JP3754606B2 - Reluctance type resolver - Google Patents

Reluctance type resolver Download PDF

Info

Publication number
JP3754606B2
JP3754606B2 JP2000208948A JP2000208948A JP3754606B2 JP 3754606 B2 JP3754606 B2 JP 3754606B2 JP 2000208948 A JP2000208948 A JP 2000208948A JP 2000208948 A JP2000208948 A JP 2000208948A JP 3754606 B2 JP3754606 B2 JP 3754606B2
Authority
JP
Japan
Prior art keywords
excitation
tooth
teeth
magnetic
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000208948A
Other languages
Japanese (ja)
Other versions
JP2002027719A (en
Inventor
康一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2000208948A priority Critical patent/JP3754606B2/en
Priority to US09/887,015 priority patent/US20020005674A1/en
Publication of JP2002027719A publication Critical patent/JP2002027719A/en
Application granted granted Critical
Publication of JP3754606B2 publication Critical patent/JP3754606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転型又は直動型電動機の可動部の運動速度及び運動位置を検出するためのセンサとしてのリラクタンス型レゾルバに係り、特に電動機回転子や電磁ブレーキ等からの漏れ磁束により発生する検出誤差の低減に関する。
【0002】
【従来の技術】
図3は従来のリラクタンス型レゾルバの一例をラジアル方向に切断した断面図である。また、図4は図3のリラクタンス型レゾルバから回転位置を検出するための検出装置の一例を示すブロック図である。図3において固定子1はその内周に等間隔に配置された、磁性体から成る8個の励磁歯2,3,4,5,6,7,8,9を有し、各励磁歯にはそれぞれ励磁巻線12,13,14,15,16,17,18,19が巻装されている。この励磁巻線は、励磁信号の入力時に励磁歯2,4,6,8と励磁歯3,5,7,9とにそれぞれ互いに逆向きの磁束が発生し、各励磁歯を通る磁束の総和が0となるように巻装されている。回転子(可動子)11は磁性体からなり、その外周に等間隔にそれぞれ18個の凸部を備え、各凸部が固定子1の励磁歯に対向するように配置されている。また、この回転子11は、入力軸10の回転可動に連動して回転するように入力軸10に固着されている。このようなリラクタンス型レゾルバでは、回転子11が回転運動すると回転子11側の凸部と固定子1の励磁歯とのギャップ変動により各励磁巻線のパーミアンスが回転子11の凸部ピッチの周期で変化する。また、隣の励磁巻線とのパーミアンスの変化の位相は凸部ピッチの1/4ピッチ異なる位相となる。
【0003】
図4の検出装置では図3のリラクタンス型レゾルバの励磁巻線12,16,14,18,13,17,15,19を励磁信号発生器20からの励磁信号電流SIN(ωt)により電流励磁している。また、励磁信号発生器20はタイミング発生器30からの矩形波信号EXPを波形整形して、正弦波状の励磁信号電流SIN(ωt)を生成し、出力する。対向する励磁歯に巻装され同位相でパーミアンス(磁気抵抗)変化する励磁巻線12と16,13と17,14と18,15と19は直列接続され、さらに電流検出抵抗21,22,23,24が直列接続されている。これにより、各組の励磁巻線に流れる電流をそれぞれ電圧信号VCP,VCN,VSP,VSNとして検出することができる。ここで対向する励磁歯に巻装され同位相のパーミアンス変化となる励磁巻線を直列接続しているのは、固定子と回転子の中心がずれた場合にも2つの励磁巻線の平均化効果によって位置検出の精度への影響を少なくするためである。
【0004】
各組の励磁巻線12と16,13と17,14と18,15と19に流れる電流は巻線パーミアンス変化に比例して変化するため、回転子11の回転角をθ,係数をα,βとすると、信号VCP,VCN,VSP,VSNは次の近似式で表現できる。
【0005】
【数1】
VCP=(α+βCOS(14θ))SIN(ωt) …(1)
VCN=(α−βCOS(14θ))SIN(ωt) …(2)
VSP=(α+βSIN(14θ))SIN(ωt) …(3)
VSN=(α−βSIN(14θ))SIN(ωt) …(4)
【0006】
信号VCPとVCN,VSPとVSNは差動増幅器25,26で減算処理され、それぞれ信号VC、VSに演算増幅される。信号VC,VSは式(5),(6)となる。
【0007】
【数2】
VC=2βCOS(14θ)SIN(ωt) …(5)
VS=2βSIN(14θ)SIN(ωt) …(6)
【0008】
信号VC,VSは、タイミング発生器30からの励磁信号に同期した変換指令信号CNVによってSIN(ωt)=1となるタイミングでAD変換器27,28によりデジタル信号DC,DSに変換される。したがって信号DC,DSは式(7),(8)となる。
【0009】
【数3】
DC=2βCOS(14θ) …(7)
DS=2βSIN(14θ) …(8)
【0010】
デジタル信号DC,DSは内挿演算器29により2変数の逆正接演算がデジタル処理により行なわれ、信号POが出力される。ここで、デジタル信号DC,DSの逆正接演算結果は14θとなり信号POは入力軸10の回転位置となる。
【0011】
以上のように、図3のリラクタンス型レゾルバは固定子側の1つの歯に1つの励磁巻線を巻くだけの簡単な巻線構造で、入力軸の位置θを14倍の感度で検出することができる。なお、このような可動子の位置を14倍の感度で検出できるレゾルバを一般的に軸倍角14Xのレゾルバという。
【0012】
【発明が解決しようとする課題】
しかしながら、図3及び図4に示した従来のリラクタンス型レゾルバを用いて電動機回転子の運動速度や位置を検出する場合、図5の点線で示すような電動機回転子永久磁石や制動用電磁ブレーキからの漏れ磁束NFの影響により精密な測定が妨げられる。すなわち、この漏れ磁束NFは回転子側の凸部と固定子側の励磁歯とのギャップ変動により変化するため、各励磁巻線のパーミアンス変化に比例して変化する。このため、回転子11が回転すると各励磁巻線を通過する漏れ磁束が変化し、その微分量に比例して励磁巻線にノイズ電流が発生する。
【0013】
具体的に回転子の可動時の角速度をvとし、係数をγとするとこのノイズ電流も考慮した信号VCP,VCN,VSP,VSNは次の近似式で表現できる。
