JP6778076B2 - Power system - Google Patents

Power system Download PDF

Info

Publication number
JP6778076B2
JP6778076B2 JP2016200724A JP2016200724A JP6778076B2 JP 6778076 B2 JP6778076 B2 JP 6778076B2 JP 2016200724 A JP2016200724 A JP 2016200724A JP 2016200724 A JP2016200724 A JP 2016200724A JP 6778076 B2 JP6778076 B2 JP 6778076B2
Authority
JP
Japan
Prior art keywords
power supply
circuit breaker
power
current
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016200724A
Other languages
Japanese (ja)
Other versions
JP2018064346A (en
Inventor
聡史 山下
聡史 山下
広介 小林
広介 小林
卓也 伴野
卓也 伴野
崇之 渡邉
崇之 渡邉
治良 三宅
治良 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2016200724A priority Critical patent/JP6778076B2/en
Publication of JP2018064346A publication Critical patent/JP2018064346A/en
Application granted granted Critical
Publication of JP6778076B2 publication Critical patent/JP6778076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Distribution Board (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、需要者構内に電力供給設備を接続可能な電力システムに関する。 The present invention relates to a power system capable of connecting a power supply facility to a consumer premises.

需要者は、電力会社からの電気(商用電力)の供給を受けて構内の負荷設備(一般用電気工作物)で電気を使用する。また、太陽光発電設備等、発電設備を構内に設け、負荷設備を動作させるとともに(例えば、特許文献1)、電力会社に余った電力を売電することも可能である。 Consumers receive electricity (commercial electricity) from electric power companies and use electricity in load facilities (general electric facilities) on the premises. It is also possible to install a power generation facility such as a solar power generation facility on the premises to operate the load facility (for example, Patent Document 1), and to sell the surplus electric power to the electric power company.

特開2013−247737号公報Japanese Unexamined Patent Publication No. 2013-247737

太陽光発電設備等の発電設備や電池といった電力供給設備として、現在、単相3線式のものが用いられている。しかし、今後、省エネルギー機器が普及し、構内の電力需要が減少すると、必ずしも単相3線式であることを要さず、例えば、単相3線の片方に相当する単相2線のみに接続される小出力の電力供給設備を設置することが考えられる。 Currently, single-phase three-wire type equipment is used as power generation equipment such as solar power generation equipment and power supply equipment such as batteries. However, when energy-saving equipment becomes widespread and the power demand on the premises decreases in the future, it is not always necessary to use a single-phase three-wire system. For example, it is connected only to a single-phase two-wire system corresponding to one of the single-phase three-wire systems. It is conceivable to install a small output power supply facility.

そうすると、電力供給設備を、分電盤のサービス遮断器の二次側に接続するだけでなく、単相2線の配線用遮断器の二次側に直接接続することも可能となる。また、この場合に、屋外に既設の屋外コンセントに電力供給設備を接続して既存の構内配線をそのまま活用することで、施工費を削減することもできる。 Then, the power supply facility can be connected not only to the secondary side of the service circuit breaker of the distribution board but also directly to the secondary side of the single-phase two-wire molded case circuit breaker. Further, in this case, the construction cost can be reduced by connecting the power supply facility to the existing outdoor outlet outdoors and utilizing the existing premises wiring as it is.

しかし、分電盤内の各配線用遮断器に接続される構内配線には過電流耐量が予め定められており、そのような配線用遮断器の二次側に単純に電力供給設備を接続すると、以下の問題が生じうる。すなわち、配線用遮断器の二次側に位置する構内配線の過電流耐量は、配線用遮断器の遮断容量に基づいて決定されている。したがって、配線用遮断器を介することなく電力供給設備から負荷設備に直接電力が供給されると、構内配線に過電流耐量を上回る電流が流れるおそれがある。 However, the overcurrent withstand capacity is predetermined for the premises wiring connected to each wiring breaker in the distribution board, and if a power supply facility is simply connected to the secondary side of such a wiring breaker, , The following problems can occur. That is, the overcurrent withstand capacity of the premises wiring located on the secondary side of the wiring breaker is determined based on the breaking capacity of the wiring breaker. Therefore, if power is directly supplied from the power supply equipment to the load equipment without going through the molded case circuit breaker, a current exceeding the overcurrent withstand capacity may flow through the premises wiring.

本発明は、このような課題に鑑み、既設の構内配線に過電流耐量を上回る電流が流れるのを防止することが可能な電力システムを提供することを目的としている。 In view of such a problem, an object of the present invention is to provide a power system capable of preventing a current exceeding the overcurrent withstand capacity from flowing through the existing premises wiring.

