JP6723904B2 - Power system - Google Patents

Power system Download PDF

Info

Publication number
JP6723904B2
JP6723904B2 JP2016229595A JP2016229595A JP6723904B2 JP 6723904 B2 JP6723904 B2 JP 6723904B2 JP 2016229595 A JP2016229595 A JP 2016229595A JP 2016229595 A JP2016229595 A JP 2016229595A JP 6723904 B2 JP6723904 B2 JP 6723904B2
Authority
JP
Japan
Prior art keywords
phase
value
ammeter
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016229595A
Other languages
Japanese (ja)
Other versions
JP2018084563A (en
Inventor
聡史 山下
聡史 山下
卓也 伴野
卓也 伴野
広介 小林
広介 小林
崇之 渡邉
崇之 渡邉
信一 中島
信一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2016229595A priority Critical patent/JP6723904B2/en
Publication of JP2018084563A publication Critical patent/JP2018084563A/en
Application granted granted Critical
Publication of JP6723904B2 publication Critical patent/JP6723904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

本発明は、構内に電力供給設備が設けられた電力システムに関する。 The present invention relates to an electric power system in which electric power supply equipment is provided in a premises.

低圧受電の需要者は、電力会社からの電気(商用電力)の供給を受けて構内の負荷設備(一般用電気工作物)で電気を使用する。また、太陽光発電設備等、電力供給設備を構内に設け、負荷設備を動作させるとともに(例えば、特許文献1)、電力供給設備で生成した電力のうち余った電力を電力会社に売電することも可能である。 A customer of low-voltage power reception receives electricity (commercial power) from an electric power company and uses the electricity in a load facility (general electric work) on the premises. In addition, a power supply facility such as a solar power generation facility is provided on the premises, a load facility is operated (for example, Patent Document 1), and surplus power of the power generated by the power supply facility is sold to a power company. Is also possible.

特開2013−247737号公報JP, 2013-247737, A

太陽光発電設備や燃料電池といった単相3線式100/200Vにおける単相3線式200V(R相とT相)に接続される電力供給設備では、電圧線であるR相とT相とにそれぞれ電流計(変流器)を取り付け、各電流計で検出される電流値と、電力供給設備で検出されるR相およびT相の電圧値と、電流、電圧の位相に基づく力率値とから受電電力を算出している。また、電力供給設備では、受電電力を適切に導出すべく、R相およびT相に接続された内部負荷それぞれの変動に伴う電流計の電流値変化に基づいて、電流計の潮流方向、相位置、健全性(信号線の断線等)といった電流計の設置に関する適正(以後、単に「設置適正」という。)を判断しているものもある。 In the power supply equipment connected to the single-phase three-wire system 200V (R-phase and T-phase) in the single-phase three-wire system 100/200V, such as a solar power generation facility and a fuel cell, in the voltage lines R-phase and T-phase. Each is equipped with an ammeter (current transformer), the current value detected by each ammeter, the voltage values of the R and T phases detected by the power supply equipment, and the power factor value based on the current and voltage phase The received power is calculated from. In addition, in the power supply equipment, in order to properly derive the received power, based on the change in the current value of the ammeter due to the fluctuation of each internal load connected to the R phase and the T phase, the flow direction and phase position of the ammeter In some cases, the appropriateness of the ammeter installation such as soundness (disconnection of the signal line, etc.) (hereinafter simply referred to as "installation appropriateness") is judged.

また、今後は、省エネルギー機器が普及し、構内の電力需要が減少すると、必ずしも単相3線式200Vへの接続を要さず、例えば、単相3線式100/200Vの片方に相当する単相3線式100V(R相とN相、または、T相とN相)のみに接続される小出力の電力供給設備を設置することが考えられる。 Further, in the future, when energy-saving equipment becomes widespread and the power demand on the premises decreases, it is not always necessary to connect to the single-phase three-wire system 200V, and for example, one-phase three-wire system 100/200V It is conceivable to install a small output power supply facility that is connected only to the phase 3 wire system 100V (R phase and N phase, or T phase and N phase).