【0014】
【数4】
VCP=(α+βCOS(14θ))SIN(ωt)−14γvSIN(14θ) …(7)
VCN=(α−βCOS(14θ))SIN(ωt)+14γvSIN(14θ) …(8)
VSP=(α+βSIN(14θ))SIN(ωt)−14γvCOS(14θ) …(9)
VSN=(α−βSIN(14θ))SIN(ωt)+14γvCOS(14θ) …(10)
【0015】
また、信号VCPとVCN,VSPとVSNの差となる信号VC,VSは式(11),(12)となる。
【0016】
【数5】
VC=2βCOS(14θ)SIN(ωt)−28γvSIN(14θ) …(11)
VS=2βSIN(14θ)SIN(ωt)−28γvCOS(14θ) …(12)
【0017】
式(11),(12)からデジタル信号DC,DSは次の式であらわすことができる。
【0018】
【数6】
DC=2βCOS(14θ)−28γvSIN(14θ) …(13)
DS=2βSIN(14θ)−28γvCOS(14θ) …(14)
【0019】
式(13),(14)は、δ=SQRT(4β・β+728γ・γ・v・v)とおくと、三角関数の加法定理により次式のように変形することができる。
【0020】
【数7】
DC=δCOS(14θ+ATAN(14γv/β)) …(15)
DS=δSIN(14θ−ATAN(14γv/β)) …(16)
【0021】
式(15),(16)に示すデジタル信号DC,DSを内挿演算器28により2変数の逆正接演算を行うと信号POは次式となる。
【0022】
【数8】
PO≒14θ−ATAN(14γv/β)COS(28θ) …(17)
【0023】
ここで14γvはβよりも十分小さいため、
【0024】
【数9】
PO≒14(θ+γv/βCOS(28θ)) …(18)
【0025】
また、(18)式を軸倍角NXのレゾルバの一般式に変換すると
【0026】
【数10】
PO=N(θ+γv/βCOS(2Nθ)) …(19)
【0027】
で表すことができる。
【0028】
以上から、電動機からの漏れ磁束による位置検出誤差の影響は角速度vと軸倍角Nに比例して大きくなり、一回転あたり2N回脈動する位置検出誤差を生じる。この位置検出誤差はレゾルバ軸倍角が小さくかつ励磁信号の周波数ωが十分高く、そして可動速度が低い場合は式(11),(12)が示すように漏れ磁束によるノイズ成分は低域にあるため、低域カットフィルター等で除去可能である。しかし、近年は、位置検出の分解能を上げるため、レゾルバ軸倍角を大きくする傾向がある上、電動機の可動速度も高速化してきている。そのため、低域カットフィルターによる除去には限界がきている。また、位置検出誤差だけならほとんど問題とならないレベルであっても、近年の電動機の速度制御では位置検出値を微分演算により速度検出を行うため、速度誤差レベルでみると漏れ磁束による影響は回転速度の自乗に比例することになり、高速可動するほど漏れ磁束による影響は深刻となる。
【0029】
本発明は上記実情に鑑みなされたもので、製造の容易な巻線構造を持ちながら、電動機回転子の永久磁石や制動用の電磁ブレーキからの漏れ磁束等に対して影響を受けづらい高精度な速度検出および位置検出を行うことができるリラクタンス型レゾルバを提供することを目的とする。
【0030】
【課題を解決するための手段】
上記従来例の問題点を解決するための本発明は、励磁巻線を巻装した複数の励磁歯を有し、磁性体からなる固定子と、磁性凸部を備え、当該磁性凸部が前記励磁歯に対向するよう配置された可動子と、前記可動子の運動に応じて、異なる位相で変化する前記励磁巻線の電流又は電圧を検出して、前記可動子の位置を検出するリラクタンス型レゾルバにおいて、前記励磁巻線は、各励磁歯を通る磁束の向きが同一方向となるよう各励磁歯に巻装され、前記固定子は、励磁歯の磁束と逆向きの磁束を通すバイパス磁路歯を有することを特徴としている。これにより、バイパス磁路歯があるため、漏れ磁束の影響を受けにくい方向に励磁巻線を巻装でき、速度の検出精度を向上できる。
【0031】
また、上記従来例の問題点を解決するための本発明は、互いに隣接し、可動子の運動による磁気抵抗の変化が同位相になるように配置された励磁歯の組を備え、各組の励磁歯の各々に巻回された励磁巻線を直接接続することによって打ち消すことで、漏れ磁束の影響を低減し、速度及び位置の検出精度を向上できる。すなわち、本発明は、励磁巻線を巻装した複数の励磁歯を有し、磁性体からなる固定子と、磁性凸部を備え、当該磁性凸部が前記励磁歯に対向するよう配置された可動子と、前記可動子の運動に応じて、異なる位相で変化する前記励磁巻線の電流又は電圧を検出して、前記可動子の位置を検出するリラクタンス型レゾルバにおいて、前記励磁巻線は、互いに隣接する励磁歯の組ごとに、各励磁歯を通る磁束の向きが互いに逆向きとなるように各励磁歯に巻装されるとともに直列接続され、組ごとに、各励磁歯のピッチが可動子の磁性凸部のピッチの整数倍と等しくなるよう前記固定子上に励磁歯が配置されていることを特徴としている。
【0032】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら説明する。図1は、本発明の実施の形態に係るリラクタンス型レゾルバをラジアル方向に切断した断面図である。ここで、図3と同様の構成をとるものについては同一の符号を付して詳しい説明を省略する。固定子31は、その内周に磁性体からなる16個の歯が等間隔に配置され、そのうち8個の歯(励磁歯に相当する)42,43,44,45,46,47,48,49には、それぞれ励磁巻線32,33,34,35,36,37,38,39が巻装されている。また、残りの8個の歯(バイパス磁路歯に相当する)には巻線を巻装しない。さらに、固定子1では励磁巻線32と36,33と37,34と38,35と39の4組の励磁巻線が直列接続され、励磁巻線に励磁信号が入力されると歯42,43,44,45,46,47,48,49では回転子11に対して同一方向の磁束が発生するように励磁巻線が巻装されている。これにより、励磁巻線に励磁信号が入力されると、励磁歯間に配置され、巻線を巻装していない8個のバイパス磁路歯は、励磁歯42,43,44,45,46,47,48,49を通る磁束の向きと回転子11に対して逆向きの磁束が発生し、バイパス磁路の役目を果たす。
【0033】
図1のリラクタンス型レゾルバを図4の位置検出装置を用いて図3と同様に検出した場合について説明すると、励磁巻線32と36,33と37,34と38,35と39の4種類の巻線は、従来のリラクタンス型レゾルバの励磁巻線12と16,13と17,14と18,15と19の4種類の巻線に対応し、可動子としての回転子11の運動に対するパーミアンス変化は従来のものとほぼ同等となる。すなわち、図1のリラクタンス型レゾルバを図4の位置検出装置を用いた場合も図3のレゾルバと同様に位置検出することができる。一方、図5の点線で示すような漏れ磁束NFが発生した場合は、励磁巻線33,37,35,39と励磁巻線13,17,15,19では、漏れ磁束によって生じるノイズ電流の向きが異なるため、図1のリラクタンス型レゾルバを用い、図4の位置検出装置で位置等の検出をする場合は信号VSP,VSNは次の近似式となる。
【0034】
【数11】
VSP=(α+βSIN(14θ))SIN(ωt)+14γvCOS(14θ) …(20)
