JP6779333B2 - Rotation angle detector - Google Patents

Rotation angle detector Download PDF

Info

Publication number
JP6779333B2
JP6779333B2 JP2019077480A JP2019077480A JP6779333B2 JP 6779333 B2 JP6779333 B2 JP 6779333B2 JP 2019077480 A JP2019077480 A JP 2019077480A JP 2019077480 A JP2019077480 A JP 2019077480A JP 6779333 B2 JP6779333 B2 JP 6779333B2
Authority
JP
Japan
Prior art keywords
elements
rotation angle
magnetic
positive
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019077480A
Other languages
Japanese (ja)
Other versions
JP2020176853A (en
Inventor
立男 西村
立男 西村
義浩 深山
義浩 深山
秀哲 有田
秀哲 有田
晃司 西澤
晃司 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019077480A priority Critical patent/JP6779333B2/en
Priority to CN202010274073.5A priority patent/CN111829557B/en
Publication of JP2020176853A publication Critical patent/JP2020176853A/en
Application granted granted Critical
Publication of JP6779333B2 publication Critical patent/JP6779333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means

Description

本願は、回転角度検出装置に関するものである。 The present application relates to a rotation angle detection device.

回転角度検出装置として、回転子と固定子のギャップパーミアンスの変化による磁束変化を検出することで、回転角度を検出する技術が一般的に知られている。例えば、周方向に沿って径が変化する回転子の外周面に対し、複数の磁気抵抗素子を周方向に沿って配置した固定子を対向配置し、磁気抵抗の変化から回転角度を検出する磁気センサが開示されている(例えば、特許文献1参照。)。 As a rotation angle detecting device, a technique for detecting a rotation angle by detecting a change in magnetic flux due to a change in the gap permeance between the rotor and the stator is generally known. For example, magnetism that detects the rotation angle from the change in magnetic resistance by arranging a stator with a plurality of magnetoresistive elements arranged along the circumferential direction facing the outer peripheral surface of the rotor whose diameter changes along the circumferential direction. The sensor is disclosed (see, for example, Patent Document 1).

特開2006−329888号公報(段落0002〜0003、図3〜図5、段落0014〜0020、図1〜図2)Japanese Unexamined Patent Publication No. 2006-329888 (paragraphs 0002 to 0003, FIGS. 3 to 5, paragraphs 0014 to 0020, and FIGS. 1 to 2).

しかしながら、上述した磁気センサでは、磁気検出用の素子を電気角180度以上の範囲に配置する必要があり、小型化が困難であるとともに、精度の高い信号成分を得ることが困難であった。 However, in the above-mentioned magnetic sensor, it is necessary to arrange the element for magnetic detection in a range of an electric angle of 180 degrees or more, which makes it difficult to miniaturize and obtain a highly accurate signal component.

本願は、上記のような課題を解決するための技術を開示するものであり、小型で正確な回転角度検出装置を得ることを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to obtain a compact and accurate rotation angle detecting device.

本願に開示される回転角度検出装置は、回転軸を中心に回転自在に支持され、外周面の径が周期的にN回変化する磁性体の凹凸部を有する回転子、前記回転子の前記外周面に間隔をあけて対向し、前記凹凸部との間に磁界を発生させる磁界発生部と、周方向に沿って、機械角において180度をNで除した値未満、かつ電気角において180度未満の範囲に配置され、前記発生させた磁界を検出する3つ以上の磁気検出素子で構成された素子群と、を有する固定子、前記素子群のそれぞれの素子からの検出信号に基づき、前記回転子の回転角度を演算する回転角度演算処理部、および、前記素子群における前記磁気検出素子の数である素子数に応じて、前記素子群のうちの一部の素子を選択し、選択した素子からの検出信号を正負反転させる正負反転機構、を備えたことを特徴とする。
The rotation angle detecting device disclosed in the present application is a rotor having a concavo-convex portion of a magnetic material that is rotatably supported around a rotation axis and whose outer peripheral surface diameter changes N times periodically, and the outer circumference of the rotor. A magnetic field generating part that faces the surface at intervals and generates a magnetic field between the uneven part and the peripheral direction, which is less than the value obtained by dividing 180 degrees by N in the mechanical angle and 180 degrees in the electric angle. Based on the detection signals from each element of the stator and the element group, which are arranged in the range less than or equal to, and are composed of three or more magnetic detection elements for detecting the generated magnetic field, and the stator having the same. A part of the elements in the element group was selected and selected according to the rotation angle calculation processing unit for calculating the rotation angle of the rotor and the number of elements which is the number of the magnetic detection elements in the element group. It is characterized by being provided with a positive / negative inversion mechanism that inverts the detection signal from the element.

本願に開示される回転角度検出装置によれば、磁気検出素子を電気角半周期未満の範囲内に配置することにより、小型で正確な回転角度検出装置を得ることができる。 According to the rotation angle detection device disclosed in the present application, a compact and accurate rotation angle detection device can be obtained by arranging the magnetic detection element within a range of less than half an electric angle period.

実施の形態1にかかる回転角度検出装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the rotation angle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる回転角度検出装置の部分拡大模式図である。It is a partially enlarged schematic diagram of the rotation angle detection device which concerns on Embodiment 1. FIG. 実施の形態1にかかる回転角度検出装置の回転角度演算処理部の構成を説明するための機能ブロック図である。It is a functional block diagram for demonstrating the structure of the rotation angle calculation processing part of the rotation angle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる回転角度検出装置において、3つの磁気検出素子から出力される磁束密度波形を示す図である。It is a figure which shows the magnetic flux density waveform output from three magnetic detection elements in the rotation angle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1にかかる回転角度検出装置において、3つの磁気検出素子からの磁束密度波形を直流オフセット補正後に、1つの磁気検出素子の波形を正負反転処理した磁束密度波形を示す図である。FIG. 5 is a diagram showing a magnetic flux density waveform obtained by positive / negative inversion processing of the waveform of one magnetic detection element after DC offset correction of the magnetic flux density waveforms from the three magnetic detection elements in the rotation angle detection device according to the first embodiment. 実施の形態1にかかる回転角度検出装置において、3つの磁気検出素子からの磁束密度波形を直流オフセット補正後に、2つの磁気検出素子の波形を正負反転処理した磁束密度波形を示す図である。FIG. 5 is a diagram showing a magnetic flux density waveform obtained by positive / negative inversion processing of the waveforms of the two magnetic detection elements after DC offset correction of the magnetic flux density waveforms from the three magnetic detection elements in the rotation angle detection device according to the first embodiment. 実施の形態1の第1変形例にかかる回転角度検出装置として、5つの磁気検出素子を設けた際の部分拡大模式図である。FIG. 5 is a partially enlarged schematic view when five magnetic detection elements are provided as the rotation angle detection device according to the first modification of the first embodiment. 実施の形態1の第1変形例にかかる回転角度検出装置において、5つの磁気検出素子から出力される磁束密度波形を示す図である。It is a figure which shows the magnetic flux density waveform output from 5 magnetic detection elements in the rotation angle detection apparatus which concerns on 1st modification of Embodiment 1. FIG. 実施の形態1の第1変形例にかかる回転角度検出装置において、5つの磁気検出素子からの磁束密度波形を直流オフセット補正後に、一部の磁気検出素子の波形を正負反転処理した磁束密度波形を示す図である。In the rotation angle detection device according to the first modification of the first embodiment, the magnetic flux density waveforms from the five magnetic detection elements are corrected by DC offset, and then the waveforms of some of the magnetic detection elements are positively and negatively inverted. It is a figure which shows. 実施の形態1の第2変形例にかかる回転角度検出装置として、7つの磁気検出素子を設けた際の部分拡大模式図である。It is a partially enlarged schematic diagram when seven magnetic detection elements are provided as the rotation angle detection device according to the second modification of the first embodiment. 実施の形態1の第2変形例にかかる回転角度検出装置において、7つの磁気検出素子から出力される磁束密度波形を示す図である。It is a figure which shows the magnetic flux density waveform which is output from seven magnetic detection elements in the rotation angle detection apparatus which concerns on the 2nd modification of Embodiment 1. FIG. 実施の形態1の第2変形例にかかる回転角度検出装置において、7つの磁気検出素子からの磁束密度波形を直流オフセット補正後に、一部の磁気検出素子の波形を正負反転処理した磁束密度波形を示す図である。In the rotation angle detection device according to the second modification of the first embodiment, the magnetic flux density waveforms from the seven magnetic detection elements are corrected by DC offset, and then the waveforms of some of the magnetic detection elements are positively / negatively inverted. It is a figure which shows. 本実施の形態1にかかる回転角度検出装置の回転角度の演算処理を実行する部分の構成例を示すブロック図である。It is a block diagram which shows the structural example of the part which executes the calculation process of the rotation angle of the rotation angle detection apparatus which concerns on Embodiment 1. 実施の形態2にかかる回転角度検出装置の部分拡大模式図である。It is a partially enlarged schematic diagram of the rotation angle detection device which concerns on Embodiment 2. FIG. 実施の形態2にかかる回転角度検出装置において、3つの磁気検出素子から出力される磁束密度波形を示す図である。It is a figure which shows the magnetic flux density waveform output from three magnetic detection elements in the rotation angle detection apparatus which concerns on Embodiment 2. FIG. 実施の形態2にかかる回転角度検出装置において、3つの磁気検出素子からの磁束密度波形を直流オフセット補正理した磁束密度波形を示す図である。FIG. 5 is a diagram showing a magnetic flux density waveform obtained by DC offset correction of magnetic flux density waveforms from three magnetic detection elements in the rotation angle detection device according to the second embodiment. 実施の形態3にかかる回転角度検出装置の部分拡大模式図である。It is a partially enlarged schematic diagram of the rotation angle detection device which concerns on Embodiment 3. FIG. 実施の形態3の変形例にかかる回転角度検出装置の部分拡大模式図である。It is a partially enlarged schematic diagram of the rotation angle detection device which concerns on the modification of Embodiment 3. 図19Aと図19Bは、それぞれ実施の形態4にかかる回転角度検出装置の固定子の軸方向に垂直な断面図と固定子の回転子への対向面側の側面図である。19A and 19B are a cross-sectional view perpendicular to the axial direction of the stator of the rotation angle detection device according to the fourth embodiment and a side view of the stator on the side facing the rotor, respectively. 実施の形態4にかかる回転角度検出装置において、4つの磁気検出素子から出力される磁束密度波形を示す図である。It is a figure which shows the magnetic flux density waveform output from four magnetic detection elements in the rotation angle detection apparatus which concerns on Embodiment 4. FIG. 実施の形態4にかかる回転角度検出装置において、4つの磁気検出素子からの磁束密度波形を直流オフセット補正した磁束密度波形を示す図である。It is a figure which shows the magnetic flux density waveform which DC offset corrected the magnetic flux density waveform from four magnetic detection elements in the rotation angle detection apparatus which concerns on Embodiment 4. FIG.

実施の形態1.
図1〜図6は、実施の形態1にかかる回転角度検出装置の構成および動作について説明するためのものであり、図1は回転角度検出装置の全体構成として、回転子と固定子の軸方向に垂直な面方向における位置関係を示す断面形状と回転角度演算処理部との信号のつながりを示す模式図であり、図2は図1における回転角度検出装置の回転子と固定子が対向している部分近傍の拡大模式図であり、図3は回転角度演算処理部の構成を説明するための機能ブロック図である。
Embodiment 1.
1 to 6 are for explaining the configuration and operation of the rotation angle detection device according to the first embodiment, and FIG. 1 shows the axial direction of the rotor and the stator as the overall configuration of the rotation angle detection device. FIG. 2 is a schematic view showing a signal connection between a cross-sectional shape showing a positional relationship in a plane direction perpendicular to and a rotation angle calculation processing unit. FIG. 2 shows a rotor and a stator of the rotation angle detection device in FIG. 1 facing each other. It is an enlarged schematic view of the vicinity of a portion, and FIG. 3 is a functional block diagram for explaining the configuration of the rotation angle calculation processing unit.