上記課題を解決するために、遮断器を備え、電力系統の電力を、遮断器と負荷設備とを接続する構内配線を通じて負荷設備に供給する本発明の電力システムは、構内配線に接続された電力供給設備を備え遮断器は、電力供給設備の接続に基づいて交換された遮断器であり、電力供給設備が接続される前に構内配線に接続されていた遮断器の遮断容量から電力供給設備の最大容量を減じた遮断容量を有することを特徴とする。 In order to solve the above problems, comprises a circuit breaker, the power of the power system, the power system of the present invention is supplied to a load equipment through premises wiring for connecting the circuit breaker and the load equipment, which is connected to the premises wiring Equipped with power supply equipment, the circuit breaker is a circuit breaker that has been replaced based on the connection of the power supply equipment, and power is supplied from the circuit breaker capacity of the circuit breaker that was connected to the premises wiring before the power supply equipment was connected. and wherein the Turkey to have a breaking capacity obtained by subtracting the maximum capacity of the equipment.

上記課題を解決するために、遮断器を備え、電力系統の電力を、遮断器と負荷設備とを接続する構内配線を通じて負荷設備に供給する本発明の他の電力システムは、構内配線に接続された電力供給設備を備え遮断器は、構内配線の過電流耐量から電力供給設備の最大容量を減じた遮断容量を有することを特徴とする。
In order to solve the above problems, in the other power system of the present invention provided with a circuit breaker and supplying the power of the power system to the load equipment through the premises wiring connecting the circuit breaker and the load equipment , the power is connected to the premises wiring. It is provided with a power supply equipment, circuit breaker, characterized by a Turkey which have a breaking capacity obtained by subtracting the maximum capacity of the power supply equipment from overcurrent capability of premises wiring.

本発明によれば、既設の構内配線に過電流耐量を上回る電流が流れるのを防止することが可能となる。 According to the present invention, it is possible to prevent a current exceeding the overcurrent capacity from flowing through the existing premises wiring.

電力システムの基本的な接続態様を示した説明図である。It is explanatory drawing which showed the basic connection mode of the electric power system. 電力供給設備の接続態様を説明するための説明図である。It is explanatory drawing for demonstrating connection mode of power supply equipment. 第1の実施形態における電力システムの接続態様を示した説明図である。It is explanatory drawing which showed the connection mode of the electric power system in 1st Embodiment. 第2の実施形態における電力システムの接続態様を示した説明図である。It is explanatory drawing which showed the connection mode of the electric power system in 2nd Embodiment. 第2の実施形態における他の電力システムの接続態様を示した説明図である。It is explanatory drawing which showed the connection mode of another electric power system in 2nd Embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The dimensions, materials, other specific numerical values, etc. shown in the embodiment are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present invention are not shown. To do.

図1は、電力システム100の基本的な接続態様を示した説明図である。電力システム100は、引き込み線12を通じて、電力系統14から電気(商用電力)の供給を受ける。かかる電力システム100は、低圧受電の需要者単位で構成され、その範囲としては、一般用電気工作物であれば、家屋等に限らず、病院、工場、ホテル、レジャー施設、商業施設、マンションといった建物単位や建物内の一部分であってもよい。 FIG. 1 is an explanatory diagram showing a basic connection mode of the power system 100. The electric power system 100 receives electricity (commercial electric power) from the electric power system 14 through the service line 12. The electric power system 100 is configured for each consumer of low-voltage power reception, and the range thereof is not limited to houses and the like as long as it is a general-purpose electric facility, such as hospitals, factories, hotels, leisure facilities, commercial facilities, and condominiums. It may be a building unit or a part of a building.

また、電力システム100は、電力メータ112と、分電盤114と、構内配線116と、コンセント118とを含んで構成される。 Further, the power system 100 includes a power meter 112, a distribution board 114, a premises wiring 116, and an outlet 118.

電力メータ(電力量計)112は、電力系統14に引き込み線12を介して接続され、引き込み線12と電力システム100との間に流れる(消費および売電の)電流値を計測する。 The watt hour meter 112 is connected to the power system 14 via a service line 12 and measures the current value (consumption and power sale) flowing between the service line 12 and the power system 100.

分電盤114は、電力メータ112に接続され、契約容量を示すサービス遮断器(サービスブレーカ)114a、漏電の検出に応じて電気の供給を遮断する漏電遮断器(漏電ブレーカ)114b、および、構内配線116に接続され、その構内配線116に流れる電流が遮断容量(例えば20A)を超過すると電気の供給を遮断する配線用遮断器(安全ブレーカ)114cを有する。 The distribution board 114 is connected to the power meter 112 and indicates a service breaker (service breaker) 114a indicating the contracted capacity, an earth leakage breaker (leakage breaker) 114b that cuts off the supply of electricity in response to the detection of an electric leakage, and the premises. It has a circuit breaker (safety breaker) 114c that is connected to the wiring 116 and cuts off the supply of electricity when the current flowing through the premises wiring 116 exceeds the breaking capacity (for example, 20A).