VSN=(α−βSIN(14θ))SIN(ωt)−14γvCOS(14θ) …(21)
【0035】
したがって、VSPとVSNの差である信号VSは式(22)となる。
【0036】
【数12】
VS=2βSIN(14θ)SIN(ωt)+28γvCOS(14θ) …(22)
【0037】
式(22)からSIN(ωt)=1の時のデジタル信号DSは式(23)となる。
【0038】
【数13】
DS=2βSIN(14θ)+28γvCOS(14θ) …(23)
【0039】
ここで、式(23)は三角関数の加法定理により次式のように変形することができる。
【0040】
【数14】
DS=δSIN(14θ+ATAN(14γv/β)) …(24)
【0041】
また信号DCは式(15)と同じであるため、デジタル信号DC,DSを内挿演算器28により2変数の逆正接演算を行うと信号POは式(25)となる。
【0042】
【数15】
PO=14θ+ATAN(14γv/β) …(25)
【0043】
ここで14γvがβよりも十分小さいと考えれば式(26)となる。
【0044】
【数16】
PO=14(θ+γv/β) …(26)
【0045】
この式(26)で示されるように、図1のリラクタンス型レゾルバで位置検出する場合の漏れ磁束による影響は、回転速度に比例した位置のオフセット誤差として生じ、脈動成分を生じることがない。したがって、この位置検出値を微分して求めた速度検出値には漏れ磁束による速度誤差の影響がない。なお、この速度に比例した位置のオフセット誤差は位置制御等による追従遅れと比較すれば十分小さいため、仮に14γvがβより非常に大きな場合でもATAN(14γv/β))は±π/2を越えることがなく、十分な精度を達成できる。
【0046】
次に、図面に基づいて本発明の別の実施形態を説明する。図2は本発明のもう一つの実施の形態に係るリラクタンス型レゾルバをラジアル方向に切断した断面図である。図2において、図3に示した従来のものと同様の構成をとるものについては、同じ符号を付して詳しい説明を省略する。本実施の形態の固定子51は、その内周に互いに隣接する2つの励磁歯を1組とする8組の励磁歯62と82,63と83,64と84,65と85,66と86,67と87,68と88,69と89を配置している。この励磁歯の組同士は等間隔に配置され、組となった2つの励磁歯の間隔(ピッチ)は、固定子11の凸部のピッチの整数倍である同ピッチとなるよう配置されている。これにより、組となった励磁歯と固定子11との間のパーミアンスが同位相で変化するようになる。8組の歯62と82,63と83,64と84,65と85,66と86,67と87,68と88,69と89にはそれぞれ励磁巻線52と72,53と73,54と74,55と75,56と76,57と77,58と78,59と79が巻装されている。また各組の2つの励磁巻線は直列に接続され、この励磁巻線に励磁信号が入力されると、組となった2つの励磁歯からは回転子側に向かって互いに逆向きの磁束が生じるようになっている。以上のことから、図2のレゾルバでは各組の2個の励磁歯は可動子としての回転子11の運動に対する磁気抵抗の変化が同位相となり、また組となった2つの励磁歯を通る磁束の総和は0となる。このようなリラクタンスレゾルバにおいても励磁巻線52と72と56と76,53と73と57と77,54と74と58と78,55と75と58と78,56と76と59と79の4種類の励磁巻線は従来の励磁巻線12と16,13と17,14と18,15と19の4種類の励磁巻線に相当し、その回転子11の運動に対するパーミアンス変化は、従来のものと同様となるため、図4に示した従来の位置検出装置を用いて位置検出を行うことができる。
【0047】
また、図2のレゾルバにおいて漏れ磁束の影響を考えると、各組の2つの励磁歯は回転子11の運動に対して同位相のパーミアンス変化となるため、各組の励磁歯には、それぞれほぼ同じ漏れ磁束が通過する。したがって、各組の2つの励磁巻線に生じるノイズ電流は同レベルであり、かつ逆位相で励磁巻線が直列接続されていることになる。このため、ノイズ電流は打ち消し合って、各組の励磁巻線に流れる漏れ磁束によるノイズ電流が除去される。
【0048】
なお、これまで4つの位相がずれた信号VCP,VCN,VCP,VSNを出力するリラクタンス型レゾルバについて説明したが、このようなレゾルバでは2以上の位相差のある信号が得られれば位置検出を行うことができるため、4相出力型のリラクタンス型レゾルバに限らず、2つまたは3つの位相がずれた信号を出力するリラクタンス型レゾルバとしてもよい。また、ここまでの説明では回転型のリラクタンス型レゾルバについて説明したが、固定子と回転子(可動子)を直線に展開した直線型のリラクタンス型レゾルバとしてもよい。
【0049】
【発明の効果】
本発明のリラクタンス型レゾルバによれば、一つの励磁歯に1つの巻線を巻く、製造の容易な構造を持ちながら、電動機回転子の永久磁石や制動用の電磁ブレーキからの漏れ磁束等に対して影響を受けづらい高精度な速度検出および位置検出を行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るリラクタンス型レゾルバのラジアル方向の断面図である。
【図2】 本発明のもう一つの実施の形態に係るリラクタンス型レゾルバのラジアル方向の断面図である。
【図3】 従来のリラクタンス型レゾルバをラジアル方向に切断した断面図である。
【図4】 リラクタンス型レゾルバの検出装置の構成ブロック図である。
【図5】 リラクタンス型レゾルバに対し軸方向から到来する漏れ磁束の例を表す説明図である。
【符号の説明】
1,31,51 固定子、10 入力軸、11 回転子、20 励磁信号発生器、25,26 差動増幅器、27,28 AD変換器、29 内挿演算器、30 タイミング発生器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reluctance resolver as a sensor for detecting the motion speed and motion position of a movable part of a rotary or direct acting motor, and in particular, detection caused by leakage magnetic flux from a motor rotor, an electromagnetic brake or the like. It relates to error reduction.
[0002]
[Prior art]
