JP5281601B2 - Reluctance type resolver - Google Patents

Reluctance type resolver Download PDF

Info

Publication number
JP5281601B2
JP5281601B2 JP2010036915A JP2010036915A JP5281601B2 JP 5281601 B2 JP5281601 B2 JP 5281601B2 JP 2010036915 A JP2010036915 A JP 2010036915A JP 2010036915 A JP2010036915 A JP 2010036915A JP 5281601 B2 JP5281601 B2 JP 5281601B2
Authority
JP
Japan
Prior art keywords
teeth
tooth
winding
wound
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010036915A
Other languages
Japanese (ja)
Other versions
JP2011174716A (en
Inventor
康一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2010036915A priority Critical patent/JP5281601B2/en
Publication of JP2011174716A publication Critical patent/JP2011174716A/en
Application granted granted Critical
Publication of JP5281601B2 publication Critical patent/JP5281601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high precision reluctance type resolver having good offset characteristics and hardly receiving the effect of an external magnetic flux. <P>SOLUTION: In teeth of a stator 3 comprising a magnetic material including a plurality of teeth 4 to 19, adjacent two teeth are used as a tooth pair, and the pairs are arranged equidistantly to be used as a tooth pair set. A first detection winding 21 and a second detection winding 22 are arranged at first tooth pair set 110 and a second tooth pair set 210 having a phase angle shifted by 90 degrees, respectively. A third tooth pair 301 is arranged between the first tooth pair 101 and the second tooth pair 201. In the first detection winding 21 and the second detection winding 22, the detection windings are wound around the respective teeth in the opposite directions. The winding directions of the excitation winding 20 wound around the third tooth pair set are alternately reversed. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、リラクタンス型レゾルバに関し、電動機内で発生する回転子や電磁ブレーキからの漏れ磁束の影響や、電動機外部からの磁束変化の影響も受けにくく、さらにはオフセット特性が良いレゾルバ構造に関する。   The present invention relates to a reluctance resolver, and more particularly to a resolver structure that is not easily affected by magnetic flux leakage from a rotor or electromagnetic brake generated in an electric motor or affected by changes in magnetic flux from the outside of the electric motor and that has good offset characteristics.

従来、リラクタンス型レゾルバとしては、特許文献1にあるように電動機回転子や電磁ブレーキからの磁束の影響を受けにくいレゾルバが提案されている。特に、特許文献1の図2のレゾルバは、外来磁束に対して、巻線に発生する起電圧を打ち消す作用があり、電動機回転子や電磁ブレーキからの磁束だけでなく、電動機外部から混入する磁束変化に対しても、影響を受けにくいという特徴があった。   Conventionally, as a reluctance type resolver, as disclosed in Patent Document 1, a resolver that is not easily affected by magnetic flux from an electric motor rotor or electromagnetic brake has been proposed. In particular, the resolver shown in FIG. 2 of Patent Document 1 has an action of canceling an electromotive voltage generated in a winding with respect to an external magnetic flux, and includes not only a magnetic flux from an electric motor rotor and an electromagnetic brake but also a magnetic flux mixed from outside the electric motor There was the feature that it was hard to be influenced by change.

特開2002−027719号公報JP 2002-027719 A

特許文献1のレゾルバは、外来磁束に対して影響を受けにくいという特徴がある。しかし、励磁巻線のパーミアンス変化によって位置を検出するため、回転子(可動子)の動きによって変化するパーミアンス変化よりも、励磁磁束の漏れ磁束によるパーミアンス成分の方が大きいという傾向がある。このため、励磁磁束の漏れ磁束が温度変化等で変化すると、レゾルバ出力信号に含まれるオフセット成分が変化し易く、高精度な位置検出が難しいという問題があった。   The resolver of Patent Document 1 has a feature that it is hardly affected by external magnetic flux. However, since the position is detected by the permeance change of the excitation winding, the permeance component due to the leakage flux of the excitation magnetic flux tends to be larger than the permeance change that changes due to the movement of the rotor (mover). For this reason, when the leakage flux of the excitation magnetic flux changes due to a temperature change or the like, there is a problem that the offset component included in the resolver output signal is likely to change and it is difficult to detect the position with high accuracy.

本発明は,外来磁束の影響を受けにくく、オフセット特性が良い高精度なレゾルバを提供することができるという効果を奏する。   The present invention is advantageous in that it can provide a highly accurate resolver that is not easily affected by external magnetic flux and has good offset characteristics.

本発明のリラクタンス型レゾルバは、複数の歯を有する磁性体から成る固定子と、前記固定子の歯と向かい合う側に凹凸を有する磁性体から成る可動子と、隣接する2つの歯を含む第1の歯組を等間隔に複数配置した第1の歯組セットの各歯に巻装された第1の検出巻線と、隣接する2つの歯を含む第2の歯組を前記各第の1歯組と所定の位相角だけずらして等間隔に複数配置した第2の歯組セットの各歯に巻装された第2の検出巻線と、前記第1の歯組と第2の歯組との間に少なくとも1つの歯を含む第3の歯組を等間隔に複数配置した第3の歯組セットに巻装された励磁巻線と、を備え、前記可動子の可動に応じて前記第1の検出巻線と第2の検出巻線との間の電圧変化を検出して前記可動子の可動位置を求めるリラクタンス型レゾルバであって、前記第1の歯組の2つの歯には同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第1の検出巻線が巻装され、前記第2の歯組の2つの歯には同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第2の検出巻線が巻装され、前記第3の歯組には交互に逆方向の磁束が発生するように前記励磁巻線が巻装されていること、を特徴とする。   A reluctance type resolver of the present invention includes a stator made of a magnetic material having a plurality of teeth, a mover made of a magnetic material having irregularities on the side facing the teeth of the stator, and a first tooth including two adjacent teeth. A first detection winding wound around each tooth of a first tooth set in which a plurality of tooth sets are arranged at equal intervals, and a second tooth set including two adjacent teeth is provided for each of the first teeth. A second detection winding wound around each tooth of a second set of teeth arranged at equal intervals with a predetermined phase angle shifted from the set of teeth, and the first set of teeth and the second set of teeth An excitation winding wound around a third tooth set in which a plurality of third tooth sets including at least one tooth are arranged at regular intervals, and according to the movement of the mover, A reluctance resolver for detecting a voltage change between the first detection winding and the second detection winding to obtain a movable position of the mover. The first detection winding is wound around the two teeth of the first tooth set so as to generate electromotive voltages in opposite directions with respect to the change in magnetic flux in the same direction. The second detection winding is wound around the two teeth of the tooth set so that electromotive voltages opposite to each other are generated with respect to a change in magnetic flux in the same direction, and the third tooth set is alternately reversed. The excitation winding is wound so as to generate a magnetic flux in a direction.

本発明のリラクタンス型レゾルバにおいて、前記第1の歯組セットの一の第1の歯組の各歯とそれぞれ前記所定の位相角の2倍だけ位相角がずらして配置されている前記第1の歯組セットの他の第1の歯組の各歯とには同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第1の検出巻線が巻装され、前記第2の歯組セットの一の第2の歯組の各歯とそれぞれ前記所定の位相角の2倍だけ位相角がずらして配置されている前記第2の歯組セットの他の第2の歯組の各歯とには同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第2の検出巻線が巻装されていること、としても好適である。   In the reluctance type resolver according to the present invention, the first tooth set of the first tooth set may be arranged so that the phase angle is shifted from each tooth of the first tooth set by twice the predetermined phase angle. The first detection winding is wound around each tooth of the other first tooth set of the tooth set so as to generate electromotive voltages in opposite directions with respect to magnetic flux changes in the same direction. The other second teeth of the second set of teeth that are arranged with a phase angle shifted from the respective teeth of the second set of teeth of the second set of teeth by twice the predetermined phase angle. It is also preferable that the second detection winding is wound around each tooth of the set so that an electromotive force in the opposite direction is generated with respect to a change in magnetic flux in the same direction.

また、本発明のリラクタンス型レゾルバにおいて、前記第3の歯組は、隣接する複数の歯を含み、該各歯には、同じ向きに磁束が発生するように前記励磁巻線が巻装されていること、としても好適であるし、前記第3の歯組は、隣接する複数の歯を含み、前記励磁巻線は該各歯を束ねて巻装されていること、としても好適である。   In the reluctance resolver of the present invention, the third tooth set includes a plurality of adjacent teeth, and the excitation winding is wound around each tooth so that a magnetic flux is generated in the same direction. It is also preferable that the third tooth set includes a plurality of adjacent teeth, and the exciting winding is wound by bundling the teeth.

