 11 including a pair of flat surfaces parallel to the outer peripheral surface. Examples of the cold processing include rolling processing in which a round wire is passed between rollers of a rolling mill, processing in which a round wire is passed through a die, and the like. When manufacturing a rectangular insulated wire 10 having a flat cross-sectional shape with upper and lower surfaces and both side surfaces formed as flat surfaces as shown in FIG. 1A, the round wire is rolled in each of the thickness direction and the width direction. A flat lead wire 11 having a similar cross-sectional shape can be obtained. Further, in the case of manufacturing an insulated wire 10 having a flat upper and lower surfaces and a curved surface having both side surfaces bulging outward as shown in FIG. 1B, the round wire is formed in the thickness direction. A flat lead wire 11 having a similar cross-sectional shape can be obtained by rolling.

<焼鈍工程>
焼鈍工程では、熱処理により、平角導線11を形成する金属の結晶粒度や0.2%耐力等の物性調整を行う。この焼鈍工程での熱処理は、長さ方向の特性を均一化させる観点からはバッチ式で行うことが好ましく、その場合、冷間加工工程後の平角導線11を巻回したボビンを熱処理炉に投入後、所定の昇温速度で炉内の温度を所定の保持温度まで高め、その保持温度で所定の保持時間を保持した後、所定の降温速度で炉内の温度を低下させることが好ましい。ここで、昇温速度は例えば20℃/h以上2000℃/h以下である。保持温度(焼鈍温度)は例えば150℃以上1000℃以下である。保持時間(焼鈍時間)は例えば1秒以上100時間以下である。降温速度は例えば10℃/h以上2000℃/h以下である。また、熱処理を連続式で行う場合、熱処理条件は、例えば焼鈍温度500℃以上900℃以下及び焼鈍時間1秒以上60秒以下である。熱処理は、窒素ガス等の不活性ガス雰囲気で行うことが好ましい。
<Annealing process>
In the annealing step, physical properties such as the crystal grain size and 0.2% proof stress of the metal forming the flat lead wire 11 are adjusted by heat treatment. The heat treatment in this annealing step is preferably performed by a batch method from the viewpoint of making the characteristics in the length direction uniform. In that case, the bobbin wound with the flat wire 11 after the cold working step is put into the heat treatment furnace. After that, it is preferable to raise the temperature in the furnace to a predetermined holding temperature at a predetermined temperature rising rate, hold a predetermined holding time at the holding temperature, and then lower the temperature in the furnace at a predetermined temperature lowering rate. Here, the heating rate is, for example, 20 ° C./h or more and 2000 ° C./h or less. The holding temperature (annealing temperature) is, for example, 150 ° C. or higher and 1000 ° C. or lower. The holding time (annealing time) is, for example, 1 second or more and 100 hours or less. The temperature lowering rate is, for example, 10 ° C./h or more and 2000 ° C./h or less. When the heat treatment is performed continuously, the heat treatment conditions are, for example, an annealing temperature of 500 ° C. or higher and 900 ° C. or lower, and an annealing time of 1 second or longer and 60 seconds or lower. The heat treatment is preferably performed in an atmosphere of an inert gas such as nitrogen gas.

<油分除去工程>
油分除去工程では、平角導線11の外周面に付着した油分を洗浄除去する。この油分除去工程での洗浄は、例えば、平角導線11を洗浄液に浸漬して引き上げた後、窒素ガス等の不活性ガスを吹き付けて平角導線11の外周面に付着した洗浄液を飛散させることにより行うことができる。ここで、洗浄液としては、例えば、水(温水)、有機溶剤等が挙げられる。洗浄液を水とする場合、水温は例えば10℃以上60℃以下である。洗浄液には洗剤を含めてもよい。
<Oil removal process>
In the oil component removing step, the oil component adhering to the outer peripheral surface of the flat wire 11 is washed and removed. The cleaning in this oil removal step is performed, for example, by immersing the flat lead wire 11 in a cleaning solution, pulling it up, and then spraying an inert gas such as nitrogen gas to scatter the cleaning solution adhering to the outer peripheral surface of the flat lead wire 11. be able to. Here, examples of the cleaning liquid include water (warm water), an organic solvent, and the like. When the cleaning liquid is water, the water temperature is, for example, 10 ° C. or higher and 60 ° C. or lower. Detergent may be included in the cleaning liquid.

<絶縁被覆工程>
絶縁被覆工程では、図3に示すように、平角導線11を塗料槽21に入れた電着塗料Pに連続的に通して平角導線11の表面を電着塗装した後、その電着塗装した平角導線11を焼付炉22に通して加熱することにより平角導線11の表面に電着塗装による塗膜を焼き付けて絶縁被覆層12を形成する。平角導線11の線速は例えば5m/min以上40m/min以下である。
<Insulation coating process>
In the insulation coating step, as shown in FIG. 3, the flat conductor wire 11 is continuously passed through the electrodeposition coating material P placed in the coating tank 21, and the surface of the flat angle conductive wire 11 is electrodeposited and then electrodeposited. By passing the lead wire 11 through a baking furnace 22 and heating it, a coating film by electrodeposition coating is baked on the surface of the flat lead wire 11 to form an insulating coating layer 12. The linear velocity of the flat lead wire 11 is, for example, 5 m / min or more and 40 m / min or less.