FIG. 3 is a cross-sectional view of an example of a conventional reluctance resolver cut in the radial direction. FIG. 4 is a block diagram showing an example of a detection device for detecting a rotational position from the reluctance resolver of FIG. In FIG. 3, the stator 1 has eight exciting teeth 2, 3, 4, 5, 6, 7, 8, and 9 made of a magnetic material, arranged at equal intervals on the inner periphery thereof. Are wound with excitation windings 12, 13, 14, 15, 16, 17, 18, 19 respectively. This excitation winding generates magnetic fluxes in opposite directions to the excitation teeth 2, 4, 6, 8 and excitation teeth 3, 5, 7, 9 when the excitation signal is input, and the sum of the magnetic fluxes passing through the excitation teeth. Is wound to be zero. The rotor (movable element) 11 is made of a magnetic material, and has 18 convex portions at regular intervals on the outer periphery thereof, and each convex portion is disposed so as to face the excitation teeth of the stator 1. The rotor 11 is fixed to the input shaft 10 so as to rotate in conjunction with the rotational movement of the input shaft 10. In such a reluctance type resolver, when the rotor 11 rotates, the permeance of each excitation winding causes the period of the protrusion pitch of the rotor 11 due to the gap fluctuation between the protrusion on the rotor 11 side and the excitation tooth of the stator 1. It changes with. In addition, the phase of the change in permeance with the adjacent excitation winding is a phase different from ¼ pitch of the convex portion pitch.
[0003]
In the detection device of FIG. 4, the excitation windings 12, 16, 14, 18, 13, 17, 15, 19 of the reluctance resolver of FIG. 3 are excited by the excitation signal current SIN (ωt) from the excitation signal generator 20. ing. The excitation signal generator 20 shapes the rectangular wave signal EXP from the timing generator 30 to generate and output a sinusoidal excitation signal current SIN (ωt). Excitation windings 12 and 16, 13 and 17, 14, 14 and 18, 15 and 19 that are wound around opposing excitation teeth and change in permeance (magnetic resistance) in the same phase are connected in series, and current detection resistors 21, 22, and 23 are connected in series. , 24 are connected in series. As a result, the currents flowing through each set of excitation windings can be detected as voltage signals VCP, VCN, VSP, and VSN, respectively. The excitation windings wound around the opposing excitation teeth and having the same phase permeance change are connected in series because the two excitation windings are averaged even when the center of the stator and the rotor is deviated. This is because the effect on the accuracy of position detection is reduced.
[0004]
Since the currents flowing through the excitation windings 12 and 16, 13 and 17, 14 and 18, 15 and 19 of each set change in proportion to changes in winding permeance, the rotation angle of the rotor 11 is θ, the coefficient is α, Assuming β, the signals VCP, VCN, VSP, and VSN can be expressed by the following approximate expression.
[0005]
[Expression 1]
VCP = (α + βCOS (14θ)) SIN (ωt) (1)
VCN = (α−βCOS (14θ)) SIN (ωt) (2)
VSP = (α + βSIN (14θ)) SIN (ωt) (3)
VSN = (α−βSIN (14θ)) SIN (ωt) (4)
[0006]
Signals VCP and VCN, and VSP and VSN are subtracted by differential amplifiers 25 and 26, respectively, and are arithmetically amplified to signals VC and VS, respectively. The signals VC and VS are expressed by equations (5) and (6).