そして、図4は固定子に3つの磁気検出素子を配置した際の、それぞれの磁気検出素子から回転角度演算処理部に出力される磁束密度波形を示す図、図5は図4で示す3つの磁気検出素子からの磁束密度波形を直流オフセット補正部で直流オフセット補正後に、正負反転部により、周方向で中央に位置する磁気検出素子の波形を正負反転処理した磁束密度波形を示す図である。一方、図6は、図4で示す3つの磁気検出素子からの磁束密度波形を直流オフセット補正後に、正負反転部により、周方向で両端に位置する磁気検出素子の波形を正負反転処理した磁束密度波形を示す図である。 4 is a diagram showing magnetic flux density waveforms output from each magnetic detection element to the rotation angle calculation processing unit when three magnetic detection elements are arranged on the stator, and FIG. 5 is a diagram showing the three magnetic flux density waveforms shown in FIG. It is a figure which shows the magnetic flux density waveform which performed the positive / negative inversion processing of the waveform of the magnetic detection element located in the center in the circumferential direction by the positive / negative inversion part after DC offset correction of the magnetic flux density waveform from a magnetic detection element by a DC offset correction part. On the other hand, FIG. 6 shows the magnetic flux densities obtained by correcting the magnetic flux density waveforms from the three magnetic detection elements shown in FIG. 4 by DC offset correction, and then performing positive / negative inversion processing on the waveforms of the magnetic detection elements located at both ends in the circumferential direction by the positive / negative inversion portions. It is a figure which shows the waveform.

以下、図に基づいて説明する。
回転角度検出装置は、例えば、回転電機のシャフト等に直結され、回転電機の回転角度、あるいは回転数等を検出し、回転制御、計測等に用いるものである。実施の形態1にかかる回転角度検出装置1は、図1に示すように、機械的な構成として回転軸Xrを中心に回転する回転子10と、回転子10の外周面10foに対向配置された固定子20とを備えている。そして、演算処理を行う構成として、固定子20の複数の磁気検出素子22のそれぞれから出力された信号を処理して、回転角度を演算する回転角度演算処理部30を備えている。
Hereinafter, description will be made with reference to the drawings.
The rotation angle detection device is, for example, directly connected to a shaft or the like of a rotary electric machine, detects the rotation angle or the number of rotations of the rotary electric machine, and is used for rotation control, measurement, or the like. As shown in FIG. 1, the rotation angle detection device 1 according to the first embodiment is arranged so as to face the rotor 10 that rotates about the rotation axis Xr and the outer peripheral surface 10fo of the rotor 10 as a mechanical configuration. It is provided with a stator 20. Then, as a configuration for performing arithmetic processing, a rotation angle calculation processing unit 30 for processing signals output from each of the plurality of magnetic detection elements 22 of the stator 20 to calculate a rotation angle is provided.

回転子10は、図示しない回転電機のシャフト等に直結され、回転電機と連動して、回転軸Xrを中心に回転するように設けられる。そして、外周面10fo側には、周方向に沿って外径が周期的に変化する、磁性体の凹凸部12を備えている。凹凸部12は、Nを1以上の整数とした場合に、周方向に沿って、機械角360度に対してN周期変化するよう、つまりN個の凹凸(凹部12tと凸部12p)で形成される。一般的には、N(凹凸数と称する)は回転電機の磁極対の数の倍数に設定されるが、本例では、N=12に設定した凹凸部12を示している。また、本例では、径は正弦波を描くように変化する。 The rotor 10 is directly connected to a shaft or the like of a rotating electric machine (not shown), and is provided so as to rotate about a rotating shaft Xr in conjunction with the rotating electric machine. The outer peripheral surface 10fo side is provided with a concavo-convex portion 12 of a magnetic material whose outer diameter changes periodically along the circumferential direction. The concavo-convex portion 12 is formed by N concavo-convex parts (concave portion 12t and convex portion 12p) so as to change N cycles with respect to a mechanical angle of 360 degrees along the circumferential direction when N is an integer of 1 or more. Will be done. Generally, N (referred to as the number of unevenness) is set to a multiple of the number of magnetic pole pairs of the rotary electric machine, but in this example, the uneven portion 12 set to N = 12 is shown. Further, in this example, the diameter changes so as to draw a sine wave.

固定子20は、回転子10の凹凸部12部分の外周面10foに対向して配置され、凹凸部12との間で磁界を発生させる磁界発生部21と、複数の磁気検出素子22と、磁性体の背面部23を有している。磁気検出素子22のそれぞれは、回転軸Xrからの距離が同じで、回転子10の凹凸部12部分の外周面10foに対向するよう、周方向に沿って等間隔に離間配置されている。これにより、複数の磁気検出素子22のそれぞれと、凹凸状の回転子10の外周面10foとの間隔が、回転子10の回転に伴い、周期的に変化する。磁界発生部21は、磁気検出素子22に対して径方向の外側に位置し、周方向において磁気検出素子22の配置範囲を網羅するように、回転軸Xrから一定の距離を保って延びている。 The stator 20 is arranged so as to face the outer peripheral surface 10fo of the uneven portion 12 portion of the rotor 10, and has a magnetic field generating portion 21 that generates a magnetic field with the concave-convex portion 12, a plurality of magnetic detection elements 22, and magnetism. It has a back surface portion 23 of the body. Each of the magnetic detection elements 22 has the same distance from the rotation axis Xr, and is arranged at equal intervals along the circumferential direction so as to face the outer peripheral surface 10fo of the uneven portion 12 portion of the rotor 10. As a result, the distance between each of the plurality of magnetic detection elements 22 and the outer peripheral surface 10fo of the concave-convex rotor 10 changes periodically as the rotor 10 rotates. The magnetic field generation unit 21 is located outside in the radial direction with respect to the magnetic detection element 22, and extends at a constant distance from the rotation axis Xr so as to cover the arrangement range of the magnetic detection element 22 in the circumferential direction. ..

背面部23は、磁界発生部21に対して径方向の外側を覆う部分が、磁界発生部21の周方向における両端面を覆う部分と連なるよう、磁性体によって形成される。磁気検出素子22と磁界発生部21のみでも検知可能であるが、磁性体の背面部23を配置することで、磁気検出素子22のそれぞれの出力信号から得られる磁束密度波形の振幅を大きくすることができる。これにより、アナログ信号からデジタル信号に変換する際の量子化誤差を小さくすることが可能となり、検出精度が向上する。 The back surface portion 23 is formed of a magnetic material so that a portion that covers the outer side in the radial direction with respect to the magnetic field generating portion 21 is connected to a portion that covers both end faces in the circumferential direction of the magnetic field generating portion 21. Although it can be detected only by the magnetic detection element 22 and the magnetic field generation unit 21, the amplitude of the magnetic flux density waveform obtained from each output signal of the magnetic detection element 22 can be increased by arranging the back surface portion 23 of the magnetic material. Can be done. This makes it possible to reduce the quantization error when converting an analog signal to a digital signal, and improves the detection accuracy.

つぎに、磁気検出素子22の配置について説明する。周方向に沿って均等配置する箇所の数(配置箇所数L)は、磁気検出素子22の素子数nが3以上の奇数の場合、L=nとなる。そして、周方向における、各磁気検出素子22が配置された範囲の角度θgは、機械角180度を凹凸部12の凹凸数Nで除した180/N未満に設定する。磁気検出素子22を電気角半周期の範囲より狭い範囲に配置することにより、固定子20の磁界発生部21と背面部23の周方向における設置範囲を小さくすることができ、装置の小型化が可能となる。図1では、凹凸数N=12の場合であるため、磁気検出素子22の配置範囲の角度θgは、機械角15度未満となる。 Next, the arrangement of the magnetic detection element 22 will be described. The number of locations evenly arranged along the circumferential direction (number of arrangement locations L) is L = n when the number n of the magnetic detection elements 22 is an odd number of 3 or more. Then, the angle θg of the range in which each magnetic detection element 22 is arranged in the circumferential direction is set to less than 180 / N obtained by dividing the mechanical angle of 180 degrees by the number of irregularities N of the uneven portion 12. By arranging the magnetic detection element 22 in a range narrower than the range of the electric angle half cycle, the installation range of the magnetic field generating portion 21 and the back surface portion 23 of the stator 20 in the circumferential direction can be reduced, and the device can be miniaturized. It will be possible. In FIG. 1, since the number of irregularities N = 12, the angle θg of the arrangement range of the magnetic detection element 22 is less than the mechanical angle of 15 degrees.

例えば、特許文献1のように、各素子からの波形のピークを単純に検出して角度を演算する場合、多相信号を2相信号に変換する処理において、磁気検出素子は周方向に機械角360/N度の範囲に配置する必要があった。本願では、後述するように、複数の磁気検出素子22のうち、例えば、素子数nが奇数の場合は、周方向に沿った順番で偶数番目の信号のみ、あるいは奇数番目の信号のみ、というように、一つおきに、信号の正負を反転処理するように構成した。なお、素子数nが偶数の場合については、実施の形態4で説明する。 For example, as in Patent Document 1, when the peak of the waveform from each element is simply detected and the angle is calculated, in the process of converting the polyphase signal into a two-phase signal, the magnetic detection element has a mechanical angle in the circumferential direction. It had to be placed in the range of 360 / N degrees. In the present application, as will be described later, among the plurality of magnetic detection elements 22, for example, when the number of elements n is odd, only the even-numbered signals or only the odd-numbered signals in the order along the circumferential direction are used. In addition, every other signal was configured to invert the positive and negative signals. The case where the number of elements n is an even number will be described in the fourth embodiment.

このように、磁気検出素子22からの信号のうち、規則的に抽出した一部の信号の反転処理により、機械角180/N度未満の範囲に磁気検出素子22を配置した場合でも、機械角360/N度の範囲に素子を配置したのと同様の信号を取得することが可能となる。したがって、複数の磁気検出素子22を機械角180/N度未満の範囲に配置した場合でも、多相信号を2相信号に変換して、精度の高い回転角度位置の検出を行うことができる。 In this way, even when the magnetic detection element 22 is arranged in a range of less than 180 / N degrees by the inversion processing of a part of the signals extracted regularly from the magnetic detection element 22, the mechanical angle It is possible to acquire a signal similar to that in which the element is arranged in the range of 360 / N degrees. Therefore, even when the plurality of magnetic detection elements 22 are arranged in a range of less than 180 / N degrees of mechanical angle, the polyphase signal can be converted into a two-phase signal to detect the rotation angle position with high accuracy.

とくに、本実施の形態においては、図2に示すように、周方向で隣接する磁気検出素子22間の間隔(角度θs)が、機械角180/(N×L)度になるように配置した。これにより、それぞれの磁気検出素子22からは、電気角180/L度ずつ位相がずれた、a相(=n)の信号が得られる。 In particular, in the present embodiment, as shown in FIG. 2, the intervals (angle θs) between the magnetic detection elements 22 adjacent in the circumferential direction are arranged so that the mechanical angle is 180 / (N × L) degrees. .. As a result, a phase (= n) signals with a phase shift of 180 / L degrees of electrical angle can be obtained from each magnetic detection element 22.

ここで、磁気検出素子22を機械角180/(N×L)度間隔で配置する場合、周方向における一端側の磁気検出素子22から他端側の磁気検出素子22までの間隔(角度θg)は、機械角180×(L−1)/(N×L)度となる。そして、磁気検出素子22の配置箇所数Lが増加していくほど、磁気検出素子22が配置される範囲の機械角は180/N度に漸近していく。一方、電気角の範囲については、配置箇所数Lを10、20、30…と増加させると、162度、171度、174度、・・・と、180度に近づいていくが、180未満(半周未満)の範囲に収まる。 Here, when the magnetic detection elements 22 are arranged at a mechanical angle of 180 / (N × L) degrees, the distance (angle θg) from the magnetic detection element 22 on one end side to the magnetic detection element 22 on the other end side in the circumferential direction. Is a mechanical angle of 180 × (L-1) / (N × L) degrees. Then, as the number of locations L of the magnetic detection elements 22 increases, the mechanical angle in the range in which the magnetic detection elements 22 are arranged gradually approaches 180 / N degrees. On the other hand, regarding the range of the electric angle, when the number of arrangement locations L is increased to 10, 20, 30 ..., it approaches 180 degrees to 162 degrees, 171 degrees, 174 degrees, ..., But less than 180 ( It falls within the range of less than half a lap).