本発明は,上述のような事情から成されたものであり,本発明の目的は,外来磁束の影響を受けにくく、オフセット特性が良い高精度なレゾルバを提供することにある。   The present invention has been made under the circumstances described above, and an object of the present invention is to provide a highly accurate resolver that is not easily affected by external magnetic flux and has good offset characteristics.

発明のリラクタンス型レゾルバのラジアル方向の断面図Sectional view in radial direction of the reluctance resolver of the invention 発明の別のリラクタンス型レゾルバのラジアル方向の断面図Radial sectional view of another reluctance resolver of the invention 発明の別のリラクタンス型レゾルバのラジアル方向の断面図Radial sectional view of another reluctance resolver of the invention

以下,図面を参照しながら本発明の実施形態のリラクタンス型レゾルバ100について説明する。図1に、本発明のリラクタンス型レゾルバ100のラジアル方向の断面を示す。図1に示すように、回転軸1には、1つの凸部と1つの凹部を有し、珪素鋼板等の磁性体からできている回転子(可動子)2が固着されている。固定子3は、珪素鋼板等の磁性体からできおり、その内周部に16個の歯4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19を有している。また、固定子3では、連続して並ぶ4つの歯を1つのグループとする、歯4,5,6,7と歯8,9,10,11と歯12,13,14,15と歯16,17,18,19の4つのグループは90度の位相角Lずつずれるように配置され、同じグループ内の歯は約19度の間隔で等ピッチに配置されている。このように配置された16個の歯に1本の励磁巻線20と、1本の第1の検出巻線21と、1本の第2の検出巻線22とが巻装されている。   Hereinafter, a reluctance resolver 100 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross section in the radial direction of a reluctance resolver 100 of the present invention. As shown in FIG. 1, a rotor (movable element) 2 having a single convex portion and a single concave portion and made of a magnetic material such as a silicon steel plate is fixed to the rotary shaft 1. The stator 3 is made of a magnetic material such as a silicon steel plate, and has 16 teeth 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Further, in the stator 3, the teeth 4, 5, 6, 7 and the teeth 8, 9, 10, 11, the teeth 12, 13, 14, 15 and the teeth 16 are grouped into four consecutive teeth. , 17, 18 and 19 are arranged so as to be shifted by a phase angle L of 90 degrees, and the teeth in the same group are arranged at an equal pitch with an interval of about 19 degrees. One excitation winding 20, one first detection winding 21, and one second detection winding 22 are wound around the 16 teeth arranged in this way.

図1に点線で示す1本の励磁巻線20は、一方の端子61から歯16に沿って紙面の上方向から下方向に向かって歯16と歯17との間に入り、歯16の周りに回転軸1から固定子3に向かって反時計回り(図1の記号Aで示す)に巻装され、歯16から歯15に渡り、歯15の周りに反時計回りに巻装される。そして、励磁巻線20は、歯15から歯19に渡り歯19の周囲に時計回り(図1の記号Cで示す)に巻装され、歯19から歯4に渡り、歯4の周囲に時計回りに巻装される。そして、励磁巻線20は、歯4から歯8に渡り、歯8の周囲に反時計回りに巻装され、歯8から歯7に渡り歯7の周りに反時計回りに巻装される。そして、励磁巻線20は、歯7から歯11に渡り、歯11の周りに時計回りに巻装され、歯11から歯12に渡り、歯12の周りに時計回りに巻装され、歯12と歯13との間で紙面の下方向から上方向に向かって出て他方の端子62に接続されている。   One excitation winding 20 indicated by a dotted line in FIG. 1 enters between the teeth 16 and 17 from one terminal 61 along the teeth 16 from the upper side to the lower side of the page. Is wound counterclockwise (indicated by symbol A in FIG. 1) from the rotary shaft 1 to the stator 3, is wound from the tooth 16 to the tooth 15, and is wound around the tooth 15 in the counterclockwise direction. The exciting winding 20 is wound clockwise around the tooth 19 from the tooth 15 to the tooth 19 (indicated by the symbol C in FIG. 1), crosses from the tooth 19 to the tooth 4, and around the tooth 4. Wound around. The excitation winding 20 is wound from the tooth 4 to the tooth 8, wound around the tooth 8 counterclockwise, and wound from the tooth 8 to the tooth 7 around the tooth 7 in the counterclockwise direction. The excitation winding 20 is wound clockwise around the tooth 11 from the tooth 7 to the tooth 11, wound around the tooth 12 from the tooth 11, and wound clockwise around the tooth 12. Between the teeth 13 and the teeth 13, which protrudes from the lower side to the upper side in the drawing, and is connected to the other terminal 62.

図1に実線で示す1本の第1の検出巻線21は、一方の端子63から歯13に沿って紙面の上方向から下方向に向かって歯12と歯13との間に入り、歯13の周りに回転軸1から固定子3に向かって時計回り(図1の記号Cで示す)に巻装され、歯13から歯14に渡り、歯14の周りに反時計回り(図1の記号Aで示す)に巻装される。そして、第1の検出巻線21は、歯14から歯5に渡り歯5の周囲に反時計回りに巻装され、歯5から歯6に渡り、歯6の周囲に時計回りに巻装される。そして、第1の検出巻線21は、歯6と歯7との間で紙面の下方向から上方向に向かって出て他方の端子64に接続されている。   One first detection winding 21 shown by a solid line in FIG. 1 enters between the teeth 12 and 13 from one terminal 63 along the teeth 13 from the upper side to the lower side of the drawing. 1 is wound clockwise (indicated by symbol C in FIG. 1) from the rotary shaft 1 toward the stator 3, crosses from tooth 13 to tooth 14, and counterclockwise around tooth 14 (in FIG. 1). It is wound around (indicated by symbol A). The first detection winding 21 is wound counterclockwise around the tooth 5 from the tooth 14 to the tooth 5, and wound clockwise around the tooth 6 from the tooth 5 to the tooth 6. The The first detection winding 21 is connected between the tooth 6 and the tooth 7 from the lower direction to the upper direction on the paper surface and connected to the other terminal 64.

図1に一点鎖線で示す1本の第2の検出巻線22は、一方の端子65から歯9に沿って紙面の上方向から下方向に向かって歯9と歯10との間に入り、歯9の周りに回転軸1から固定子3に向かって時計回り(図1の記号Cで示す)に巻装され、歯9から歯10に渡り、歯10の周りに反時計回り(図1の記号Aで示す)に巻装される。そして、第2の検出巻線22は、歯10から歯17に渡り歯17の周囲に反時計回りに巻装され、歯17から歯18に渡り、歯18の周囲に時計回りに巻装される。そして、第2の検出巻線22は、歯18と歯19との間で紙面の下方向から上方向に向かって出て他方の端子66に接続されている。   One second detection winding 22 indicated by a one-dot chain line in FIG. 1 enters between the tooth 9 and the tooth 10 from one terminal 65 along the tooth 9 from the upper side to the lower side of the paper surface, 1 is wound clockwise around the tooth 9 from the rotary shaft 1 toward the stator 3 (indicated by symbol C in FIG. 1), crosses from the tooth 9 to the tooth 10, and counterclockwise around the tooth 10 (FIG. 1). (Indicated by symbol A). The second detection winding 22 is wound counterclockwise around the tooth 17 from the tooth 10 to the tooth 17, wound clockwise around the tooth 18 from the tooth 17 to the tooth 18. The The second detection winding 22 is connected between the tooth 18 and the tooth 19 from the lower direction to the upper direction on the paper surface and is connected to the other terminal 66.

また、位相角Lの2倍(2・L)の180度だけ離れた歯5と歯13,歯6と歯14には、同方向の磁束変化に対して、逆向きの起電圧が発生するようにそれぞれ反対方向に第1の検出巻線21が巻装されている。また、位相角Lの2倍(2・L)の180度だけ離れた歯9と歯17又は歯10と歯18も、同方向の磁束変化に対して、逆向きの起電圧が発生するようにそれぞれ反対方向に第2の検出巻線22が巻装されている。   Further, in the teeth 5 and 13 and the teeth 6 and 14 separated by 180 degrees, which is twice the phase angle L (2 · L), an electromotive voltage is generated in the opposite direction with respect to the change in magnetic flux in the same direction. Thus, the first detection windings 21 are wound in opposite directions. In addition, teeth 9 and teeth 17 or teeth 10 and teeth 18 separated by 180 degrees, which is twice the phase angle L (2.L), also generate an electromotive force in the opposite direction with respect to the change in magnetic flux in the same direction. The second detection windings 22 are wound in opposite directions.