[0007]
[Expression 2]
VC = 2βCOS (14θ) SIN (ωt) (5)
VS = 2βSIN (14θ) SIN (ωt) (6)
[0008]
The signals VC and VS are converted into digital signals DC and DS by the AD converters 27 and 28 at the timing when SIN (ωt) = 1 by the conversion command signal CNV synchronized with the excitation signal from the timing generator 30. Therefore, the signals DC and DS are expressed by equations (7) and (8).
[0009]
[Equation 3]
DC = 2βCOS (14θ) (7)
DS = 2βSIN (14θ) (8)
[0010]
The digital signals DC and DS are subjected to two-variable arc tangent calculation by digital processing by an interpolation calculator 29, and a signal PO is output. Here, the arc tangent calculation result of the digital signals DC and DS is 14θ, and the signal PO is the rotational position of the input shaft 10.
[0011]
As described above, the reluctance resolver of FIG. 3 has a simple winding structure in which one excitation winding is wound around one tooth on the stator side, and detects the position θ of the input shaft with 14 times the sensitivity. Can do. Such a resolver that can detect the position of the mover with 14 times the sensitivity is generally referred to as a resolver having a shaft angle multiplier of 14X.
[0012]
[Problems to be solved by the invention]
However, when detecting the motor speed and position of the motor rotor using the conventional reluctance resolver shown in FIGS. 3 and 4, the motor rotor permanent magnet or the braking electromagnetic brake as shown by the dotted line in FIG. Accurate measurement is hindered by the influence of the leakage flux NF. That is, since the leakage flux NF changes due to the gap fluctuation between the rotor-side convex portion and the stator-side excitation tooth, it changes in proportion to the permeance change of each excitation winding. For this reason, when the rotor 11 rotates, the leakage magnetic flux passing through each excitation winding changes, and a noise current is generated in the excitation winding in proportion to the differential amount.
[0013]
Specifically, assuming that the angular velocity when the rotor is movable is v and the coefficient is γ, the signals VCP, VCN, VSP, and VSN in consideration of the noise current can be expressed by the following approximate expressions.
[0014]
[Expression 4]
VCP = (α + βCOS (14θ)) SIN (ωt) −14γvSIN (14θ) (7)
VCN = (α−βCOS (14θ)) SIN (ωt) + 14γvSIN (14θ) (8)
VSP = (α + βSIN (14θ)) SIN (ωt) −14γvCOS (14θ) (9)
VSN = (α−βSIN (14θ)) SIN (ωt) + 14γvCOS (14θ) (10)
[0015]
Further, the signals VC and VS which are the difference between the signals VCP and VCN and VSP and VSN are expressed by equations (11) and (12).
[0016]
[Equation 5]
VC = 2βCOS (14θ) SIN (ωt) −28γvSIN (14θ) (11)
VS = 2βSIN (14θ) SIN (ωt) −28γvCOS (14θ) (12)
[0017]
From the equations (11) and (12), the digital signals DC and DS can be expressed by the following equations.
[0018]
[Expression 6]
DC = 2βCOS (14θ) −28γvSIN (14θ) (13)
DS = 2βSIN (14θ) −28γvCOS (14θ) (14)
[0019]
Equations (13) and (14) can be transformed into the following equations by the addition theorem of trigonometric functions when δ = SQRT (4β · β + 728γ · γ · v · v).
[0020]
[Expression 7]
DC = δCOS (14θ + ATAN (14γv / β)) (15)
DS = δSIN (14θ−ATAN (14γv / β)) (16)
[0021]
When digital signals DC and DS shown in Expressions (15) and (16) are subjected to arc tangent calculation of two variables by the interpolation calculator 28, the signal PO becomes the following expression.
[0022]
[Equation 8]
PO≈14θ-ATAN (14γv / β) COS (28θ) (17)
[0023]
Here, 14γv is sufficiently smaller than β, so
[0024]
[Equation 9]
PO≈14 (θ + γv / βCOS (28θ)) (18)
[0025]
Further, when the equation (18) is converted into a general equation of a resolver with a shaft angle multiplier NX:
[Expression 10]
PO = N (θ + γv / βCOS (2Nθ)) (19)
[0027]
It can be expressed as
[0028]
From the above, the influence of the position detection error due to the magnetic flux leakage from the motor increases in proportion to the angular velocity v and the shaft angle multiplier N, and a position detection error that pulsates 2N times per revolution is generated. This position detection error is small when the resolver shaft multiple angle is small, the excitation signal frequency ω is sufficiently high, and the moving speed is low, as shown in equations (11) and (12), the noise component due to leakage magnetic flux is in the low range. It can be removed with a low-pass filter or the like. However, in recent years, in order to increase the resolution of position detection, there is a tendency to increase the resolver shaft multiple angle, and the moving speed of the electric motor has been increased. Therefore, there is a limit to the removal by the low-frequency cut filter. Even if the position detection error is only at a level that does not pose a problem, in recent motor speed control, the position detection value is detected by differential calculation. The effect of leakage magnetic flux becomes more serious as it moves faster.
[0029]
The present invention has been made in view of the above circumstances, and has a highly accurate winding structure that is less susceptible to leakage flux from a permanent magnet of an electric motor rotor or an electromagnetic brake for braking while having a winding structure that is easy to manufacture. An object of the present invention is to provide a reluctance type resolver capable of speed detection and position detection.