しかし、かかる小出力の電力供給設備は、R相またはT相のいずれか一方とN相に接続されるため、R相とT相とに取り付けた2つの電流計のうち一方について設置適正を判断できなくなる。また、設置適正を判断できない電流計をN相に付け替えれば、その電流計についても設置適正を判断できるようになるが、既存の手順では受電電力を直接導出できなくなる問題が残る。 However, since such a small output power supply facility is connected to either the R phase or the T phase and the N phase, it is determined whether the installation is appropriate for one of the two ammeters attached to the R phase and the T phase. become unable. Also, if an ammeter that cannot judge the installation suitability is replaced with an N-phase, it becomes possible to judge the installation suitability for that ammeter as well, but there is a problem that the received power cannot be directly derived by the existing procedure.

本発明は、このような課題に鑑み、単相3線式のR相またはT相と、N相とにのみ接続される電力供給設備であっても、電流計の設置適正の判断および受電電力の導出が可能な電力システムを提供することを目的としている。 In view of the above problems, the present invention determines the appropriateness of installation of an ammeter and the received power even if the power supply facility is connected only to the single-phase, three-wire R-phase or T-phase and the N-phase. The purpose is to provide an electric power system that can derive

上記課題を解決するために、本発明の電力システムは、電力系統からの引き込み線である単相3線式のうちR相またはT相のいずれか一方と、N相とに接続された電力供給設備と、R相またはT相の一方、および、N相それぞれに流れる電流値を計測する第1電流計および第2電流計と、第1電流計および第2電流計それぞれで計測された電流値を取得する計測値取得部と、第1電流計および第2電流計それぞれの設置適正を判断する適正判断部と、第1電流計および第2電流計に基づいてR相またはT相の他方の電流値を推定して推定電流値とする電流値推定部と、R相またはT相の一方に係る相間電圧値と電圧線の電流値とその力率とを乗じた値と、想定値と推定電流値と想定力率とを乗じた値とを加算し受電電力を導出する電力導出部と、を備える。 In order to solve the above problems, the power system of the present invention is a power supply connected to either one of R phase or T phase and N phase of a single-phase three-wire system which is a service line from a power system. Equipment, one of R phase or T phase, and a first ammeter and a second ammeter for measuring the current value flowing in each N phase, and a current value measured by each of the first ammeter and the second ammeter Of the R phase or the T phase based on the first ammeter and the second ammeter, and the appropriateness determination section that determines the installation suitability of each of the first ammeter and the second ammeter. A current value estimation unit that estimates a current value to obtain an estimated current value, a value obtained by multiplying the interphase voltage value related to one of the R phase and the T phase, the current value of the voltage line, and its power factor, and the estimated value A power deriving unit that adds the current value and a value obtained by multiplying the assumed power factor to derive the received power.

電力導出部は、推定電流値の方向に応じて、相間電圧値として取り得る規定最小電圧値および規定最大電圧値のいずれかを想定値としてもよい。 The power derivation unit may use, as the assumed value, one of the specified minimum voltage value and the specified maximum voltage value that can be taken as the interphase voltage value, depending on the direction of the estimated current value.

電力系統に接続され、R相またはT相の他方に係る相間電圧値を計測可能な電力メータを備え、電力導出部は、電力メータが計測した相間電圧値を想定値としてもよい。 An electric power meter that is connected to the electric power system and can measure the interphase voltage value related to the other of the R phase and the T phase may be provided, and the power derivation unit may use the interphase voltage value measured by the electric power meter as the assumed value.

電力導出部は、電力メータが計測した相間電圧値を統計的に処理し、推定電流値の方向に応じて、統計的に導き出した実測最小電圧値および実測最大電圧値のいずれかを想定値としてもよい。 The power derivation unit statistically processes the inter-phase voltage value measured by the power meter, and according to the direction of the estimated current value, one of the statistically derived actually measured minimum voltage value and actually measured maximum voltage value is set as the assumed value. Good.

本発明によれば、単相3線式のR相またはT相と、N相とにのみ接続される電力供給設備であっても、電流計の設置適正の判断および受電電力の導出が可能となる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is the electric power supply equipment connected only to R phase or T phase of a single-phase 3-wire type, and N phase, it is possible to judge the installation suitability of an ammeter and to derive received power. Become.