このように、本実施形態では、第1の検出巻線21は、隣接する2つの歯5,6を含む第1の歯組101と、2つの歯13,14を含む第1の歯組102を、位相角Lの2倍(2・L)の180度だけずらして等間隔に配置した第1の歯組セット110の各歯5,6,13,14に巻装されており、第2の検出巻線22は、隣接する2つの歯9,10を含む第2の歯組201と2つの歯17,18を含む第2の歯組202を、位相角Lの2倍(2・L)の180度だけずらして等間隔に配置した第2の歯組セット210の各歯9,10,17,18に巻装されており、第1の歯組101,102と第2の歯組201,202とはそれぞれ位相角L(90度)だけずらして等間隔に配置されている。そして、第1の歯組101,102と第2の歯組201,202との間に2つの歯7と8を含む第3の歯組301、歯11と12を含む第3の歯組302、歯15と歯16を含む第3の歯組303、歯19と歯4と含む第3の歯組304が等間隔に配置されている。そして、第1の歯組101,102の2つの歯5,6及び歯13,14には互いに反対方向に第1の検出巻線が巻装され、第2の歯組201,202の2つの歯9,10及び歯17,18には互いに反対方向に第2の検出巻線が巻装され、第3の歯組301,302,303,304には交互に巻線方向が反対方向となるよう励磁巻線20が巻装されている。   As described above, in the present embodiment, the first detection winding 21 includes the first tooth set 101 including the two adjacent teeth 5 and 6 and the first tooth set 102 including the two teeth 13 and 14. Are wound around the teeth 5, 6, 13, and 14 of the first set of teeth 110 that are arranged at equal intervals with a shift of 180 degrees that is twice the phase angle L (2 · L). The detection winding 22 includes a second tooth set 201 including two adjacent teeth 9 and 10 and a second tooth set 202 including two teeth 17 and 18 that are twice the phase angle L (2 · L ) Are wound around the teeth 9, 10, 17, and 18 of the second set of teeth 210 that are arranged at equal intervals by being shifted by 180 degrees, and the first set of teeth 101 and 102 and the second set of teeth They are arranged at equal intervals from each other by a phase angle L (90 degrees). A third tooth set 301 including two teeth 7 and 8 and a third tooth set 302 including teeth 11 and 12 between the first tooth set 101 and 102 and the second tooth set 201 and 202 are provided. The third tooth set 303 including the teeth 15 and the teeth 16 and the third tooth set 304 including the teeth 19 and the teeth 4 are arranged at equal intervals. A first detection winding is wound around the two teeth 5 and 6 and the teeth 13 and 14 of the first tooth set 101 and 102 in opposite directions, and the two teeth of the second tooth set 201 and 202 are provided. The second detection winding is wound around the teeth 9 and 10 and the teeth 17 and 18 in opposite directions, and the winding directions are alternately opposite to the third tooth sets 301, 302, 303, and 304. An exciting winding 20 is wound around.

このように、歯7,8,15,16には励磁巻線20が反時計回りに巻装され、歯11,12,19,4には時計周りに励磁巻線20が巻装されている。このため、励磁巻線20に電流を流すと、互いに反対方向に励磁巻線20が巻装されている歯4と歯7,歯8と歯11,歯12と15,歯16と歯19には、回転軸1の中心に向かう方向に対して、互いに逆方向の磁束が発生する。また、互いに同方向に励磁巻線20が巻装されている隣接する歯4と歯19,歯7と歯8,歯11と歯12,歯15と歯16には、回転軸1の中心に向かう方向に対して、同方向の磁束が発生する。そして、この発生する磁束によって歯4に隣接する第1の検出巻線21が巻装されている歯5と、歯7に隣接する第1の検出巻線21が巻装されている歯6には回転軸1の中心に向かう方向に対して、互いに逆方向の磁束が発生する。同様に第1の検出巻線21が巻装されている歯13と歯14、第2の検出巻線22が巻装されている歯9と歯10、歯17と歯18とにも回転軸1の中心に向かう方向に対して、互いに逆方向の磁束が発生する。   Thus, the exciting winding 20 is wound counterclockwise around the teeth 7, 8, 15 and 16, and the exciting winding 20 is wound clockwise around the teeth 11, 12, 19, and 4. . For this reason, when an electric current is passed through the excitation winding 20, the teeth 4 and 7, the teeth 8 and 11, the teeth 12 and 15, and the teeth 16 and 19 are wound in opposite directions. Generates magnetic fluxes in opposite directions with respect to the direction toward the center of the rotating shaft 1. In addition, the adjacent teeth 4 and 19, teeth 7 and 8, teeth 11 and 12, teeth 15 and 16 that have the excitation winding 20 wound in the same direction are located at the center of the rotary shaft 1. A magnetic flux in the same direction is generated with respect to the direction of travel. Then, the tooth 5 around which the first detection winding 21 adjacent to the tooth 4 is wound by the generated magnetic flux and the tooth 6 around which the first detection winding 21 adjacent to the tooth 7 is wound. Produces magnetic fluxes in opposite directions with respect to the direction toward the center of the rotating shaft 1. Similarly, the teeth 13 and 14 around which the first detection winding 21 is wound, the teeth 9 and 10 around which the second detection winding 22 is wound, and the teeth 17 and 18 are also rotated. Magnetic fluxes in opposite directions with respect to the direction toward the center of 1 are generated.

第1の検出巻線21が反時計回りに巻装される歯5と時計回りに巻装される歯6には、同じ方向の磁束変化に対して、逆向きの起電圧が発生するので、上記のように励磁巻線20によって発生する磁束の向きが歯5と歯6とで反対方向となっている場合には、歯5,6に巻装された第1の検出巻線21には同方向の起電力が発生する。一方、第1の検出巻線21が巻装されている歯5、歯6は、外来磁束によってほぼ等しい磁束変化を受けるので、外来磁束によって発生する起電力は逆方向となって互いに相殺される。同様に第2の検出巻線22が時計回りに巻装される歯9と反時計回りに巻装される歯10には、同じ方向の磁束変化に対して、逆向きの起電圧が発生するので、上記のように励磁巻線20によって発生する磁束の向きが歯9と歯10とで反対方向となっている場合には、同方向の起電力が発生する。一方、第2の検出巻線22が巻装されている歯9、歯10は、外来磁束によってほぼ等しい磁束変化を受けるので、外来磁束によって発生する起電力は逆方向となって互いに相殺されることとなる。   Since the first detection winding 21 is wound counterclockwise and the tooth 5 is wound clockwise, an electromotive force is generated in the opposite direction with respect to the change in magnetic flux in the same direction. When the direction of the magnetic flux generated by the excitation winding 20 is opposite between the teeth 5 and 6 as described above, the first detection winding 21 wound around the teeth 5 and 6 includes An electromotive force in the same direction is generated. On the other hand, since the teeth 5 and 6 around which the first detection winding 21 is wound are subjected to almost equal magnetic flux changes by the external magnetic flux, the electromotive forces generated by the external magnetic flux are reversed and cancel each other. . Similarly, an electromotive voltage in the opposite direction is generated for a change in magnetic flux in the same direction on the tooth 9 on which the second detection winding 22 is wound clockwise and the tooth 10 on which the second detection winding 22 is wound counterclockwise. Therefore, when the direction of the magnetic flux generated by the excitation winding 20 is opposite in the teeth 9 and 10 as described above, an electromotive force in the same direction is generated. On the other hand, since the teeth 9 and 10 around which the second detection winding 22 is wound are subjected to almost the same magnetic flux change by the external magnetic flux, the electromotive forces generated by the external magnetic flux are reversed and cancel each other. It will be.