絶縁被覆工程における電着塗装では、電着塗料Pとして、帯電樹脂粒子とその帯電樹脂粒子が有する電荷の逆電荷に帯電する中和剤とを含有するO/W型分散液を用い、平角導線11を帯電樹脂粒子が有する電荷の逆となる電極として電着塗料Pに電圧を印加することにより平角導線11の外周面に電着塗料P中の帯電樹脂粒子の塗膜を付着させる。電着塗料Pへの電圧印加は、定電流法で行っても、また、定電圧法で行っても、どちらでもよい。その印加電圧は例えば10V以上100V以下である。なお、電着塗料Pを入れた塗料槽21を隔室に収容し、低真空雰囲気(100Pa以上)或いは窒素ガス雰囲気で平角導線11の電着塗料Pへの浸漬を行ってもよい。 In the electrodeposition coating in the insulation coating step, an O / W type dispersion liquid containing charged resin particles and a neutralizing agent that charges the reverse charge of the charge of the charged resin particles is used as the electrodeposition coating material P, and a flat wire is used. By applying a voltage to the electrodeposition coating film P using 11 as an electrode opposite to the electric charge of the charged resin particles, a coating film of the charged resin particles in the electrodeposition coating film P is adhered to the outer peripheral surface of the flat conductor wire 11. The voltage applied to the electrodeposition coating material P may be applied by a constant current method or a constant voltage method. The applied voltage is, for example, 10 V or more and 100 V or less. The coating tank 21 containing the electrodeposition coating material P may be housed in a separate room, and the flat lead wire 11 may be immersed in the electrodeposition coating material P in a low vacuum atmosphere (100 Pa or more) or a nitrogen gas atmosphere.

絶縁被覆工程における塗膜焼付では、焼付温度、つまり、焼付炉22の炉内温度は、例えば200℃以上500℃以下である。焼付時間は例えば5秒以上1800秒以下である。焼付時間は、平角導線11の線速や焼付炉22の長さの設定によって調節することができる。塗膜焼付は、単一の焼付処理温度により一段階で行っても、また、相互に異なる焼付処理温度の多段階で行っても、どちらでもよい。 In the coating film baking in the insulation coating step, the baking temperature, that is, the temperature inside the baking furnace 22, is, for example, 200 ° C. or higher and 500 ° C. or lower. The baking time is, for example, 5 seconds or more and 1800 seconds or less. The baking time can be adjusted by setting the linear velocity of the flat lead wire 11 and the length of the baking furnace 22. The coating film baking may be performed in one step with a single baking treatment temperature, or may be carried out in multiple steps with different baking treatment temperatures.

実施形態に係る絶縁電線10の製造方法で用いる電着塗料Pは、上記の通り、帯電樹脂粒子とその帯電樹脂粒子が有する電荷の逆電荷に帯電する中和剤とを含有するO/W型分散液である。電着塗料Pは、帯電樹脂粒子が負電荷を有するアニオン型のものであってもよく、また、帯電樹脂粒子が正電荷を有するカチオン型のものであってもよい。 As described above, the electrodeposition coating material P used in the method for manufacturing the insulated electric wire 10 according to the embodiment is an O / W type containing charged resin particles and a neutralizing agent that charges the reverse charge of the charges of the charged resin particles. It is a dispersion liquid. The electrodeposition coating material P may be an anion type in which the charged resin particles have a negative charge, or may be a cationic type in which the charged resin particles have a positive charge.

ここで、帯電樹脂粒子を構成する樹脂としては、例えば、ポリアミドイミド樹脂、ポリエステルイミド樹脂、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、エポキシ・アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂等が挙げられる。帯電樹脂粒子を構成する樹脂は、これらのうちの1種又は2種以上を用いることが好ましく、ポリアミドイミド樹脂を用いることがより好ましい。 Here, examples of the resin constituting the charged resin particles include polyamideimide resin, polyesterimide resin, polyimide resin, acrylic resin, epoxy resin, epoxy / acrylic resin, polyurethane resin, polyester resin and the like. As the resin constituting the charged resin particles, it is preferable to use one or more of these, and it is more preferable to use a polyamide-imide resin.

中和剤としては、アニオン型の電着塗料Pの場合にはカチオンを形成する塩基性中和剤を用い、カチオン型の電着塗料Pの場合にはアニオンを形成する酸性中和剤が用いる。 As the neutralizing agent, a basic neutralizing agent that forms a cation is used in the case of the anion-type electrodeposition coating material P, and an acidic neutralizing agent that forms an anion is used in the case of the cationic electrodeposition coating material P. ..

塩基性中和剤としては、例えば、2−アミノエタノール(以下「AE」という。)、2,2’−イミノジエタノール、2−アミノ−2−メチルプロパノールなどのアミノアルコール系化合物;モルホリンなどのモルホリン系化合物;ピペラジン無水物、ピペラジン六水和物などのピペラジン系化合物;トリエチルアミン、トリプロピルアミンなどのアルキルアミン系化合物;ピペリジンなどのピペリジン系化合物等が挙げられる。塩基性中和剤は、これらのうちの1種又は2種以上を用いることが好ましく、AEを用いることがより好ましい。 Examples of the basic neutralizing agent include amino alcohol compounds such as 2-aminoethanol (hereinafter referred to as "AE"), 2,2'-iminodiethanol, and 2-amino-2-methylpropanol; morpholin such as morpholin. System compounds; Piperazine compounds such as piperazine anhydride and piperazine hexahydrate; Alkyl amine compounds such as triethylamine and tripropylamine; Piperazine compounds such as piperazine and the like can be mentioned. As the basic neutralizing agent, it is preferable to use one or more of these, and it is more preferable to use AE.

酸性中和剤としては、例えば、塩酸、酢酸、プロピオン酸、乳酸、シアノ酢酸、リン酸や硫酸などの無機酸及び有機酸等が挙げられる。酸性中和剤は、これらのうちの1種又は2種以上を用いることが好ましい。 Examples of the acid neutralizing agent include hydrochloric acid, acetic acid, propionic acid, lactic acid, cyanoacetic acid, inorganic acids such as phosphoric acid and sulfuric acid, and organic acids. As the acid neutralizer, it is preferable to use one or more of these.