ここで、需要者は、構内配線116の端部となるコンセント118に負荷設備16を接続し、配線用遮断器114cを通じて電力の供給を受ける。なお、負荷設備16は、実線で示したように、屋内のコンセント118aに接続することも、破線のように、屋外コンセント118bに接続することもできる。かかる構成では、負荷設備16に供給される電力は、全て配線用遮断器114cを介することになるので、配線用遮断器114cの遮断容量は、構内配線116の過電流耐量以下となるように設計されることとなる。 Here, the consumer connects the load equipment 16 to the outlet 118, which is the end of the premises wiring 116, and receives power through the molded case circuit breaker 114c. The load equipment 16 can be connected to the indoor outlet 118a as shown by the solid line, or can be connected to the outdoor outlet 118b as shown by the broken line. In such a configuration, all the power supplied to the load equipment 16 is passed through the wiring breaker 114c, so that the breaking capacity of the wiring breaker 114c is designed to be equal to or less than the overcurrent withstand capacity of the premises wiring 116. Will be done.

上記の電力システム100に電力供給設備120を接続することを検討する。したがって、電力システム100は、電力メータ112、分電盤114、構内配線116、コンセント118に加え、電力供給設備120を含んでいる。ここで、電力供給設備120は、電力系統14より優先して、電気エネルギーを消費する負荷設備16に電力を供給する。かかる電力供給設備120としては、例えば、太陽光発電機、風力発電機、水力発電機、地熱発電機、太陽熱発電機、大気中熱発電機等の再生可能エネルギー発電設備や、燃料電池、内燃力発電、蓄電池等を用いることができる。 Consider connecting the power supply facility 120 to the power system 100. Therefore, the power system 100 includes a power meter 112, a distribution board 114, a premises wiring 116, an outlet 118, and a power supply facility 120. Here, the electric power supply facility 120 gives priority to the electric power system 14 and supplies electric power to the load facility 16 that consumes electric energy. Examples of the power supply facility 120 include renewable energy power generation facilities such as solar power generators, wind power generators, hydroelectric power generators, geothermal power generators, solar heat generators, and atmospheric heat generators, fuel cells, and internal combustion power generation. , Storage batteries and the like can be used.

このような電力供給設備120は、単相3線(200V)に接続して用いるのが一般的である。この場合、配線用遮断器114cに代えて連系遮断器(200V)を設け、その連系遮断器に電力供給設備120を接続したり、また、漏電遮断器114bの1次側から別途の個別遮断器(200V)を介して電力供給設備120を接続しなければならない。 Such a power supply facility 120 is generally used by being connected to a single-phase three-wire (200V). In this case, an interconnection circuit breaker (200V) is provided in place of the wiring breaker 114c, and the power supply facility 120 is connected to the interconnection circuit breaker, or a separate individual from the primary side of the earth leakage breaker 114b. The power supply equipment 120 must be connected via a circuit breaker (200V).

ただし、今後は、省エネルギー機器が普及し、電力システム100の電力需要が減少すると、必ずしも単相3線式の電力供給設備を要さない、本実施形態のような、単相3線のN相(中性線)に対するR相(電圧線)、T相(電圧線)のうち、いずれか一方の単相2線(R相とN相、もしくは、T相とN相)のみに接続される小出力の電力供給設備120が設置されることとなる。 However, in the future, when energy-saving equipment becomes widespread and the power demand of the power system 100 decreases, a single-phase three-wire N-phase as in the present embodiment, which does not necessarily require a single-phase three-wire power supply facility, is required. Connected to only one of the single-phase two-wire (R-phase and N-phase, or T-phase and N-phase) of the R-phase (voltage line) and T-phase (voltage line) with respect to the (neutral line). A small output power supply facility 120 will be installed.

図2は、電力供給設備120の接続態様を説明するための説明図である。上記のように単相2線で運用できれば、連系遮断器等を介在しなくとも、図2のように、既存の構内配線116から分岐している屋外コンセント118bに、過電流および漏電を防止する個別遮断器122を通じて電力供給設備120を接続することが可能となり、電力システム100内の配線を簡素化できる。 FIG. 2 is an explanatory diagram for explaining a connection mode of the power supply facility 120. If it can be operated with a single-phase two-wire system as described above, overcurrent and electric leakage can be prevented at the outdoor outlet 118b branched from the existing premises wiring 116 as shown in FIG. 2 without the intervention of an interconnection circuit breaker or the like. The power supply equipment 120 can be connected through the individual circuit breaker 122, and the wiring in the power system 100 can be simplified.

しかし、上述したように、分電盤114内の各配線用遮断器114cの遮断容量や、構内配線116の過電流耐量は、その設置時に定められており(例えば、両方共20A)、図2のように、配線用遮断器114cの二次側に単に電力供給設備120を接続すると、以下の問題が生じうる。すなわち、配線用遮断器114cでは、遮断容量である20Aまで電流を供給することができる。一方、電力供給設備120も、配線用遮断器114cからの電力と並行して、5Aの電流を供給することができる。この場合、負荷設備16には、その合計である25Aの電流を供給し得ることとなる。そうすると、過電流耐量が20Aとなるように配置された構内配線116に、20Aを上回る電流が流れ得ることとなり、発熱や耐久性劣化の原因となるおそれが生じる。 However, as described above, the breaking capacity of each wiring breaker 114c in the distribution board 114 and the overcurrent withstand capacity of the premises wiring 116 are determined at the time of installation (for example, both are 20A), and FIG. If the power supply facility 120 is simply connected to the secondary side of the wiring breaker 114c as described above, the following problems may occur. That is, the molded case circuit breaker 114c can supply a current up to the breaking capacity of 20A. On the other hand, the power supply facility 120 can also supply a current of 5 A in parallel with the power from the molded case circuit breaker 114c. In this case, the load facility 16 can be supplied with a total current of 25 A. Then, a current exceeding 20A can flow through the premises wiring 116 arranged so that the overcurrent withstand capacity is 20A, which may cause heat generation and deterioration of durability.