電力システムの接続関係を示した説明図である。It is explanatory drawing which showed the connection relation of an electric power system. 電力供給設備と分岐配線との具体的な接続態様を説明するためのブロック図である。It is a block diagram for explaining a concrete connection mode of electric power supply equipment and a branch wiring. 電流計の設置適正判断の課題を説明するための説明図である。It is explanatory drawing for demonstrating the subject of installation suitability determination of an ammeter. 電流計の設置方法の流れを示したフローチャートである。It is the flowchart which showed the flow of the installation method of an ammeter. 電圧線接続点と電流計接続点との対応付けを説明するための説明図である。It is an explanatory view for explaining correspondence between a voltage line connection point and an ammeter connection point. 電流計の適正判断の流れを示したフローチャートである。It is the flowchart which showed the flow of the appropriate determination of an ammeter. 電圧線接続点と電流計接続点との対応付けを説明するための説明図である。It is an explanatory view for explaining correspondence between a voltage line connection point and an ammeter connection point. 負荷の大きさによる潮流方向と電流値を説明するための説明図である。It is explanatory drawing for demonstrating the power flow direction and the electric current value by the magnitude of load. 電流計の適正判断の流れを示したフローチャートである。It is the flowchart which showed the flow of the appropriate determination of an ammeter. 適正判断を実行するための構成を示した説明図である。It is explanatory drawing which showed the structure for performing appropriateness judgment. 電力供給設備の他の課題を説明するための説明図である。It is explanatory drawing for demonstrating the other subject of electric power supply equipment. 電力システムの接続関係を示した説明図である。It is explanatory drawing which showed the connection relation of an electric power system.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the invention unless otherwise specified. In this specification and the drawings, elements having substantially the same function and configuration are denoted by the same reference numerals to omit redundant description, and elements not directly related to the present invention are omitted. To do.

(電力システム100)
図1は、電力システム100の接続関係を示した説明図である。図1では電力の移動を実線で、情報を含む信号を破線の矢印で示している。電力システム100は、引き込み線10を通じて、電力系統12から電気(商用電力)の供給を受ける。かかる電力システム100は、需要者単位で構成され、その範囲としては、一般用電気工作物(低圧受電の需要者)であれば、家屋等に限らず、病院、工場、ホテル、レジャー施設、商業施設、マンションといった建物単位や建物内の一部分であってもよい。
(Power system 100)
FIG. 1 is an explanatory diagram showing a connection relationship of the power system 100. In FIG. 1, the movement of power is indicated by a solid line, and the signal including information is indicated by a dashed arrow. The power system 100 receives electricity (commercial power) from the power system 12 through the service line 10. The electric power system 100 is configured on a consumer unit basis, and the range is not limited to houses and the like as long as it is a general electric facility (consumer of low-voltage power reception), hospitals, factories, hotels, leisure facilities, and commerce. It may be a building unit such as a facility or a condominium or a part of the building.

また、電力システム100は、電力メータ112と、分電盤114と、電力供給設備116と、電流計118とを含んで構成される。 The power system 100 also includes a power meter 112, a distribution board 114, a power supply facility 116, and an ammeter 118.

電力メータ(電力量計)112は、電力系統12に引き込み線10を介して接続され、引き込み線10と電力システム100との間に流れる(消費および売電の)電流値を計測する。 The electric power meter (electric energy meter) 112 is connected to the electric power system 12 via the service line 10 and measures a current value (consumption and power sale) flowing between the service line 10 and the power system 100.