電着塗料Pにおける中和剤の含有量は、帯電樹脂粒子100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは15質量部以下、より好ましくは10質量部以下である。 The content of the neutralizing agent in the electrodeposition coating material P is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 15 parts by mass or less, based on 100 parts by mass of the charged resin particles. It is preferably 10 parts by mass or less.

電着塗料Pは、分散媒として水を含有する。水は、例えばイオン交換水や蒸留水である。電着塗料Pにおける水の含有量は、好ましくは25質量%以上、より好ましくは30質量%以上であり、また、好ましくは60質量%以下、より好ましくは50質量%以下である。 The electrodeposition coating material P contains water as a dispersion medium. The water is, for example, ion-exchanged water or distilled water. The content of water in the electrodeposition coating material P is preferably 25% by mass or more, more preferably 30% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less.

電着塗料Pは、水に加えて分散媒として非プロトン性極性溶媒を含有していてもよい。「非プロトン性極性溶媒」とは、アルコールを除く極性有機溶媒である。非プロトン性極性溶媒は、極性を有することから、水に対する親和性が高く、水と混合した際に相分離することなく相溶して均一な単一相となる。電着塗料Pに含まれる非プロトン性極性溶媒は、帯電樹脂粒子に対しての良溶媒であることが必要である。非プロトン性極性溶媒としては、例えば、N−メチル−2−ピロリドン(以下「NMP」という。)、ジメチルホルムアミド(以下「DMF」という。)、ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、γ−ブチロラクトン、ジメチルスルホキシド、スルホラン、シクロヘキサノン等が挙げられる。非プロトン性極性溶媒は、これらのうちの1種又は2種以上を用いることが好ましく、N−メチル−2−ピロリドンを用いることがより好ましい。 The electrodeposition coating material P may contain an aprotic polar solvent as a dispersion medium in addition to water. The "aprotic polar solvent" is a polar organic solvent excluding alcohol. Since the aprotic polar solvent has polarity, it has a high affinity for water, and when mixed with water, it dissolves without phase separation to form a uniform single phase. The aprotic polar solvent contained in the electrodeposition coating material P needs to be a good solvent for the charged resin particles. Examples of the aprotonic polar solvent include N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”), dimethylformamide (hereinafter referred to as “DMF”), dimethylacetamide, and 1,3-dimethyl-2-imidazolidi. Non, γ-butyrolactone, dimethyl sulfoxide, sulfolane, cyclohexanone and the like can be mentioned. As the aprotic polar solvent, it is preferable to use one or more of these, and it is more preferable to use N-methyl-2-pyrrolidone.

電着塗料Pにおける非プロトン性極性溶媒の含有量は、帯電樹脂粒子100質量部に対して、好ましくは340質量部以上、より好ましくは370質量部以上であり、また、好ましくは1000質量部以下、より好ましくは850質量部以下である。分散媒における非プロトン性極性溶媒の含有量は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは40質量%以上であり、また、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは60質量%以下である。非プロトン性極性溶媒の含有量の水の含有量に対する質量比(非プロトン性極性溶媒の含有量/水の含有量)は、好ましくは10/90以上、より好ましくは20/80以上であり、また、好ましくは60/40以下、より好ましくは50/50以下である。 The content of the aprotic polar solvent in the electrodeposition coating material P is preferably 340 parts by mass or more, more preferably 370 parts by mass or more, and preferably 1000 parts by mass or less with respect to 100 parts by mass of the charged resin particles. , More preferably 850 parts by mass or less. The content of the aprotic polar solvent in the dispersion medium is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 40% by mass or more, and preferably 90% by mass or less, more preferably 90% by mass or less. It is 80% by mass or less, more preferably 60% by mass or less. The mass ratio of the content of the aprotic polar solvent to the content of water (content of the aprotic polar solvent / content of water) is preferably 10/90 or more, more preferably 20/80 or more. Further, it is preferably 60/40 or less, more preferably 50/50 or less.

電着塗料Pは着色剤を含有していてもよい。着色剤としては、例えば、C.I.ソルベントブラック3、C.I.ソルベントブラック27、C.I.ソルベントブラック7等が挙げられる。着色剤は、これらのうちの1種又は2種以上を用いることが好ましく、C.I.ソルベントブラック3を用いることがより好ましい。電着塗料Pにおける着色剤の含有量は、帯電樹脂粒子100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上であり、また、好ましくは20質量部以下、より好ましくは10質量部以下である。電着塗料Pは、その他にナフサなどの非プロトン性非極性溶媒やアルコールなどのプロトン性極性溶媒等を含有していてもよい。 The electrodeposition coating material P may contain a colorant. Examples of the colorant include C.I. I. Solvent Black 3, C.I. I. Solvent Black 27, C.I. I. Examples include Solvent Black 7. As the colorant, it is preferable to use one or more of these, and C.I. I. It is more preferable to use Solvent Black 3. The content of the colorant in the electrodeposition coating material P is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and preferably 20 parts by mass or less, more preferably, with respect to 100 parts by mass of the charged resin particles. Is 10 parts by mass or less. The electrodeposition coating material P may also contain an aprotic non-polar solvent such as naphtha, a protic polar solvent such as alcohol, and the like.