このような構成により、励磁巻線20にEi=E・SIN(ωt)という交流電圧を加えると、回転子2の凹凸形状と固定子3の歯との間リラクタンスの変化から図1の破線の矢印で示すような方向の磁束を発生し、回転軸1の回転位置θ1によって、第1、第2の検出巻線21、22には、式1,式2のような起電圧Eoc1,Eos1が発生する。
Eoc1=Eo・COS(θ1)SIN(ωt) −−−− (式1)
Eos1=Eo・SIN(θ1)SIN(ωt) −−−− (式2)
式1,式2において、起電圧Eoc1,Eos1をSIN(ωt)=1なるタイミングでサンプルし、逆正接演算を行えば、回転軸1の回転角θ1を検出することが可能である。図1のようなリラクタンス型レゾルバ100では、励磁巻線20が発生する磁束のほとんどが回転子2を介して第1、第2の検出巻線21,22が巻装された各歯5,6,9,10,13,14,17,18を通り抜けるため、第1、第2の検出巻線21,22で発生する起電圧に含まれるオフセット成分が非常に小さい。また、外来磁束に対して、第1、第2の検出巻線21,22が巻装される第1の歯組101,102、第2の歯組201,202を構成する互いに隣接する歯5と6、歯13と14、歯9と10、歯17と18では、ほぼ等しい磁束変化を受けるため、第1、第2の検出巻線21,22が発生する外来磁束による起電圧が打ち消され、ほとんど外来磁束の影響をうけない。ただし、図1のリラクタンス型レゾルバ100では、歯17と歯18又は、歯9と歯10では、回転子2とのリラクタンスが少し異なる。このため、外来磁束によって発生する磁束は少し異なり、多少外来磁束の影響を受ける可能性がある。
With such a configuration, when an alternating voltage of Ei = E · SIN (ωt) is applied to the excitation winding 20, the change in reluctance between the uneven shape of the rotor 2 and the teeth of the stator 3 is caused by the broken line in FIG. Magnetic flux is generated in the direction indicated by the arrow, and electromotive voltages Eoc1 and Eos1 as shown in Equations 1 and 2 are applied to the first and second detection windings 21 and 22 depending on the rotational position θ1 of the rotary shaft 1. Occur.
Eoc1 = Eo · COS (θ1) SIN (ωt) ---- (Equation 1)
Eos1 = Eo · SIN (θ1) SIN (ωt) ---- (Expression 2)
In Expressions 1 and 2, if the electromotive voltages Eoc1 and Eos1 are sampled at the timing of SIN (ωt) = 1 and the arctangent calculation is performed, the rotation angle θ1 of the rotating shaft 1 can be detected. In the reluctance resolver 100 as shown in FIG. 1, most of the magnetic flux generated by the excitation winding 20 is each tooth 5, 6 on which the first and second detection windings 21, 22 are wound via the rotor 2. 9, 9, 13, 14, 17, 18, the offset component included in the electromotive voltages generated in the first and second detection windings 21, 22 is very small. Further, adjacent teeth 5 constituting the first tooth set 101, 102 and the second tooth set 201, 202 around which the first and second detection windings 21, 22 are wound with respect to the external magnetic flux. 6, teeth 13 and 14, teeth 9 and 10, and teeth 17 and 18 are subjected to substantially equal magnetic flux changes, so that the electromotive voltage due to the external magnetic flux generated by the first and second detection windings 21 and 22 is canceled out. , Hardly affected by external magnetic flux. However, in the reluctance resolver 100 of FIG. 1, the reluctance with the rotor 2 is slightly different between the tooth 17 and the tooth 18 or between the tooth 9 and the tooth 10. For this reason, the magnetic flux generated by the external magnetic flux is slightly different and may be affected by the external magnetic flux to some extent.

以上説明したように、本実施形態リラクタンス型レゾルバ100によれば、異なる歯に励磁巻線20と第1、第2の検出巻線21,22を巻装するため、励磁磁束の漏れ磁束によって発生する第1、第2の検出巻線21,22の起電圧が非常に小さくできる。このため、出力信号に含まれるオフセット成分の温度変化等による変動が小さく、高精度な位置検出が可能である。また、リラクタンス型レゾルバ100に外来磁束が進入した場合、第1、第2の検出巻線21,22が巻装されている隣接する2つの歯に発生する外来磁束変化による起電圧が打ち消されるように第1、第2の検出巻線21,22が接続されるため、外来磁束の影響を抑制することができる。   As described above, according to the reluctance resolver 100 of this embodiment, the excitation winding 20 and the first and second detection windings 21 and 22 are wound around different teeth, and therefore, generated due to the leakage flux of the excitation magnetic flux. Thus, the electromotive voltage of the first and second detection windings 21 and 22 can be made very small. For this reason, the fluctuation | variation by the temperature change etc. of the offset component contained in an output signal is small, and a highly accurate position detection is possible. Further, when an external magnetic flux enters the reluctance resolver 100, an electromotive voltage due to a change in the external magnetic flux generated in two adjacent teeth around which the first and second detection windings 21 and 22 are wound is canceled out. Since the first and second detection windings 21 and 22 are connected to each other, the influence of the external magnetic flux can be suppressed.

図2は本発明の別のリラクタンス型レゾルバ200のラジアル方向の断面図である。図1と同様部材には同様の符号を付して説明は省略する。図2において、回転軸26には、外周部に歯車状に19個の凸部と19個の凹部を等間隔に配置し、珪素鋼板等の磁性体からできている回転子(可動子)27が固着されている。固定子3は、第3の歯組301を構成する隣接する歯7と歯8,第3の歯組302を構成する歯11と歯12,第3の歯組303を構成する歯15と歯16、第3の歯組304を構成する歯19と歯4に対して、励磁巻線23が2つの歯を束ねて巻装されているものである。図2に示すように、隣接する第3の歯組301には励磁巻線23が回転軸1から固定子3に向かって反時計回り(図1の記号Aで示す)に巻装され、第3の歯組302には励磁巻線23が回転軸1から固定子3に向かって時計回り(図1の記号Cで示す)に巻装され、第3の歯組303には励磁巻線23が回転軸1から固定子3に向かって反時計回り(図1の記号Aで示す)に巻装され、第3の歯組304には励磁巻線23が回転軸1から固定子3に向かって時計回り(図1の記号Cで示す)に巻装されている。このように、4つの第3の歯組には巻き方向が交互に逆転するよう励磁巻線23が巻装されている。上記外は、本実施形態のリラクタンス型レゾルバ200では、図1に示したリラクタンス型レゾルバ100の第1の検出巻線21が第1の検出巻線24に、第2の検出巻線22が第2の検出巻線25に変わっているだけで、図1の固定子3と同じであり、磁気的特性もほぼ等価である。   FIG. 2 is a radial sectional view of another reluctance resolver 200 of the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 2, a rotating shaft 26 includes a rotor (movable element) 27 made of a magnetic material such as a silicon steel plate, in which 19 convex portions and 19 concave portions are arranged at equal intervals on the outer peripheral portion in a gear shape. Is fixed. The stator 3 includes adjacent teeth 7 and 8 constituting the third tooth set 301, teeth 11 and 12 constituting the third tooth set 302, and teeth 15 and teeth constituting the third tooth set 303. 16, the excitation winding 23 is wound around the teeth 19 and 4 constituting the third tooth set 304 by bundling two teeth. As shown in FIG. 2, the exciting winding 23 is wound counterclockwise (indicated by symbol A in FIG. 1) from the rotating shaft 1 toward the stator 3 in the adjacent third tooth set 301, An excitation winding 23 is wound around the third tooth set 302 clockwise (indicated by symbol C in FIG. 1) from the rotary shaft 1 toward the stator 3, and an excitation winding 23 is wound around the third tooth set 303. Is wound counterclockwise (indicated by symbol A in FIG. 1) from the rotating shaft 1 to the stator 3, and the excitation winding 23 extends from the rotating shaft 1 to the stator 3 in the third tooth set 304. It is wound clockwise (indicated by symbol C in FIG. 1). Thus, the excitation windings 23 are wound around the four third tooth sets so that the winding directions are alternately reversed. Other than the above, in the reluctance resolver 200 of the present embodiment, the first detection winding 21 of the reluctance resolver 100 shown in FIG. 2 is the same as the stator 3 of FIG. 1, and the magnetic characteristics are substantially equivalent.