分電盤114は、電力メータ112に接続され、契約容量を示すサービス遮断器(サービスブレーカ)114a、漏電の検出に応じて電気の供給を遮断する漏電遮断器(漏電ブレーカ)114b、および、複数の分岐配線120それぞれに設けられ許容電流値(例えば20A)を超過すると電気の供給を遮断する配線用遮断器(安全ブレーカ)114cを有する。また、分岐配線120には負荷設備14が接続され、負荷設備14は、分岐配線120を通じて電力系統12から電力の供給を受けることができる。 The distribution board 114 is connected to the electric power meter 112, and has a service breaker (service breaker) 114a that indicates a contracted capacity, an earth leakage breaker (leakage breaker) 114b that shuts off the supply of electricity in response to detection of electric leakage, and a plurality of Each of the branch wirings 120 has a wiring breaker (safety breaker) 114c that shuts off the supply of electricity when the allowable current value (for example, 20 A) is exceeded. Further, the load equipment 14 is connected to the branch wiring 120, and the load equipment 14 can be supplied with power from the power system 12 through the branch wiring 120.

なお、ここでは、分電盤114の構成としてサービス遮断器114aを挙げているが、サービス遮断器114a自体を設置しなくてもよく、また、サービス遮断器114aを電力メータ112に設けてもよい。 In addition, although the service breaker 114a is mentioned here as a structure of the distribution board 114, the service breaker 114a itself may not be installed and the service breaker 114a may be provided in the electric power meter 112. ..

電力供給設備116は、分電盤114における複数の分岐配線120のいずれかに(単相3線式100/200Vのいずれか一方に係る単相3線式100Vに)接続され、発電部Gにおいて他のエネルギーを電気エネルギーに変換して電気を生成し、生成した電気を電力系統12より優先して構内の負荷設備14に供給する。なお、ここでは、後述する図2に示す、単相3線式100/200V(単相3線式)のR相とT相とを単相3線式200Vと呼び、R相とN相、または、T相とN相を単相3線式100Vと呼ぶ。 The power supply equipment 116 is connected to any of the plurality of branch wirings 120 in the distribution board 114 (to a single-phase three-wire system 100V relating to one of the single-phase three-wire system 100/200V), and in the power generation section G. Other energy is converted into electric energy to generate electricity, and the generated electricity is supplied to the load facility 14 in the premises in priority to the power system 12. In addition, here, the R phase and the T phase of the single-phase three-wire system 100/200V (single-phase three-wire system) shown in FIG. 2 described later are referred to as the single-phase three-wire system 200V, and the R-phase and the N-phase, Alternatively, the T phase and the N phase are referred to as single-phase three-wire type 100V.

かかる電力供給設備116としては、太陽光発電機、風力発電機、水力発電機、地熱発電機、太陽熱発電機、大気中熱発電機、燃料電池、蓄電池、内燃力発電等を用いることができる。また、電力供給設備116は、余剰ヒータ等の内部負荷116aと、計器用変圧器(VT)等で構成され、単相3線式100V(R相またはT相とN相)の相間電圧値を計測する電圧計116bと、発電部Gからの電力供給(出力)を遮断する解列部116cと、電力供給設備116全体を制御する制御ユニット116dを有している。 As the power supply facility 116, a solar power generator, a wind power generator, a hydraulic power generator, a geothermal power generator, a solar thermal power generator, an atmospheric thermal power generator, a fuel cell, a storage battery, an internal combustion power generation, or the like can be used. In addition, the power supply facility 116 is configured by an internal load 116a such as a surplus heater and an instrument transformer (VT) and the like, and outputs a single-phase three-wire system 100V (R phase or T phase and N phase) interphase voltage value. It has a voltmeter 116b for measuring, a disconnecting section 116c for cutting off the power supply (output) from the power generation section G, and a control unit 116d for controlling the entire power supply facility 116.

制御ユニット116dは、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成される。ここでは、制御ユニット116dが電力供給設備116と一体的に形成される例を挙げて説明しているが、別体として設けられてもよい。また、制御ユニット116dは、プログラムを動作させることで、負荷制御部140、計測値取得部142、適正判断部144、電流値推定部146、電力導出部148としても機能する。かかる制御ユニット116dの機能部については、後程詳述する。 The control unit 116d is configured by a semiconductor integrated circuit including a central processing unit (CPU), a ROM storing programs and the like, a RAM as a work area, and the like. Here, an example in which the control unit 116d is formed integrally with the power supply equipment 116 is described, but it may be provided as a separate body. The control unit 116d also functions as the load control unit 140, the measurement value acquisition unit 142, the adequacy determination unit 144, the current value estimation unit 146, and the power derivation unit 148 by operating the program. The functional part of the control unit 116d will be described later in detail.