電着塗料Pの初期固形分濃度は、好ましくは0.5質量%以上、より好ましくは1.0質量%以上であり、また、好ましくは11.5質量%以下、より好ましくは11質量%以下である。なお、固形分とは、電着塗料P等を乾燥固化させた場合に残留する帯電樹脂粒子等の成分のことである。 The initial solid content concentration of the electrodeposition coating material P is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and preferably 11.5% by mass or less, more preferably 11% by mass or less. Is. The solid content is a component such as charged resin particles remaining when the electrodeposition coating material P or the like is dried and solidified.

電着塗料Pの50%径(D50:メジアン径)は、好ましくは20nm以上、より好ましくは50nm以上であり、また、好ましくは15000nm以下、より好ましくは10000nm以下である。この電着塗料Pの粒子径は、例えば大塚電子社製のゼータ電位・粒径・分子量測定システム(ELSZ−2000ZS)を用いた動的光散乱法により測定される。 The 50% diameter (D 50 : median diameter) of the electrodeposition coating material P is preferably 20 nm or more, more preferably 50 nm or more, and preferably 15,000 nm or less, more preferably 10,000 nm or less. The particle size of the electrodeposition coating material P is measured by, for example, a dynamic light scattering method using a zeta potential / particle size / molecular weight measurement system (ELSZ-2000ZS) manufactured by Otsuka Electronics Co., Ltd.

電着塗料Pの粘度は、液温20℃において、好ましくは2mPa・s以上、より好ましくは4mPa・s以上であり、また、好ましくは50mPa・s以下、より好ましくは30mPa・s以下である。この電着塗料Pの粘度はB型粘度計(100rpm)により測定される。 The viscosity of the electrodeposition coating material P is preferably 2 mPa · s or more, more preferably 4 mPa · s or more, and preferably 50 mPa · s or less, more preferably 30 mPa · s or less at a liquid temperature of 20 ° C. The viscosity of the electrodeposition coating material P is measured by a B-type viscometer (100 rpm).

電着塗料PのpHは、pHメーターにより測定され、例えば7以上9以下である。電着塗料Pの液温は例えば10〜30℃である。 The pH of the electrodeposition coating material P is measured by a pH meter and is, for example, 7 or more and 9 or less. The liquid temperature of the electrodeposition coating material P is, for example, 10 to 30 ° C.

以上の電着塗料Pは、例えば、帯電樹脂粒子を構成する樹脂を含有する油相成分と水相成分とをそれぞれ準備し、それらを混合した後に撹拌して転相乳化させることにより調製することができる。この撹拌には、汎用の乳化機、分散機、混合機、又は、攪拌機を用いることができる。具体的には、例えば、高剪断を与えることができるローター式又はステーター式ミキサー、コロイドミル、ホモジナイザー、高圧ホモジナイザー等が挙げられる。撹拌の際における撹拌翼の外周の周速は、好ましくは1m/min以上、より好ましくは5m/min以上、更に好ましくは10m/min以上であり、また、好ましくは70m/min以下、より好ましくは50m/min以下、更に好ましくは30m/min以下である。撹拌時間は、好ましくは3分以上、より好ましくは5分以上であり、また、好ましくは60分以下、より好ましくは30分以下である。 The above electrodeposition coating material P is prepared, for example, by preparing an oil phase component and an aqueous phase component containing a resin constituting the charged resin particles, mixing them, and then stirring and emulsifying the phase inversion. Can be done. A general-purpose emulsifier, disperser, mixer, or stirrer can be used for this stirring. Specifically, for example, a rotor type or stator type mixer capable of applying high shear, a colloid mill, a homogenizer, a high pressure homogenizer and the like can be mentioned. The peripheral speed of the outer circumference of the stirring blade during stirring is preferably 1 m / min or more, more preferably 5 m / min or more, further preferably 10 m / min or more, and preferably 70 m / min or less, more preferably 70 m / min or less. It is 50 m / min or less, more preferably 30 m / min or less. The stirring time is preferably 3 minutes or more, more preferably 5 minutes or more, and preferably 60 minutes or less, more preferably 30 minutes or less.

実施形態に係る絶縁電線10の製造方法では、図4に示すように、電着塗料Pに含まれる帯電樹脂粒子が消費されるため、平角導線11を電着塗料Pに通過させながら、塗料槽21に補充塗料SPを連続的又は間欠的に補充する。そして、この補充塗料SPは、図5に示すように、電着塗料Pと同一の帯電樹脂粒子及び中和剤nを含有するO/W型分散液で構成された元塗料OPから中和剤nを減量することにより調製する。また、このとき、元塗料OPを濃縮して補充塗料SPの固形分濃度を高めることが好ましい。 In the method for manufacturing the insulated wire 10 according to the embodiment, as shown in FIG. 4, the charged resin particles contained in the electrodeposition coating material P are consumed. Therefore, the coating tank while passing the flat conductor wire 11 through the electrodeposition coating material P. The replenishing paint SP is replenished to 21 continuously or intermittently. Then, as shown in FIG. 5, the replenishing paint SP is made from the original paint OP composed of the O / W type dispersion liquid containing the same charged resin particles and the neutralizing agent n as the electrodeposition coating P, and the neutralizing agent. Prepared by reducing n. At this time, it is preferable to concentrate the original paint OP to increase the solid content concentration of the supplementary paint SP.