このような構成により、図2のリラクタンス型レゾルバ200では、励磁巻線23にEi=E・SINωtという交流電圧を加えると、回転子27の凹凸形状と固定子3の歯との間リラクタンスの変化から、回転軸26の回転位置θ2によって、第1、第2の検出巻線24、25には、式3,式4のような起電圧Eoc2,Eos2が発生する。
Eoc2=Eo・COS(19・θ2)SIN(ωt) −− (式3)
Eos2=Eo・SIN(19・θ2)SIN(ωt) −− (式4)
式3,式4において、SINωt=1なるタイミングでサンプルし、逆正接演算を行えば、回転軸26の回転角θ2を19倍の感度で検出することが可能である。また、図2のようなリラクタンス型レゾルバも図1と同様に、励磁巻線23が発生する磁束のほとんどが回転子27を介して第1、第2の検出巻線24,25が巻装された各歯5,6,9,10,13,14,17,18を通り抜けるため、第1、第2の検出巻線24,25で発生する起電圧に含まれるオフセット成分が非常に小さい。また、歯5と歯6,歯9と歯10,歯13と14,歯17と歯18では、それぞれ回転子27に対するリラクタンスがほぼ等しいため、外来磁束もほぼ等しくなる。このため、第1、第2の検出巻線24,25が発生する外来磁束による起電圧は、ほぼ完全に打ち消すことができる。
With such a configuration, in the reluctance resolver 200 of FIG. 2, when an AC voltage of Ei = E · SINωt is applied to the excitation winding 23, the change in reluctance between the uneven shape of the rotor 27 and the teeth of the stator 3. Thus, the electromotive voltages Eoc2 and Eos2 as represented by Equation 3 and Equation 4 are generated in the first and second detection windings 24 and 25 depending on the rotational position θ2 of the rotation shaft 26.
Eoc2 = Eo · COS (19 · θ2) SIN (ωt) −− (Formula 3)
Eos2 = Eo · SIN (19 · θ2) SIN (ωt) −− (Formula 4)
In equations 3 and 4, if the sampling is performed at the timing of SINωt = 1 and the arctangent calculation is performed, the rotation angle θ2 of the rotating shaft 26 can be detected with 19 times the sensitivity. In addition, in the reluctance resolver as shown in FIG. 2, as in FIG. 1, most of the magnetic flux generated by the excitation winding 23 is wound around the first and second detection windings 24 and 25 via the rotor 27. Further, since each of the teeth 5, 6, 9, 10, 13, 14, 17, 18 passes through, the offset component included in the electromotive voltage generated in the first and second detection windings 24, 25 is very small. Further, since the reluctance with respect to the rotor 27 is substantially equal in the teeth 5 and 6, the teeth 9 and 10, the teeth 13 and 14, and the teeth 17 and 18, the external magnetic flux is also approximately equal. For this reason, the electromotive voltage caused by the external magnetic flux generated by the first and second detection windings 24 and 25 can be canceled almost completely.

本実施形態は、図1を参照して説明した実施形態と同様の効果を奏する。   This embodiment has the same effect as the embodiment described with reference to FIG.

図3を参照して、他の実施形態であるリラクタンス型レゾルバ300について説明する。図3は、リラクタンス型レゾルバ300のラジアル方向の断面図である。図3において、回転軸31には、外周部に歯車状に30個の凸部と30個の凹部を等間隔に配置した珪素鋼板等の磁性体からできている回転子(可動子)32が固着されている。固定子33は、珪素鋼板等の磁性体からできおり、その内周部に24個の歯34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57を有している。連続して並ぶ4つの歯を1グループとする歯34,35,36,37と歯37,38,39,40と歯40,41,42,43と歯43,44,45,46と歯46,47,48,49と歯49,50,51,52と歯52,53,64,55と歯55,56,57,34の8(4×2)グループが45度の位相角Lおきに等間隔に配置され、両端の歯は隣接するグループと共有し、励磁巻線28が巻装されている。また、歯37,40,43,46,49,52,55,34の歯幅は、回転子32の凹凸のピッチとほぼ同じ幅であり、回転軸31の回転位置に関係なく、回転子32とのリラクタンス変化がほぼ一定になるようにできている。このように配置された24個の歯34〜57に1本の励磁巻線28と、1本の第1の検出巻線29と、1本の第2の検出巻線30とが巻装されている。   With reference to FIG. 3, the reluctance type resolver 300 which is other embodiment is demonstrated. FIG. 3 is a cross-sectional view of the reluctance resolver 300 in the radial direction. In FIG. 3, the rotating shaft 31 has a rotor (movable element) 32 made of a magnetic material such as a silicon steel plate in which 30 convex portions and 30 concave portions are arranged at equal intervals on the outer periphery. It is fixed. The stator 33 is made of a magnetic material such as a silicon steel plate, and 24 teeth 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57. Teeth 34, 35, 36, 37 and teeth 37, 38, 39, 40, teeth 40, 41, 42, 43 and teeth 43, 44, 45, 46, and teeth 46, each grouping four consecutive teeth. , 47, 48, 49 and teeth 49, 50, 51, 52 and teeth 52, 53, 64, 55 and teeth 55, 56, 57, 34 are grouped every 45 degrees of phase angle L. Arranged at equal intervals, the teeth at both ends are shared with the adjacent group, and the excitation winding 28 is wound. Further, the tooth widths of the teeth 37, 40, 43, 46, 49, 52, 55, and 34 are substantially the same as the uneven pitch of the rotor 32, and the rotor 32 is independent of the rotational position of the rotating shaft 31. The reluctance change with is made almost constant. One excitation winding 28, one first detection winding 29, and one second detection winding 30 are wound around the 24 teeth 34 to 57 arranged in this way. ing.

図3に点線で示す1本の励磁巻線28は、一方の端子61から歯49に沿って紙面の上方向から下方向に向かって歯49と歯50との間に入り、歯49の周りに回転軸1から固定子3に向かって反時計回り(図3の記号Aで示す)に巻装され、歯49から歯52に渡り、歯52の周りに時計回り(図3の記号Cで示す)に巻装される。そして、励磁巻線28は、歯52から歯55に渡り歯55の周囲に反時計回りに巻装され、歯55から歯34に渡り、歯34の周囲に時計回りに巻装される。そして、励磁巻線28は、歯34から歯37に渡り、歯37の周囲に反時計回りに巻装され、歯37から歯40に渡り歯40の周りに時計回りに巻装される。そして、励磁巻線28は、歯40から歯43に渡り、歯43の周りに反時計回りに巻装され、歯43から歯46に渡り、歯46の周りに時計回りに巻装され、歯46と歯47との間で紙面の下方向から上方向に向かって出て他方の端子62に接続されている。   One excitation winding 28 indicated by a dotted line in FIG. 3 enters between the tooth 49 and the tooth 50 from one terminal 61 along the tooth 49 from the upper side to the lower side of the paper surface. 3 is wound counterclockwise (indicated by symbol A in FIG. 3) from the rotary shaft 1 to the stator 3, extends from the tooth 49 to the tooth 52, and clockwise around the tooth 52 (indicated by symbol C in FIG. 3). It is wound around. The excitation winding 28 is wound counterclockwise around the teeth 55 from the teeth 52 to the teeth 55, wound from the teeth 55 to the teeth 34, and wound around the teeth 34 in the clockwise direction. The excitation winding 28 is wound around the teeth 37 from the teeth 34 to the teeth 37, and is wound around the teeth 40 from the teeth 37 to the teeth 40 in the clockwise direction. The exciting winding 28 is wound from the tooth 40 to the tooth 43, wound around the tooth 43 counterclockwise, from the tooth 43 to the tooth 46, and wound around the tooth 46 in the clockwise direction. 46 and the tooth 47 are connected to the other terminal 62 from the lower side to the upper side.

図3に実線で示す1本の第1の検出巻線29は、一方の端子63から歯57に沿って紙面の上方向から下方向に向かって歯57と歯56との間に入り、歯57の周りに回転軸1から固定子3に向かって時計回り(図3の記号Cで示す)に巻装され、歯57から歯56に渡り、歯56の周りに反時計回り(図3の記号Aで示す)に巻装され、第1の検出巻線29は、歯56から歯51に渡り歯51の周囲に反時計回りに巻装され、歯51から歯50に渡り、歯50の周囲に時計回りに巻装される。そして、第1の検出巻線29は、歯50から歯45に渡り歯45の周囲に時計回りに巻装され、歯45から歯44に渡り、歯44の周囲に反時計回りに巻装され、歯44から歯39に渡り歯39の周囲に反時計回りに巻装され、歯39から歯38に渡り、歯38の周囲に時計回りに巻装される。そして、第1の検出巻線29は、歯38と歯39との間で紙面の下方向から上方向に向かって出て他方の端子64に接続されている。   One first detection winding 29 shown by a solid line in FIG. 3 enters between the teeth 57 and 56 from one terminal 63 along the teeth 57 from the upper side to the lower side of the drawing. 3 is wound clockwise from the rotary shaft 1 toward the stator 3 (indicated by the symbol C in FIG. 3), crossed from the tooth 57 to the tooth 56, and counterclockwise around the tooth 56 (in FIG. 3). The first detection winding 29 is wound counterclockwise around the tooth 51 from the tooth 56 to the tooth 51, crosses from the tooth 51 to the tooth 50, and the first detection winding 29 is wound around the tooth 50. Wound clockwise around. The first detection winding 29 is wound clockwise around the teeth 45 from the teeth 50 to the teeth 45, is wound around the teeth 45 from the teeth 45, and is wound counterclockwise around the teeth 44. From the teeth 44 to the teeth 39, the teeth 39 are wound around the teeth 39 counterclockwise, from the teeth 39 to the teeth 38 and wound around the teeth 38 in the clockwise direction. The first detection winding 29 is connected between the tooth 38 and the tooth 39 from the lower side to the upper side on the paper surface and connected to the other terminal 64.