電流計118は、例えば、変流器(CT)で構成され、一次巻線を配した貫通体(鉄心、コア)それぞれに、いずれかの相の配線を挿通(クランプ)し、その電流値(実効値およびその方向)を計測値に変成して制御ユニット116dに送信する。ここでは、R相、T相については、順潮流方向を正とし、また、N相については、電力供給設備116から電力系統12への方向を正とする。また、説明の便宜上、単にR相、T相、N相のいずれか(単相3線式100/200Vのいずれか一方(例えばR相とN相)または他方(例えばT相とN相)に係る単相3線式100Vそれぞれ)に挿通する例を挙げているが、正確には、図1における電力メータ112の2次側かつ配線用遮断器114cの1次側の配線に取り付けられるのが一般的である。なお、電流計118は、負荷設備14より電力系統12側であれば、いずれの位置に設置してもよい。 The ammeter 118 is composed of, for example, a current transformer (CT), and inserts (clamps) any phase wiring into each of the penetrating bodies (iron core, core) in which the primary windings are arranged, and the current value ( The effective value and its direction) are converted into measured values and transmitted to the control unit 116d. Here, the forward power flow direction is positive for the R and T phases, and the direction from the power supply facility 116 to the power system 12 is positive for the N phase. In addition, for convenience of explanation, it is simply set to any one of the R phase, the T phase, and the N phase (one of the single-phase three-wire 100/200V (for example, the R phase and the N phase) or the other (for example, the T phase and the N phase)). The single-phase three-wire type 100V) is used as an example, but more accurately, it is attached to the secondary side of the power meter 112 and the primary side of the wiring breaker 114c in FIG. It is common. The ammeter 118 may be installed at any position on the power system 12 side of the load facility 14.

詳細は後述するが、上述した電力供給設備116では、電流計118に接続し、各相に取り付けられた電流計118で計測された電流値と、電力供給設備116で計測された各相の相間電圧値と、電流、電圧の位相に基づく力率値とから受電電力を導出している。かかる受電電力により、受電電力一定制御、RPR(逆電力継電器)機能、UPR機能(不足電力継電器)を実現することが可能となる。 Although the details will be described later, in the above-described power supply equipment 116, the current value measured by the ammeter 118 connected to each phase and connected to the ammeter 118 and the interphase of each phase measured by the power supply equipment 116. The received power is derived from the voltage value and the power factor value based on the current and voltage phases. With such received power, it is possible to realize constant received power control, RPR (reverse power relay) function, and UPR function (insufficient power relay).

また、電力供給設備116は、受電電力を適切に導出すべく、自機内で各相に接続された内部負荷116aそれぞれの変動に伴う電流計118の電流値変化に基づいて、電流計118の潮流方向(極性)、相位置(取り付けられている相)、健全性(信号線の断線や電流計118の不具合等)といった設置適正を判断しているものもある(CTチェックとも言う)。例えば、電力供給設備116の動作中に、健全性が確保できなくなると、電力供給設備116の発電を停止する。 In addition, the power supply equipment 116, in order to appropriately derive the received power, based on the change in the current value of the ammeter 118 associated with the variation of each internal load 116a connected to each phase in the own machine, the flow of the current of the ammeter 118. In some cases, proper installation is judged such as direction (polarity), phase position (attached phase), soundness (breakage of signal line, malfunction of ammeter 118, etc.) (also referred to as CT check). For example, when the soundness cannot be ensured during the operation of the power supply facility 116, the power generation of the power supply facility 116 is stopped.

ところで、電力供給設備116は、単相3線式100/200Vののうち、単相3線式200Vに接続して用いるのが一般的である。この場合、配線用遮断器114cに代えて連系遮断器(200V)を設け、その連系遮断器に電力供給設備116を接続したり、また、漏電遮断器114bの1次側から別途の個別遮断器(200V)を介して電力供給設備116を接続しなければならない。 By the way, the power supply facility 116 is generally used by connecting to a single-phase three-wire system 200V of the single-phase three-wire system 100/200V. In this case, an interconnecting circuit breaker (200V) is provided in place of the circuit breaker 114c, the power supply equipment 116 is connected to the interconnecting circuit breaker, and a separate individual circuit is provided from the primary side of the earth leakage circuit breaker 114b. The power supply equipment 116 must be connected via a circuit breaker (200V).