例えば、本例のように、配置箇所数L=3の場合、隣り合う磁気検出素子22間の間隔θsは60/N度で、磁気検出素子22から磁気検出素子22までの角度θgは120/N度となる。よって、磁気検出素子22は機械角180/N度未満の範囲に配置される。これは、磁気検出素子22を電気角半周期未満の範囲内で、等間隔配置することになり、固定子20の磁界発生部21と背面部23の周方向における占有範囲も狭くすることができ、装置の小型化が可能となる。 For example, when the number of arrangement locations L = 3, as in this example, the distance θs between adjacent magnetic detection elements 22 is 60 / N degrees, and the angle θg from the magnetic detection element 22 U to the magnetic detection element 22 W is. It becomes 120 / N degrees. Therefore, the magnetic detection element 22 is arranged in a range where the mechanical angle is less than 180 / N degrees. This means that the magnetic detection elements 22 are arranged at equal intervals within a range of less than half an electrical angle period, and the occupied range of the magnetic field generating portion 21 and the back surface portion 23 of the stator 20 in the circumferential direction can be narrowed. , The device can be miniaturized.

上述した機械的な構成を前提として、演算処理を実行する回転角度演算処理部30の構成と動作について説明する。回転角度演算処理部30は、図3に示すように、各磁気検出素子22から受信した信号の直流オフセット値を算出する直流オフセット算出部31から回転角度を算出する角度算出部35に至る、主に5つのブロックで構成している。 The configuration and operation of the rotation angle calculation processing unit 30 that executes the calculation processing will be described on the premise of the above-mentioned mechanical configuration. As shown in FIG. 3, the rotation angle calculation processing unit 30 mainly extends from the DC offset calculation unit 31 that calculates the DC offset value of the signal received from each magnetic detection element 22 to the angle calculation unit 35 that calculates the rotation angle. It is composed of 5 blocks.

直流オフセット算出部31は、複数の磁気検出素子22のそれぞれから受信した検出信号の直流成分に対する基準値からシフト量を算出し、直流オフセット値を求める。直流オフセット値は各波形の電気角1周期分の平均化処理によって算出する。なお、オフセット値は、平均化処理に限ることはなく、例えば、それぞれの波形に関して波形の最大値と最小値から基準値からのシフト量を算出して、直流オフセット値を求めることも可能であり、適宜変更可能である。 The DC offset calculation unit 31 calculates the shift amount from the reference value for the DC component of the detection signal received from each of the plurality of magnetic detection elements 22, and obtains the DC offset value. The DC offset value is calculated by averaging one cycle of the electric angle of each waveform. The offset value is not limited to the averaging process. For example, it is possible to calculate the shift amount from the reference value from the maximum value and the minimum value of the waveform for each waveform to obtain the DC offset value. , Can be changed as appropriate.

直流オフセット補正部32では、直流オフセット算出部31で算出した磁気検出素子22ごとのオフセット値を用い、n個の磁気検出素子22のそれぞれの検出信号からオフセット値を減じたオフセット処理を行う。 The DC offset correction unit 32 uses the offset value for each magnetic detection element 22 calculated by the DC offset calculation unit 31 to perform offset processing by subtracting the offset value from each detection signal of the n magnetic detection elements 22.

正負反転部33では、直流オフセット補正部32でオフセット処理をした各磁気検出素子22由来の信号のうち、周方向での並び順で一つおきの磁気検出素子22の信号の正負を反転させる。つまり、並び順で、反転処理する対象と反転処理しない対象が交互になるようにする。例えば、図2における、周方向に並んだ3個の磁気検出素子22、22、22のうち、偶数番目にあたる中央の磁気検出素子22由来の信号の正負を反転させる。 The positive / negative inversion unit 33 inverts the positive / negative of the signal of every other magnetic detection element 22 in the order of arrangement in the circumferential direction among the signals derived from each magnetic detection element 22 offset processed by the DC offset correction unit 32. That is, in the order of arrangement, the target to be reversed and the target not to be reversed are alternated. For example, among the three magnetic detection elements 22 U , 22 V , and 22 W arranged in the circumferential direction in FIG. 2, the positive and negative of the signal derived from the central magnetic detection element 22 V corresponding to the even number is inverted.

例えば、図2のように、周方向に並んだ3個の磁気検出素子22、22、22のそれぞれからは、図4に示すように、電気角(横軸)で、60度(=180/L)ずつ位相がずれた3相の正弦波波形P、P、P(まとめて、検出波形と称する)が得られる。しかし、この検出波形の波形群では、磁束密度(縦軸)のピークの、横軸における位置が、電気角360度のうちの半分未満の範囲に偏って顕れる。 For example, as shown in FIG. 2, from each of the three magnetic detection elements 22 U , 22 V , and 22 W arranged in the circumferential direction, the electrical angle (horizontal axis) is 60 degrees (as shown in FIG. 4). = 180 / L) Three-phase sinusoidal waveforms P U , P V , and P W (collectively referred to as detection waveforms) that are out of phase with each other can be obtained. However, in the waveform group of this detected waveform, the position of the peak of the magnetic flux density (vertical axis) on the horizontal axis appears biased to a range of less than half of the electric angle of 360 degrees.

それに対し、この3相の正弦波波形P、P、Pのそれぞれをオフセット処理し、そのうち、偶数番目にあたる中央の磁気検出素子22V由来の信号の正負を反転させると、図5に示すように、電気角で、120度ずつ位相がずれた3相の正弦波波形Pp、Pp、Pp(まとめて処理波形と称する)が得られる。つまり、電気角360度内で均等に位相がずれ、ピーク位置、あるいはゼロクロス点が等間隔で顕れる素子数nに対応する相数aの処理波形の波形群を得ることができる。 On the other hand, when each of the three-phase sinusoidal waveforms P U , P V , and P W is offset processed and the positive and negative of the signal derived from the central magnetic detection element 22V corresponding to the even number is inverted, it is shown in FIG. As described above, three-phase sinusoidal waveforms Pp U , Pp W , and Pp V (collectively referred to as processed waveforms) having a phase shift of 120 degrees by an electric angle can be obtained. That is, it is possible to obtain a waveform group of processed waveforms having the number of phases a corresponding to the number of elements n in which the phases are evenly shifted within the electric angle of 360 degrees and the peak positions or zero cross points appear at equal intervals.

この後、a相−2相変換部34では、3個の処理波形をa相―2相変換である3相−2相変換して位相が90度異なるSINとCOSの符号を付さない2相信号を求める。a相−2相変換をすることで、同相成分である検出信号の3次成分を除去することができ、検出精度を向上させることができる。そのあと、角度算出部35では、変換された2相信号の正接逆関数を演算して回転角度を算出する。 After that, the a-phase-2 phase conversion unit 34 converts the three processed waveforms into three-phase / two-phase conversion, which is an a-phase-2 phase conversion, and does not assign SIN and COS codes whose phases differ by 90 degrees. Find the phase signal. By performing the a-phase to two-phase conversion, the tertiary component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved. After that, the angle calculation unit 35 calculates the rotation angle by calculating the tangent inverse function of the converted two-phase signal.

なお、正負反転処理において、処理対象を偶数番目にした場合に限らず、奇数番目にした場合でも同様の結果を得ることができる。例えば、図2における、周方向に並んだ3個の磁気検出素子22、22、22のうち、奇数番目にあたる両端の磁気検出素子22、22由来の信号の正負を反転させてもよい。その場合も、図6に示すように、電気角で、120度ずつ位相がずれた3相の正弦波波形Pp、Pp、Ppが得られる。この後、得られた3つの処理波形に対して、3相−2相変換をすることで、同相成分である検出信号の3次成分を除去することができ、検出精度を向上させることができる。 In the positive / negative inversion process, the same result can be obtained not only when the processing target is set to the even number but also when the processing target is set to the odd number. For example, among the three magnetic detection elements 22 U , 22 V , and 22 W arranged in the circumferential direction in FIG. 2, the positive and negative of the signals derived from the magnetic detection elements 22 U , 22 W at both ends corresponding to the odd numbers are inverted. May be good. Also in that case, as shown in FIG. 6, three-phase sinusoidal waveforms Pp V , Pp U , and Pp W, which are out of phase by 120 degrees in terms of electrical angle, can be obtained. After that, by performing three-phase to two-phase conversion on the obtained three processed waveforms, the third-order component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved. ..

変形例1.
上記例では、磁気検出素子を3つ配置した例について説明したが、これに限ることはなく、3つ以上であればよい。本変形例1(第一変形例)においては、磁気検出素子を5つ配置した例について説明する。図7〜図9は第一変形例にかかる回転角度検出装置の構成および動作について説明するためのものであり、図7は回転角度検出装置の回転子と固定子が対向している部分近傍(図2に対応)の拡大模式図であり、図8は固定子に5つの磁気検出素子を配置した際の、それぞれの磁気検出素子から回転角度演算処理部に出力される磁束密度波形を示す図(図4に対応)、図9は5つの磁気検出素子からの磁束密度波形を直流オフセット補正部で直流オフセット補正後に、正負反転部により、偶数番目に位置する2つの磁気検出素子の波形を正負反転処理した磁束密度波形を示す図(図5に対応)である。
Modification example 1.
In the above example, an example in which three magnetic detection elements are arranged has been described, but the present invention is not limited to this, and any number of magnetic detection elements may be three or more. In the present modification 1 (first modification), an example in which five magnetic detection elements are arranged will be described. 7 to 9 are for explaining the configuration and operation of the rotation angle detection device according to the first modification, and FIG. 7 shows the vicinity of the portion where the rotor and the stator of the rotation angle detection device face each other (FIG. 7 to 9). FIG. 8 is an enlarged schematic view (corresponding to FIG. 2), and FIG. 8 is a diagram showing a magnetic flux density waveform output from each magnetic detection element to the rotation angle calculation processing unit when five magnetic detection elements are arranged on the stator. (Corresponding to FIG. 4), FIG. 9 shows that the magnetic flux density waveforms from the five magnetic detection elements are corrected by the DC offset correction unit, and then the positive and negative inversion units are used to positively and negatively correct the waveforms of the two magnetic detection elements located at even positions. It is a figure (corresponding to FIG. 5) which shows the magnetic flux density waveform which performed the inversion process.

本変形例1においては、図7に示すように、素子数n=5として、5つの磁気検出素子22、22、22、22、22を周方向に均等配置(配置箇所数L=5)した。素子数n=5の場合においても、L=nとして、磁気検出素子22を機械角180/(N×L)度の等間隔で配置している。その場合、各磁気検出素子22から出力される信号は、電気角144度(<180度)の範囲で、36度間隔となる。また、N=12の場合、θsが3度となり、θgは12度となる。 In the present modification 1, as shown in FIG. 7, five magnetic detection elements 22 A , 22 B , 22 C , 22 D , and 22 E are evenly arranged in the circumferential direction (the number of arrangement locations), assuming that the number of elements is n = 5. L = 5). Even when the number of elements is n = 5, the magnetic detection elements 22 are arranged at equal intervals of a mechanical angle of 180 / (N × L) degrees with L = n. In that case, the signals output from each magnetic detection element 22 are at intervals of 36 degrees within a range of an electric angle of 144 degrees (<180 degrees). When N = 12, θs is 3 degrees and θg is 12 degrees.

このような構成の場合、5つの磁気検出素子22、22、22、22、22のそれぞれからは、図8に示すように、電気角(横軸)で、36度(=180/L)ずつ位相がずれた5相の正弦波波形P、P、P、P、Pからなる検出波形が得られる。この場合も、磁束密度(縦軸)のピークの横軸における位置は、電気角360度のうちの半分未満の範囲に偏って顕れる。 In the case of such a configuration, from each of the five magnetic detection elements 22 A , 22 B , 22 C , 22 D , and 22 E , the electric angle (horizontal axis) is 36 degrees (=) as shown in FIG. 180 / L) by a five-phase phase-shifted sine waveform P a, P B, P C , P D, is detected waveform consisting of P E obtained. Also in this case, the position of the peak of the magnetic flux density (vertical axis) on the horizontal axis appears biased to a range of less than half of the electric angle of 360 degrees.