図3に一点鎖線で示す1本の第2の検出巻線30は、一方の端子65から歯35に沿って紙面の上方向から下方向に向かって歯35と歯36との間に入り、歯35の周りに回転軸1から固定子3に向かって時計回り(図3の記号Cで示す)に巻装され、歯35から歯36に渡り、歯36の周りに反時計回り(図3の記号Aで示す)に巻装される。そして、第2の検出巻線30は、歯36から歯41に渡り歯41の周囲に反時計回りに巻装され、歯41から歯42に渡り、歯42の周囲に時計回りに巻装される。そして、第2の検出巻線30は、歯42から歯47に渡り歯47の周囲に時計回りに巻装され、歯47から歯48に渡り、歯48の周囲に反時計回りに巻装され、歯48から歯53に渡り歯53の周囲に反時計回りに巻装され、歯53から歯54に渡り、歯54の周囲に時計回りに巻装される。そして、第2の検出巻線30は、歯53と歯54との間で紙面の下方向から上方向に向かって出て他方の端子66に接続されている。   One second detection winding 30 indicated by a one-dot chain line in FIG. 3 enters between the tooth 35 and the tooth 36 from one terminal 65 along the tooth 35 from the upper side to the lower side of the paper, It is wound around the tooth 35 in the clockwise direction (indicated by the symbol C in FIG. 3) from the rotary shaft 1 toward the stator 3, extends from the tooth 35 to the tooth 36, and counterclockwise around the tooth 36 (FIG. 3). (Indicated by symbol A). The second detection winding 30 is wound counterclockwise around the teeth 41 from the teeth 36 to the teeth 41, is wound around the teeth 42 from the teeth 41 to the teeth 42, and clockwise. The The second detection winding 30 is wound clockwise around the teeth 47 from the teeth 42 to the teeth 47, is wound around the teeth 48 from the teeth 47, and is wound counterclockwise around the teeth 48. The tooth 48 is wound around the tooth 53 in the counterclockwise direction, is wound around the tooth 53 from the tooth 53 to the tooth 54, and is wound around the tooth 54 in the clockwise direction. The second detection winding 30 is connected between the tooth 53 and the tooth 54 from the lower direction to the upper direction on the paper surface and is connected to the other terminal 66.

また、位相角Lの2倍(2・L)の90度だけ離れた歯56と歯38、歯57と歯39、歯38と歯44、歯39と歯45、歯44と歯50,歯45と歯51には、同方向の磁束変化に対して、逆向きの起電圧が発生するようにそれぞれ反対方向に第1の検出巻線29が巻装されている。また、位相角Lの2倍(2・L)の90度だけ離れた歯35と歯41、歯36と歯42、歯41と歯47,歯42と歯48、歯47と歯53,歯48と歯54も、同方向の磁束変化に対して、逆向きの起電圧が発生するようにそれぞれ反対方向に第2の検出巻線30が巻装されている。   In addition, the tooth 56 and the tooth 38, the tooth 57 and the tooth 39, the tooth 38 and the tooth 44, the tooth 39 and the tooth 45, the tooth 39 and the tooth 45, the tooth 44 and the tooth 50, and the tooth separated by 90 degrees, which is twice the phase angle L (2.L). 45 and teeth 51 are wound with first detection windings 29 in opposite directions so as to generate an electromotive voltage in the opposite direction with respect to the change in magnetic flux in the same direction. In addition, tooth 35 and tooth 41, tooth 36 and tooth 42, tooth 41 and tooth 47, tooth 42 and tooth 48, tooth 47 and tooth 53, tooth separated by 90 degrees twice the phase angle L (2.L). 48 and the teeth 54 are also wound with the second detection windings 30 in opposite directions so that an electromotive voltage in the opposite direction is generated with respect to the change in magnetic flux in the same direction.

このように、本実施形態では、第1の検出巻線29は、隣接する2つの歯38,39を含む第1の歯組101と、隣接する2つの歯44,45を含む第1の歯組102と、隣接する2つの歯50,51を含む第1の歯組103と、隣接する2つの歯56,57を含む第1の歯組104を、位相角Lの2倍(2・L)の90度だけずらして等間隔に配置した第1の歯組セットの各歯38,39,44,45,50,51,56,57に巻装されており、第2の検出巻線30は、隣接する2つの歯35,36を含む第2の歯組201と、隣接する2つの歯41,42を含む第2の歯組202と、隣接する2つの歯47,48を含む第2の歯組203と、隣接する2つの歯53,54を含む第2の歯組204を、位相角Lの2倍(2・L)の90度だけずらして等間隔に配置した第2の歯組セットの各歯35,36,41,42,47,48,53,54に巻装されており、第2の歯組101〜104と第2の歯組201〜204とはそれぞれ位相角L(45度)だけずらして等間隔に配置されている。そして、第1の歯組101〜104と第2の歯組201〜204との間にはそれぞれ1つの歯37,40,43,46,49,52,55,34が等間隔に配置されている。そして、第1の歯組101〜104の2つの歯38と39、歯44と45、歯50と51及び歯56と57には互いに反対方向に第1の検出巻線29が巻装され、第2の歯組201〜204の2つの歯35と36、歯41と42、歯47と48、及び歯53と54には互いに反対方向に第2の検出巻線30が巻装され、第1の歯組101〜104,第2の歯組201〜204の間に配置されている歯37,40,43,46,49,52,55,34には交互に巻線方向が反対方向となるよう励磁巻線28が巻装されている。   As described above, in the present embodiment, the first detection winding 29 includes the first tooth set 101 including the two adjacent teeth 38 and 39 and the first tooth including the two adjacent teeth 44 and 45. The set 102, the first tooth set 103 including the two adjacent teeth 50 and 51, and the first tooth set 104 including the two adjacent teeth 56 and 57 are double the phase angle L (2 · L ) Of the first set of teeth 38, 39, 44, 45, 50, 51, 56, 57 arranged at equal intervals and shifted by 90 degrees, and the second detection winding 30. Includes a second tooth set 201 including two adjacent teeth 35 and 36, a second tooth set 202 including two adjacent teeth 41 and 42, and a second tooth set including two adjacent teeth 47 and 48. The second tooth set 204 including the adjacent tooth set 203 and the two adjacent teeth 53 and 54 is 90 degrees that is twice the phase angle L (2 · L). It is wound around each tooth 35, 36, 41, 42, 47, 48, 53, 54 of the second set of teeth arranged at equal intervals, and the second set of teeth 101-104 and the second set The tooth sets 201 to 204 are arranged at equal intervals while being shifted by a phase angle L (45 degrees). And between the 1st tooth set 101-104 and the 2nd tooth set 201-204, one tooth | gear 37, 40, 43, 46, 49, 52, 55, 34 is arrange | positioned at equal intervals, respectively. Yes. The first detection winding 29 is wound around the two teeth 38 and 39, the teeth 44 and 45, the teeth 50 and 51, and the teeth 56 and 57 of the first tooth set 101 to 104 in opposite directions, The second detection winding 30 is wound around the two teeth 35 and 36, the teeth 41 and 42, the teeth 47 and 48, and the teeth 53 and 54 of the second tooth set 201 to 204 in opposite directions. The teeth 37, 40, 43, 46, 49, 52, 55, and 34 arranged between the first tooth sets 101 to 104 and the second tooth sets 201 to 204 are alternately wound in opposite directions. An exciting winding 28 is wound so as to be.

このように、歯37,43,49,55には励磁巻線28が反時計回りに巻装され、歯34,40,46,52には時計周りに励磁巻線28が巻装されている。このため、励磁巻線28に電流を流すと、互いに反対方向に励磁巻線28が巻装されている歯34と歯37,歯37と歯40,歯40と43,歯43と歯46、歯46と歯49,歯49と歯52,歯52と55,歯55と歯34には、回転軸1の中心に向かう方向に対して、互いに逆方向の磁束が発生する。そして、この発生する磁束によって歯37に隣接する第1の検出巻線29が巻装されている歯38と、歯40に隣接する第1の検出巻線29が巻装されている歯39には回転軸1の中心に向かう方向に対して、互いに逆方向の磁束が発生する。同様に第1の検出巻線29が巻装されている歯44と歯45、歯50と歯51、歯56と歯57、第2の検出巻線30が巻装されている歯35と歯36、歯41と歯42、歯47と歯48、歯53と歯54とにも回転軸1の中心に向かう方向に対して、互いに逆方向の磁束が発生する。   Thus, the excitation winding 28 is wound counterclockwise around the teeth 37, 43, 49, 55, and the excitation winding 28 is wound clockwise around the teeth 34, 40, 46, 52. . For this reason, when a current is passed through the exciting winding 28, the teeth 34 and 37, the teeth 37 and 40, the teeth 40 and 43, the teeth 43 and 46, and the teeth 43, which are wound in opposite directions, In the teeth 46 and 49, the teeth 49 and 52, the teeth 52 and 55, the teeth 55 and 34, magnetic fluxes in opposite directions are generated with respect to the direction toward the center of the rotating shaft 1. The generated magnetic flux has teeth 38 around which the first detection winding 29 adjacent to the tooth 37 is wound and teeth 39 around which the first detection winding 29 adjacent to the tooth 40 is wound. Produces magnetic fluxes in opposite directions with respect to the direction toward the center of the rotating shaft 1. Similarly, teeth 44 and teeth 45 around which the first detection winding 29 is wound, teeth 50 and 51, teeth 56 and 57, and teeth 35 and teeth around which the second detection winding 30 is wound. 36, the teeth 41 and 42, the teeth 47 and 48, and the teeth 53 and 54 generate magnetic fluxes in opposite directions with respect to the direction toward the center of the rotary shaft 1.