ただし、今後は、省エネルギー機器が普及し、電力システム100の電力需要が減少すると、必ずしも単相3線式200Vへの接続を要さない、本実施形態のような、単相3線式100/200Vのうち電力線であるR相またはT相のいずれか一方と、中性線であるN相とによる単相3線式100V(R相とN相、もしくは、T相とN相)のみに接続される小出力の電力供給設備116が設置されることとなる。このように単相3線式100Vで運用できれば、図1のように、既存の分岐配線120を利用して、例えば、屋外コンセントに電力供給設備116を接続することが可能となり、電力システム100内の配線を簡素化できる。 However, in the future, when energy-saving equipment becomes widespread and the power demand of the power system 100 decreases, it is not always necessary to connect to the single-phase three-wire system 200V. Connected to only single-phase 3-wire system 100V (R phase and N phase, or T phase and N phase) consisting of either R phase or T phase which is a power line of 200V and N phase which is a neutral line The small output power supply facility 116 is installed. If the single-phase three-wire system 100V can be operated in this way, the existing branch wiring 120 can be used to connect the power supply facility 116 to an outdoor outlet, for example, as shown in FIG. Wiring can be simplified.

図2は、電力供給設備116と分岐配線120との具体的な接続態様を説明するためのブロック図である。上記のように、小出力の電力供給設備116は、電圧線(非接地側電線)の片方と接続する単相3線式100Vに接続される。例えば、電力供給設備116がR相側に接続された場合、図2(a)に示すように、電力供給設備116の電力の出力端の一方である電圧線接続点AにR相が接続され、出力端の他方である中性線接続点BにN相が接続される。この場合、電力供給設備116の連系相がR相ということになり、非連系相がT相ということになる。また、2つの電流計118(第1電流計118aおよび第2電流計118b)のうちいずれか一方が、電力供給設備116の電流の入力端である第1電流計接続点Cに接続され、他方が、第2電流計接続点Dに接続される。 FIG. 2 is a block diagram for explaining a specific connection mode between the power supply equipment 116 and the branch wiring 120. As described above, the small output power supply equipment 116 is connected to the single-phase three-wire system 100V that is connected to one of the voltage lines (electric wires on the non-grounded side). For example, when the power supply equipment 116 is connected to the R phase side, as shown in FIG. 2A, the R phase is connected to the voltage line connection point A, which is one of the power output terminals of the power supply equipment 116. The N phase is connected to the neutral line connection point B which is the other of the output ends. In this case, the interconnection phase of the power supply equipment 116 is the R phase, and the non-interconnection phase is the T phase. Further, one of the two ammeters 118 (the first ammeter 118a and the second ammeter 118b) is connected to the first ammeter connection point C, which is the current input terminal of the power supply equipment 116, and the other one. Is connected to the second ammeter connection point D.

また、電力供給設備116がT相側に接続された場合においても、図2(b)に示すように、電力供給設備116の電力の出力端の一方である電圧線接続点AにT相が接続され、出力端の他方である中性線接続点BにN相が接続される。この場合、電力供給設備116の連系相がT相ということになり、非連系相がR相ということになる。また、2つの電流計118a、118bのうちいずれか一方が、電力供給設備116の電流の入力端である第1電流計接続点Cに接続され、他方が、第2電流計接続点Dに接続される。 Even when the power supply equipment 116 is connected to the T phase side, as shown in FIG. 2B, the T phase is present at the voltage line connection point A, which is one of the power output terminals of the power supply equipment 116. The N-phase is connected to the neutral line connection point B which is the other end of the output terminal. In this case, the interconnection phase of the power supply facility 116 is the T phase, and the non-interconnection phase is the R phase. Further, one of the two ammeters 118a and 118b is connected to the first ammeter connection point C that is the current input terminal of the power supply equipment 116, and the other is connected to the second ammeter connection point D. To be done.