それに対し、この5相の正弦波波形P、P、P、P、Pのそれぞれをオフセット処理し、そのうち、偶数番目にあたる磁気検出素子22、22由来の信号の正負を反転させると、図9に示すように、電気角で、72度ずつ位相がずれた5相の正弦波波形Pp、Pp、Pp、Pp、Ppが得られる。つまり、電気角360度内で均等に位相がずれ、ピーク位置、あるいはゼロクロス点が等間隔で顕れる処理波形による波形群を得ることができる。 In contrast, the sine wave waveform P A of the five-phase, P B, P C, P D, offset process each P E, of which, the positive and negative even-numbered corresponding to the magnetic detection element 22 B, 22 D-derived signal When inverted, as shown in FIG. 9, five-phase sinusoidal waveforms Pp A , Pp C , Pp E , Pp B , and Pp D, which are out of phase by 72 degrees at the electrical angle, are obtained. That is, it is possible to obtain a waveform group based on a processed waveform in which the phases are evenly shifted within an electric angle of 360 degrees and peak positions or zero cross points appear at equal intervals.

この後、a相−2相変換部34では、5個の処理波形をa相―2相変換として、5相−2相変換し、2相信号に正接逆関数を計算することで回転角度位置を検出することが可能となる。a相−2相変換をすることで、同相成分である検出信号の5次成分を除去することができ、検出精度を向上させることができる。 After that, the a-phase-2 phase conversion unit 34 converts the five processed waveforms into a-phase-2 phase conversion, performs 5-phase-2 phase conversion, and calculates a tangent inverse function for the 2-phase signal to obtain the rotation angle position. Can be detected. By performing the a-phase to two-phase conversion, the fifth-order component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved.

なお、正負の反転は、磁気検出素子22の並び順に、交互に行えばよく、本変形例1においては、奇数番目にあたる磁気検出素子22、22、22由来の信号の正負を反転させてもよい。 The positive and negative inversions may be performed alternately in the order in which the magnetic detection elements 22 are arranged. In this modification 1, the positive and negative signals derived from the magnetic detection elements 22 A , 22 C , and 22 E , which correspond to odd numbers, are inverted. You may.

また、演算処理によらず、磁気検出素子22で検出する磁束の方向が規則的に反転するように磁気検出素子22を設置してもよい。例えば、本変形例において、磁気検出素子22と22は、径方向内側向きの磁束を正として検出し、磁気検出素子22と22と22は、径方向外側向きの磁束を正として検出するように、極性の異なるものを、あるいは検出面の向きを変えて設置する。 Further, the magnetic detection element 22 may be installed so that the direction of the magnetic flux detected by the magnetic detection element 22 is regularly reversed regardless of the arithmetic processing. For example, in this modification, the magnetic detection elements 22 B and 22 D detect the magnetic flux in the radial inward direction as positive, and the magnetic detection elements 22 A , 22 C and 22 E detect the magnetic flux in the radial outward direction as positive. It is installed with different polarities or with the direction of the detection surface changed so that it can be detected as.

このように構成すれば、図3における正負反転部33を省略しても、直流オフセット補正処理をするだけで、図9と同様に、電気角が72度ずつずれた5相の処理波形を得ることが可能である。また、磁気検出素子22と22と22を、径方向内側向きの磁束を正として検出し、磁気検出素子22と22を、径方向外側向きの磁束を正として検出するように構成した場合も同様に回転角度位置を検出することが可能である。 With this configuration, even if the positive / negative inversion unit 33 in FIG. 3 is omitted, a five-phase processed waveform in which the electrical angles are deviated by 72 degrees can be obtained simply by performing the DC offset correction process. It is possible. Further, the magnetic detection elements 22 A , 22 C and 22 E detect the magnetic flux in the radial inward direction as positive, and the magnetic detection elements 22 B and 22 D detect the magnetic flux in the radial direction as positive. Even when it is configured, it is possible to detect the rotation angle position in the same manner.

変形例2.
変形例1では、磁気検出素子を5つ配置した例について説明したが、本変形例2(第二変形例)においては、磁気検出素子を7つ配置した例について説明する。図10〜図12は第二変形例にかかる回転角度検出装置の構成および動作について説明するためのものであり、図10は回転角度検出装置の回転子と固定子が対向している部分近傍(図2に対応)の拡大模式図であり、図11は固定子に7つの磁気検出素子を配置した際の、それぞれの磁気検出素子から回転角度演算処理部に出力される磁束密度波形を示す図(図4に対応)、図12は7つの磁気検出素子からの磁束密度波形を直流オフセット補正部で直流オフセット補正後に、正負反転部により、偶数番目に位置する3つの磁気検出素子の波形を正負反転処理した磁束密度波形を示す図(図5に対応)である。
Modification example 2.
In the first modification, an example in which five magnetic detection elements are arranged has been described, but in the second modification (second modification), an example in which seven magnetic detection elements are arranged will be described. 10 to 12 are for explaining the configuration and operation of the rotation angle detection device according to the second modification, and FIG. 10 shows the vicinity of the portion where the rotor and the stator of the rotation angle detection device face each other (FIG. 10). FIG. 11 is an enlarged schematic view (corresponding to FIG. 2), and FIG. 11 is a diagram showing a magnetic flux density waveform output from each magnetic detection element to the rotation angle calculation processing unit when seven magnetic detection elements are arranged on the stator. (Corresponding to FIG. 4), FIG. 12 shows that the magnetic flux density waveforms from the seven magnetic detection elements are corrected by the DC offset correction unit, and then the positive and negative inversion units are used to positively and negatively correct the waveforms of the three magnetic detection elements located at even positions. It is a figure (corresponding to FIG. 5) which shows the magnetic flux density waveform which performed the inversion process.

本変形例2においては、図10に示すように、7つの磁気検出素子22、22、22、22、22、22、22を周方向に均等配置(配置箇所数L=7)した。素子数n=7の場合においても、L=nとして、磁気検出素子22を機械角180/(N×L)度の等間隔で配置している。その場合、各磁気検出素子22から出力される信号は、電気角154度(<180度)の範囲で、180/7度(=180/L)間隔となる。また、N=12の場合、θsが2.1度となり、θgは12.9度となる。 In this modification 2, as shown in FIG. 10, seven magnetic detection elements 22 A , 22 B , 22 C , 22 D , 22 E , 22 F , and 22 G are evenly arranged in the circumferential direction (the number of arrangement locations L). = 7). Even when the number of elements is n = 7, the magnetic detection elements 22 are arranged at equal intervals of a mechanical angle of 180 / (N × L) degrees with L = n. In that case, the signals output from each magnetic detection element 22 have an interval of 180/7 degrees (= 180 / L) within a range of an electric angle of 154 degrees (<180 degrees). When N = 12, θs is 2.1 degrees and θg is 12.9 degrees.

このような構成の場合、7つの磁気検出素子22〜22のそれぞれからは、図11に示すように、電気角(横軸)が180/7度ずつ位相がずれた7相の正弦波波形P〜Pからなる検出波形が得られる。この場合も、磁束密度(縦軸)のピークの横軸における位置は、電気角360度のうちの半分未満の範囲に偏って顕れる。 In the case of such a configuration, as shown in FIG. 11, a seven-phase sine wave whose electrical angle (horizontal axis) is 180/7 degrees out of phase from each of the seven magnetic detection elements 22 A to 22 G. is detected waveform consisting of waveform P A to P G obtained. Also in this case, the position of the peak of the magnetic flux density (vertical axis) on the horizontal axis appears biased to a range of less than half of the electric angle of 360 degrees.

それに対し、この7相の正弦波波形P、P、P、P、P、P、Pのそれぞれをオフセット処理し、そのうち、偶数番目にあたる磁気検出素子22、22、22由来の3つの信号の正負を反転させると、図12に示すように、電気角が360/7度ずつ位相がずれた7相の正弦波波形Pp、Pp、Pp、Pp、Pp、Pp、Ppからなる処理波形が得られる。つまり、電気角360度内で均等に位相がずれ、ピーク位置、あるいはゼロクロス点が等間隔で顕れる波形群を得ることができる。 In contrast, the sine wave waveform P A of the 7-phase, P B, P C, P D, P E, P F, and the offset process each P G, of which the even-numbered magnetic detection element 22 B, 22 D When the positive and negative of the three signals derived from 22 F are inverted, as shown in FIG. 12, 7-phase sinusoidal waveforms Pp A , Pp C , Pp E , and Pp whose electrical angles are out of phase by 360/7 degrees. A processed waveform composed of G , Pp B , Pp D , and Pp F can be obtained. That is, it is possible to obtain a waveform group in which the phases are evenly shifted within the electric angle of 360 degrees and the peak positions or zero cross points appear at equal intervals.

この後、a相−2相変換部34では、7相分の処理波形をa相―2相変換として、7相−2相変換し、2相信号に正接逆関数を計算することで回転角度位置を検出することが可能となる。a相−2相変換をすることで、同相成分である検出信号の7次成分を除去することができ、検出精度を向上させることができる。 After that, the a-phase-2 phase conversion unit 34 converts the processed waveform for 7 phases into 7-phase-2 phase conversion, and calculates the tangent / inverse function for the 2-phase signal to rotate the rotation angle. The position can be detected. By performing the a-phase to two-phase conversion, the seventh-order component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved.

ここで、背景技術で示したような、複数個の素子の設置範囲を電気角180〜360度まで広げた場合、機械的構成としての小型化には不利である。その一方、対象の選別と正負反転処理の省略による演算処理の構成を簡略化、あるいは、正負検出方向の交互逆転設定といった煩雑さを不要化できるとの見方もできる。しかし、電気角180°以上の範囲に配置した素子から得られた信号を用いた場合、特定の次数成分の除去ができなくなり2相変換時の振幅も異なるため、検出精度が悪化することがわかった。つまり、本願のように、磁気検出素子22の設置範囲を電気角180°未満にし、周方向の並び順において一つおきに、信号を正負反転処理するように構成することで、装置の小型化だけでなく、検出精度の向上という効果を奏することも可能となる。 Here, when the installation range of the plurality of elements is expanded to an electric angle of 180 to 360 degrees as shown in the background technology, it is disadvantageous for miniaturization as a mechanical configuration. On the other hand, it can be considered that the configuration of the arithmetic processing can be simplified by omitting the selection of the target and the positive / negative inversion processing, or the complexity such as the alternate inversion setting of the positive / negative detection direction can be eliminated. However, when a signal obtained from an element arranged in a range of an electric angle of 180 ° or more is used, it is found that a specific order component cannot be removed and the amplitude at the time of two-phase conversion is different, so that the detection accuracy deteriorates. It was. That is, as in the present application, the installation range of the magnetic detection element 22 is set to an electric angle of less than 180 °, and every other signal is subjected to positive / negative inversion processing in the order of arrangement in the circumferential direction. Not only that, it is also possible to achieve the effect of improving the detection accuracy.

上述した、磁気検出素子22を機械角180/(N×L)度に配置して、一つおきに正負反転処理を行う回転角度検出装置1は、素子数nが、3、5、7に限らず、それ以外の奇数個でも適応可能である。なお、配置数を4以上の偶数とした場合については、実施の形態4で説明する。 In the rotation angle detection device 1 in which the magnetic detection elements 22 described above are arranged at a mechanical angle of 180 / (N × L) degrees and positive / negative inversion processing is performed every other time, the number n of elements is 3, 5, and 7. Not limited to this, other odd numbers can be applied. A case where the number of arrangements is an even number of 4 or more will be described in the fourth embodiment.

なお、本願の各実施の形態にかかる回転角度検出装置1において、回転角度演算処理部30については、例えば、図13に示すように、プロセッサ301と記憶装置302を備えたハードウェア300として、表記することができる。記憶装置302は、図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ301は、記憶装置302から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ301にプログラムが入力される。また、プロセッサ301は、演算結果等のデータを記憶装置302の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。 In the rotation angle detection device 1 according to each embodiment of the present application, the rotation angle calculation processing unit 30 is described as, for example, as hardware 300 including a processor 301 and a storage device 302, as shown in FIG. can do. Although not shown, the storage device 302 includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory. The processor 301 executes the program input from the storage device 302. In this case, the program is input from the auxiliary storage device to the processor 301 via the volatile storage device. Further, the processor 301 may output data such as a calculation result to the volatile storage device of the storage device 302, or may store the data in the auxiliary storage device via the volatile storage device.