図7に示すように、補充塗料SP’の補充を行うとき、初期に仕込んだ電着塗料P’を濃縮した補充塗料SP’を補充したのでは、電着塗料P’における中和剤n’の濃度が上昇し、それによって導線11’への帯電樹脂粒子の析出が阻害されて外観不良を生じるという問題がある。しかしながら、実施形態に係る絶縁電線10の製造方法によれば、図4に示すように、元塗料OPから中和剤nを減量して調製した補充塗料SPを塗料槽21に補充するので、補充塗料SPが補充された電着塗料Pにおける中和剤nの濃度が高くなりすぎるのを抑えることができ、それによって電着塗料Pへの補充塗料SPの補充に起因した電着塗装での外観不良を抑制することができる。 As shown in FIG. 7, when the replenishment paint SP'is replenished, if the replenishment paint SP'concentrated with the initially charged electrodeposition paint P'is replenished, the neutralizing agent n'in the electrodeposition paint P' There is a problem that the concentration of the charged resin particles increases, which hinders the precipitation of the charged resin particles on the lead wire 11'and causes a poor appearance. However, according to the method for manufacturing the insulated wire 10 according to the embodiment, as shown in FIG. 4, the replenishing paint SP prepared by reducing the amount of the neutralizing agent n from the original paint OP is replenished to the paint tank 21. It is possible to prevent the concentration of the neutralizing agent n in the electrodeposition paint P replenished with the paint SP from becoming too high, thereby causing the appearance in electrodeposition coating due to the replenishment of the replenishment paint SP to the electrodeposition paint P. Defects can be suppressed.

ここで、元塗料OPの固形分濃度は、電着塗料Pの初期固形分濃度よりも高いことが好ましい。元塗料OPの固形分濃度は、好ましくは3.0質量%以上、より好ましくは5.0質量%以上であり、また、好ましくは13質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。 Here, the solid content concentration of the original coating material OP is preferably higher than the initial solid content concentration of the electrodeposition coating material P. The solid content concentration of the original coating material OP is preferably 3.0% by mass or more, more preferably 5.0% by mass or more, and preferably 13% by mass or less, more preferably 10% by mass or less, still more preferably. It is 8% by mass or less.

元塗料OPにおける中和剤nの含有量は、帯電樹脂粒子100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは15質量部以下、より好ましくは10質量部以下、更に好ましくは5.0質量部以下である。元塗料OPにおける帯電樹脂粒子100質量部に対する中和剤nの含有量は電着塗料Pと同一であってもよい。 The content of the neutralizing agent n in the original paint OP is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 15 parts by mass or less, based on 100 parts by mass of the charged resin particles. It is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less. The content of the neutralizing agent n with respect to 100 parts by mass of the charged resin particles in the original coating material OP may be the same as that of the electrodeposition coating material P.

元塗料OPの分散媒は電着塗料Pの分散媒と同一成分であることが好ましい。従って、電着塗料Pの分散媒が水及び非プロトン性極性溶媒を含有するとき、元塗料OPの分散媒も水及び非プロトン性極性溶媒を含有することが好ましい。この場合、元塗料OPにおける非プロトン性極性溶媒の帯電樹脂粒子100質量部に対する含有量、分散媒における非プロトン性極性溶媒の含有量、及び非プロトン性極性溶媒の含有量の水の含有量に対する質量比(非プロトン性極性溶媒の含有量/水の含有量)は電着塗料Pと同一であることが好ましい。元塗料OPの分散媒は電着塗料Pの分散媒と同一であることが好ましい。なお、元塗料OPは、電着塗料Pと同様の方法で調整することができる。 The dispersion medium of the original coating material OP is preferably the same component as the dispersion medium of the electrodeposition coating material P. Therefore, when the dispersion medium of the electrodeposition coating material P contains water and an aprotic polar solvent, it is preferable that the dispersion medium of the original coating material OP also contains water and an aprotic polar solvent. In this case, the content of the aprotic polar solvent in the original paint OP with respect to 100 parts by mass of the charged resin particles, the content of the aprotic polar solvent in the dispersion medium, and the content of the aprotic polar solvent with respect to the water content. The mass ratio (content of aprotic polar solvent / content of water) is preferably the same as that of the electrodeposition coating material P. The dispersion medium of the original coating material OP is preferably the same as the dispersion medium of the electrodeposition coating material P. The original paint OP can be adjusted in the same manner as the electrodeposition paint P.

元塗料OPから補充塗料SPを調製するときの中和剤nの減量手段としては、例えば、元塗料OPを濾過して中和剤nを濾液に含ませて除去する手段、中和剤nを吸着剤に吸着させて除去する手段、隔膜電極を用いて中和剤nを除去する手段等が挙げられる。これらのうち、濃縮も同時に行うことができるという観点から、元塗料OPを濾過して中和剤nを濾液に含ませて除去する手段が好ましい。特に分散媒が非プロトン性極性溶媒を含んで濃縮が困難な場合に有効な手段である。濾過は、孔径が1nm以上10nm以下の限外濾過膜を用いて行うことが好ましい。 As a means for reducing the amount of the neutralizing agent n when preparing the supplementary coating material SP from the original coating material OP, for example, a means for filtering the original coating material OP to include the neutralizing agent n in the filtrate and removing the neutralizing agent n. Examples thereof include a means for removing the neutralizing agent by adsorbing it on an adsorbent, a means for removing the neutralizing agent n using a diaphragm electrode, and the like. Of these, from the viewpoint that concentration can be performed at the same time, a means for filtering the original paint OP and adding the neutralizing agent n to the filtrate to remove it is preferable. This is an effective means especially when the dispersion medium contains an aprotic polar solvent and concentration is difficult. Filtration is preferably performed using an ultrafiltration membrane having a pore size of 1 nm or more and 10 nm or less.

中和剤nの低減効果を高める観点からは、図6に示すように、元塗料OPを分散媒で希釈した希釈塗料DPを一旦調製した後、その希釈塗料DPにおいて中和剤nを減量することが好ましい。 From the viewpoint of enhancing the effect of reducing the neutralizing agent n, as shown in FIG. 6, after preparing a diluted coating material DP in which the original coating material OP is diluted with a dispersion medium, the amount of the neutralizing agent n is reduced in the diluted coating material DP. Is preferable.