[0030]
[Means for Solving the Problems]
The present invention for solving the problems of the conventional example has a plurality of exciting teeth wound with exciting windings, and includes a stator made of a magnetic material and a magnetic convex portion, and the magnetic convex portion is A reluctance type that detects the position of the mover by detecting the current or voltage of the mover arranged at a different phase according to the movement of the mover arranged to face the excitation tooth and the mover In the resolver, the excitation winding is wound around each excitation tooth such that the direction of the magnetic flux passing through each excitation tooth is the same direction, and the stator is a bypass magnetic path through which the magnetic flux in the direction opposite to the magnetic flux of the excitation tooth passes. It is characterized by having teeth. Thereby, since there are bypass magnetic path teeth, the excitation winding can be wound in a direction that is not easily affected by the leakage magnetic flux, and the speed detection accuracy can be improved.
[0031]
Further, the present invention for solving the problems of the conventional example includes a set of exciting teeth adjacent to each other and arranged so that the change in magnetic resistance due to the movement of the mover has the same phase. By directly canceling the excitation winding wound around each of the excitation teeth, the influence of leakage magnetic flux can be reduced, and the speed and position detection accuracy can be improved. That is, the present invention has a plurality of excitation teeth around which excitation windings are wound, and includes a stator made of a magnetic material and a magnetic convex portion, and the magnetic convex portion is arranged to face the excitation teeth. In a reluctance resolver that detects a position of the mover by detecting a current or a voltage of the excitation winding that changes in a different phase according to the movement of the mover and the mover, the excitation winding includes: For each set of adjacent excitation teeth, each excitation tooth is wound and connected in series so that the directions of magnetic flux passing through each excitation tooth are opposite to each other, and the pitch of each excitation tooth is movable for each set. Excitation teeth are arranged on the stator so as to be equal to an integral multiple of the pitch of the magnetic projections of the child.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a reluctance resolver according to an embodiment of the present invention cut in a radial direction. Here, components having the same configuration as in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted. The stator 31 has 16 teeth made of a magnetic material arranged at equal intervals on the inner periphery thereof, of which 8 teeth (corresponding to excitation teeth) 42, 43, 44, 45, 46, 47, 48, 49 are wound with exciting windings 32, 33, 34, 35, 36, 37, 38 and 39, respectively. Further, no winding is wound around the remaining 8 teeth (corresponding to bypass magnetic path teeth). Further, in the stator 1, four sets of excitation windings 32 and 36, 33 and 37, 34 and 38, 35 and 39 are connected in series, and when an excitation signal is input to the excitation winding, teeth 42, In 43, 44, 45, 46, 47, 48, and 49, excitation windings are wound around the rotor 11 so that magnetic flux in the same direction is generated. Thus, when an excitation signal is input to the excitation winding, the eight bypass magnetic path teeth that are arranged between the excitation teeth and are not wound with the windings are excited teeth 42, 43, 44, 45, 46. , 47, 48, 49 and a magnetic flux in the direction opposite to the direction of the rotor 11 is generated to serve as a bypass magnetic path.
[0033]
The case where the reluctance resolver of FIG. 1 is detected in the same manner as in FIG. 3 using the position detection device of FIG. 4 will be described. Four types of excitation windings 32 and 36, 33 and 37, 34 and 38, 35 and 39 are used. The windings correspond to the four types of windings of the conventional reluctance resolver excitation windings 12, 16, 13, 17, 14, 18, 15, and 19, and change in permeance with respect to the movement of the rotor 11 as a mover. Is almost equivalent to the conventional one. That is, the position of the reluctance resolver shown in FIG. 1 can be detected in the same manner as the resolver shown in FIG. 3 even when the position detection device shown in FIG. 4 is used. On the other hand, when the leakage magnetic flux NF as shown by the dotted line in FIG. 5 is generated, the direction of the noise current generated by the leakage magnetic flux in the excitation windings 33, 37, 35, 39 and the excitation windings 13, 17, 15, 19 Therefore, when the reluctance resolver of FIG. 1 is used and the position detection device of FIG. 4 detects the position and the like, the signals VSP and VSN have the following approximate expressions.
[0034]
## EQU11 ##
VSP = (α + βSIN (14θ)) SIN (ωt) + 14γvCOS (14θ) (20)
VSN = (α−βSIN (14θ)) SIN (ωt) −14γvCOS (14θ) (21)
[0035]
Therefore, the signal VS which is the difference between VSP and VSN is expressed by Equation (22).
[0036]
[Expression 12]
VS = 2βSIN (14θ) SIN (ωt) + 28γvCOS (14θ) (22)
[0037]
From equation (22), the digital signal DS when SIN (ωt) = 1 is given by equation (23).
[0038]
[Formula 13]
DS = 2βSIN (14θ) + 28γvCOS (14θ) (23)
[0039]
Here, the equation (23) can be transformed into the following equation by the addition theorem of trigonometric functions.
[0040]
[Expression 14]
DS = δSIN (14θ + ATAN (14γv / β)) (24)
[0041]
Further, since the signal DC is the same as the equation (15), when the digital signal DC, DS is subjected to two-variable arc tangent calculation by the interpolation calculator 28, the signal PO becomes the equation (25).
[0042]
[Expression 15]
PO = 14θ + ATAN (14γv / β) (25)
[0043]
Here, if it is considered that 14γv is sufficiently smaller than β, Expression (26) is obtained.
[0044]
[Expression 16]
PO = 14 (θ + γv / β) (26)
[0045]
As shown in the equation (26), the influence of the leakage magnetic flux when the position is detected by the reluctance type resolver of FIG. 1 occurs as an offset error of the position proportional to the rotation speed, and no pulsation component is generated. Therefore, the speed detection value obtained by differentiating the position detection value is not affected by the speed error due to the leakage magnetic flux. Note that the offset error of the position proportional to the speed is sufficiently small compared with the tracking delay due to the position control or the like, so that even if 14γv is much larger than β, ATRAN (14γv / β)) exceeds ± π / 2. And sufficient accuracy can be achieved.