実施の形態2.
実施の形態1においては、磁気検出素子からの信号を、周方向の並び順で、一つおきに反転処理、あるいは、正負逆方向に検知するように構成した例について説明したが、これに限ることはない。本実施の形態2と実施の形態3においては、周方向の並び順において、一つおきの磁気検出素子から正負が反転した信号が出力されるように構成した例について説明する。
Embodiment 2.
In the first embodiment, an example is described in which the signals from the magnetic detection elements are arranged in the circumferential direction so as to be inverted every other or detected in the positive and negative directions, but the present invention is limited to this. There is no such thing. In the second embodiment and the third embodiment, an example in which signals having opposite positive and negative signs are output from every other magnetic detection element in the order of arrangement in the circumferential direction will be described.

図14〜図16は実施の形態2にかかる回転角度検出装置の構成および動作について説明するためのものであり、図14は回転角度検出装置の回転子と固定子が対向している部分近傍(図2に対応)の拡大模式図であり、図15は固定子に極性の異なる3つの磁石を並べた磁極発生部のそれぞれに磁気検出素子を配置した際の、それぞれの磁気検出素子から回転角度演算処理部に出力される磁束密度波形を示す図(図4に対応)、図16は3つの磁気検出素子からの磁束密度波形を直流オフセット補正部で直流オフセット補正処理した磁束密度波形を示す図(図5に対応)である。回転角度演算処理部については、実施の形態1で用いた図3を援用して説明する。 14 to 16 are for explaining the configuration and operation of the rotation angle detection device according to the second embodiment, and FIG. 14 shows the vicinity of a portion where the rotor and the stator of the rotation angle detection device face each other (FIG. 14 to 16). FIG. 15 is an enlarged schematic view (corresponding to FIG. 2), in which FIG. 15 shows a rotation angle from each magnetic detection element when a magnetic detection element is arranged in each of the magnetic flux generating parts in which three magnets having different polarities are arranged on a stator. A diagram showing the magnetic flux density waveform output to the arithmetic processing unit (corresponding to FIG. 4), and FIG. 16 is a diagram showing the magnetic flux density waveform obtained by DC offset correction processing of the magnetic flux density waveforms from the three magnetic detection elements by the DC offset correction unit. (Corresponding to FIG. 5). The rotation angle calculation processing unit will be described with reference to FIG. 3 used in the first embodiment.

実施の形態2にかかる回転角度検出装置1は、図14に示すように、磁界発生部21が3個の磁石21p、21n、21pで構成され、隣接する磁石(21pと21n)で配向が反対になるように構成した。回転角度演算処理部30については、図3における正負反転部33を省略したこと以外は、実施の形態1で説明した構成と同様である。 In the rotation angle detecting device 1 according to the second embodiment, as shown in FIG. 14, the magnetic field generating unit 21 is composed of three magnets 21p, 21n, and 21p, and the orientations of the adjacent magnets (21p and 21n) are opposite to each other. It was configured to be. The rotation angle calculation processing unit 30 is the same as the configuration described in the first embodiment except that the positive / negative reversal unit 33 in FIG. 3 is omitted.

素子数n=3の場合であり、周方向において離間する配置箇所数L=nとして、磁気検出素子22、22、22は、周方向において、機械角180/(N×L)度の間隔で、それぞれ3個の磁石21p、21n、21pの径方向内側に配置される。中央の磁気検出素子22が配置された磁石21nに対して、両端の磁気検出素子22、22が配置された磁石21pの配向が反対であるため、磁気検出素子22で検出する磁束の方向は、磁気検出素子22、22で検出する磁束の方向と反対となる。 In the case where the number of elements is n = 3, and the number of arrangement locations L = n separated in the circumferential direction, the magnetic detection elements 22 U , 22 V , and 22 W have a mechanical angle of 180 / (N × L) degrees in the circumferential direction. The three magnets 21p, 21n, and 21p are arranged inside the radial direction at intervals of. Since the orientation of the magnet 21p in which the magnetic detection elements 22 U and 22 W are arranged at both ends is opposite to the magnet 21n in which the central magnetic detection element 22 V is arranged, the magnetic flux detected by the magnetic detection element 22 V is opposite. The direction of is opposite to the direction of the magnetic flux detected by the magnetic detection elements 22 U and 22 W.

そのため、図15に示すように、磁気検出素子22、22で検出する正弦波波形P、Pと、磁気検出素子22で検出する磁束密度の正弦波波形Pの正負は異なっている。そのため、正弦波波形P、P、Pは、実際は、電気角60度(180/L)ずつ位相がずれているが、実施の形態1の正負反転処理後のように、P、P、Pの順で、120度ずつ電気角での位相がずれたように顕れる。 Therefore, as shown in FIG. 15, a sine waveform P U, P W to be detected by the magnetic sensor 22 U, 22 W, the sign of the sine waveform P V of the magnetic flux density detected by the magnetic sensing element 22 V different ing. Therefore, the sinusoidal waveforms P U , P V , and P W are actually out of phase by an electric angle of 60 degrees (180 / L), but as in the case of the positive / negative inversion process of the first embodiment, the P U , P W, in the order of P V, manifested as out of phase in electrical angle of 120 degrees.

得られた正弦波波形P、P、Pをそれぞれオフセット処理する。すると、図16に示すように、磁気検出素子22が電気角60度(180/L)間隔で配置された場合でも、隣接する磁石の配向を反対にすることで、電気角120度ずつ位相がずれた3相の処理波形を得ることができる。そして、得られた3相の処理波形を3相−2相変換することで、同相成分である検出信号の3次成分を除去することができ、検出精度を向上させることができる。また、装置の小型化も可能である。 The obtained sinusoidal waveforms P U , P W , and P V are offset processed, respectively. Then, as shown in FIG. 16, even when the magnetic detection elements 22 are arranged at intervals of 60 degrees (180 / L) of electric angles, the phases are shifted by 120 degrees of electric angles by reversing the orientations of the adjacent magnets. It is possible to obtain a shifted three-phase processing waveform. Then, by converting the obtained three-phase processed waveform into three-phase or two-phase, the third-order component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved. It is also possible to reduce the size of the device.

なお、本実施の形態2においては、説明を簡略化するため、素子数nが3の場合について説明したが、これに限ることはなく、3以上の奇数であればよい。これについては、つぎの実施の形態3も同様である。 In the second embodiment, the case where the number of elements n is 3 has been described for simplification of the description, but the present invention is not limited to this, and any odd number of 3 or more may be used. The same applies to the next embodiment 3.

実施の形態3.
上記実施の形態2では、配向の異なる磁石を配置することで、正負を反転させる例について説明した。本実施の形態3においては、磁石を間欠配置することで、正負を反転させる例について説明する。図17は、実施の形態3にかかる回転角度検出装置の回転子と固定子が対向している部分近傍(図2に対応)の拡大模式図である。また、図18は、変形例にかかる回転角度検出装置の回転子と固定子が対向している部分近傍(図2に対応)の拡大模式図である。回転角度演算部、正弦波波形、および処理波形については、実施の形態2で説明したのと同様である。
Embodiment 3.
In the second embodiment, an example in which the positive and negative directions are reversed by arranging magnets having different orientations has been described. In the third embodiment, an example in which the positive and negative directions are reversed by arranging the magnets intermittently will be described. FIG. 17 is an enlarged schematic view of the vicinity of a portion (corresponding to FIG. 2) where the rotor and the stator of the rotation angle detection device according to the third embodiment face each other. Further, FIG. 18 is an enlarged schematic view of the vicinity of a portion (corresponding to FIG. 2) where the rotor and the stator of the rotation angle detection device according to the modified example face each other. The rotation angle calculation unit, the sine wave waveform, and the processed waveform are the same as those described in the second embodiment.

本実施の形態3にかかる回転角度検出装置1は、図17に示すように、背面部23の周方向における中間部分に、固定子20の内周面20fiに向けて突出する突出部23pを設けた。そして、磁界発生部21を構成する同じ配向の2個の磁石を、背面部23の突出部23pを周方向で挟むようにした。そして、周方向において、機械角180/(N×L)度の間隔で、内周面20fiに沿って配置された磁気検出素子22、22、22のうち、22と22は、それぞれ両端の磁界発生部21上に位置し、22は背面部23の突出部23p上に位置するようにした。 As shown in FIG. 17, the rotation angle detecting device 1 according to the third embodiment is provided with a protruding portion 23p protruding toward the inner peripheral surface 20fi of the stator 20 at an intermediate portion in the circumferential direction of the back surface portion 23. It was. Then, two magnets having the same orientation constituting the magnetic field generating portion 21 are sandwiched in the circumferential direction with the protruding portion 23p of the back surface portion 23. Then, of the magnetic detection elements 22 U , 22 V , and 22 W arranged along the inner peripheral surface 20 fi at intervals of a mechanical angle of 180 / (N × L) degrees in the circumferential direction, 22 U and 22 W are , Each of them is located on the magnetic field generating portions 21 at both ends, and 22 V is located on the protruding portion 23p of the back surface portion 23.

このように構成することで、背面部23上に位置する磁気検出素子22で検出する磁束の方向は、磁界発生部21上に位置する磁気検出素子22、22で検出する磁束の方向と反対となる。そのため、実施の形態2の図15で説明したように、磁気検出素子22、22で検出する正弦波波形P、Pと、磁気検出素子22で検出する磁束密度の正弦波波形Pの正負は異なっている。また、正弦波波形P、P、Pは、それぞれ、電気角60度(180/L)ずつ位相がずれている。 With this configuration, the direction of the magnetic flux detected by the magnetic detection element 22 V located on the back surface 23 is the direction of the magnetic flux detected by the magnetic detection elements 22 U and 22 W located on the magnetic field generating unit 21. Is the opposite. Therefore, as described in FIG. 15 of the second embodiment, the sinusoidal waveform P U to be detected by the magnetic sensor 22 U, 22 W, P W and a sinusoidal waveform of the magnetic flux density detected by the magnetic sensing element 22 V positive and negative of P V is different. Further, sine waveform P U, P W, P V, respectively, the phase is shifted by an electrical angle of 60 degrees (180 / L).

得られた正弦波波形P、P、Pをそれぞれオフセット処理する。すると、実施の形態2の図15で説明したように、磁気検出素子22が電気角60度(180/L)間隔で配置された場合でも、隣接する磁石の配向を反対にすることで、電気角120度ずつ位相がずれた3相の処理波形を得ることができる。そして、得られた3相の処理波形を3相−2相変換することで、同相成分である検出信号の3次成分を除去することができ、検出精度を向上させることができる。また、装置の小型化も可能である。 The obtained sinusoidal waveforms P U , P W , and P V are offset processed, respectively. Then, as described with reference to FIG. 15 of the second embodiment, even when the magnetic detection elements 22 are arranged at intervals of 60 degrees (180 / L) of electric angles, the orientation of the adjacent magnets is reversed to obtain electricity. It is possible to obtain a three-phase processed waveform whose phase is shifted by 120 degrees. Then, by converting the obtained three-phase processed waveform into three-phase or two-phase, the third-order component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved. It is also possible to reduce the size of the device.

変形例.
上記実施の形態3では、周方向で偶数番目に配置される磁気検出素子に対し、磁石の代わりに磁性体の突出部を配置した例について説明したが、これに限ることはない。本変形例では、奇数番目に配置される磁気検出素子に対し、磁石の代わりに磁性体の突出部を配置した例について説明する。
Modification example.
In the third embodiment, an example in which a protruding portion of a magnetic material is arranged instead of a magnet is described for a magnetic detection element arranged even-numbered in the circumferential direction, but the present invention is not limited to this. In this modification, an example in which a protruding portion of a magnetic material is arranged instead of a magnet will be described with respect to the magnetic detection element arranged at an odd number.

本変形例にかかる回転角度検出装置1は、図18に示すように、背面部23の周方向における両端に、固定子20の内周面20fiに向けて突出する突出部23pを設けた。そして、磁界発生部21を構成する磁石を、周方向において2つの突出部23pに挟まれるようにした。そして、周方向において、機械角180/(N×L)度の間隔で、内周面20fiに沿って配置された磁気検出素子22、22、22のうち、22と22は、それぞれ両端の背面部23の突出部23p上に位置し、22は磁界発生部21を構成する磁石上に位置するようにした。 As shown in FIG. 18, the rotation angle detecting device 1 according to the present modification is provided with protruding portions 23p protruding toward the inner peripheral surface 20fi of the stator 20 at both ends of the back surface portion 23 in the circumferential direction. Then, the magnet constituting the magnetic field generating portion 21 is sandwiched between the two protruding portions 23p in the circumferential direction. Then, of the magnetic detection elements 22 U , 22 V , and 22 W arranged along the inner peripheral surface 20 fi at intervals of a mechanical angle of 180 / (N × L) degrees in the circumferential direction, 22 U and 22 W are , Each of which is located on the protruding portion 23p of the back surface portion 23 at both ends, and 22 V is located on the magnet constituting the magnetic field generating portion 21.