(第1の実施形態)
図3は、第1の実施形態における電力システム100の接続態様を示した説明図である。構内配線116は、通常、需要者設備と共に設置されている。したがって、電力供給設備120の設置、追加、変更に従って、その都度、構内配線116を変更するのは非効率である。そこで、第1の実施形態では、構内配線116を変更することなく、構内配線116の過電流耐量に基づいて、配線用遮断器114cを変更(交換)する。
(First Embodiment)
FIG. 3 is an explanatory diagram showing a connection mode of the electric power system 100 in the first embodiment. Structured cabling 116 is usually installed together with consumer equipment. Therefore, it is inefficient to change the premises wiring 116 each time the power supply facility 120 is installed, added, or changed. Therefore, in the first embodiment, the molded case circuit breaker 114c is changed (replaced) based on the overcurrent withstand capacity of the premises wiring 116 without changing the premises wiring 116.

具体的には、まず、配線用遮断器114cの適切な遮断容量を導出する。かかる適切な遮断容量は、例えば、構内配線の過電流耐量(例えば20A)から電力供給設備120の最大容量(例えば5A)を減じて求める。ここでは、適切な遮断容量が20A−5A=15Aとなる。したがって、図3のように、既設の配線用遮断器114cを、遮断容量が15Aである配線用遮断器114cに交換する。 Specifically, first, an appropriate circuit breaker capacity of the molded case circuit breaker 114c is derived. Such an appropriate breaking capacity is obtained by subtracting the maximum capacity (for example, 5A) of the power supply equipment 120 from the overcurrent withstand capacity (for example, 20A) of the premises wiring, for example. Here, the appropriate breaking capacity is 20A-5A = 15A. Therefore, as shown in FIG. 3, the existing molded case circuit breaker 114c is replaced with the molded case circuit breaker 114c having a breaking capacity of 15A.

そうすると、図3のように、交換された配線用遮断器114cでは、遮断容量である15Aまでしか電流を供給できなくなる。そして、電力供給設備120も、配線用遮断器114cからの電力と並行して、5Aの電流を供給することができる。この場合、負荷設備16には、その合計である20Aまでの電流が供給されることとなるが、かかる20Aは、構内配線116の過電流耐量と等しいので、なんら問題が生じない。 Then, as shown in FIG. 3, the replaced molded case circuit breaker 114c can supply current only up to the breaking capacity of 15A. The power supply facility 120 can also supply a current of 5 A in parallel with the power from the molded case circuit breaker 114c. In this case, the load equipment 16 is supplied with a total current of up to 20 A, but since such 20 A is equal to the overcurrent withstand capacity of the premises wiring 116, no problem occurs.

このように、構内配線116の過電流耐量から電力供給設備120の最大容量を減じた遮断容量の配線用遮断器114cに交換することで、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。 In this way, by replacing the circuit breaker 114c with a breaking capacity obtained by subtracting the maximum capacity of the power supply equipment 120 from the overcurrent withstand capacity of the premises wiring 116, a current exceeding the overcurrent withstand capacity flows through the premises wiring 116. It becomes possible to prevent it.

また、配線用遮断器114cの適切な遮断容量は、以下の手順でも導出できる。すなわち、無駄な過剰設計を回避すべく、上記のように、配線用遮断器114cの遮断容量と、構内配線116の過電流耐量とは、大凡等しくなるように設計される(ただし、遮断容量≦過電流耐量)。 Further, an appropriate circuit breaker 114c for wiring can be derived by the following procedure. That is, in order to avoid unnecessary overdesign, as described above, the cutoff capacity of the molded case circuit breaker 114c and the overcurrent withstand capacity of the premises wiring 116 are designed to be approximately equal (however, the cutoff capacity ≤ Overcurrent tolerance).

したがって、構内配線116の過電流耐量に代えて、参照容易な配線用遮断器114cの遮断容量を用いることができる。例えば、電力供給設備120が接続される前に構内配線116に接続されていた配線用遮断器114cの遮断容量(例えば20A)から、電力供給設備120の最大容量(例えば5A)を減じて適切な遮断容量15Aを求める。こうして、上記同様、既設の配線用遮断器114cを、遮断容量が15Aである配線用遮断器114cに交換できる。 Therefore, the breaking capacity of the molded case circuit breaker 114c, which is easy to refer to, can be used instead of the overcurrent withstand capacity of the premises wiring 116. For example, it is appropriate to subtract the maximum capacity (for example, 5A) of the power supply equipment 120 from the cutoff capacity (for example, 20A) of the molded case circuit breaker 114c that was connected to the premises wiring 116 before the power supply equipment 120 is connected. Obtain a blocking capacity of 15A. In this way, similarly to the above, the existing molded case circuit breaker 114c can be replaced with the molded case circuit breaker 114c having a breaking capacity of 15A.

このように、電力供給設備120が接続される前に構内配線116に接続されていた配線用遮断器114cの遮断容量から電力供給設備120の最大容量を減じた遮断容量の配線用遮断器114cに交換することで、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。 In this way, the wiring breaker 114c has a breaking capacity obtained by subtracting the maximum capacity of the power supply equipment 120 from the breaking capacity of the wiring breaker 114c that was connected to the premises wiring 116 before the power supply equipment 120 was connected. By replacing the wiring, it is possible to prevent a current exceeding the overcurrent withstand capacity from flowing through the premises wiring 116.

(第2の実施形態)
上述した第1の実施形態では、構内配線116の過電流耐量に基づいて、配線用遮断器114cを変更(交換)する例を挙げて説明した。第2の実施形態では、配線用遮断器114cも変更することなく、電力供給設備120での処理を工夫することで、構内配線116を保護する。
(Second Embodiment)
In the first embodiment described above, an example of changing (replacing) the molded case circuit breaker 114c based on the overcurrent withstand capacity of the premises wiring 116 has been described. In the second embodiment, the premises wiring 116 is protected by devising the processing in the power supply facility 120 without changing the molded case circuit breaker 114c.

図4は、第2の実施形態における電力システム200の接続態様を示した説明図である。かかる図4では電力の移動を実線で、情報を含む信号の流れを破線の矢印で示している。電力システム200は、電力メータ112と、分電盤114と、構内配線116と、コンセント118と、電力供給設備220と、電流計224とを含んで構成される。ただし、第1の実施形態における構成要素として既に述べた、電力メータ112と、分電盤114と、構内配線116と、コンセント118とは、実質的に機能が同一なので重複説明を省略し、ここでは、構成が相違する電力供給設備220と、電流計224とを主に説明する。 FIG. 4 is an explanatory diagram showing a connection mode of the electric power system 200 according to the second embodiment. In FIG. 4, the movement of electric power is shown by a solid line, and the flow of a signal including information is shown by a broken line arrow. The power system 200 includes a power meter 112, a distribution board 114, a premises wiring 116, an outlet 118, a power supply facility 220, and an ammeter 224. However, since the power meter 112, the distribution board 114, the premises wiring 116, and the outlet 118, which have already been described as the components in the first embodiment, have substantially the same functions, duplicate description is omitted here. Then, the power supply facility 220 having a different configuration and the ammeter 224 will be mainly described.

電流計224は、構内配線116と電力供給設備220との接続点Pと、負荷設備16との間に設置され、接続点Pから負荷設備16へ流れる電流を測定する。 The ammeter 224 is installed between the connection point P between the premises wiring 116 and the power supply facility 220 and the load facility 16, and measures the current flowing from the connection point P to the load facility 16.

電力供給設備220は、少なくとも、発電部120aと、制御部120bとを有している。発電部120aは、例えば、燃料電池等で構成され、他のエネルギーを電気エネルギーに変換して電気を生成する。制御部120bは、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、発電部120aの出力を制御する。 The power supply facility 220 has at least a power generation unit 120a and a control unit 120b. The power generation unit 120a is composed of, for example, a fuel cell or the like, and converts other energy into electric energy to generate electricity. The control unit 120b is composed of a semiconductor integrated circuit including a central processing unit (CPU), a ROM in which a program or the like is stored, a RAM as a work area, and the like, and controls the output of the power generation unit 120a.

特に、本実施形態において、制御部120bは、電流計224で測定した電流が構内配線116の過電流耐量(例えば20A)以下となるように、電力供給設備220における発電部120aの出力を制限する。 In particular, in the present embodiment, the control unit 120b limits the output of the power generation unit 120a in the power supply facility 220 so that the current measured by the ammeter 224 is equal to or less than the overcurrent withstand capacity (for example, 20A) of the premises wiring 116. ..

例えば、負荷設備16で消費される電流、すなわち、接続点Pから負荷設備16へ流れる電流(a)が5A未満であれば、その電力は電力供給設備220で全て賄われる。したがって、電力供給設備220から接続点Pへ流れる電流(b)が電流(a)と等しくなり、配線用遮断器114cから接続点Pへ流れる電流(c)は0Aとなる。 For example, if the current consumed by the load facility 16, that is, the current (a) flowing from the connection point P to the load facility 16 is less than 5 A, all the power is covered by the power supply facility 220. Therefore, the current (b) flowing from the power supply facility 220 to the connection point P becomes equal to the current (a), and the current (c) flowing from the molded case circuit breaker 114c to the connection point P becomes 0A.