この希釈に用いる分散媒としては、例えば水や上記列挙した非プロトン性極性溶媒が挙げられる。希釈に用いる分散媒は、希釈後の希釈塗料DPの分散媒が電着塗料Pの分散媒と同一となるものを用いることが好ましい。従って、電着塗料P及び元塗料OPの分散媒が同一である場合には、希釈に用いる分散媒は、元塗料OPの分散媒と同一であることが好ましい。 Examples of the dispersion medium used for this dilution include water and the aprotic polar solvents listed above. As the dispersion medium used for dilution, it is preferable to use a dispersion medium in which the dispersion medium of the diluted coating material DP after dilution is the same as the dispersion medium of the electrodeposition coating material P. Therefore, when the dispersion medium of the electrodeposition coating material P and the original coating material OP is the same, the dispersion medium used for dilution is preferably the same as the dispersion medium of the original coating material OP.

希釈は、元塗料OPを5体積倍以上にすることが好ましく、7体積倍以上にすることがより好ましく、10体積倍以上にすることが更に好ましい。 The dilution is preferably 5 volumes or more, more preferably 7 volumes or more, and even more preferably 10 volumes or more of the original paint OP.

希釈後の希釈塗料DPの固形分濃度は、好ましくは0.30質量%以上、より好ましくは0.50質量%以上であり、また、好ましくは4.0質量%以下、より好ましくは2.0質量%以下である。希釈後の希釈塗料DPの固形分濃度は、電着塗料Pの初期固形分濃度よりも低いことが好ましく、この後、中和剤nの減量に加えて、希釈塗料DPを濃縮して電着塗料Pの初期固形分濃度よりも固形分濃度が高い補充塗料SPを調製することが好ましい。 The solid content concentration of the diluted coating material DP after dilution is preferably 0.30% by mass or more, more preferably 0.50% by mass or more, and preferably 4.0% by mass or less, more preferably 2.0. It is less than mass%. The solid content concentration of the diluted coating material DP after dilution is preferably lower than the initial solid content concentration of the electrodeposition coating material P. After that, in addition to reducing the amount of the neutralizing agent n, the diluted coating material DP is concentrated and electrodeposited. It is preferable to prepare a supplementary coating material SP having a solid content concentration higher than the initial solid content concentration of the coating material P.

中和剤nを減量した後の補充塗料SPの固形分濃度は、電着塗料Pの初期固形分濃度よりも高いことが好ましい。また、補充塗料SPの固形分濃度は、元塗料OPの初期固形分濃度よりも高いことが好ましい。補充塗料SPの固形分濃度は、好ましくは3.0質量%以上、より好ましくは4.0質量%%以上であり、また、好ましくは13質量%以下、より好ましくは10質量%以下である。 The solid content concentration of the replenishing paint SP after the amount of the neutralizing agent n is reduced is preferably higher than the initial solid content concentration of the electrodeposition paint P. Further, the solid content concentration of the replenishing paint SP is preferably higher than the initial solid content concentration of the original paint OP. The solid content concentration of the replenishing paint SP is preferably 3.0% by mass or more, more preferably 4.0% by mass or more, and preferably 13% by mass or less, more preferably 10% by mass or less.

補充塗料SPにおける中和剤nの含有量は、帯電樹脂粒子100質量部に対して、好ましくは0.010質量部以上、より好ましくは0.10質量部以上であり、また、好ましくは3.0質量部以下、より好ましくは2.0質量部以下、更に好ましくは1.5質量部以下、より更に好ましくは1.0質量部以下である。なお、帯電樹脂粒子の分散のためには、補充塗料SPにもある程度の中和剤nが含まれている必要がある。また、補充塗料SPは、元塗料OPから中和剤nが減量されることにより、中和剤nの濃度が元塗料OPの中和剤nの濃度よりも低いことが好ましい。 The content of the neutralizing agent n in the replenishing coating material SP is preferably 0.010 parts by mass or more, more preferably 0.10 parts by mass or more, and preferably 3. It is 0 parts by mass or less, more preferably 2.0 parts by mass or less, further preferably 1.5 parts by mass or less, still more preferably 1.0 part by mass or less. In order to disperse the charged resin particles, the replenishing paint SP also needs to contain a certain amount of the neutralizing agent n. Further, in the supplementary coating material SP, the concentration of the neutralizing agent n is preferably lower than the concentration of the neutralizing agent n of the original coating material OP by reducing the amount of the neutralizing agent n from the original coating material OP.

補充塗料SPの分散媒は電着塗料Pの分散媒と同一成分であることが好ましい。従って、電着塗料Pの分散媒が水及び非プロトン性極性溶媒を含有するとき、元塗料OPの分散媒も水及び非プロトン性極性溶媒を含有することが好ましい。この場合、元塗料OPにおける非プロトン性極性溶媒の帯電樹脂粒子100質量部に対する含有量、分散媒における非プロトン性極性溶媒の含有量、及び非プロトン性極性溶媒の含有量の水の含有量に対する質量比(非プロトン性極性溶媒の含有量/水の含有量)は電着塗料Pと同一であることが好ましい。補充塗料SPの分散媒は電着塗料Pの分散媒と同一であることが好ましい。 The dispersion medium of the replenishing paint SP is preferably the same component as the dispersion medium of the electrodeposition paint P. Therefore, when the dispersion medium of the electrodeposition coating material P contains water and an aprotic polar solvent, it is preferable that the dispersion medium of the original coating material OP also contains water and an aprotic polar solvent. In this case, the content of the aprotic polar solvent in the original paint OP with respect to 100 parts by mass of the charged resin particles, the content of the aprotic polar solvent in the dispersion medium, and the content of the aprotic polar solvent with respect to the water content. The mass ratio (content of aprotic polar solvent / content of water) is preferably the same as that of the electrodeposition coating material P. The dispersion medium of the replenisher coating material SP is preferably the same as the dispersion medium of the electrodeposition coating material P.