このように構成することで、磁界発生部21上に位置する磁気検出素子22で検出する磁束の方向は、背面部23上に位置する磁気検出素子22、22で検出する磁束の方向と反対となる。そのため、実施の形態2の図15で説明したように、磁気検出素子22、22で検出する正弦波波形P、Pと、磁気検出素子22で検出する磁束密度の正弦波波形Pの正負は異なっている。また、正弦波波形P、P、Pは、それぞれ、電気角60度(180/L)ずつ位相がずれている。 With this configuration, the direction of the magnetic flux detected by the magnetic detection element 22 V located on the magnetic field generation unit 21 is the direction of the magnetic flux detected by the magnetic detection elements 22 U and 22 W located on the back surface 23. Is the opposite. Therefore, as described in FIG. 15 of the second embodiment, the sinusoidal waveform P U to be detected by the magnetic sensor 22 U, 22 W, P W and a sinusoidal waveform of the magnetic flux density detected by the magnetic sensing element 22 V positive and negative of P V is different. Further, sine waveform P U, P W, P V, respectively, the phase is shifted by an electrical angle of 60 degrees (180 / L).

得られた正弦波波形P、P、Pをそれぞれオフセット処理する。すると、実施の形態2の図15で説明したように、磁気検出素子22が電気角60度(180/L)間隔で配置された場合でも、隣接する磁石の配向を反対にすることで、電気角120度ずつ位相がずれた3相の処理波形を得ることができる。そして、得られた3相の処理波形を3相−2相変換することで、同相成分である検出信号の3次成分を除去することができ、検出精度を向上させることができる。また、装置の小型化も可能である。 The obtained sinusoidal waveforms P U , P W , and P V are offset processed, respectively. Then, as described with reference to FIG. 15 of the second embodiment, even when the magnetic detection elements 22 are arranged at intervals of 60 degrees (180 / L) of electric angles, the orientation of the adjacent magnets is reversed to obtain electricity. It is possible to obtain a three-phase processed waveform whose phase is shifted by 120 degrees. Then, by converting the obtained three-phase processed waveform into three-phase or two-phase, the third-order component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved. It is also possible to reduce the size of the device.

実施の形態4.
上記実施の形態1〜3においては、素子数が奇数の場合の例について説明した。本実施の形態4においては、素子数が偶数の場合の配置と正負反転処理対象の選択について説明する。図19〜図21は実施の形態4にかかる回転角度検出装置の構成および動作について説明するためのものである。図19は回転角度検出装置の回転子の構成を示す図であり、図19Aは固定子の軸方向に垂直な断面を示す断面図、図19Bは固定子の回転子への対向面、つまり内周面側の側面図である。また、図20は固定子の周方向に2か所、それぞれ2つの磁気検出素子を配置した際の、それぞれの磁気検出素子から回転角度演算処理部に出力される磁束密度波形を示す図(図4に対応)、図21は4つの磁気検出素子からの磁束密度波形を直流オフセット補正部で直流オフセット補正処理した磁束密度波形を示す図(図5に対応)である。回転子については、上述した各実施の形態で説明したのと同様である。また、回転角度演算処理部については、実施の形態1で用いた図3を援用して説明する。
Embodiment 4.
In the first to third embodiments, an example in which the number of elements is odd has been described. In the fourth embodiment, the arrangement when the number of elements is an even number and the selection of the positive / negative inversion processing target will be described. 19 to 21 are for explaining the configuration and operation of the rotation angle detection device according to the fourth embodiment. FIG. 19 is a diagram showing a configuration of a rotor of a rotation angle detection device, FIG. 19A is a cross-sectional view showing a cross section perpendicular to the axial direction of the stator, and FIG. 19B is a surface of the stator facing the rotor, that is, inside. It is a side view of the peripheral surface side. Further, FIG. 20 is a diagram showing a magnetic flux density waveform output from each magnetic detection element to the rotation angle calculation processing unit when two magnetic detection elements are arranged at two locations in the circumferential direction of the stator (FIG. 20). (Corresponding to FIG. 4), FIG. 21 is a diagram (corresponding to FIG. 5) showing the magnetic flux density waveforms obtained by performing DC offset correction processing on the magnetic flux density waveforms from the four magnetic detection elements by the DC offset correction unit. The rotor is the same as described in each of the above-described embodiments. Further, the rotation angle calculation processing unit will be described with reference to FIG. 3 used in the first embodiment.

実施の形態4にかかる回転角度検出装置1は、素子数nを4以上の偶数であるとしたときの磁気検出素子の配置例について、素子数nが4つの場合について説明する。固定子20での、周方向における磁気検出素子の配置箇所数Lは、素子数n(=4)の半分である2とした。そして、図19に示すように、周方向において離間して配置する配置箇所のそれぞれに、例えば、軸方向にずらした2つの磁気検出素子22を配置し、同じ配置箇所内の磁気検出素子22の一方の正負を反転するようにした。なお、同じ配置箇所内での配置は径方向にずらすようにしてもよく、検出感度の分解能内であれば周方向にずらしてもよい。 The rotation angle detection device 1 according to the fourth embodiment describes an example of arranging magnetic detection elements when the number of elements n is an even number of 4 or more, in the case where the number of elements n is four. The number L of the magnetic detection elements arranged in the circumferential direction in the stator 20 was set to 2, which is half of the number n (= 4). Then, as shown in FIG. 19, for example, two magnetic detection elements 22 displaced in the axial direction are arranged at each of the arrangement locations separated in the circumferential direction, and the magnetic detection elements 22 in the same arrangement location are arranged. I tried to reverse the positive and negative of one. The arrangement within the same arrangement location may be shifted in the radial direction, or may be shifted in the circumferential direction as long as it is within the resolution of the detection sensitivity.

正負反転するための機構については、実施の形態1で説明した正負反転部33による演算処理の外、実施の形態2、3で示した周方向における磁界発生部の配向、あるいは磁石の磁性体への入れ替え等を軸方向に置き換えたもの等、いずれの機構でも可能である。本例では、実施の形態1で応用例として触れた、2つの磁気検出素子22で、正とする磁束の向きが異なるようにする構成について例示する。具体的には、例えば、図19Bにおいて軸方向の上側に位置する磁気検出素子22と22は、径方向内側向きの磁束を正として検出し、軸方向の下側に位置する磁気検出素子22と22は、径方向外側向きの磁束を正として検出するように構成する。 Regarding the mechanism for positive / negative inversion, in addition to the arithmetic processing by the positive / negative inversion unit 33 described in the first embodiment, the orientation of the magnetic field generating portion in the circumferential direction shown in the second and third embodiments, or the magnetic material of the magnet. Any mechanism is possible, such as the one in which the replacement of the magnets is replaced in the axial direction. In this example, the two magnetic detection elements 22 mentioned as application examples in the first embodiment will be illustrated with a configuration in which the directions of the positive magnetic fluxes are different. Specifically, for example, in FIG. 19B, the magnetic detection elements 22 A and 22 C located on the upper side in the axial direction detect the magnetic flux in the radial direction as positive, and the magnetic detection elements located on the lower side in the axial direction. 22 B and 22 D are configured to detect the magnetic flux outward in the radial direction as positive.

そして、配置箇所数L=2として、周方向における各配置位置の間隔θwは、機械角180/(N×L)とし、周方向で隣り合う配置位置間の電気角は180/L(=90度)となる。ただし、上述したように、同じ電気角の位置に2つの磁気検出素子22が配置されているので、同じ電気角から正負が反転する2つの信号が得られることになる。 Then, assuming that the number of arrangement points L = 2, the interval θw of each arrangement position in the circumferential direction is a mechanical angle of 180 / (N × L), and the electric angle between adjacent arrangement positions in the circumferential direction is 180 / L (= 90). Degree). However, as described above, since the two magnetic detection elements 22 are arranged at the positions of the same electric angle, two signals whose positive and negative directions are inverted can be obtained from the same electric angle.

そのため、図20に示すように、磁気検出素子22の数と同様に、4つの正弦波波形が得られ、磁気検出素子22、22で検出する正弦波波形P、Pと、磁気検出素子22、22で検出する磁束密度の正負は異なっている。また、正弦波波形PとPは同じ電気角で正負が反転し、正弦波波形PとPも同じ電気角で正負が反転している。そして、正弦波波形PとPに対して、正弦波波形PとPは、位相が電気角90度(180/L)ずれている。 Therefore, as shown in FIG. 20, as well as the number of the magnetic detection elements 22, to obtain four sine waveform, sine waveform P A to be detected by the magnetic sensor 22 A, 22 C, and P C, magnetic The positive and negative of the magnetic flux density detected by the detection elements 22 B and 22 D are different. Further, sine waveform P A and P B are positive and negative reversed at the same electric angle, also sinusoidal waveform P C and P D is positive or negative at the same electrical angle is reversed. Then, the sine waveform P A and P B, sine waveform P C and P D are phase with an electrical angle of 90 degrees (180 / L).

得られた正弦波波形P〜Pをそれぞれオフセット処理する。すると、図21に示すように、磁気検出素子22が電気角90度(=180/L)間隔で、計180度の電気角以内に配置された場合でも、電気角90度ずつ位相がずれた4相の正弦波波形Pp、Pp、Pp、Ppからなる処理波形を得ることができる。そして、得られた4相の処理波形を4相−2相変換することで、同相成分である検出信号の4次成分を除去することができ、検出精度を向上させることができる。また、装置の小型化も可能である。 The obtained sinusoidal waveforms P A to P D are each offset processed. Then, as shown in FIG. 21, even when the magnetic detection elements 22 are arranged at intervals of 90 degrees (= 180 / L) within an electrical angle of 180 degrees in total, the phases are shifted by 90 degrees of electrical angles. A processed waveform composed of four-phase sinusoidal waveforms Pp A , Pp C , Pp B , and Pp D can be obtained. Then, by converting the obtained 4-phase processed waveform into 4-phase or 2-phase, the fourth-order component of the detection signal, which is an in-phase component, can be removed, and the detection accuracy can be improved. It is also possible to reduce the size of the device.

なお、図示しないが、例えば、素子数nを6、8、10、・・・個とすると、それぞれ、配置箇所数Lは3、4、5、・・・と素子数の2分の1に設定される。周方向に隣接する配置箇所間は、機械角θwで、180/(N×L)度間隔で配置され、機械角θgが180/L度未満の範囲に入る。その際、電気角(=360/L)は60度、45度、36度、・・・となり、電気角範囲として、それぞれ120度、135度、144度の範囲内に入る。なお、本例では、配置箇所が2か所のため、θg=θwとなっているが、θg=θw×(L−1)の関係である。 Although not shown, for example, if the number of elements n is 6, 8, 10, ..., The number of arrangement locations L is 3, 4, 5, ..., Which is half the number of elements, respectively. Set. The locations adjacent to each other in the circumferential direction are arranged at intervals of 180 / (N × L) degrees at a mechanical angle θw, and the mechanical angle θg falls within the range of less than 180 / L degrees. At that time, the electric angle (= 360 / L) becomes 60 degrees, 45 degrees, 36 degrees, ..., And the electric angle range falls within the range of 120 degrees, 135 degrees, and 144 degrees, respectively. In this example, since there are two arrangement locations, θg = θw, but there is a relationship of θg = θw × (L-1).

つまり、素子数nが偶数の場合の配置箇所数Lは素子数の半分となり、素子数nが奇数の場合の配置箇所数Lは素子数nに一致させるように磁気検出素子22を配置する。これにより、素子数nが奇数であっても、偶数であっても、機械角180/Nを配置箇所数Lで除した値の位置に磁気検出素子22を配置すればよい。そして、奇数の場合、偶数の場合それぞれで、規則的に選択した磁気検出素子22の信号が正負反転するような機構を設ければ、上述した効果を奏する本願の回転角度検出装置1を得ることができる。 That is, the magnetic detection element 22 is arranged so that the number of arrangement locations L when the number of elements n is an even number is half the number of elements, and the number of arrangement locations L when the number of elements n is an odd number matches the number of elements n. As a result, regardless of whether the number of elements n is odd or even, the magnetic detection element 22 may be arranged at a position where the mechanical angle 180 / N is divided by the number of arrangement locations L. Then, if a mechanism is provided such that the signals of the magnetic detection elements 22 that are regularly selected are positively and negatively inverted in each of the odd number case and the even number case, the rotation angle detection device 1 of the present application that exerts the above-mentioned effect can be obtained. Can be done.