[0046]
Next, another embodiment of the present invention will be described based on the drawings. FIG. 2 is a cross-sectional view of a reluctance resolver according to another embodiment of the present invention cut in the radial direction. 2, those having the same configuration as the conventional one shown in FIG. 3 are denoted by the same reference numerals and detailed description thereof is omitted. The stator 51 of the present embodiment has eight excitation teeth 62, 82, 63 and 83, 64 and 84, 65 and 85, 66 and 86, each having two excitation teeth adjacent to each other on the inner periphery. , 67 and 87, 68 and 88, 69 and 89 are arranged. The pairs of excitation teeth are arranged at equal intervals, and the interval (pitch) between the two excitation teeth in the set is arranged to be the same pitch that is an integral multiple of the pitch of the convex portions of the stator 11. . As a result, the permeance between the pair of excitation teeth and the stator 11 changes in the same phase. Eight sets of teeth 62 and 82, 63 and 83, 64 and 84, 65 and 85, 66 and 86, 67 and 87, 68 and 88, 69 and 89 have excitation windings 52 and 72, 53 and 73, 54, respectively. And 74, 55 and 75, 56 and 76, 57 and 77, 58 and 78, 59 and 79 are wound. The two excitation windings in each set are connected in series, and when an excitation signal is input to the excitation winding, magnetic fluxes in opposite directions are generated from the two excitation teeth in the set toward the rotor side. It has come to occur. From the above, in the resolver of FIG. 2, the two excitation teeth in each group have the same phase of change in magnetic resistance with respect to the movement of the rotor 11 as the mover, and the magnetic flux passes through the two excitation teeth in the pair. The sum of is zero. In such a reluctance resolver, the excitation windings 52, 72, 56, 76, 53, 73, 57, 77, 54, 74, 58, 78, 55, 75, 58, 78, 56, 76, 59, 79 The four types of excitation windings correspond to the four types of excitation windings of the conventional excitation windings 12 and 16, 13 and 17, 14 and 18, 15 and 19, and the permeance change with respect to the movement of the rotor 11 Therefore, position detection can be performed using the conventional position detection apparatus shown in FIG.
[0047]
Considering the influence of the leakage magnetic flux in the resolver of FIG. 2, the two excitation teeth in each group have the same phase permeance change with respect to the movement of the rotor 11. The same leakage flux passes. Therefore, the noise current generated in the two excitation windings in each group is at the same level, and the excitation windings are connected in series with opposite phases. For this reason, the noise currents cancel each other, and the noise current due to the leakage magnetic flux flowing in each pair of exciting windings is removed.
[0048]
The reluctance resolver that outputs the four signals VCP, VCN, VCP, and VSN out of phase has been described so far. However, such a resolver performs position detection if a signal having a phase difference of 2 or more is obtained. Therefore, the present invention is not limited to a four-phase output type reluctance resolver, and may be a reluctance type resolver that outputs signals with two or three phases shifted. In the above description, the rotary reluctance resolver has been described. However, a linear reluctance resolver in which a stator and a rotor (movable element) are linearly developed may be used.
[0049]
【The invention's effect】
According to the reluctance type resolver of the present invention, one winding is wound around one exciting tooth, and it has a structure that is easy to manufacture, but against leakage magnetic flux from a permanent magnet of an electric motor rotor or an electromagnetic brake for braking. Therefore, it is possible to perform highly accurate speed detection and position detection that are difficult to be affected.
[Brief description of the drawings]
FIG. 1 is a radial sectional view of a reluctance resolver according to an embodiment of the present invention.
FIG. 2 is a radial sectional view of a reluctance resolver according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view of a conventional reluctance resolver cut in a radial direction.
FIG. 4 is a configuration block diagram of a reluctance resolver detection device.
FIG. 5 is an explanatory diagram showing an example of leakage magnetic flux coming from the axial direction with respect to the reluctance resolver.
[Explanation of symbols]
1,31,51 Stator, 10 Input shaft, 11 Rotor, 20 Excitation signal generator, 25, 26 Differential amplifier, 27, 28 AD converter, 29 Interpolator, 30 Timing generator

Claims (2)

励磁巻線を巻装した複数の励磁歯を有し、磁性体からなる固定子と、
磁性凸部を備え、当該磁性凸部が前記励磁歯に対向するよう配置された可動子と、
前記可動子の運動に応じて、異なる位相で変化する前記励磁巻線の電流又は電圧を検出して、前記可動子の位置を検出するリラクタンス型レゾルバにおいて、
前記励磁巻線は、各励磁歯を通る磁束の向きが同一方向となるよう各励磁歯に巻装され、前記固定子は、励磁歯の磁束と逆向きの磁束を通すバイパス磁路歯を有することを特徴とするリラクタンス型レゾルバ。
A plurality of exciting teeth wound with exciting windings, and a stator made of a magnetic material;
A mover provided with a magnetic convex part, the magnetic convex part being arranged so as to face the excitation tooth;
In a reluctance resolver that detects the position of the mover by detecting the current or voltage of the excitation winding that changes in different phases according to the movement of the mover,
The exciting winding is wound around each exciting tooth so that the direction of the magnetic flux passing through each exciting tooth is the same direction, and the stator has a bypass magnetic path tooth that passes a magnetic flux in a direction opposite to the magnetic flux of the exciting tooth. A reluctance type resolver characterized by that.