また、電流(a)が5A以上となると、電力供給設備220から接続点Pへ流れる電流(b)はその最大値の5Aとなり、配線用遮断器114cから接続点Pへ流れる電流(c)は、電流(a)と電流(b)との差分(電流(a)−電流(b))を賄うこととなる。 When the current (a) becomes 5A or more, the current (b) flowing from the power supply facility 220 to the connection point P becomes the maximum value of 5A, and the current (c) flowing from the wiring breaker 114c to the connection point P becomes. , The difference between the current (a) and the current (b) (current (a) -current (b)) is covered.

そして、電流計224を通じて電流(a)が20Aを上回ったことが測定されると、すなわち、配線用遮断器114cから接続点Pへ流れる電流(c)が15Aを上回ると、制御部120bは、その電流(a)が構内配線116の過電流耐量である20A以下となるように、電力供給設備220における発電部120aの出力を制限して、最終的には出力を0とする。こうして、配線用遮断器114cから接続点Pへ流れる電流(c)と電流(a)とが等しくなる。このとき、負荷設備16へ20Aを上回る電流が流れ続けると、配線用遮断器114cからの電力の供給が遮断され、構内配線116が保護される。 Then, when it is measured through the ammeter 224 that the current (a) exceeds 20A, that is, when the current (c) flowing from the circuit breaker 114c for wiring to the connection point P exceeds 15A, the control unit 120b causes the control unit 120b. The output of the power generation unit 120a in the power supply facility 220 is limited so that the current (a) is 20A or less, which is the overcurrent withstand capacity of the premises wiring 116, and finally the output is set to 0. In this way, the current (c) flowing from the molded case circuit breaker 114c to the connection point P and the current (a) become equal. At this time, if a current exceeding 20 A continues to flow to the load facility 16, the supply of electric power from the molded case circuit breaker 114c is cut off, and the premises wiring 116 is protected.

かかる発電部120aの出力制限は、発電部120aの出力の解列により実行する。また、配線用遮断器114cでは、例えば22A以下なら20分、24A以下なら10分の有余がある等、超過電流毎にステップ状に動作時限が決まっており、短時間の過電流は許容されるので、その許容される範囲で、発電部120aの出力を徐々に低減して最終的に0にすることでも実現できる。 The output limitation of the power generation unit 120a is executed by disconnecting the output of the power generation unit 120a. Further, in the molded case circuit breaker 114c, the operation time limit is determined stepwise for each excess current, for example, 20 minutes for 22A or less and 10 minutes for 24A or less, and a short-time overcurrent is allowed. Therefore, it can be realized by gradually reducing the output of the power generation unit 120a to 0 in the allowable range.

そして、電流計224を通じて電流(a)が20A以下となると、制御部120bは、電流(a)が20A以下となる条件下で、電力供給設備220における発電部120aの出力を徐々に増大する。 Then, when the current (a) becomes 20 A or less through the ammeter 224, the control unit 120b gradually increases the output of the power generation unit 120a in the power supply facility 220 under the condition that the current (a) becomes 20 A or less.

このように、電力供給設備220において、電流計224で測定した電流が構内配線116の過電流耐量以下となるように、電力供給設備220における発電部120aの出力を制限する構成により、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。 In this way, in the power supply facility 220, the premises wiring 116 is configured to limit the output of the power generation unit 120a in the power supply facility 220 so that the current measured by the ammeter 224 is equal to or less than the overcurrent withstand capacity of the premises wiring 116. It is possible to prevent a current exceeding the overcurrent withstand capacity from flowing.

また、ここでは、構内配線116と電力供給設備220との接続点Pと負荷設備16との間に電流計224を設置する例を挙げて説明したが、配線用遮断器114cと、構内配線116と電力供給設備220との接続点Pとの間に電流計224を設置する方が容易な場合、かかる位置に電流計224を配置してもよい。 Further, here, an example in which an ammeter 224 is installed between the connection point P between the premises wiring 116 and the power supply facility 220 and the load facility 16 has been described, but the wiring breaker 114c and the premises wiring 116 have been described. If it is easier to install the ammeter 224 between the and the connection point P of the power supply facility 220, the ammeter 224 may be arranged at such a position.

図5は、第2の実施形態における他の電力システム300の接続態様を示した説明図である。ここでも、電力の移動を実線で、情報を含む信号の流れを破線の矢印で示している。電力システム300は、電力メータ112と、分電盤114と、構内配線116と、コンセント118と、電力供給設備220と、電流計224とを含んで構成される。電力システム300は、電力システム200と配置が異なるだけで、実質的に機能が同一なので重複説明を省略する。 FIG. 5 is an explanatory diagram showing a connection mode of another power system 300 in the second embodiment. Again, the power transfer is indicated by a solid line and the flow of signals containing information is indicated by a dashed arrow. The power system 300 includes a power meter 112, a distribution board 114, a premises wiring 116, an outlet 118, a power supply facility 220, and an ammeter 224. Since the electric power system 300 has substantially the same functions as the electric power system 200 except that the arrangement is different, the duplicate description will be omitted.