さらに、本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Further, while various exemplary embodiments and examples are described in the present application, the various features, embodiments, and functions described in one or more embodiments are specific embodiments. It is not limited to the application of, but can be applied to the embodiment alone or in various combinations. Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

例えば、凹凸部12の外径は、正弦波を描くように変化する例を示したが、これに限ることはなく、検知できるレベルの範囲において、回転に伴い径が一定の周期で変化するように構成されていればよく、例えば鋸刃状でもよい。 For example, an example is shown in which the outer diameter of the uneven portion 12 changes so as to draw a sine wave, but the present invention is not limited to this, and the diameter changes at a constant cycle with rotation within a detectable level range. It may be in the shape of a saw blade, for example.

以上のように、各実施の形態にかかる回転角度検出装置1によれば、回転軸Xrを中心に回転自在に支持され、外周面10foの径が周期的にN回変化する磁性体の凹凸部12を有する回転子10、回転子10の外周面10foに間隔をあけて対向し、凹凸部12との間に磁界を発生させる磁界発生部21と、周方向に沿って、機械角において180度をNで除した値未満の範囲に配置され、発生させた磁界を検出する3つ以上の磁気検出素子22で構成された素子群と、を有する固定子20、素子群からの検出信号に基づき、回転子10の回転角度を演算する回転角度演算処理部30、および、素子群を構成する素子(磁気検出素子22)の数である素子数nに応じて、素子群のうちの一部の素子を選択し、選択した素子からの検出信号を正負反転させる正負反転機構、を備えるように構成したので、小型で回転角度を正確に検出できる回転角度検出装置1を得ることができる。 As described above, according to the rotation angle detection device 1 according to each embodiment, the uneven portion of the magnetic material is rotatably supported around the rotation axis Xr and the diameter of the outer peripheral surface 10fo changes N times periodically. The rotor 10 having the 12 and the magnetic field generating portion 21 that faces the outer peripheral surface 10fo of the rotor 10 at intervals and generates a magnetic field between the rotor 10 and the uneven portion 12, and 180 degrees in the mechanical angle along the circumferential direction. Is arranged in a range less than the value divided by N, and is based on a detector 20 having an element group composed of three or more magnetic detection elements 22 for detecting the generated magnetic field, and a detection signal from the element group. , A part of the element group according to the rotation angle calculation processing unit 30 for calculating the rotation angle of the rotor 10 and the number of elements n which is the number of elements (magnetic detection element 22) constituting the element group. Since the element is selected and the positive / negative reversal mechanism for reversing the detection signal from the selected element is provided, it is possible to obtain the rotation angle detection device 1 which is compact and can accurately detect the rotation angle.

とくに、素子群の、周方向における配置位置の設定数(配置箇所数L)を2以上の整数とすると、周方向において隣り合う磁気検出素子22間の回転軸Xrを中心とする角度が、機械角においてNと設定数(配置箇所数L)の積で180度を除した値(=180/(N×L)に設定すれば、ピーク、あるいはゼロクロス点が等間隔に顕れ、より正確に回転角度を検出できる。 In particular, assuming that the number of arrangement positions set in the circumferential direction (the number of arrangement locations L) of the element group is an integer of 2 or more, the angle between the adjacent magnetic detection elements 22 in the circumferential direction about the rotation axis Xr is a machine. If the angle is set to a value (= 180 / (N × L)) obtained by dividing N by 180 degrees by the product of N and the set number (number of placement points L), peaks or zero cross points will appear at equal intervals and rotate more accurately. The angle can be detected.

素子数nが奇数の場合、設定数(配置箇所数L)を素子数nに一致させ、配置位置のそれぞれに、素子群を構成する素子を一つずつ配置し、かつ、正負反転機構は、素子群を構成する素子(磁気検出素子22)のうち、周方向における並び順において、一つおきの素子(例えば、偶数番目、または奇数番目)を反転処理対象である一部の素子として選択するように構成すれば、電気角360度内で位相が均等にずれた波形が得られ、より確実に正確な回転角度の検出が可能になる。 When the number of elements n is an odd number, the set number (number of arrangement points L) is matched with the number of elements n, one element constituting the element group is arranged at each arrangement position, and the positive / negative inversion mechanism is Among the elements (magnetic detection element 22) constituting the element group, every other element (for example, even-th or odd-number) is selected as a part of the elements to be inverted in the order of arrangement in the circumferential direction. With such a configuration, a waveform that is evenly out of phase within an electric angle of 360 degrees can be obtained, and more reliable and accurate detection of the rotation angle becomes possible.

あるいは、素子数nが偶数の場合、設定数(配置箇所数L)を素子数nの2分の1とし、配置位置のそれぞれに、素子群を構成する素子(磁気検出素子22)を2つずつ配置し、かつ、正負反転機構は、配置位置のそれぞれに配置された2つの素子のうちの一方を、反転処理対象である一部の素子として選択するように構成すれば、電気角360度内で位相が均等にずれた波形が得られ、より確実に正確な回転角度の検出が可能になる。 Alternatively, when the number of elements n is an even number, the set number (number of arrangement points L) is set to half of the number of elements n, and two elements (magnetic detection elements 22) constituting the element group are provided at each of the arrangement positions. If the positive / negative inversion mechanism is configured to select one of the two elements arranged at each of the arrangement positions as a part of the elements to be inverted, the electric angle is 360 degrees. A waveform that is evenly out of phase can be obtained, and more reliable and accurate detection of the rotation angle becomes possible.

回転角度演算処理部30には、素子群を構成するそれぞれの素子(磁気検出素子22)から出力された検出信号の直流成分を基準値に基づいてそれぞれオフセット処理するオフセット処理部(直流オフセット算出部31、直流オフセット補正部32)、素子数nと同じ相数aの信号が得られるとすると、オフセット処理されたそれぞれの信号(処理波形)からa相−2相変換して2相信号を求めるa相−2相変換部34、および、2相信号の正接逆関数を演算して回転角度を検出する角度算出部35、が設けられているので、磁気検出素子22が検出した検出信号を確実に処理して、検出信号のa次成分を除去し、検出精度を向上させることができる。 The rotation angle calculation processing unit 30 is an offset processing unit (DC offset calculation unit) that offsets the DC component of the detection signal output from each element (magnetic detection element 22) constituting the element group based on the reference value. 31. DC offset correction unit 32), assuming that a signal with the same number of phases a as the number of elements n can be obtained, a-phase-two-phase conversion is performed from each offset-processed signal (processed waveform) to obtain a two-phase signal. Since the a-phase-2 phase conversion unit 34 and the angle calculation unit 35 that calculates the forward / reverse function of the two-phase signal to detect the rotation angle are provided, the detection signal detected by the magnetic detection element 22 is surely provided. It is possible to remove the a-th order component of the detection signal and improve the detection accuracy.

正負反転機構として、回転角度演算処理部30には、選択した素子からの検出信号を演算により正負反転処理する正負反転部33が設けられているように構成すれば、ソフト上で、正負反転処理を容易に行える。 As a positive / negative inversion mechanism, if the rotation angle calculation processing unit 30 is provided with a positive / negative inversion unit 33 that performs positive / negative inversion processing of the detection signal from the selected element by calculation, the positive / negative inversion processing can be performed on the software. Can be easily done.

正負反転機構として、また例えば、選択した素子の検出方向に対し、他の素子の検出方向を反転させて、素子群を構成する素子(磁気検出素子22)を配置すれば、演算処理がなくとも、当初から選択した素子の正負を反転させた信号を得ることができる。 As a positive / negative inversion mechanism, for example, if the detection direction of another element is inverted with respect to the detection direction of the selected element and the element (magnetic detection element 22) constituting the element group is arranged, there is no arithmetic processing. , It is possible to obtain a signal in which the positive and negative of the element selected from the beginning are inverted.

また例えば、磁界発生部21は、3つ以上の磁気検出素子22の外径側に配置した複数の磁石(21n、21p)で構成され、正負反転機構として、素子群を構成する素子(磁気検出素子22)のうち、選択した素子の外径側に配置される磁石(例えば、22p)の配向に対し、他の素子の外径側に配置される磁石(例えば、22n)の配向が反転しているように構成した場合でも、演算処理がなくとも、当初から選択した素子の正負を反転させた信号を得ることができる。 Further, for example, the magnetic field generating unit 21 is composed of a plurality of magnets (21n, 21p) arranged on the outer diameter side of three or more magnetic detection elements 22, and as a positive / negative inversion mechanism, an element (magnetic detection) constituting the element group. Of the elements 22), the orientation of the magnet (for example, 22n) arranged on the outer diameter side of the selected element is reversed with respect to the orientation of the magnet (for example, 22p) arranged on the outer diameter side of the other element. Even in the case of the above configuration, it is possible to obtain a signal in which the positive and negative of the element selected from the beginning are inverted without any arithmetic processing.

固定子20には、磁界発生部21の外径側を覆う磁性体の背面部23が設けられ、正負反転機構として、素子群を構成する素子(磁気検出素子22)のうち、選択した素子には、磁界発生部21を構成する磁石が配置され、他の素子の外径側には、外径側から内周面20fi側に突出した背面部23の突出部23pが配置されているように構成した場合でも、演算処理がなくとも、当初から選択した素子の正負を反転させた信号を得ることができる。 The stator 20 is provided with a back surface portion 23 of a magnetic material that covers the outer diameter side of the magnetic field generating portion 21, and as a positive / negative reversal mechanism, the element selected from the elements (magnetic detection element 22) constituting the element group is used. Is such that the magnets constituting the magnetic field generating portion 21 are arranged, and the protruding portion 23p of the back surface portion 23 protruding from the outer diameter side to the inner peripheral surface 20fi side is arranged on the outer diameter side of the other element. Even in the case of configuration, it is possible to obtain a signal in which the positive and negative of the element selected from the beginning are inverted without any arithmetic processing.

1:回転角度検出装置、 10:回転子、 10fo:外周面、 12:凹凸部、 20:固定子、 20fi:内周面、 21:磁界発生部(正負反転機構)、 21n、21p:磁石(正負反転機構)、 22:磁気検出素子、 23:背面部、 23p:突出部(正負反転機構)、 30:回転角度演算処理部、 31:直流オフセット算出部(オフセット処理部)、 32:直流オフセット補正部(オフセット処理部)、 33:正負反転部(正負反転機構)、 34:a相−2相変換部、 a:相数、 L:配置箇所数(配置位置の数)、 N:凹凸数、 n:素子数(個数)、 Xr:回転軸。 1: Rotation angle detector, 10: Rotor, 10fo: Outer surface, 12: Concavo-convex part, 20: Stator, 20fi: Inner peripheral surface, 21: Magnetic field generator (positive / negative reversal mechanism), 21n, 21p: Magnet ( Positive / negative inversion mechanism), 22: Magnetic detection element, 23: Back surface, 23p: Projection (positive / negative inversion mechanism), 30: Rotation angle calculation processing unit, 31: DC offset calculation unit (offset processing unit), 32: DC offset Correction unit (offset processing unit), 33: Positive / negative inversion unit (positive / negative inversion mechanism), 34: a-phase-2 phase conversion unit, a: number of phases, L: number of arrangement points (number of arrangement positions), N: number of irregularities , N: Number of elements (number), Xr: Rotation axis.