本実施形態では、このように、R相側、T相側のいずれの単相3線式100Vにも接続することができる。以下の実施形態では、説明の便宜上、R相を連系相とした場合、すなわち、R相とN相の単相3線式100Vに接続した場合を説明するが、その実施形態が、T相を連系相とした場合、すなわち、T相とN相の単相3線式100Vに接続した場合にも適用できるのは言うまでもない。 In this embodiment, as described above, the single-phase three-wire system 100V on either the R-phase side or the T-phase side can be connected. In the following embodiments, for convenience of description, the case where the R phase is an interconnected phase, that is, the case where the R phase and the N phase are connected to a single-phase three-wire system 100V will be described. It is needless to say that the present invention can be applied to the case where is an interconnected phase, that is, the case where it is connected to a single-phase three-wire system 100V of T phase and N phase.

(第1の実施形態:電流計の設置適正判断)
上述したように、小出力の電力供給設備116は、R相またはT相のいずれか一方とN相に接続されるため、負荷を変動させようとしても、R相またはT相のいずれか一方に接続された内部負荷116aしか変動させることができない。したがって、その設置適正判断において以下の問題が生じる。
(First embodiment: determination of appropriateness of installation of ammeter)
As described above, since the small output power supply equipment 116 is connected to either the R phase or the T phase and the N phase, even if an attempt is made to vary the load, the R output or the T phase is connected to either the R phase or the T phase. Only the connected internal load 116a can be changed. Therefore, the following problems arise in the determination of the installation suitability.

図3は、電流計の設置適正判断の課題を説明するための説明図である。仮に、図3(a)のように、単相3線式200Vに電力供給設備16を接続したとする。ここでは、電力供給設備16の電力の出力端のうち、電圧線接続点AにR相が接続され、電圧線接続点AAにT相が接続され、中性線接続点BにN相が接続される。そして、連系相に取り付けられた2つの電流計118a、118bのいずれか一方が電力供給設備16の電流の入力端である第1電流計接続点Cに接続され、他方が、第2電流計接続点Dに接続される。 FIG. 3 is an explanatory diagram for explaining the problem of determining whether the ammeter is installed properly. It is assumed that the power supply facility 16 is connected to the single-phase three-wire type 200V as shown in FIG. Here, the R phase is connected to the voltage line connection point A, the T phase is connected to the voltage line connection point AA, and the N phase is connected to the neutral line connection point B among the output ends of the power of the power supply equipment 16. To be done. Then, one of the two ammeters 118a and 118b attached to the interconnection phase is connected to the first ammeter connection point C that is the current input terminal of the power supply equipment 16, and the other is the second ammeter. It is connected to the connection point D.

ここでは、電圧線の被覆が赤色または黒色であり、中性線が白色であることに基づいて、中性線接続点Bに中性線(N相)を接続することができ、電圧線接続点A、AAを電圧線(R相またはT相)に接続することはできるが、電圧線接続点Aと電圧線接続点AAのいずれがR相に接続され、いずれがT相に接続されたかは、屋内と屋外とでは距離が離れているので目視では確認できない。 Here, the neutral wire (N phase) can be connected to the neutral wire connection point B based on that the coating of the voltage wire is red or black and the neutral wire is white, and the voltage wire connection It is possible to connect the points A and AA to the voltage line (R phase or T phase), but which of the voltage line connection point A and the voltage line connection point AA is connected to the R phase and which is connected to the T phase? Cannot be visually confirmed because the distance between indoors and outdoors is large.