なお、上記実施形態では、断面形状が扁平な矩形の絶縁電線10を示したが、特にこれに限定されるものではなく、例えば、厚さ方向及び幅方向の寸法が等しい断面形状が正方形のものであってもよく、また、断面形状が円形の丸線であってもよい。 In the above embodiment, the rectangular insulated wire 10 having a flat cross-sectional shape is shown, but the present invention is not particularly limited to this, and for example, a square having a square cross-sectional shape having the same dimensions in the thickness direction and the width direction. It may be a round wire having a circular cross-sectional shape.

ポリアミドイミド樹脂の帯電樹脂粒子及び塩基性中和剤のAEを含有し、水並びに非プロトン性極性溶媒NMP及びDMFを分散媒とする固形分濃度が6.0%のO/W型分散液の元塗料を調製した。AEの含有量は1.90μg/ml(帯電樹脂粒子100質量部に対して3.3質量部)であった。 An O / W type dispersion containing water and an aprotic polar solvent NMP and DMF as a dispersion medium and containing charged resin particles of a polyamide-imide resin and AE as a basic neutralizing agent, and having a solid content concentration of 6.0%. The original paint was prepared. The content of AE was 1.90 μg / ml (3.3 parts by mass with respect to 100 parts by mass of charged resin particles).

実施例1では、この元塗料に、元塗料と同一の分散媒を加えて3体積倍に希釈した希釈塗料を調製した。続いて、その希釈塗料の一部分を限外濾過膜を用いて濾過してAEを濾液に含ませて除去することにより塩AEを減量すると共に濃縮して固形分濃度が10質量%の補充塗料を調製した。そして、得られた補充塗料におけるAEの含有量を測定したところ1.10μg/ml(帯電樹脂粒子100質量部に対して1.1質量部)であった。 In Example 1, a diluted coating material was prepared by adding the same dispersion medium as the original coating material to the original coating material and diluting it 3 times by volume. Subsequently, a part of the diluted paint is filtered using an ultrafiltration membrane to contain AE in the filtrate and removed to reduce the amount of salt AE and concentrate to obtain a supplement paint having a solid content concentration of 10% by mass. Prepared. The content of AE in the obtained replenishing paint was measured and found to be 1.10 μg / ml (1.1 parts by mass with respect to 100 parts by mass of charged resin particles).

実施例2及び3では、それぞれ元塗料を5体積倍及び7体積倍に希釈した希釈塗料を調製し、同様に濾過して固形分濃度が10質量%の補充塗料を調製し、得られた補充塗料におけるAEの含有量を測定したところ、それぞれ0.83μg/ml(帯電樹脂粒子100質量部に対して0.83質量部)及び0.84μg/ml(帯電樹脂粒子100質量部に対して0.84質量部)であった。 In Examples 2 and 3, diluted paints obtained by diluting the original paints by 5 and 7 volumes, respectively, were prepared, and similarly filtered to prepare supplementary paints having a solid content concentration of 10% by volume, and the obtained supplements were obtained. When the content of AE in the paint was measured, it was 0.83 μg / ml (0.83 parts by volume with respect to 100 parts by mass of charged resin particles) and 0.84 μg / ml (0 with respect to 100 parts by mass of charged resin particles), respectively. It was .84 parts by volume).

Figure 0006784159
Figure 0006784159

実施例1〜3のそれぞれで得られた補充塗料のAEの含有量を表1に示す。この表1によれば、元塗料の希釈倍率が高い程、得られる補充塗料におけるAEの含有量が少ないことが分かる。これは、希釈塗料を同一の10質量%の固形分濃度まで濾過する場合、元塗料の希釈倍率が高くなる程、分離する濾液量が多くなり、それに伴ってAEの除去量が多くなるためである。 Table 1 shows the AE content of the replenishing paints obtained in each of Examples 1 to 3. According to Table 1, it can be seen that the higher the dilution ratio of the original paint, the lower the content of AE in the obtained supplementary paint. This is because when the diluted paint is filtered to the same solid content concentration of 10% by mass, the higher the dilution ratio of the original paint, the larger the amount of filtrate to be separated, and the larger the amount of AE removed. is there.

本発明は、絶縁電線の製造方法及びそれに用いる補充塗料の調製方法の技術分野について有用である。 The present invention is useful in the technical field of a method for manufacturing an insulated wire and a method for preparing a supplementary coating material used therein.

10 絶縁電線
11 平角導線
11’ 導線
12 絶縁被覆層
21 塗料槽
22 焼付炉
P,P’ 電着塗料
OP 元塗料
SP,SP’ 補充塗料
DP 希釈塗料
n,n’ 中和剤
10 Insulated wire 11 Flat-angle lead wire 11'lead wire 12 Insulation coating layer 21 Paint tank 22 Baking furnace P, P'Electrodeposition paint OP Original paint SP, SP'Replenishment paint DP Diluting paint n, n'Neutralizer

Claims (4)

導線を塗料槽に入れた電着塗料に連続的に通して前記導線の表面を電着塗装した後、前記電着塗装した前記導線を加熱して前記導線の表面に前記電着塗装による塗膜を焼き付けて絶縁被覆層を形成する絶縁電線の製造方法であって、
前記電着塗料は、帯電樹脂粒子と、前記帯電樹脂粒子が有する電荷の逆電荷に帯電する中和剤とを含有する分散液であり、
前記導線を前記電着塗料に通過させながら、前記塗料槽に、前記帯電樹脂粒子及び前記中和剤を含有する元塗料を希釈した後に前記中和剤を減量して調製した補充塗料を補充する絶縁電線の製造方法。
The surface of the lead wire is electrodeposited and coated by continuously passing the lead wire through the electrodeposition paint placed in the coating tank, and then the electrodeposition-coated lead wire is heated to coat the surface of the lead wire with the electrodeposition coating. It is a method of manufacturing an insulated wire that forms an insulating coating layer by baking.
The electrodeposition coating material is a dispersion liquid containing charged resin particles and a neutralizing agent that charges the reverse charge of the electric charge of the charged resin particles.
While passing the lead wire through the electrodeposition paint, the paint tank is replenished with the replenisher paint prepared by diluting the original paint containing the charged resin particles and the neutralizer and then reducing the amount of the neutralizer. Manufacturing method of insulated wire.
請求項1に記載された絶縁電線の製造方法において、
前記中和剤の減量を、前記元塗料の一部分を濾過して前記中和剤を濾液に含ませて除去することにより行う絶縁電線の製造方法。
In the method for manufacturing an insulated wire according to claim 1,
A method for producing an insulated electric wire, wherein the amount of the neutralizing agent is reduced by filtering a part of the original paint and adding the neutralizing agent to the filtrate to remove the neutralizing agent.
請求項1又は2に記載された絶縁電線の製造方法において、
前記元塗料を5体積倍以上に希釈する絶縁電線の製造方法。
In the method for manufacturing an insulated wire according to claim 1 or 2 .
A method for manufacturing an insulated electric wire that dilutes the original paint by 5 volumes or more.
連続的に電着塗装する際に電着塗料に補充する補充塗料の調製方法であって、
前記電着塗料は、帯電樹脂粒子と、前記帯電樹脂粒子が有する電荷の逆電荷に帯電する中和剤とを含有する分散液であり、
前記帯電樹脂粒子及び前記中和剤を含有する元塗料を希釈した後に前記中和剤を減量する補充塗料の調製方法。
It is a method of preparing a replenishing paint that is replenished to the electrodeposition paint when continuously electrodeposited.
The electrodeposition coating material is a dispersion liquid containing charged resin particles and a neutralizing agent that charges the reverse charge of the electric charge of the charged resin particles.
A method for preparing a replenishing paint in which the amount of the neutralizing agent is reduced after diluting the charged resin particles and the original paint containing the neutralizing agent.
JP2016235827A 2016-12-05 2016-12-05 Manufacturing method of insulated wire and preparation method of replenishing paint used for it Active JP6784159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016235827A JP6784159B2 (en) 2016-12-05 2016-12-05 Manufacturing method of insulated wire and preparation method of replenishing paint used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235827A JP6784159B2 (en) 2016-12-05 2016-12-05 Manufacturing method of insulated wire and preparation method of replenishing paint used for it

Publications (2)

Publication Number Publication Date
JP2018092812A JP2018092812A (en) 2018-06-14
JP6784159B2 true JP6784159B2 (en) 2020-11-11

Family

ID=62565714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235827A Active JP6784159B2 (en) 2016-12-05 2016-12-05 Manufacturing method of insulated wire and preparation method of replenishing paint used for it

Country Status (1)

Country Link
JP (1) JP6784159B2 (en)

Also Published As

Publication number Publication date
JP2018092812A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6973576B2 (en) Electrodeposition liquid for forming water-dispersed insulating film
JP2017057098A (en) Boron nitride agglomerated particle for forming thin film, insulation coating film, production method of agglomerated particle, production method of insulation electrodeposition paint, enameled wire and coil
WO2015115139A1 (en) Copper powder
JP6784159B2 (en) Manufacturing method of insulated wire and preparation method of replenishing paint used for it
WO2017104032A1 (en) Heat-resistant insulated wire and electrodeposition liquid used to form insulating layer therefor
JP6001014B2 (en) Electrodeposition liquid used to form heat-resistant insulated wires and their insulation layers
JP6760236B2 (en) Insulated wire manufacturing method and electrodeposition coating equipment used for it
JP6708192B2 (en) Insulated wire manufacturing method
JP2017066014A (en) Resin-coated boron nitride powder, and dispersion liquid thereof
JPWO2017150383A1 (en) Phenylphosphonic acid-containing silica sol and use thereof
JP6769076B2 (en) Electrodeposition coating composition and method for manufacturing insulated wires using it
JP6069035B2 (en) Method for producing electrodeposited body
TW201621095A (en) Method for anodizing and surface treating aluminum alloy workpiece, and anodization electrolyte thereof
WO2017141885A1 (en) Electrodeposition liquid and electrodeposition-coated article
WO2016031480A1 (en) Electrodeposition coated article and method for producing same
WO2017175624A1 (en) Insulated electric cable and method of manufacturing same
JP2020155421A (en) Insulated electric wire
JP6677872B2 (en) Electrodeposition liquid for forming water-dispersed insulating film
CN114141541B (en) Electrode foil smooth edge forming method
WO2021187024A1 (en) Insulating film-equipped die-cut product and method for producing same
JP2017016956A (en) Insulated wire and manufacturing method thereof
JPS594664A (en) Manufacture of electrodeposition coating
JP5198790B2 (en) Insulated wire
EP4318505A1 (en) Insulation film-provided flat conductive plate and method for manufacturing same
JPH0412407A (en) Flat insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6784159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150