Claims (9)

回転軸を中心に回転自在に支持され、外周面の径が周期的にN回変化する磁性体の凹凸部を有する回転子、
前記回転子の前記外周面に間隔をあけて対向し、前記凹凸部との間に磁界を発生させる磁界発生部と、周方向に沿って、機械角において180度をNで除した値未満、かつ電気角において180度未満の範囲に配置され、前記発生させた磁界を検出する3つ以上の磁気検出素子で構成された素子群と、を有する固定子、
前記素子群のそれぞれの素子からの検出信号に基づき、前記回転子の回転角度を演算する回転角度演算処理部、および、
前記素子群における前記磁気検出素子の数である素子数に応じて、前記素子群のうちの一部の素子を選択し、選択した素子からの検出信号を正負反転させる正負反転機構、
を備えたことを特徴とする回転角度検出装置。
A rotor that is rotatably supported around a rotation axis and has an uneven portion of a magnetic material whose outer peripheral surface diameter changes N times periodically.
A magnetic field generating portion that faces the outer peripheral surface of the rotor at a distance and generates a magnetic field between the rotor and the uneven portion, and a value less than 180 degrees divided by N at a mechanical angle along the circumferential direction. A stator, which is arranged in a range of less than 180 degrees in electrical angle , and has an element group composed of three or more magnetic detection elements for detecting the generated magnetic field.
A rotation angle calculation processing unit that calculates the rotation angle of the rotor based on the detection signals from each element of the element group, and
A positive / negative inversion mechanism that selects some elements in the element group according to the number of elements, which is the number of magnetic detection elements in the element group, and inverts the detection signal from the selected elements.
A rotation angle detection device characterized by being equipped with.
前記素子群の、前記周方向における配置位置の設定数を2以上の整数とすると、
周方向において隣り合う配置位置間の前記回転軸を中心とする角度が、機械角においてNと設定数の積で180度を除した値に設定されていることを特徴とする請求項1に記載の回転角度検出装置。
Assuming that the set number of arrangement positions of the element group in the circumferential direction is an integer of 2 or more,
The first aspect of claim 1, wherein the angle between adjacent arrangement positions in the circumferential direction about the rotation axis is set to a value obtained by dividing 180 degrees by the product of N and the set number in the mechanical angle. Rotation angle detector.
前記素子数が奇数の場合、
前記設定数を前記素子数に一致させ、前記配置位置のそれぞれに、前記素子群を構成する素子を1つずつ配置し、
かつ、前記正負反転機構は、
前記素子群を構成する素子のうち、周方向における並び順において、一つおきの素子を前記一部の素子として選択することを特徴とする請求項2に記載の回転角度検出装置。
When the number of elements is odd,
The set number is matched with the number of elements, and one element constituting the element group is arranged at each of the arrangement positions.
Moreover, the positive / negative inversion mechanism is
The rotation angle detecting device according to claim 2, wherein every other element is selected as a part of the elements in the arrangement order in the circumferential direction among the elements constituting the element group.
前記素子数が偶数の場合、
前記設定数を前記素子数の2分の1とし、前記配置位置のそれぞれに、前記素子群を構成する素子を2つずつ配置し、
かつ、前記正負反転機構は、
前記配置位置のそれぞれに配置された2つの素子のうちの一方を、前記一部の素子として選択することを特徴とする請求項2に記載の回転角度検出装置。
When the number of elements is even,
The set number is set to half of the number of elements, and two elements constituting the element group are arranged at each of the arrangement positions.
Moreover, the positive / negative inversion mechanism is
The rotation angle detecting device according to claim 2, wherein one of the two elements arranged at each of the arranged positions is selected as a part of the elements.
前記回転角度演算処理部には、
前記素子群を構成する素子のそれぞれ出力された検出信号の直流成分を基準値に基づいてそれぞれオフセット処理するオフセット処理部、
前記素子数と同じ相数aの信号が得られるとすると、前記オフセット処理されたそれぞれの信号からa相−2相変換して2相信号を求めるa相−2相変換部、および、
前記2相信号の正接逆関数を演算して回転角度を検出する角度算出部、
が設けられていることを特徴とする請求項1から4のいずれか1項に記載の回転角度検出装置。
The rotation angle calculation processing unit includes
An offset processing unit that offsets the DC components of the detection signals output from each of the elements that make up the element group based on the reference value.
Assuming that a signal having the same number of phases a as the number of elements can be obtained, the a-phase-2 phase converter for obtaining a two-phase signal by performing a-phase-2 phase conversion from each offset-processed signal, and
An angle calculation unit that calculates the tangent and inverse functions of the two-phase signal and detects the rotation angle.
The rotation angle detecting device according to any one of claims 1 to 4, wherein the rotation angle detecting device is provided.
前記正負反転機構として、
前記回転角度演算処理部には、前記選択した素子からの検出信号を演算により正負反転処理する正負反転部が設けられていることを特徴とする請求項1から5のいずれか1項に記載の回転角度検出装置。
As the positive / negative reversal mechanism,
The method according to any one of claims 1 to 5, wherein the rotation angle calculation processing unit is provided with a positive / negative inversion unit that performs positive / negative inversion processing of a detection signal from the selected element by calculation. Rotation angle detector.
前記正負反転機構として、
前記選択した素子の検出方向に対し、他の素子の検出方向を反転させて、前記素子群を構成する素子を配置していることを特徴とする請求項1から5のいずれか1項に記載の回転角度検出装置。
As the positive / negative reversal mechanism,
The invention according to any one of claims 1 to 5, wherein the elements constituting the element group are arranged by inverting the detection direction of the other element with respect to the detection direction of the selected element. Rotation angle detector.
前記磁界発生部は、前記素子群の外径側に配置した複数の磁石で構成され、
前記正負反転機構として、
前記素子群を構成する素子のうち、前記選択した素子の外径側に配置される磁石の配向に対し、他の素子の外径側に配置される磁石の配向が反転していることを特徴とする請求項1から5のいずれか1項に記載の回転角度検出装置。
The magnetic field generating portion is composed of a plurality of magnets arranged on the outer diameter side of the element group.
As the positive / negative reversal mechanism,
Among the elements constituting the element group, the orientation of the magnet arranged on the outer diameter side of the selected element is reversed with respect to the orientation of the magnet arranged on the outer diameter side of the other element. The rotation angle detecting device according to any one of claims 1 to 5.
前記固定子には、前記磁界発生部の外径側を覆う磁性体の背面部が設けられ、
前記正負反転機構として、
前記素子群を構成する素子のうち、前記選択した素子の外径側には、前記磁界発生部を構成する磁石が配置され、他の素子の外径側には、前記外径側から内周面側に突出した前記背面部の突出部が配置されていることを特徴とする請求項1から5のいずれか1項に記載の回転角度検出装置。
The stator is provided with a back surface portion of a magnetic material that covers the outer diameter side of the magnetic field generating portion.
As the positive / negative reversal mechanism,
Among the elements constituting the element group, magnets constituting the magnetic field generating portion are arranged on the outer diameter side of the selected element, and the outer diameter side of the other elements is from the outer diameter side to the inner circumference. The rotation angle detecting device according to any one of claims 1 to 5, wherein the protruding portion of the back surface portion projecting to the surface side is arranged.
JP2019077480A 2019-04-16 2019-04-16 Rotation angle detector Active JP6779333B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019077480A JP6779333B2 (en) 2019-04-16 2019-04-16 Rotation angle detector
CN202010274073.5A CN111829557B (en) 2019-04-16 2020-04-09 Rotation angle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019077480A JP6779333B2 (en) 2019-04-16 2019-04-16 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2020176853A JP2020176853A (en) 2020-10-29
JP6779333B2 true JP6779333B2 (en) 2020-11-04

Family

ID=72913558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019077480A Active JP6779333B2 (en) 2019-04-16 2019-04-16 Rotation angle detector

Country Status (2)

Country Link
JP (1) JP6779333B2 (en)
CN (1) CN111829557B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209881B1 (en) 2022-03-18 2023-01-20 三菱電機株式会社 Rotation angle detector

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953503B2 (en) * 1978-07-25 1984-12-25 三菱電機株式会社 rotation detection device
JPH0392715A (en) * 1989-09-05 1991-04-17 Yamaha Corp Magnetic encoder
EP1014039B1 (en) * 1997-09-08 2004-11-24 Kabushiki Kaisha Yaskawa Denki Magnetic encoder
JP2001095775A (en) * 1999-10-01 2001-04-10 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus and procedure
JP3629242B2 (en) * 2001-02-05 2005-03-16 ペンタックス株式会社 Magnetic encoder and its harmonic error reduction method
JP2004064850A (en) * 2002-07-26 2004-02-26 Denso Corp Brushless motor
WO2006051590A1 (en) * 2004-11-11 2006-05-18 Hitachi, Ltd. Rotation detection device
SE529125C2 (en) * 2005-03-02 2007-05-08 Tetra Laval Holdings & Finance Method and apparatus for determining the position of a packaging material with magnetic markings
KR101325905B1 (en) * 2007-04-24 2013-11-05 가부시키가이샤 하모닉 드라이브 시스템즈 Magnetic encoder and method of detecting absolute rotational position
JP5247411B2 (en) * 2008-01-11 2013-07-24 三菱電機株式会社 Rotation angle detection device, rotation angle detection method, and electric power steering device
DE112008003911B4 (en) * 2008-06-20 2023-02-02 Harmonic Drive Systems Inc. Magnetic encoder and actuator
JP5221494B2 (en) * 2008-12-24 2013-06-26 Ntn株式会社 Rotation detection device and bearing with rotation detection device
JP5079846B2 (en) * 2010-06-03 2012-11-21 東京コスモス電機株式会社 Position detection device
JP2012189377A (en) * 2011-03-09 2012-10-04 Jtekt Corp Rotation angle detection device
CN102684347B (en) * 2011-03-10 2014-10-01 三菱电机株式会社 Electric apparatus and manufacturing method thereof
JP5954107B2 (en) * 2012-10-23 2016-07-20 株式会社デンソー Motor control device
JP2015049046A (en) * 2013-08-29 2015-03-16 アルプス電気株式会社 Angle detector
WO2015151231A1 (en) * 2014-04-01 2015-10-08 株式会社安川電機 Encoder, motor with encoder, servo system, and operating method for servo system
WO2016088698A1 (en) * 2014-12-02 2016-06-09 日本精工株式会社 Motor, and electric power steering device and vehicle in which said motor is installed
JP6197839B2 (en) * 2015-08-11 2017-09-20 Tdk株式会社 Rotation detector
EP3382329B1 (en) * 2015-11-26 2020-12-23 Mitsubishi Electric Corporation Angle detection device and electric power steering device
CN109863368A (en) * 2016-10-31 2019-06-07 三菱电机株式会社 Rotation angle detection apparatus and rotation angle detecting method
US11408721B2 (en) * 2016-10-31 2022-08-09 Mitsubishi Electric Corporation Rotation angle detection device and rotation angle detection method
JP6877168B2 (en) * 2017-02-14 2021-05-26 日本電産サンキョー株式会社 Rotary encoder and its absolute angle position detection method

Also Published As

Publication number Publication date
JP2020176853A (en) 2020-10-29
CN111829557A (en) 2020-10-27
CN111829557B (en) 2022-09-20

Similar Documents

Publication Publication Date Title
US10775201B2 (en) Rotary encoder and absolute angular position detection method thereof
JP5052603B2 (en) Absolute rotation position detection method
JP6649018B2 (en) Rotary encoder and method for detecting absolute angular position of rotary encoder
US8803510B2 (en) Rotation detecting device and bearing having rotation detecting device
US10775200B2 (en) Rotary encoder and absolute angular position detection method thereof
JP5436578B2 (en) Rotary encoder and rotating mechanism having the same
CN107860404B (en) Rotary encoder and absolute angle position detection method for rotary encoder
US8947075B2 (en) Variable reluctance type angle sensor
JP6199239B2 (en) Resolver
JP4845704B2 (en) Hall element resolver
JP6779333B2 (en) Rotation angle detector
JP6877169B2 (en) Rotary encoder
JPWO2018190018A1 (en) Position detecting device and position detecting method
JP6615259B2 (en) Rotating electric machine
JP2012005327A (en) Resolver
JP5281601B2 (en) Reluctance type resolver
JP2007114074A (en) Variable reluctance type resolver
JP7361995B1 (en) Motor systems and motors
JP2554472B2 (en) Rotation position detector
JPH07181060A (en) Absolute encoder
JP2012189350A (en) Encoder device and correction method for encoder device
JP5767917B2 (en) Encoder device and correction method for encoder device
WO2024084598A1 (en) Motor system and motor
JP2010045907A (en) Apparatus and method for creating induced voltage wave table
JP2745627B2 (en) Magnetic rotary encoder for AC servomotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R151 Written notification of patent or utility model registration

Ref document number: 6779333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250