励磁巻線を巻装した複数の励磁歯を有し、磁性体からなる固定子と、
磁性凸部を備え、当該磁性凸部が前記励磁歯に対向するよう配置された可動子と、
前記可動子の運動に応じて、異なる位相で変化する前記励磁巻線の電流又は電圧を検出して、前記可動子の位置を検出するリラクタンス型レゾルバにおいて、
前記励磁巻線は、互いに隣接する励磁歯の組ごとに、各励磁歯を通る磁束の向きが互いに逆向きとなるように各励磁歯に巻装されるとともに直列接続され、
組ごとに、各励磁歯のピッチが可動子の磁性凸部のピッチの整数倍と等しくなるよう前記固定子上に励磁歯が配置されていることを特徴とするリラクタンス型レゾルバ。
A plurality of exciting teeth wound with exciting windings, and a stator made of a magnetic material;
A mover provided with a magnetic convex part, the magnetic convex part being arranged so as to face the excitation tooth;
In a reluctance resolver that detects the position of the mover by detecting the current or voltage of the excitation winding that changes in different phases according to the movement of the mover,
The excitation winding is wound around each excitation tooth and connected in series so that the direction of the magnetic flux passing through each excitation tooth is opposite to each other for each set of excitation teeth adjacent to each other,
A reluctance resolver, wherein excitation teeth are arranged on the stator so that the pitch of each excitation tooth is equal to an integral multiple of the pitch of the magnetic projections of the mover for each set.
JP2000208948A 2000-07-10 2000-07-10 Reluctance type resolver Expired - Fee Related JP3754606B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000208948A JP3754606B2 (en) 2000-07-10 2000-07-10 Reluctance type resolver
US09/887,015 US20020005674A1 (en) 2000-07-10 2001-06-25 Reluctance type resolver with reduced detection error due to external magnetic flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208948A JP3754606B2 (en) 2000-07-10 2000-07-10 Reluctance type resolver

Publications (2)

Publication Number Publication Date
JP2002027719A JP2002027719A (en) 2002-01-25
JP3754606B2 true JP3754606B2 (en) 2006-03-15

Family

ID=18705438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208948A Expired - Fee Related JP3754606B2 (en) 2000-07-10 2000-07-10 Reluctance type resolver

Country Status (2)

Country Link
US (1) US20020005674A1 (en)
JP (1) JP3754606B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939952B2 (en) * 2001-10-05 2007-07-04 オークマ株式会社 Motor with resolver
JP4558036B2 (en) * 2005-01-31 2010-10-06 トヨタ自動車株式会社 Resolver fixing structure
DE102006017024B3 (en) * 2006-04-11 2007-12-06 Hiwin Mikrosystem Corp. Demodulation method for resolver output position signal involves amplifying signal with amplifier circuit for providing signal waveform readable by resolver to digital converter or controller
US9796364B2 (en) * 2009-03-30 2017-10-24 General Electric Company Apparatus and method for advanced anti-skid brake and traction controls
DE102009061032A1 (en) * 2009-05-15 2010-11-18 Tyco Electronics Belgium Ec Bvba Magnetoelectronic angle sensor, in particular reluctance resolver
JP5281601B2 (en) * 2010-02-23 2013-09-04 オークマ株式会社 Reluctance type resolver
KR101218563B1 (en) * 2010-05-20 2013-01-04 대성전기공업 주식회사 Variable reluctance type resolver
JP5289420B2 (en) * 2010-11-30 2013-09-11 三菱電機株式会社 Resolver
JP5802429B2 (en) 2011-05-02 2015-10-28 オークマ株式会社 Stator and resolver
US9106177B2 (en) * 2012-01-05 2015-08-11 GM Global Technology Operations LLC Method and system for sensorless control of an electric motor
WO2016135819A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Electric rotary machine
CN113794346B (en) * 2021-10-09 2022-08-05 上海赢双电机有限公司 Reluctance type self-angle-adjusting machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541463A (en) * 1993-06-15 1996-07-30 Eko Technologies, Inc. Flex path and core loss reduction assembly
US5777416A (en) * 1996-12-23 1998-07-07 Dana Corporation Switched reluctance motor with low mutual inductance between phases

Also Published As

Publication number Publication date
US20020005674A1 (en) 2002-01-17
JP2002027719A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
JP3754606B2 (en) Reluctance type resolver
EP1580533A2 (en) Variable-reluctance resolver and rotational angle sensor using same
JP2988597B2 (en) Rotational position detector
JP3414893B2 (en) Rotational position detector
JPH05122916A (en) Variable reluctance type resolver
JP3170449B2 (en) Absolute encoder
JP2001183169A (en) Position detector
JP3309027B2 (en) Reluctant resolver
JP5217679B2 (en) VR type resolver, motor and linear motion linear motor
JPH1019602A (en) Magnetic encoder
JP4359422B2 (en) Motor rotation control device
JP2012173258A (en) Torque measurement apparatus and steering apparatus mounting the same
JP4365654B2 (en) Angular position detection device and driving device using the same
JP2000081344A (en) High-accuracy vr-type resolver
JP4258831B2 (en) Angle and angular velocity integrated detection device and servo motor using the same
JP3351310B2 (en) Rotary shaft position measuring system, magnetic bearing and synchronous motor provided with the same
JPH0854205A (en) Rotational position detector for electric rotating
JP4867534B2 (en) Motor speed detection device
JP3904723B2 (en) VR type resolver
JP2003130683A (en) Device for detecting position
JP4217423B2 (en) Rotation position detector for bearings
JP2556383B2 (en) Magnetic resolver
JP2011080765A (en) Device for measuring torque and steering system carrying the same
JP3100841B2 (en) Rotational position detecting device and method
JP6895940B2 (en) Manufacturing method of rotation angle detection device, rotation electric machine, automobile drive system, and rotation angle detection device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees