JP6730172B2 - Power system - Google Patents

Power system Download PDF

Info

Publication number
JP6730172B2
JP6730172B2 JP2016241155A JP2016241155A JP6730172B2 JP 6730172 B2 JP6730172 B2 JP 6730172B2 JP 2016241155 A JP2016241155 A JP 2016241155A JP 2016241155 A JP2016241155 A JP 2016241155A JP 6730172 B2 JP6730172 B2 JP 6730172B2
Authority
JP
Japan
Prior art keywords
power
phase
power supply
value
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016241155A
Other languages
Japanese (ja)
Other versions
JP2018096818A (en
Inventor
卓也 伴野
卓也 伴野
崇之 渡邉
崇之 渡邉
治良 三宅
治良 三宅
聡史 山下
聡史 山下
広介 小林
広介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2016241155A priority Critical patent/JP6730172B2/en
Publication of JP2018096818A publication Critical patent/JP2018096818A/en
Application granted granted Critical
Publication of JP6730172B2 publication Critical patent/JP6730172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、受電端において電力系統からの供給電力が不足状態となっているのを検出可能な電力システムに関する。 The present invention relates to an electric power system capable of detecting that the electric power supplied from an electric power system is in an insufficient state at a power receiving end.

近年、需要者宅の負荷設備に太陽光発電設備等の電力供給設備を接続し、電力供給設備の電力で負荷を賄うとともに、電力供給設備と電力系統(商用電力系統)とを連系し、電力供給設備において発電した電力が負荷設備で消費される電力より少ない場合に、不足した電力を電力系統から受電する系統連系が行われている。 In recent years, connecting power supply equipment such as solar power generation equipment to load equipment at the consumer's house, covering the load with the power of the power supply equipment, and connecting the power supply equipment and the power grid (commercial power grid), When the electric power generated by the electric power supply equipment is less than the electric power consumed by the load equipment, the grid interconnection is performed to receive the insufficient electric power from the electric power grid.

このような系統連系の下、電力系統の無警告停電等により、電力系統側からの電力の供給が停止すると、需要者宅の負荷設備を含む、電力供給設備に接続された全ての負荷設備の電力を、電力供給設備のみで賄う単独運転となる。単独運転では、電力供給設備に過負荷がかかってしまうおそれや、電力供給設備から電力系統側へ逆潮流(逆充電)が生じることにより、感電や需要者機器の破損等のおそれが生じる。このような単独運転や逆充電を回避すべく、受電端において電力系統からの供給電力が不足状態となっているのを検出し、電力供給設備を電力系統から解列する不足電力継電器(UPR)を用いることができる(例えば、特許文献1)。 Under such a grid connection, if the power supply from the power grid side is stopped due to a warning power failure of the power grid, etc., all load equipment connected to the power supply equipment, including load equipment at the customer's home It will be an independent operation that supplies the electric power of only with electric power supply facilities. In isolated operation, there is a risk that the power supply facility may be overloaded and that a reverse power flow (reverse charging) from the power supply facility to the power system side may cause electric shock or damage to consumer equipment. In order to avoid such isolated operation and reverse charging, an insufficient power relay (UPR) that detects that the power supply from the power grid is insufficient at the power receiving end and disconnects the power supply equipment from the power grid Can be used (for example, Patent Document 1).

特開平6−141471号公報JP-A-6-141471

太陽光発電設備や燃料電池等の電力供給設備として、現在、単相3線式100/200VにおけるR相とT相に接続されるものが用いられている。上述した系統連系において、単相3線式100/200VにおけるR相とT相に接続される電力供給設備では、電圧線であるR相、T相それぞれの電流値およびN相に対するそれぞれの相間電圧値を求め、電流値と、相間電圧値と、電流、電圧の位相に基づく力率とから受電電力を求め、受電端において電力系統からの供給電力が不足状態(受電電力が所定値以下)であるか否かを判定することが考えられる。 As a power supply facility such as a solar power generation facility or a fuel cell, what is connected to an R phase and a T phase in a single-phase three-wire system 100/200V is currently used. In the system interconnection described above, in the power supply facility connected to the R phase and the T phase in the single-phase three-wire system 100/200V, the current values of the R phase and the T phase, which are voltage lines, and the interphases for the N phase, respectively. Obtain the voltage value, obtain the received power from the current value, the inter-phase voltage value, and the power factor based on the phase of the current and voltage, and the power supply from the power system is insufficient at the receiving end (the received power is less than the specified value) It is conceivable to determine whether or not

また、今後は、省エネルギー機器が普及し、構内の電力需要が減少すると、必ずしも単相3線式100/200VにおけるR相とT相への接続を要さず、例えば、単相3線式100/200Vの片方に相当するR相とN相のみ、または、T相とN相のみに接続される小出力の電力供給設備を設置することが考えられる。しかし、かかる小出力の電力供給設備では、接続されている連系相の相間電圧値は検出できるものの、接続されていない非連系相の相間電圧値は検出できない。したがって、R相、T相、両方の電流値と相間電圧値と力率との積を求めることができず、不足電力の判定ができなくなってしまう。 Further, in the future, when energy-saving equipment becomes widespread and the power demand on the premises decreases, it is not always necessary to connect the R phase and the T phase in the single-phase three-wire system 100/200V. It is conceivable to install a small output power supply facility connected to only the R and N phases, or the T and N phases corresponding to one of /200V. However, in such a small output power supply facility, the inter-phase voltage value of the connected interconnection phase can be detected, but the inter-phase voltage value of the non-connected interconnection phase cannot be detected. Therefore, the product of the R-phase current value, the T-phase current value, the interphase voltage value, and the power factor cannot be obtained, and it becomes impossible to determine the insufficient power.

本発明は、このような課題に鑑み、単相3線式のR相またはT相と、N相とにのみ接続される電力供給設備であっても、不足電力を適切に検出可能な電力システムを提供することを目的としている。 In view of such a problem, the present invention is a power system capable of appropriately detecting a power shortage even in a power supply facility that is connected only to a single-phase three-wire R-phase or T-phase and an N-phase. Is intended to provide.

上記課題を解決するために、本発明の電力システムは、電力系統からの引き込み線である単相3線式のうち電圧線のいずれか一方と、中性線とに接続された電力供給設備と、電力供給設備と連系している電圧線に流れる電流値を計測する第1電流計と、電力供給設備と連系している電圧線の中性線に対する相間電圧値を計測する電圧計と、電力供給設備と連系していない電圧線に流れる電流値を計測する第2電流計と、第1電流計で計測された電流値と電圧計で計測された相間電圧値と、その力率とを乗じた値と、第2電流計で計測された電流値と所定の想定値と所定の想定力率とを乗じた値とを加算し受電電力を導出する電力導出部と、受電電力に基づき、受電端において不足電力が生じているか否か判定する不足電力判定部と、を備える。 In order to solve the above problems, a power system of the present invention includes a power supply facility connected to one of voltage lines of a single-phase three-wire system that is a service line from a power system and a neutral line. A first ammeter for measuring a current value flowing through a voltage line connected to the power supply facility, and a voltmeter for measuring an interphase voltage value for a neutral line of the voltage line connected to the power supply facility , A second ammeter that measures the current value flowing in the voltage line that is not connected to the power supply facility, the current value measured by the first ammeter and the interphase voltage value measured by the voltmeter, and its power factor And a value obtained by multiplying the current value measured by the second ammeter and a value obtained by multiplying a predetermined assumed value and a predetermined assumed power factor by a power derivation unit that derives the received power, and the received power. And a power shortage determining unit that determines whether or not power shortage has occurred at the power receiving end.

電力導出部は、電力供給設備と連系していない相間電圧の位相を、電力供給設備と連系している電圧線に係る相間電圧の位相を反転した位相とみなして想定力率を導出してもよい。 The power deriving unit derives the assumed power factor by regarding the phase of the interphase voltage that is not connected to the power supply equipment as the phase that is the inverted phase of the interphase voltage related to the voltage line that is connected to the power supply equipment. May be.

電力導出部は、電力供給設備と連系していない電圧線の潮流方向に応じて、相間電圧値として取り得る規定最小電圧値および規定最大電圧値のいずれかを想定値としてもよい。 The power derivation unit may use, as an assumed value, one of a specified minimum voltage value and a specified maximum voltage value that can be taken as the interphase voltage value according to the power flow direction of the voltage line that is not connected to the power supply facility.

電力導出部は、電力供給設備と連系していない電圧線の潮流方向に応じて、想定力率を0または1としてもよい。 The power derivation unit may set the assumed power factor to 0 or 1 depending on the power flow direction of the voltage line that is not connected to the power supply facility.

電力系統に接続され、電力供給設備と連系していない電圧線の中性線に対する相間電圧値を計測可能な電力メータを備え、電力導出部は、電力メータが計測した相間電圧値を想定値としてもよい。 Equipped with a power meter that is connected to the power grid and can measure the interphase voltage value for the neutral line of the voltage line that is not connected to the power supply equipment, and the power derivation unit uses the interphase voltage value measured by the power meter as the expected value. May be

電力導出部は、電力メータが計測した相間電圧値を統計的に処理し、電力供給設備と連系していない電圧線の潮流方向に応じて、統計的に導き出した実測最小電圧値および実測最大電圧値のいずれかを想定値としてもよい。 The power derivation unit statistically processes the interphase voltage value measured by the power meter and statistically derives the actually measured minimum voltage value and actually measured maximum voltage value according to the power flow direction of the voltage line that is not connected to the power supply equipment. Any of the voltage values may be the assumed value.

本発明によれば、単相3線式のR相またはT相と、N相とにのみ接続される電力供給設備であっても、不足電力を適切に検出することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is the electric power supply equipment connected only to the R phase or T phase of a single phase 3-wire type, and N phase, it becomes possible to detect an insufficient electric power appropriately.

第1の実施形態における電力システムの接続関係を示した説明図である。It is explanatory drawing which showed the connection relation of the electric power system in 1st Embodiment. 第2電力供給設備の課題を説明するための説明図である。It is an explanatory view for explaining a subject of the 2nd power supply equipment. 第2の実施形態における電力システムの接続関係を示した説明図である。It is explanatory drawing which showed the connection relation of the electric power system in 2nd Embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the invention unless otherwise specified. In this specification and the drawings, elements having substantially the same function and configuration are denoted by the same reference numerals to omit redundant description, and elements not directly related to the present invention are omitted. To do.

(第1の実施形態:電力システム100)
図1は、第1の実施形態における電力システム100の接続関係を示した説明図である。かかる図1では電力の移動を実線で、情報を含む信号を破線の矢印で示している。電力システム100は、引き込み線12を通じて、電力系統14から電気(商用電力)の供給を受ける。かかる電力システム100は、需要者単位で構成され、その範囲としては、一般用電気工作物(低圧受電の需要者)であれば、家屋等に限らず、病院、工場、ホテル、レジャー施設、商業施設、集合住宅といった建物単位や建物内の一部分であってもよい。
(First embodiment: power system 100)
FIG. 1 is an explanatory diagram showing a connection relationship of the power system 100 according to the first embodiment. In FIG. 1, the movement of power is indicated by a solid line and the signal including information is indicated by a dashed arrow. The power system 100 is supplied with electricity (commercial power) from the power grid 14 through the service line 12. The electric power system 100 is configured on a consumer unit basis, and the range is not limited to houses and the like as long as it is a general electric facility (consumer of low-voltage power reception), hospitals, factories, hotels, leisure facilities, and commerce. It may be a building unit such as a facility or an apartment house or a part of the building.

また、電力システム100は、電力メータ112と、分電盤114と、第1電力供給設備116と、第1個別遮断器118と、第2電力供給設備(電力供給設備)120と、第2個別遮断器122と、電流計124とを含んで構成される。 The power system 100 also includes a power meter 112, a distribution board 114, a first power supply facility 116, a first individual circuit breaker 118, a second power supply facility (power supply facility) 120, and a second individual power supply facility. The circuit breaker 122 and the ammeter 124 are included.

電力メータ(電力量計)112は、電力系統14に引き込み線12を介して接続され、引き込み線12と電力システム100との間に流れる(消費および売電)電流値を計測する。 The electric power meter (electric energy meter) 112 is connected to the electric power system 14 via the service line 12 and measures a current value (consumption and power sale) flowing between the service line 12 and the power system 100.

分電盤114は、電力メータ112に接続され、契約容量を示すサービス遮断器(サービスブレーカ)114a、漏電の検出に応じて電気の供給を遮断する漏電遮断器(漏電ブレーカ)114b、および、複数の分岐回路130それぞれに設けられ許容電流値(例えば20A)を超過すると電気の供給を遮断する配線用遮断器(安全ブレーカ)114cを有する。なお、ここでは、分電盤114の構成としてサービス遮断器114aを挙げているが、サービス遮断器114a自体を設置しなくてもよく、また、電力メータ112に設けてもよい。 The distribution board 114 is connected to the electric power meter 112, and has a service breaker (service breaker) 114a that indicates a contracted capacity, an earth leakage breaker (leakage breaker) 114b that shuts off the supply of electricity in response to detection of electric leakage, and a plurality of Each of the branch circuits 130 has a wiring breaker (safety breaker) 114c that cuts off the supply of electricity when the allowable current value (for example, 20 A) is exceeded. Although the service breaker 114a is described as the configuration of the distribution board 114 here, the service breaker 114a itself may not be installed, and may be provided in the power meter 112.

第1電力供給設備116は、過電流および漏電を防止する第1個別遮断器118を介して漏電遮断器114bの2次側のR相とT相とに接続され、他のエネルギーを電気エネルギーに変換して電気を生成し、生成した電気を電力系統14より優先して、電気エネルギーを消費する負荷設備16に供給する。かかる第1電力供給設備116や後述する第2電力供給設備120といった電力供給設備としては、例えば、太陽光発電機、風力発電機、水力発電機、地熱発電機、太陽熱発電機、大気中熱発電機等の再生可能エネルギー発電設備や、燃料電池、内燃力発電、蓄電池等を用いることができる。以下、単相3線式100/200VのR相とT相とを単相3線式200Vと呼び、R相とN相、または、T相とN相を単相3線式100Vと呼ぶ。 The first power supply equipment 116 is connected to the R-phase and T-phase on the secondary side of the earth leakage breaker 114b through a first individual breaker 118 that prevents overcurrent and earth leakage, and converts other energy into electric energy. The electricity is converted to generate electricity, and the electricity thus generated is given priority over the power system 14 and supplied to the load facility 16 that consumes electrical energy. Examples of the power supply equipment such as the first power supply equipment 116 and the second power supply equipment 120 described later include, for example, a solar power generator, a wind power generator, a hydroelectric power generator, a geothermal power generator, a solar thermal power generator, an atmospheric thermal power generator. Renewable energy power generation equipment such as fuel cell, internal combustion power generation, and storage battery can be used. Hereinafter, the R phase and the T phase of the single-phase three-wire system 100/200V are referred to as the single-phase three-wire system 200V, and the R-phase and the N-phase or the T-phase and the N-phase are referred to as the single-phase three-wire system 100V.

第2電力供給設備120は、過電流を防止する第2個別遮断器122を介して、分電盤114における複数の分岐回路130のうちの、R相とN相、または、T相とN相のいずれかに接続される。そして、第2電力供給設備120は、発電部Gにおいて他のエネルギーを電気エネルギーに変換して電気を生成し、第1電力供給設備116と同様に、生成した電気を電力系統14より優先して負荷設備16に供給する。 The second electric power supply facility 120 is provided with an R-phase and an N-phase or a T-phase and an N-phase among the plurality of branch circuits 130 in the distribution board 114 via the second individual circuit breaker 122 that prevents overcurrent. Connected to any of. Then, the second power supply facility 120 converts other energy into electric energy in the power generation unit G to generate electricity, and like the first power supply facility 116, gives priority to the generated electricity over the power system 14. The load equipment 16 is supplied.

また、第2電力供給設備120は、電圧計120aと、解列部120bと、制御ユニット120cとを含んで構成される。電圧計120aは、例えば計器用変圧器(VT)で構成され、N相(中性線)に対する電圧線(R相またはT相)の相間電圧値を制御ユニット120cに送信する。ここでは、電圧計120aが第2電力供給設備120と一体的に形成される例を挙げて説明しているが、別体として設けられてもよい。解列部120bは、発電部Gからの電力供給(出力)を遮断する。制御ユニット120cは、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、第2電力供給設備120全体を制御する。ここでは、制御ユニット120cが第2電力供給設備120と一体的に形成される例を挙げて説明しているが、別体として設けられてもよい。 In addition, the second power supply facility 120 is configured to include a voltmeter 120a, a disconnecting section 120b, and a control unit 120c. The voltmeter 120a is composed of, for example, an instrument transformer (VT), and transmits the interphase voltage value of the voltage line (R phase or T phase) to the N phase (neutral line) to the control unit 120c. Here, the example in which the voltmeter 120a is formed integrally with the second power supply equipment 120 has been described, but it may be provided as a separate body. The disconnecting unit 120b shuts off the power supply (output) from the power generation unit G. The control unit 120c is composed of a semiconductor integrated circuit including a central processing unit (CPU), a ROM in which programs and the like are stored, a RAM as a work area, and the like, and controls the entire second power supply facility 120. Here, an example in which the control unit 120c is formed integrally with the second power supply facility 120 has been described, but it may be provided as a separate body.

電流計124は、例えば、変流器(CT)で構成され、一次巻線を配した貫通体(鉄心、コア)それぞれに、電圧線であるR相およびT相の配線を挿通(クランプ)し、それぞれの電流値を計測値に変成して第2電力供給設備120に送信する。また、ここでは、電流計124を、サービス遮断器114aの2次側、かつ、漏電遮断器114bの1次側に取り付ける例を挙げて説明するが、負荷設備16、第1電力供給設備116、および、第2電力供給設備120より電力系統14側であれば、いずれの位置に配置してもよい。 The ammeter 124 is composed of, for example, a current transformer (CT), and inserts (clamps) the R-phase and T-phase wires, which are voltage lines, into each of the penetrating bodies (iron core, core) in which the primary windings are arranged. , The respective current values are converted into measured values and transmitted to the second power supply equipment 120. In addition, here, although an example in which the ammeter 124 is attached to the secondary side of the service breaker 114a and the primary side of the earth leakage breaker 114b will be described, the load equipment 16, the first power supply equipment 116, Further, it may be arranged at any position on the power system 14 side of the second power supply facility 120.

ところで、電力供給設備としては、上述した第1電力供給設備116のように、単相3線式200Vに接続して用いるのが一般的である。この場合、配線用遮断器114cと並行して連系遮断器(200V)を設け、その連系遮断器に第1個別遮断器118を介して第1電力供給設備116を接続したり、また、漏電遮断器114bの1次側から別途の個別遮断器(200V)を介して第1電力供給設備116を接続しなければならない。 By the way, as the power supply equipment, as in the case of the above-described first power supply equipment 116, it is common to connect and use a single-phase three-wire type 200V. In this case, an interconnecting circuit breaker (200V) is provided in parallel with the wiring circuit breaker 114c, and the first power supply facility 116 is connected to the interconnecting circuit breaker via the first individual circuit breaker 118. It is necessary to connect the first power supply equipment 116 from the primary side of the earth leakage breaker 114b through a separate individual breaker (200V).

ただし、今後は、省エネルギー機器が普及し、電力システム100の電力需要が減少すると、必ずしも単相3線式200Vへの接続を要さない、本実施形態のような、単相3線式100/200Vのうち電力線であるR相またはT相のいずれか一方と、中性線であるN相とによる単相3線式100V(R相とN相、もしくは、T相とN相)のみに接続される小出力の第2電力供給設備120が設置されることとなる。 However, in the future, when energy-saving equipment becomes widespread and the power demand of the power system 100 decreases, it is not always necessary to connect to the single-phase three-wire system 200V. Connected to only single-phase 3-wire system 100V (R phase and N phase, or T phase and N phase) consisting of either R phase or T phase which is a power line of 200V and N phase which is a neutral line The second power supply facility 120 of small output is installed.

このように単相3線式100Vで運用できれば、連系遮断器等を介在しなくとも、図1のように、既存の分岐回路130を利用して屋外コンセントに第2電力供給設備120を接続することが可能となる。かかる構成により、既存の構内配線の有効活用および施工費の削減を図るとともに、電力システム100内の配線を簡素化できる。 If the single-phase three-wire system 100V can be operated in this way, the second power supply facility 120 can be connected to the outdoor outlet by using the existing branch circuit 130 as shown in FIG. 1 without interposing an interconnection breaker or the like. It becomes possible to do. With such a configuration, it is possible to effectively use the existing premises wiring, reduce the construction cost, and simplify the wiring in the power system 100.

しかし、第2電力供給設備120を単相3線式100Vに接続する場合、以下の課題が生じる。例えば、電力系統14と第2電力供給設備120との系統連系の下、系統側短絡事故等により電力系統14が無警告停電し、電力系統14側からの電力の供給が停止すると、需要者宅の負荷設備16を含む、第2電力供給設備120に接続された全ての負荷設備16の電力を、第2電力供給設備120のみで賄う単独運転となる。単独運転では、第2電力供給設備120に過負荷がかかってしまうおそれや、第2電力供給設備120から電力系統14側へ不足電力が生じることにより、感電や需要者機器の破損等のおそれが生じる。したがって、単独運転や逆充電を回避すべく、受電端において電力系統14からの供給電力が不足状態となっているのを検出し、少なくとも、第2電力供給設備120を電力系統14から解列しなければならない。 However, when connecting the second power supply equipment 120 to the single-phase three-wire system 100V, the following problems occur. For example, under the system interconnection of the power system 14 and the second power supply facility 120, if the power system 14 is unwarned due to a system side short-circuit accident or the like and the power supply from the power system 14 side is stopped, the user It becomes an independent operation in which the power of all the load facilities 16 connected to the second power supply facility 120 including the load facility 16 of the house is covered by only the second power supply facility 120. In the islanding operation, the second power supply facility 120 may be overloaded, or shortage of power from the second power supply facility 120 to the power system 14 side may cause electric shock or damage to consumer equipment. Occurs. Therefore, in order to avoid islanding or reverse charging, it is detected that the power supplied from the power system 14 is insufficient at the power receiving end, and at least the second power supply facility 120 is disconnected from the power system 14. There must be.

このとき、第1電力供給設備116であれば、電圧線であるR相、T相それぞれの電流値およびN相に対するそれぞれの相間電圧値を求め、電流値と、相間電圧値と、電流、電圧の位相に基づく力率とから受電電力を求め、受電端において電力系統14からの供給電力(受電電力)が不足状態であるか否かを判定することができる。しかし、第2電力供給設備120では、連系している単相3線式100Vの相間電圧値は検出できるものの、連系していない他方の単相3線式100Vの相間電圧値は検出できない。したがって、R相、T相、両方の電流値と相間電圧値と力率との積を求めることができず、不足電力の判定ができない。 At this time, in the case of the first power supply equipment 116, the interphase voltage values for the R-phase and T-phase current values and the N-phase, which are voltage lines, are obtained, and the current value, the interphase voltage value, the current, and the voltage are calculated. It is possible to obtain the received power from the power factor based on the phase of and to determine whether or not the power supplied from the power system 14 (received power) is insufficient at the power receiving end. However, the second power supply facility 120 can detect the interphase voltage value of the interconnected single-phase three-wire system 100V, but cannot detect the interphase voltage value of the other non-interconnected single-phase three-wire system 100V. .. Therefore, the product of the current value, the interphase voltage value, and the power factor of both the R-phase and the T-phase cannot be obtained, and the power shortage cannot be determined.

図2は、第2電力供給設備120の課題を説明するための説明図である。図2(a)に示すように、仮に、第1電力供給設備116のみを接続した場合を考える。この場合、2つの電流計124のうち、R相電流計(第1電流計)124aがR相の電流値Iを計測し、T相電流計(第2電流計)124bが電流値Iを計測し、第1電力供給設備116内の電圧計116aがR相のN相に対する相間電圧値Vを計測し、電圧計116bがT相のN相に対する相間電圧値Vを計測する。 FIG. 2 is an explanatory diagram for explaining the problem of the second power supply equipment 120. As shown in FIG. 2A, consider a case where only the first power supply equipment 116 is connected. In this case, of the two ammeters 124, the R-phase ammeter (first ammeter) 124a measures the R-phase current value I R and the T-phase ammeter (second ammeter) 124b measures the current value I T. was measured, voltmeter 116a of the first power supply system 116 will measure the phase-to-phase voltage value V R for N phase of R-phase, voltmeter 116b measures the phase voltage V T for N phase of T-phase.

そして、それぞれの相(R相、T相)に関し、電流値と相間電圧値と力率との積(I×V×cosθ、I×V×cosθ)を求め、その和(I×V×cosθ+I×V×cosθ)が所定値以下であるか否かによって不足電力を検出できる。 Then, for each phase (R phase, T phase), the product of the current value, the interphase voltage value, and the power factor (I R ×V R ×cos θ R , I T ×V T ×cos θ T ) is calculated, and the sum thereof is obtained. The insufficient power can be detected by whether or not (I R ×V R ×cos θ R +I T ×V T ×cos θ T ) is less than or equal to a predetermined value.

しかし、図2(b)のように、第2電力供給設備120を接続する場合、連系相であるR相のN相に対する相間電圧値Vは検出できるものの、非連系相であるT相のN相に対する相間電圧値Vは検出できない。 However, as in FIG. 2 (b), when connecting the second power supply system 120, although detectable interphase voltage V R for N phase of R-phase is interconnection phase, a non-interconnection phase T The interphase voltage value V T for the N phase of the phases cannot be detected.

そこで、本実施形態では、計測不能な他方の単相3線式100Vの相間電圧値を想定することで、第2電力供給設備120であっても、第1電力供給設備116と実質的に等しい条件で不足電力を適切に検出する。以下、図2(b)を用いて、その判定態様を詳述する。 Therefore, in the present embodiment, the second power supply equipment 120 is substantially equal to the first power supply equipment 116 by assuming the interphase voltage value of the other single-phase three-wire system 100V that cannot be measured. Appropriately detect insufficient power under the conditions. Hereinafter, the determination mode will be described in detail with reference to FIG.

ここでは、電力系統14から見て、R相電流計124aおよびT相電流計124bの下流に、負荷設備16、第2電力供給設備120、第1電力供給設備116が位置している。したがって、不足している情報を推定することで、R相電流計124aおよびT相電流計124bの位置における、負荷設備16、第2電力供給設備120、第1電力供給設備116を全て含めた潮流態様(潮流方向および受電電力)を推定することが可能となる。 Here, the load facility 16, the second power supply facility 120, and the first power supply facility 116 are located downstream of the R-phase ammeter 124a and the T-phase ammeter 124b as viewed from the power system 14. Therefore, by estimating the lacking information, the power flow including all the load equipment 16, the second power supply equipment 120, and the first power supply equipment 116 at the positions of the R-phase ammeter 124a and the T-phase ammeter 124b. It is possible to estimate the mode (direction of power flow and received power).

第2電力供給設備120における制御ユニット120cは、プログラムを動作させることで、電力導出部140、不足電力判定部142としても機能する。 The control unit 120c in the second power supply facility 120 also functions as the power derivation unit 140 and the power shortage determination unit 142 by operating the program.

電力導出部140は、R相電流計124aから、連系相であるR相の電流値Iを取得し、T相電流計124bから、非連系相であるT相の電流値Iを取得し、電圧計120aから、連系相であるR相のN相に対する相間電圧値Vを取得する。また、連系相であるR相の電流および相間電圧の位相に基づいて力率cosθを導出する。そして、電力導出部140は、T相のN相に対する相間電圧値の所定の想定値VTAおよび想定力率cosθTAを参照し、単相3線式100/200Vに換算した受電電力を導出する。具体的に、電力導出部140は、R相に関する電力(I×V×cosθ)と、T相に関する想定電力(I×VTA×cosθTA)とを求め、その和(I×V×cosθ+I×VTA×cosθTA)を導出して単相3線式100/200Vの受電電力とする。 The power deriving unit 140 acquires the current value I R of the R phase, which is the interconnection phase, from the R phase ammeter 124 a, and obtains the current value I T of the T phase, which is the non-interconnection phase, from the T phase ammeter 124 b. acquired from voltmeter 120a, obtains the phase voltage V R for N phase of R-phase is interconnection phase. Further, the power factor cos θ R is derived based on the phase of the R-phase current and the interphase voltage that are the interconnected phases. Then, the power derivation unit 140 refers to the predetermined assumed value V TA and the assumed power factor cos θ TA of the interphase voltage value for the T phase and the N phase, and derives the received power converted into the single-phase three-wire system 100/200V. .. Specifically, the power derivation unit 140 obtains the power (I R ×V R ×cos θ R ) related to the R phase and the assumed power (I T ×V TA ×cos θ TA ) related to the T phase, and the sum (I R × and V R × cosθ R + I T × V TA × cosθ TA) to derive the reception power of the single-phase three-wire 100 / 200V.

不足電力判定部142は、電力導出部140が導出した単相3線式100/200Vの受電電力に基づいて不足電力が生じたか否かを判定する。具体的に、不足電力判定部142は、受電電力が正の所定値以下であれば、不足電力が生じたと判定する。そして、不足電力判定部142は、不足電力が生じたことに基づき、解列部120bを通じて第2電力供給設備120からの電力供給を遮断する(出力を0とする)。したがって、不足電力判定部142は、不足電力継電器(UPR)として機能することとなる。 The power shortage determination unit 142 determines whether power shortage has occurred based on the received power of the single-phase three-wire system 100/200V derived by the power derivation unit 140. Specifically, the power shortage determination unit 142 determines that power shortage has occurred if the received power is less than or equal to a positive predetermined value. Then, the power shortage determination unit 142 cuts off the power supply from the second power supply facility 120 through the disconnecting unit 120b (sets the output to 0) based on the occurrence of the power shortage. Therefore, the power shortage determination unit 142 functions as a power shortage relay (UPR).

なお、ここでは、解列部120bが第2電力供給設備120と一体的に形成される例を挙げて説明しているが、別体として設けられてもよい。また、ここでは、電力供給を遮断もしくは出力を0にする例を挙げているが、出力を低下させるとしてもよい。 In addition, here, although the disconnecting section 120b is described as an example in which it is integrally formed with the second power supply equipment 120, it may be provided as a separate body. Further, here, an example is given in which the power supply is cut off or the output is set to 0, but the output may be reduced.

かかる構成により、単相3線式100Vにのみ接続される第2電力供給設備120であっても、単相3線式100/200Vの受電電力を求めることができ、第2電力供給設備120の不足電力を適切に検出することが可能となる。 With such a configuration, even with the second power supply equipment 120 that is connected only to the single-phase three-wire system 100V, the received power of the single-phase three-wire system 100/200V can be obtained, and the second power supply equipment 120 It becomes possible to appropriately detect the power shortage.

ところで、電気事業法において電力会社から供給される電力の相間電圧値は、101V±6Vの範囲内と定められている。したがって、T相のN相に対する相間電圧値Vは、95V(規定最小電圧値)〜107V(規定最大電圧値)の範囲内でしか変動しない。そこで、相間電圧値として取り得る範囲であり、さらに、引き込み線12の電圧降下(例えば2V)を考慮して、上述したT相のN相に対する相間電圧値の想定値VTAを例えば101Vに選択することができる。 By the way, according to the Electricity Business Law, the interphase voltage value of the electric power supplied from the electric power company is determined to be within the range of 101V±6V. Therefore, the inter-phase voltage value V T of the T phase with respect to the N phase fluctuates only within the range of 95 V (specified minimum voltage value) to 107 V (specified maximum voltage value). Therefore, a possible range as a phase voltage value, further, in consideration of the voltage drop of the drop line 12 (e.g. 2V), select the assumed value V TA of interphase voltage values for N phase of T-phase as described above for example 101V can do.

また、このような電力システム100では、R相とT相の負荷が均一に近くなることが多いので、T相のN相に対する相間電圧値の想定値VTAとして、例えば、連系相であるR相のN相に対する相間電圧値Vを、そのまま流用してもよい。また、R相とT相とは位相が180度異なるため、想定力率cosθTAとして、例えば、非連系相であるT相のN相に対する相間電圧の位相を、連系相であるR相のN相に対する相間電圧の位相を反転した(180度異ならせた)位相とみなし、想定力率cosθTAを決定してもよい。 Further, in such an electric power system 100, since the loads of the R phase and the T phase are often close to uniform, the assumed value V TA of the interphase voltage value for the N phase of the T phase is, for example, the interconnection phase. the interphase voltage value V R for N phase of R-phase, may be diverted as it is. In addition, since the R phase and the T phase are 180 degrees out of phase with each other, the assumed power factor cos θ TA is, for example, the phase of the interphase voltage with respect to the N phase of the T phase which is the non-connected phase, and the R phase which is the connected phase. The assumed power factor cos θ TA may be determined by regarding the phase of the interphase voltage with respect to the N phase of (1) as the inverted phase (180 degrees different).

また、電力導出部140は、電圧線の他方であるT相の電力の潮流方向に応じて、想定値VTAおよび想定力率cosθTAを決定するとしてもよい。ここでは、連系相であるR相のN相に対する相間電圧と、非連系相であるT相の電流とが計測されているので、相間電圧の位相と、電流の位相とによって、非連系相であるT相の潮流方向を導出できる。例えば、T相が逆潮流(図2の一点鎖線矢印と異なる方向)であるとする。このとき、T相のN相に対する相間電圧値Vは、規定最小電圧値(95V)から規定最大電圧値(107V)の範囲で変動し得るので、T相に関する電力は、(電流値I×規定最小電圧値)から(電流値I×規定最大電圧値)の範囲で変動することとなる。 In addition, the power derivation unit 140 may determine the assumed value V TA and the assumed power factor cos θ TA according to the power flow direction of the T-phase power that is the other of the voltage lines. Here, the interphase voltage for the N phase of the interconnected phase and the current of the T phase that is the non-interconnected phase are measured, so that the phase of the interphase voltage and the phase of the current are not used for disconnection. The flow direction of the T phase, which is the system phase, can be derived. For example, it is assumed that the T-phase is reverse power flow (direction different from the one-dot chain line arrow in FIG. 2). At this time, the inter-phase voltage value V T of the T phase with respect to the N phase may fluctuate in the range from the specified minimum voltage value (95 V) to the specified maximum voltage value (107 V), so that the power related to the T phase is (current value I T It will vary in the range of (specified minimum voltage value) to (current value IT × specified maximum voltage value).

ここでは、不足電力を厳しく(安全側で)判定すべく、T相において想定し得る最大電力で不足電力が生じていることとする。すなわち、T相の電力を(電流値I×規定最大電圧値)とする。したがって、電力導出部140は、T相が逆潮流である場合、想定値VTAとして規定最大電圧値を設定する。また、不足電力を厳しく(安全側で)判定すべく、T相の電力が最大となるように、想定力率cosθTAを1とみなして演算してもよい。 Here, in order to make a strict (safety) determination of the power shortage, it is assumed that the power shortage occurs at the maximum power that can be assumed in the T phase. That is, the electric power of the T phase is defined as (current value IT ×specified maximum voltage value). Therefore, the power derivation unit 140 sets the specified maximum voltage value as the assumed value V TA when the T-phase is reverse power flow. Further, in order to make a strict (safety) determination of the power shortage, the assumed power factor cos θ TA may be regarded as 1 so that the T-phase power becomes maximum.

同様に、電力導出部140は、T相が順潮流(図2の一点鎖線矢印と等しい方向)である場合、順潮流を厳しく(安全側で)判定すべく、T相において想定し得る最小電力でしか順潮流が生じていないこととする。すなわち、T相の電力を(電流値I×規定最小電圧値)とする。したがって、電力導出部140は、T相が順潮流である場合、想定値VTAとして規定最小電圧値を設定する。また、不足電力を厳しく(安全側で)判定すべく、T相の電力が最小となるように、想定力率cosθTAを所定の値(例えば0)とみなして演算してもよい。 Similarly, when the T-phase is forward power flow (direction equal to the one-dot chain line arrow in FIG. 2), the power derivation unit 140 determines the minimum power that can be assumed in the T-phase so as to strictly determine (on the safe side) the forward power flow. It is assumed that the forward power flow only occurs. That is, the electric power of the T phase is set to (current value IT ×specified minimum voltage value). Therefore, the power derivation unit 140 sets the specified minimum voltage value as the assumed value V TA when the T-phase is forward power flow. Further, in order to make a strict (safety) determination of the power shortage, the assumed power factor cos θ TA may be regarded as a predetermined value (for example, 0) and calculated so that the power of the T phase is minimized.

かかる構成により、単相3線式100Vにのみ接続される第2電力供給設備120を単相3線式100/200Vとして換算した場合の最も安全側での受電電力を求めることができ、第2電力供給設備120の不足電力をより確実かつ適切に検出することが可能となる。 With this configuration, it is possible to obtain the received power on the safest side when the second power supply equipment 120 connected only to the single-phase three-wire system 100V is converted into the single-phase three-wire system 100/200V. It becomes possible to detect the power shortage of the power supply equipment 120 more reliably and appropriately.

また、ここでは、図2(b)のように、R相側の単相3線式100Vに第2電力供給設備120を接続する例を挙げて説明したが、図2(c)に示すように、T相側の単相3線式100Vに第2電力供給設備120を接続した場合も同等の計算により不足電力を検出できる。 Further, here, as illustrated in FIG. 2B, the example in which the second power supply facility 120 is connected to the single-phase three-wire system 100V on the R-phase side has been described, but as illustrated in FIG. In addition, when the second power supply facility 120 is connected to the single-phase three-wire system 100V on the T phase side, the insufficient power can be detected by the same calculation.

すなわち、電力導出部140は、R相電流計(第2電流計)124aからR相の電流値Iを取得し、T相電流計(第1電流計)124bからT相の電流値Iを取得し、電圧計120aからT相のN相に対する相間電圧値Vを取得する。また、連系相であるT相の電流および相間電圧の位相に基づいて力率cosθを導出する。そして、電力導出部140は、R相のN相に対する相間電圧値の所定の想定値VRAおよび想定力率cosθRAを参照し、単相3線式100/200Vに換算した受電電力を導出する。具体的に、電力導出部140は、R相に関する想定電力(I×VRA×cosθRA)と、T相に関する電力(I×V×cosθ)とを求め、その和(I×VRA×cosθRA+I×V×cosθ)を導出して単相3線式100/200Vの受電電力とする。 That is, the power deriving unit 140 acquires the R-phase current value I R from the R-phase ammeter (second ammeter) 124a, and acquires the T-phase current value I T from the T-phase ammeter (first ammeter) 124b. And the inter-phase voltage value V T for the N phase of the T phase is acquired from the voltmeter 120a. Further, the power factor cos θ T is derived based on the current of the T-phase which is the interconnection phase and the phase of the interphase voltage. Then, the power derivation unit 140 refers to the predetermined assumed value V RA and the assumed power factor cos θ RA of the interphase voltage value for the R phase and the N phase, and derives the received power converted into the single-phase three-wire system 100/200V. .. Specifically, the power deriving unit 140, the assumptions about R-phase power (I R × V RA × cosθ RA), obtains the power (I T × V T × cosθ T) for T-phase, the sum (I R X V RA x cos θ RA + I T x V T x cos θ T ) is derived to obtain single-phase three-wire 100/200 V received power.

そして、不足電力判定部142は、電力導出部140が導出した単相3線式100/200Vの受電電力が正の所定値以下であれば、不足電力が生じたと判定し、解列部120bを通じて第2電力供給設備120からの電力供給を遮断もしくは出力を低下させる。 Then, the power shortage determination unit 142 determines that power shortage has occurred if the received power of the single-phase three-wire 100/200 V derived by the power derivation unit 140 is equal to or less than a positive predetermined value, and through the disconnection unit 120b. The power supply from the second power supply facility 120 is shut off or the output is reduced.

かかる構成によっても、単相3線式100Vにのみ接続される第2電力供給設備120を単相3線式100/200Vとして換算した場合の最も安全側での受電電力を求めることができ、第2電力供給設備120の不足電力をより確実かつ適切に検出することが可能となる。 With such a configuration as well, it is possible to obtain the received power on the safest side when the second power supply facility 120 connected only to the single-phase three-wire system 100V is converted into the single-phase three-wire system 100/200V. (2) It becomes possible to detect the power shortage of the power supply equipment 120 more reliably and appropriately.

(第2の実施形態:電力システム200)
図3は、第2の実施形態における電力システム200の接続関係を示した説明図である。かかる電力システム200では、電力導出部240の処理が第1の実施形態と異なるが、他の構成要素については第1の実施形態と実質的に等しい。
(Second embodiment: power system 200)
FIG. 3 is an explanatory diagram showing a connection relationship of the power system 200 according to the second embodiment. In the electric power system 200, the process of the electric power deriving unit 240 is different from that of the first embodiment, but other components are substantially the same as those of the first embodiment.

第2の実施形態において、電力導出部240は、想定値を固定的に選択せず、当該電力システム200の任意の機器から相間電圧値に関する情報を取得し、その情報に基づいて想定値を随時決定する。例えば、図3の例において、電力導出部240は、電力メータ112における相間電圧値、具体的には、第2電力供給設備120の連系相とは異なる相(非連系相)の相間電圧値を取得し、その相間電圧値を想定値とする。 In the second embodiment, the power derivation unit 240 does not fixedly select the assumed value, acquires information about the interphase voltage value from any device of the power system 200, and based on the information, sets the assumed value at any time. decide. For example, in the example of FIG. 3, the power deriving unit 240 determines that the interphase voltage value in the power meter 112, specifically, the interphase voltage of a phase (non-interconnection phase) different from the interconnection phase of the second power supply facility 120. Obtain the value and use the interphase voltage value as the assumed value.

かかる構成により、本来の相間電圧値に近い値を想定値とし、より厳密に受電電力を求めることができるので、第2電力供給設備120の不足電力をより適切に検出することが可能となる。 With such a configuration, the value close to the original interphase voltage value is used as the assumed value, and the received power can be obtained more accurately, so that the shortage of power in the second power supply facility 120 can be detected more appropriately.

ただし、電力メータ112の相間電圧値の更新頻度によっては、本来の相間電圧値と異なる値を参照することになってしまう。例えば、電力メータ112が数十秒に1回のみ更新される場合、参照する相間電圧値が数十秒前の相間電圧値となる場合がある。そこで、電力導出部240は、かかる電力メータ112における相間電圧値を蓄積して、それを統計的に処理して想定値を決定してもよい。 However, depending on the update frequency of the interphase voltage value of the power meter 112, a value different from the original interphase voltage value will be referred to. For example, when the power meter 112 is updated only once in several tens of seconds, the interphase voltage value to be referred to may be the interphase voltage value of several tens of seconds ago. Therefore, the power derivation unit 240 may accumulate the inter-phase voltage value in the power meter 112 and statistically process it to determine the assumed value.

例えば、電力導出部240は、電力メータ112における、過去の任意の期間(年、月、週、日、時間等)分の相間電圧値を蓄積し、その間の最小電圧値(実測最小電圧値)と最大電圧値(実測最大電圧値)とを求める。ここで、T相のN相に対する相間電圧値Vは、実測最小電圧値から実測最大電圧値の範囲で変動しているので、T相に関する電力は、(電流値I×実測最小電圧値×力率)から(電流値I×実測最大電圧値×力率)の範囲で変動することとなる。 For example, the power derivation unit 240 accumulates the inter-phase voltage value for the past arbitrary period (year, month, week, day, time, etc.) in the power meter 112, and the minimum voltage value during that period (measured minimum voltage value). And the maximum voltage value (measured maximum voltage value). Here, since the inter-phase voltage value V T of the T phase with respect to the N phase fluctuates in the range from the actually measured minimum voltage value to the actually measured maximum voltage value, the power related to the T phase is (current value I T ×measured minimum voltage value). X power factor) to (current value IT x actually measured maximum voltage value x power factor).

ここで、電力導出部240は、T相が逆潮流(図2の一点鎖線矢印と異なる方向)である場合、想定値VTAとして、安全側である実測最大電圧値を設定する。また、電力導出部240は、T相の電流値Iが順潮流(図2の一点鎖線矢印と等しい方向)である場合、想定値VTAとして、安全側である実測最小電圧値を設定する。 Here, when the T-phase is reverse power flow (direction different from the alternate long and short dash line arrow in FIG. 2), the power derivation unit 240 sets the measured maximum voltage value on the safe side as the assumed value V TA . In addition, when the T-phase current value IT is forward power flow (direction equal to the one-dot chain line arrow in FIG. 2), the power derivation unit 240 sets the measured minimum voltage value on the safe side as the assumed value VTA. ..

かかる構成により、単相3線式100Vにのみ接続される第2電力供給設備120を単相3線式100/200Vとして換算した場合の最も安全側での受電電力を求めることができ、第2電力供給設備120の不足電力をより確実かつ適切に検出することが可能となる。 With this configuration, it is possible to obtain the received power on the safest side when the second power supply equipment 120 connected only to the single-phase three-wire system 100V is converted into the single-phase three-wire system 100/200V. It becomes possible to detect the power shortage of the power supply equipment 120 more reliably and appropriately.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such embodiments. It is obvious to those skilled in the art that various changes or modifications can be conceived within the scope described in the claims, and naturally, they also belong to the technical scope of the present invention. Understood.

例えば、上述した実施形態では、電力メータ112から制御ユニット120cに対し、相間電圧値を送信する例を挙げて説明したが、電力メータ112がスマートメータであった場合、その機能は、例えば、HEMS(Home Energy Management System)を通じて電力メータ112から制御ユニット120cに送信してもよい。 For example, in the above-described embodiment, the example in which the power meter 112 transmits the interphase voltage value to the control unit 120c has been described, but when the power meter 112 is a smart meter, the function thereof is, for example, HEMS. It may be transmitted from the power meter 112 to the control unit 120c through (Home Energy Management System).

また、上述した実施形態では、過去の任意の期間分の相間電圧値を蓄積し、その間の最小電圧値(実測最小電圧値)と最大電圧値(実測最大電圧値)とを求める例を挙げて説明したが、統計的に導き出した、例えば、統計的な偏差から、実効的な最小電圧値(実測最小電圧値)と最大電圧値(実測最大電圧値)とを求めるとしてもよい。 Further, in the above-described embodiment, an example in which interphase voltage values for an arbitrary period in the past are accumulated and a minimum voltage value (actually measured minimum voltage value) and a maximum voltage value (actually measured maximum voltage value) between them are obtained is given. Although described, the effective minimum voltage value (measured minimum voltage value) and maximum voltage value (measured maximum voltage value) may be obtained from statistically derived statistical deviations, for example.

また、上述した実施形態では、不足電力判定部142が、不足電力が生じたと判定すると、解列部120bを通じて第2電力供給設備120からの電力供給を遮断もしくは出力を低下させる例を挙げて説明したが、遮断もしくは出力を低下させる対象は、当該第2電力供給設備120に限らず、それに加え、または代えて、需要者が管理する様々な電力供給設備とすることもできる。 Further, in the above-described embodiment, when the power shortage determination unit 142 determines that power shortage has occurred, an example will be described in which the power supply from the second power supply facility 120 is cut off or the output is reduced through the disconnecting unit 120b. However, the target for shutting down or lowering the output is not limited to the second power supply equipment 120, and in addition to or in place of the second power supply equipment 120, various power supply equipment managed by a consumer can be used.

本発明は、受電端において電力系統からの供給電力が不足状態となっているのを検出可能な電力システムに利用することができる。 INDUSTRIAL APPLICATION This invention can be utilized for the electric power system which can detect that the electric power supplied from an electric power system is in a shortage state at the receiving end.

14 電力系統
16 負荷設備
100、200 電力システム
114 分電盤
120 第2電力供給設備(電力供給設備)
120a 電圧計
120c 制御ユニット
124a R相電流計(第1電流計、第2電流計)
124b T相電流計(第2電流計、第1電流計)
140、240 電力導出部
142 不足電力判定部
14 power system 16 load facility 100, 200 power system 114 distribution board 120 second power supply facility (power supply facility)
120a Voltmeter 120c Control unit 124a R-phase ammeter (first ammeter, second ammeter)
124b T-phase ammeter (second ammeter, first ammeter)
140, 240 Power derivation unit 142 Insufficient power determination unit

Claims (6)

電力系統からの引き込み線である単相3線式のうち電圧線のいずれか一方と、中性線とに接続された電力供給設備と、
前記電力供給設備と連系している電圧線に流れる電流値を計測する第1電流計と、
前記電力供給設備と連系している電圧線の中性線に対する相間電圧値を計測する電圧計と、
前記電力供給設備と連系していない電圧線に流れる電流値を計測する第2電流計と、
前記第1電流計で計測された電流値と前記電圧計で計測された相間電圧値と、その力率とを乗じた値と、前記第2電流計で計測された電流値と所定の想定値と所定の想定力率とを乗じた値とを加算し受電電力を導出する電力導出部と、
前記受電電力に基づき、受電端において不足電力が生じているか否か判定する不足電力判定部と、
を備える電力システム。
A power supply facility connected to one of the voltage lines of the single-phase three-wire system that is a service line from the power system and a neutral line;
A first ammeter for measuring a current value flowing in a voltage line connected to the power supply facility;
A voltmeter that measures a phase-to-phase voltage value with respect to a neutral line of a voltage line that is connected to the power supply facility,
A second ammeter for measuring a current value flowing in a voltage line not connected to the power supply facility;
A value obtained by multiplying the current value measured by the first ammeter, the interphase voltage value measured by the voltmeter, and its power factor, the current value measured by the second ammeter, and a predetermined assumed value. And a value obtained by multiplying a predetermined assumed power factor by a power derivation unit that derives received power,
Based on the received power, a power shortage determination unit that determines whether power shortage occurs at the power receiving end,
Power system comprising.
前記電力導出部は、前記電力供給設備と連系していない相間電圧の位相を、前記電力供給設備と連系している電圧線に係る相間電圧の位相を反転した位相とみなして前記想定力率を導出することを特徴とする請求項1に記載の電力システム。 The power derivation unit regards the phase of the interphase voltage that is not interconnected with the power supply facility as a phase obtained by inverting the phase of the interphase voltage related to the voltage line that is interconnected with the power supply facility, and the assumed force. The power system of claim 1, wherein the rate is derived. 前記電力導出部は、前記電力供給設備と連系していない電圧線の潮流方向に応じて、相間電圧値として取り得る規定最小電圧値および規定最大電圧値のいずれかを前記想定値とする請求項1または2に記載の電力システム。 The power derivation unit sets the assumed value to one of a specified minimum voltage value and a specified maximum voltage value that can be taken as an interphase voltage value, according to the power flow direction of a voltage line that is not connected to the power supply facility. The electric power system according to Item 1 or 2. 前記電力導出部は、前記電力供給設備と連系していない電圧線の潮流方向に応じて、想定力率を0または1とする請求項3に記載の電力システム。 The power system according to claim 3, wherein the power derivation unit sets the assumed power factor to 0 or 1 according to the power flow direction of the voltage line that is not connected to the power supply facility. 前記電力系統に接続され、前記電力供給設備と連系していない電圧線の中性線に対する相間電圧値を計測可能な電力メータを備え、
前記電力導出部は、前記電力メータが計測した相間電圧値を前記想定値とする請求項1に記載の電力システム。
A power meter that is connected to the power system and is capable of measuring an interphase voltage value with respect to a neutral line of a voltage line that is not connected to the power supply facility,
The power system according to claim 1, wherein the power deriving unit sets the inter-phase voltage value measured by the power meter as the assumed value.
前記電力導出部は、前記電力メータが計測した相間電圧値を統計的に処理し、前記電力供給設備と連系していない電圧線の潮流方向に応じて、統計的に導き出した実測最小電圧値および実測最大電圧値のいずれかを前記想定値とする請求項5に記載の電力システム。 The power derivation unit statistically processes the inter-phase voltage value measured by the power meter, and according to the power flow direction of the voltage line that is not connected to the power supply equipment, the statistically derived measured minimum voltage value. The power system according to claim 5, wherein any one of the maximum voltage value and the actually measured maximum voltage value is set as the assumed value.
JP2016241155A 2016-12-13 2016-12-13 Power system Active JP6730172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016241155A JP6730172B2 (en) 2016-12-13 2016-12-13 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241155A JP6730172B2 (en) 2016-12-13 2016-12-13 Power system

Publications (2)

Publication Number Publication Date
JP2018096818A JP2018096818A (en) 2018-06-21
JP6730172B2 true JP6730172B2 (en) 2020-07-29

Family

ID=62633441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241155A Active JP6730172B2 (en) 2016-12-13 2016-12-13 Power system

Country Status (1)

Country Link
JP (1) JP6730172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257839B2 (en) * 2018-12-10 2023-04-14 大阪瓦斯株式会社 System disconnection device

Also Published As

Publication number Publication date
JP2018096818A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
Telukunta et al. Protection challenges under bulk penetration of renewable energy resources in power systems: A review
Kroposki et al. Microgrid standards and technologies
Justo et al. AC-microgrids versus DC-microgrids with distributed energy resources: A review
Gopalan et al. A review of coordination strategies and protection schemes for microgrids
US9906034B2 (en) Power generation and control system
US20200044436A1 (en) Method for locating phase faults in a microgrid
JP6717705B2 (en) Power system
JP5865225B2 (en) Control system, control device, and control method
Udgave et al. A review on Distribution Network protection with penetration of Distributed Generation
Rath et al. A comprehensive review on microgrid protection: issues and challenges
JP6712217B2 (en) Power system
CN105098754A (en) Systems and methods to protect an energy utility meter from overvoltage events
JP6730172B2 (en) Power system
JP5506502B2 (en) Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines
JP6723906B2 (en) Power system
JP6723905B2 (en) Power system and ammeter installation method
Patil et al. Impact of Distributed Generation on power distribution system: Over-current protection by phase angle estimation
Chatterjee et al. The challenges of protection for Microgrid
JP6723904B2 (en) Power system
JP7000227B2 (en) Power system
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP6781007B2 (en) Power system
JP7210358B2 (en) Power supply equipment
JP7082510B2 (en) Power system
JP7378946B2 (en) power supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6730172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250