第1の検出巻線29が反時計回りに巻装される歯39と時計回りに巻装される歯38には、同じ方向の磁束変化に対して、逆向きの起電圧が発生するので、上記のように励磁巻線28によって発生する磁束の向きが歯38と歯39とで反対方向となっている場合には、歯38,39に巻装された第1の検出巻線29には同方向の起電力が発生する。一方、第1の検出巻線29が巻装されている歯38、歯39は、外来磁束によってほぼ等しい磁束変化を受けるので、外来磁束によって発生する起電力は逆方向となって互いに相殺される。同様に第2の検出巻線30が時計回りに巻装される歯35と反時計回りに巻装される歯36には、同じ方向の磁束変化に対して、逆向きの起電圧が発生するので、上記のように励磁巻線28によって発生する磁束の向きが歯35と歯36とで反対方向となっている場合には、同方向の起電力が発生する。一方、第2の検出巻線30が巻装されている歯35、歯36は、外来磁束によってほぼ等しい磁束変化を受けるので、外来磁束によって発生する起電力は逆方向となって互いに相殺されることとなる。   Since the first detection winding 29 is wound counterclockwise in the teeth 39 and the teeth 38 wound in the clockwise direction, an electromotive voltage in the opposite direction is generated with respect to the change in magnetic flux in the same direction. When the direction of the magnetic flux generated by the excitation winding 28 is opposite between the teeth 38 and 39 as described above, the first detection winding 29 wound around the teeth 38 and 39 includes An electromotive force in the same direction is generated. On the other hand, the teeth 38 and teeth 39 around which the first detection winding 29 is wound are subjected to substantially the same magnetic flux change by the external magnetic flux, so that the electromotive forces generated by the external magnetic flux are reversed and cancel each other. . Similarly, a counter electromotive force is generated in the teeth 35 wound clockwise around the second detection winding 30 and the teeth 36 wound counterclockwise against the magnetic flux change in the same direction. Therefore, when the direction of the magnetic flux generated by the excitation winding 28 is opposite between the teeth 35 and 36 as described above, an electromotive force in the same direction is generated. On the other hand, the teeth 35 and the teeth 36 around which the second detection winding 30 is wound are subjected to substantially the same magnetic flux change by the external magnetic flux, so that the electromotive forces generated by the external magnetic flux are reversed and cancel each other. It will be.

このような構成により、図3のリラクタンス型レゾルバでは、励磁巻線28にEi=E・SINωtという交流電圧を加えると、回転子32の凹凸形状と固定子33の歯とのリラクタンスの変化から、回転軸31の回転位置θ3によって、第1、第2の検出巻線29、30には、式5,式6のような起電圧Eoc3,Eos3が発生する。
Eoc3=Eo・COS(30・θ3)SIN(ωt) −− (式5)
Eos3=Eo・SIN(30・θ3)SIN(ωt) −− (式6)
式5,式6において、SINωt=1なるタイミングでサンプルし、逆正接演算を行えば、回転軸31の回転角θ3を30倍の感度で検出することが可能である。また、図3のようなリラクタンス型レゾルバ300も図1、2に示すリラクタンス型レゾルバ100,200と同様に、励磁巻線28が発生する磁束のほとんどが回転子33を介して第1、第2の検出巻線29,30が巻装された歯を通り抜けるため、第1、第2の検出巻線29,30で発生する起電圧に含まれるオフセット成分が非常に小さい。また、第2の歯組201を構成する歯35と歯36,第1の歯組101を構成する歯38と歯39,第2の歯組202を構成する歯41と42,第1の歯組102を構成する歯44と歯45,第2の歯組203を構成する歯47と歯48,第1の歯組103を構成する歯50と歯51,第2の歯組204を構成する歯53と54,第1の歯組104を構成する歯56と歯57では、それぞれ回転子32に対するリラクタンスがほぼ等しいため、外来磁束もほぼ等しくなる。このため、第1、第2の検出巻線29,30が発生する外来磁束による起電圧は、ほぼ完全に打ち消すことができる。また、図3のようなリラクタンス型レゾルバ300では、図1,2に示したリラクタンス型レゾルバ100,200に対して励磁巻線28を巻装する歯の数を半減できるため、励磁巻線28を巻くスペースを確保し易いという特長がある。また、180度おきに固定子33と回転子32の構造が同じになるため、回転子32の位置が多少変位しても位置検出精度が変化しにくいという特長がある。
With such a configuration, in the reluctance resolver of FIG. 3, when an AC voltage of Ei = E · SINωt is applied to the excitation winding 28, the change in reluctance between the uneven shape of the rotor 32 and the teeth of the stator 33 Depending on the rotational position θ3 of the rotating shaft 31, the first and second detection windings 29 and 30 generate electromotive voltages Eoc3 and Eos3 as in Expressions 5 and 6.
Eoc3 = Eo · COS (30 · θ3) SIN (ωt) −− (Formula 5)
Eos3 = Eo · SIN (30 · θ3) SIN (ωt) −− (Formula 6)
In Expressions 5 and 6, if the sampling is performed at the timing of SINωt = 1 and the arctangent calculation is performed, the rotation angle θ3 of the rotating shaft 31 can be detected with 30 times the sensitivity. Further, in the reluctance type resolver 300 as shown in FIG. 3, most of the magnetic flux generated by the excitation winding 28 passes through the rotor 33 in the same manner as the reluctance type resolvers 100 and 200 shown in FIGS. Since the detection windings 29 and 30 pass through the wound teeth, the offset component included in the electromotive voltage generated in the first and second detection windings 29 and 30 is very small. Further, the teeth 35 and 36 constituting the second tooth set 201, the teeth 38 and 39 constituting the first tooth set 101, the teeth 41 and 42 constituting the second tooth set 202, the first tooth The teeth 44 and 45 constituting the set 102, the teeth 47 and 48 constituting the second tooth set 203, the teeth 50 and 51 constituting the first tooth set 103, and the second tooth set 204 are constituted. In the teeth 53 and 54 and the teeth 56 and the teeth 57 constituting the first tooth set 104, the reluctance with respect to the rotor 32 is substantially equal, so that the external magnetic flux is also substantially equal. For this reason, the electromotive voltage caused by the external magnetic flux generated by the first and second detection windings 29 and 30 can be canceled almost completely. Further, in the reluctance type resolver 300 as shown in FIG. 3, the number of teeth around which the exciting winding 28 is wound can be halved with respect to the reluctance type resolvers 100 and 200 shown in FIGS. There is a feature that it is easy to secure a winding space. Further, since the structures of the stator 33 and the rotor 32 are the same every 180 degrees, the position detection accuracy is not easily changed even if the position of the rotor 32 is slightly displaced.

なお,以上説明した各実施形態では,回転型のリラクタンス型レゾルバについて説明したが,回転子(可動子)や固定子を直線に展開することで,直線型のリラクタンス型レゾルバでも実現可能である。また、図2,3のリラクタンス型レゾルバ200,300では、第1、第2の検出巻線24,25,29,30を巻装した隣接する歯を、ほぼ回転子の凹凸のピッチと同じに配置することにより、外来磁束からの影響をほぼ完全に打ち消すことができるようにしたが、回転子32の凹凸のピッチ整数倍でも同様の効果を得ることができる。その他、第1,第2検出巻線24,25,29,30を巻装した隣接する歯を、回転子の凹凸のピッチと少しずらすことにより、外来磁束の影響は受け易くなるものの、内挿誤差を低減させることも可能である。   In each of the embodiments described above, the rotary type reluctance resolver has been described. However, a linear reluctance type resolver can also be realized by developing a rotor (movable element) and a stator in a straight line. 2 and 3, the adjacent teeth around which the first and second detection windings 24, 25, 29, and 30 are wound are substantially the same as the pitch of the concave and convex portions of the rotor. By arranging it, the influence from the external magnetic flux can be almost completely canceled out, but the same effect can be obtained even with an integral multiple of the pitch of the irregularities of the rotor 32. In addition, although the adjacent teeth around which the first and second detection windings 24, 25, 29, 30 are wound are slightly shifted from the uneven pitch of the rotor, they are easily affected by external magnetic flux. It is also possible to reduce the error.