かかる電力システム300において、電流計224は、配線用遮断器114cと、構内配線116と電力供給設備220との接続点Pとの間に設置され、配線用遮断器114cから接続点Pへ流れる電流を測定する。また、制御部120bは、電力供給設備220で出力された電流を検出することができる。そして、制御部120bは、電流計224で測定した電流と、電力供給設備220で出力された電流との和が構内配線116の過電流耐量(例えば20A)以下となるように、電力供給設備220の出力を制限する。 In such a power system 300, the ammeter 224 is installed between the molded case circuit breaker 114c and the connection point P between the molded case circuit breaker 116 and the power supply facility 220, and the current flowing from the molded case circuit breaker 114c to the connection point P. To measure. Further, the control unit 120b can detect the current output by the power supply facility 220. Then, the control unit 120b increases the power supply equipment 220 so that the sum of the current measured by the ammeter 224 and the current output by the power supply equipment 220 is equal to or less than the overcurrent withstand capacity (for example, 20A) of the premises wiring 116. Limit the output of.

例えば、負荷設備16で消費される電流、すなわち、接続点Pから負荷設備16へ流れる電流(a)が5A未満であれば、その電力は電力供給設備220で全て賄われる。したがって、電力供給設備220から接続点Pへ流れる電流(b)が電流(a)と等しくなり、配線用遮断器114cから接続点Pへ流れる電流(c)は0Aとなる。 For example, if the current consumed by the load facility 16, that is, the current (a) flowing from the connection point P to the load facility 16 is less than 5 A, all the power is covered by the power supply facility 220. Therefore, the current (b) flowing from the power supply facility 220 to the connection point P becomes equal to the current (a), and the current (c) flowing from the molded case circuit breaker 114c to the connection point P becomes 0A.

また、電流(a)が5A以上となると、電力供給設備220から接続点Pへ流れる電流(b)はその最大値の5Aとなり、配線用遮断器114cから接続点Pへ流れる電流(c)は、電流(a)と電流(b)との差分を賄うこととなる。 When the current (a) becomes 5A or more, the current (b) flowing from the power supply facility 220 to the connection point P becomes the maximum value of 5A, and the current (c) flowing from the molded case circuit breaker 114c to the connection point P becomes. , The difference between the current (a) and the current (b) will be covered.

そして、電力供給設備220で出力された電流が5Aに達し、かつ、電流計224を通じて測定された電流(c)が15Aを上回ると、すなわち、接続点Pから負荷設備16に流れる電流(a)が20Aを上回ると、制御部120bは、電流(b)と電流(c)との和が構内配線116の過電流耐量である20A以下となるように、すなわち、電流(c)が15A以下となるように、電力供給設備220における発電部120aの出力を制限して、最終的には出力を0とする。こうして、配線用遮断器114cから接続点Pへ流れる電流(c)と電流(a)とが等しくなる。このとき、負荷設備16へ20Aを上回る電流が流れ続けると、配線用遮断器114cからの電力の供給が遮断され、構内配線116が保護される。 Then, when the current output by the power supply facility 220 reaches 5 A and the current (c) measured through the current meter 224 exceeds 15 A, that is, the current (a) flowing from the connection point P to the load facility 16. When the value exceeds 20A, the control unit 120b sets the sum of the current (b) and the current (c) to be 20A or less, which is the overcurrent withstand capacity of the premises wiring 116, that is, the current (c) is 15A or less. Therefore, the output of the power generation unit 120a in the power supply facility 220 is limited so that the output is finally set to 0. In this way, the current (c) flowing from the molded case circuit breaker 114c to the connection point P and the current (a) become equal. At this time, if a current exceeding 20 A continues to flow to the load facility 16, the supply of electric power from the molded case circuit breaker 114c is cut off, and the premises wiring 116 is protected.

そして、電流(b)と電流(c)との和が20A以下となると、制御部120bは、電流(b)と電流(c)との和が20A以下となる条件下で、電力供給設備220における発電部120aの出力を徐々に増大する。 Then, when the sum of the current (b) and the current (c) is 20 A or less, the control unit 120b sends the power supply facility 220 under the condition that the sum of the current (b) and the current (c) is 20 A or less. The output of the power generation unit 120a in the above is gradually increased.

このように、電力供給設備220において、電流計224で測定した電流と、電力供給設備220で出力された電流との和が構内配線116の過電流耐量以下となるように、電力供給設備220における発電部120aの出力を制限する構成により、構内配線116に過電流耐量を上回る電流が流れることを防止することが可能となる。 In this way, in the power supply facility 220, the sum of the current measured by the current meter 224 and the current output by the power supply facility 220 is equal to or less than the overcurrent withstand capacity of the premises wiring 116. The configuration that limits the output of the power generation unit 120a makes it possible to prevent a current exceeding the overcurrent withstand capacity from flowing through the premises wiring 116.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such an embodiment. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood.