1,26,31 回転軸、2,27,32 回転子(可動子)、3,33 固定子、20,23,28 励磁巻線、21,24,29 第1の検出巻線、22,25,30 第2の検出巻線、4〜19,34〜57 歯、101〜104 第1の歯組、201〜204 第2の歯組、301〜304 第3の歯組、61〜66 端子、100,200,300 リラクタンス型レゾルバ、110 第1の歯組セット、210 第2の歯組セット。   1, 26, 31 Rotating shaft, 2, 27, 32 Rotor (mover), 3, 33 Stator, 20, 23, 28 Excitation winding, 21, 24, 29 First detection winding, 22, 25 , 30 second detection winding, 4-19, 34-57 teeth, 101-104 first tooth set, 201-204 second tooth set, 301-304 third tooth set, 61-66 terminal, 100, 200, 300 Reluctance resolver, 110 first tooth set, 210 second tooth set.

Claims (4)

複数の歯を有する磁性体から成る固定子と、
前記固定子の歯と向かい合う側に凹凸を有する磁性体から成る可動子と、
隣接する2つの歯を含む第1の歯組を等間隔に複数配置した第1の歯組セットの各歯に巻装された第1の検出巻線と、
隣接する2つの歯を含む第2の歯組を前記各第の1歯組と所定の位相角だけずらして等間隔に複数配置した第2の歯組セットの各歯に巻装された第2の検出巻線と、
前記第1の歯組と第2の歯組との間に少なくとも1つの歯を含む第3の歯組を等間隔に複数配置した第3の歯組セットに巻装された励磁巻線と、を備え、
前記可動子の可動に応じて前記第1の検出巻線と第2の検出巻線との間の電圧変化を検出して前記可動子の可動位置を求めるリラクタンス型レゾルバであって、
前記第1の歯組の2つの歯には同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第1の検出巻線が巻装され、
前記第2の歯組の2つの歯には同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第2の検出巻線が巻装され、
前記第3の歯組には交互に逆方向の磁束が発生するように前記励磁巻線が巻装されていること、
を特徴とするリラクタンス型レゾルバ。
A stator made of a magnetic material having a plurality of teeth;
A mover made of a magnetic material having irregularities on the side facing the stator teeth;
A first detection winding wound around each tooth of a first tooth set in which a plurality of first tooth sets including two adjacent teeth are arranged at equal intervals;
Second teeth wound around each tooth of a second tooth set in which a plurality of second tooth sets including two adjacent teeth are shifted from the first tooth sets by a predetermined phase angle and arranged at equal intervals. Detection winding of
An excitation winding wound around a third tooth set in which a plurality of third tooth sets including at least one tooth are arranged at equal intervals between the first tooth set and the second tooth set; With
A reluctance resolver for detecting a voltage change between the first detection winding and the second detection winding in accordance with the movement of the mover to obtain a movable position of the mover;
The first detection winding is wound around the two teeth of the first tooth set so as to generate electromotive voltages opposite to each other with respect to a change in magnetic flux in the same direction,
The second detection winding is wound around the two teeth of the second tooth set so that electromotive voltages in opposite directions are generated with respect to a change in magnetic flux in the same direction,
The excitation winding is wound around the third tooth set so that magnetic fluxes in opposite directions are generated alternately.
A reluctance type resolver characterized by
請求項1に記載のリラクタンス型レゾルバであって、
前記第1の歯組セットの一の第1の歯組の各歯とそれぞれ前記所定の位相角の2倍だけ位相角がずらして配置されている前記第1の歯組セットの他の第1の歯組の各歯とには同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第1の検出巻線が巻装され、
前記第2の歯組セットの一の第2の歯組の各歯とそれぞれ前記所定の位相角の2倍だけ位相角がずらして配置されている前記第2の歯組セットの他の第2の歯組の各歯とには同方向の磁束変化に対して互いに逆向きの起電圧が発生するように前記第2の検出巻線が巻装されていること、
を特徴とするリラクタンス型レゾルバ。
A reluctance resolver according to claim 1,
The other first of the first set of teeth, the phase angle of which is shifted from the respective teeth of the first set of teeth of the first set of teeth by twice the predetermined phase angle. The first detection winding is wound around each tooth of the tooth set such that an electromotive force is generated in the opposite direction with respect to the change in magnetic flux in the same direction,
The second tooth set of the second tooth set is arranged with a phase angle shifted from the respective teeth of the second tooth set of the second tooth set by twice the predetermined phase angle. The second detection winding is wound around each tooth of the tooth set so that an electromotive force in the opposite direction is generated with respect to a change in magnetic flux in the same direction.
A reluctance type resolver characterized by
請求項1または2に記載のリラクタンス型レゾルバであって、
前記第3の歯組は、隣接する複数の歯を含み、
該各歯には、同じ向きに磁束が発生するように前記励磁巻線が巻装されていること、
を特徴とするリラクタンス型レゾルバ。
A reluctance resolver according to claim 1 or 2, wherein
The third tooth set includes a plurality of adjacent teeth;
The excitation winding is wound around each tooth so that magnetic flux is generated in the same direction;
A reluctance type resolver characterized by
請求項1または2に記載のリラクタンス型レゾルバであって、
前記第3の歯組は、隣接する複数の歯を含み、
前記励磁巻線は該各歯を束ねて巻装されていること、
を特徴とするリラクタンス型レゾルバ。
A reluctance resolver according to claim 1 or 2, wherein
The third tooth set includes a plurality of adjacent teeth;
The excitation winding is wound by bundling the teeth;
A reluctance type resolver characterized by
JP2010036915A 2010-02-23 2010-02-23 Reluctance type resolver Active JP5281601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036915A JP5281601B2 (en) 2010-02-23 2010-02-23 Reluctance type resolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036915A JP5281601B2 (en) 2010-02-23 2010-02-23 Reluctance type resolver

Publications (2)

Publication Number Publication Date
JP2011174716A JP2011174716A (en) 2011-09-08
JP5281601B2 true JP5281601B2 (en) 2013-09-04

Family

ID=44687717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036915A Active JP5281601B2 (en) 2010-02-23 2010-02-23 Reluctance type resolver

Country Status (1)

Country Link
JP (1) JP5281601B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247828A (en) * 2012-05-29 2013-12-09 Tamagawa Seiki Co Ltd Redundant resolver coil structure
KR101430186B1 (en) * 2013-02-04 2014-08-13 한국기술교육대학교 산학협력단 Method for detecting phase of resolver and apparatus thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754606B2 (en) * 2000-07-10 2006-03-15 オークマ株式会社 Reluctance type resolver
JP5350979B2 (en) * 2009-10-29 2013-11-27 三菱電機株式会社 Variable reluctance angle detector

Also Published As

Publication number Publication date
JP2011174716A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
US8947075B2 (en) Variable reluctance type angle sensor
JP4775294B2 (en) Resolver
JP6199239B2 (en) Resolver
JP2004333375A (en) Rotation angle sensor
JP4395163B2 (en) Variable reluctance resolver
US20130271121A1 (en) Resolver
JP6867386B2 (en) Resolver
JP5281601B2 (en) Reluctance type resolver
US9412516B2 (en) Resolver and method of manufacturing the same
JP6420692B2 (en) Variable reluctance resolver
JP2015186369A (en) variable reluctance resolver, motor and robot
JP2005287097A (en) High precision 1xvr type resolver
JP4591682B2 (en) Permanent magnet synchronous motor with magnetic encoder
JP2019124514A (en) Multipolar resolver
JPH01218344A (en) Resolver
JP2012005327A (en) Resolver
JP5651060B2 (en) Variable reluctance resolver
JP6942319B2 (en) Parallel winding resolver
JP4418475B2 (en) Rotation angle sensor
JP2007114074A (en) Variable reluctance type resolver
JP2008309618A (en) Redundant system rotary type finite angle detector
JP5343266B2 (en) Rotation position detector
JP2020176853A (en) Rotation angle detecting device
JP4992022B2 (en) Rotating finite angle detector
JP4967932B2 (en) Linear motion resolver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130524

R150 Certificate of patent or registration of utility model

Ref document number: 5281601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150