例えば、上述した実施形態においては、屋外コンセント118bに個別遮断器122を通じて電力供給設備120を接続する例を挙げて説明したが、かかる屋外コンセント118bを含むコンセント118については、通常の電気機器が利用可能な100Vのみならず、エアコンが利用可能な200Vにも適用することができる。 For example, in the above-described embodiment, the power supply facility 120 is connected to the outdoor outlet 118b through the individual circuit breaker 122. However, the outlet 118 including the outdoor outlet 118b is used by an ordinary electric device. It can be applied not only to the possible 100V but also to the 200V where the air conditioner can be used.

本発明は、需要者構内に電力供給設備を接続可能な電力システムに利用することができる。 The present invention can be used for a power system to which a power supply facility can be connected to a consumer premises.

14 電力系統
16 負荷設備
100、200、300 電力システム
112 電力メータ
114 分電盤
114c 配線用遮断器
116 構内配線
118 コンセント
120、220 電力供給設備
120b 制御部
224 電流計
14 Power system 16 Load equipment 100, 200, 300 Power system 112 Power meter 114 Distribution board 114c Wiring breaker 116 Premise wiring 118 Outlet 120, 220 Power supply equipment 120b Control unit 224 Ammeter

Claims (2)

遮断器を備え、電力系統の電力を、該遮断器と負荷設備とを接続する構内配線を通じて負荷設備に供給する電力システムであって、
前記構内配線に接続された電力供給設備を備え
前記遮断器は、前記電力供給設備の接続に基づいて交換された遮断器であり、該電力供給設備が接続される前に該構内配線に接続されていた遮断器の遮断容量から該電力供給設備の最大容量を減じた遮断容量を有する電力システム。
Comprising a circuit breaker, the power of the power system, a power system supplied to the load equipment through premises wiring for connecting the load equipment and the circuit breaker,
Equipped with power supply equipment connected to the premises wiring
The circuit breaker is a circuit breaker replaced based on the connection of the power supply facility, and the power supply facility is used from the circuit breaker capacity of the circuit breaker connected to the premises wiring before the power supply facility is connected. that power system having a breaking capacity obtained by subtracting the maximum capacity of.
遮断器を備え、電力系統の電力を、該遮断器と負荷設備とを接続する構内配線を通じて負荷設備に供給する電力システムであって、
前記構内配線に接続された電力供給設備を備え
前記遮断器は、該構内配線の過電流耐量から前記電力供給設備の最大容量を減じた遮断容量を有する電力システム。
Comprising a circuit breaker, the power of the power system, a power system supplied to the load equipment through premises wiring for connecting the load equipment and the circuit breaker,
Equipped with power supply equipment connected to the premises wiring
The breaker, that power system having a breaking capacity of the overcurrent withstand capability of the above constituting the wiring by subtracting the maximum capacity of the power supply equipment.
JP2016200724A 2016-10-12 2016-10-12 Power system Active JP6778076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200724A JP6778076B2 (en) 2016-10-12 2016-10-12 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200724A JP6778076B2 (en) 2016-10-12 2016-10-12 Power system

Publications (2)

Publication Number Publication Date
JP2018064346A JP2018064346A (en) 2018-04-19
JP6778076B2 true JP6778076B2 (en) 2020-10-28

Family

ID=61968121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200724A Active JP6778076B2 (en) 2016-10-12 2016-10-12 Power system

Country Status (1)

Country Link
JP (1) JP6778076B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072961B2 (en) * 2004-05-21 2008-04-09 北海道電力株式会社 Control device with system interconnection protection function of SOG switch
JP4838838B2 (en) * 2007-12-25 2011-12-14 パナソニック電工株式会社 DC power distribution system
JP2014045605A (en) * 2012-08-28 2014-03-13 Noritz Corp Power conditioner
JP2014158391A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Power conversion system

Also Published As

Publication number Publication date
JP2018064346A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
US9906034B2 (en) Power generation and control system
JP6418239B2 (en) Power supply apparatus and power supply method
EP2924840B1 (en) Power supply system, power conversion apparatus, and measurement point switching apparatus
US20110005567A1 (en) Modular solar panel system
CN102804540A (en) Power distribution system
JP5865225B2 (en) Control system, control device, and control method
JP2007129852A (en) Photovoltaic power generation evaluation system, information processor, and photovoltaic power generation evaluation method
JP6717705B2 (en) Power system
JP6712217B2 (en) Power system
JP2015220791A (en) Power supply control device
JP6781007B2 (en) Power system
EP3032682B1 (en) Power supply system, power conversion device, and distribution board
US10998709B1 (en) Method and apparatus for preventing same building solar panel produced voltage spikes on a neighbor's electric utility service
JP6778076B2 (en) Power system
JP7000227B2 (en) Power system
JP4948316B2 (en) limiter
Li et al. Sensitivity analysis to operation margin of zone 3 impedance relays with bus power and shunt susceptance
JP6730172B2 (en) Power system
JP7082510B2 (en) Power system
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP2000235051A (en) Detector for detecting direct current component contained in alternating current
JP7210358B2 (en) Power supply equipment
Nurdiana et al. Performance of 10 kWp PV rooftop system based on smart grid in energy building PUSPIPTEK
JP7378946B2 (en) power supply equipment
JP6463982B2 (en) Electric power demand control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200630

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250