また、電圧線の被覆が赤色または黒色であることに基づいて、2つの電流計118a、118bをいずれも電圧線(R相またはT相)に取り付けることはできるが、電流計118aと電流計118bのいずれがR相に取り付けられ、いずれがT相に取り付けられているかは、距離の制約上、目視では確認できない。また、電流計118と電力供給設備16との距離が長いので、2つの電流計118a、118bのいずれが第1電流計接続点Cに接続され、いずれが第2電流計接続点Dに接続されているかも目視では確認できない。すなわち、第1電流計接続点C、Dのいずれが中性線接続点B(N相)に接続され、いずれが、電圧線接続点A、AA(R相またはT相)のどちらかに接続されているか確認できない。 Further, both of the two ammeters 118a and 118b can be attached to the voltage line (R phase or T phase) based on the coating of the voltage line being red or black, but the ammeter 118a and the ammeter 118b Which of the two is attached to the R phase and which is attached to the T phase cannot be visually confirmed due to the distance limitation. Further, since the distance between the ammeter 118 and the power supply equipment 16 is long, which of the two ammeters 118a and 118b is connected to the first ammeter connection point C and which is connected to the second ammeter connection point D. It cannot be visually confirmed if it is present. That is, either of the first ammeter connection points C and D is connected to the neutral line connection point B (N phase), and which is connected to either of the voltage line connection points A and AA (R phase or T phase). I can't confirm if it is done.

しかし、電力供給設備16においては、電圧線接続点A、AAがいずれの電圧線に接続されているかの情報は必ずしも必要ではなく、電圧線接続点A、AAと電流計接続点C、Dとを対応付けさえできれば、すなわち、相位置の相関さえ把握できれば、受電電力を導出できる。 However, in the power supply facility 16, the voltage line connection points A and AA do not necessarily require information on which voltage line is connected, and the voltage line connection points A and AA and the ammeter connection points C and D are not necessary. The received power can be derived as long as they can be associated with each other, that is, if the correlation between the phase positions can be grasped.

そこで、単相3線式200Vに接続した電力供給設備16では、まず、電圧線接続点Aに接続されている内部負荷16aを変動させる。ここでは、内部負荷16aの変動によりR相の電流値Iが変動したとする。そして、その電流値Iの変動に応じて、第1電流計接続点Cに入力される電流値Iと、第2電流計接続点Dに入力される電流値Iとのいずれが変動するか判定する。そして、変動した電流計接続点(ここでは、第1電流計接続点C)と電圧線接続点Aとを対応付ける。 Therefore, in the power supply facility 16 connected to the single-phase three-wire system 200V, first, the internal load 16a connected to the voltage line connection point A is changed. Here, it is assumed that the current value I R of the R phase fluctuates due to the fluctuation of the internal load 16a. Then, depending on the change in the current value I R , either the current value I 1 input to the first ammeter connection point C or the current value I 2 input to the second ammeter connection point D changes. Determine whether to do. Then, the changed ammeter connection point (here, the first ammeter connection point C) and the voltage line connection point A are associated with each other.

続いて、電圧線接続点AAに接続されている内部負荷16bを変動させる。ここでは、内部負荷16bの変動によりT相の電流値Iが変動したとする。そして、その電流値Iの変動に応じて、第1電流計接続点Cに入力される電流値Iと、第2電流計接続点Dに入力される電流値Iとのいずれが変動するかを判定する。そして、変動した電流計接続点(ここでは、第2電流計接続点D)と電圧線接続点AAとを対応付ける。 Then, the internal load 16b connected to the voltage line connection point AA is changed. Here, the current value I T T-phase by variation of the internal load 16b is varied. Then, in accordance with a variation in the current value I T, and the current value I 1 which is input to the first ammeter connection point C, any variation between the current value I 2 is input to the second ammeter connection point D Determine whether to do. Then, the changed ammeter connection point (here, the second ammeter connection point D) is associated with the voltage line connection point AA.

このように、単相3線式200Vに接続した電力供給設備16では、2つの内部負荷16a、16bを通じて、電圧線接続点A、AAと電流計接続点C、Dとを容易に対応付けることができ、設置適正のうち、相位置や健全性を判断することが可能となる。また、対応付けが確定すれば、2つの電流計118a、118bの設置適正の他のパラメータ(潮流方向)も適切に判断することができる。 As described above, in the power supply facility 16 connected to the single-phase three-wire type 200V, the voltage line connection points A and AA and the ammeter connection points C and D can be easily associated with each other through the two internal loads 16a and 16b. Therefore, it is possible to judge the phase position and soundness of the proper installation. Further, if the association is determined, it is possible to appropriately determine other parameters (direction of power flow) that are appropriate for installation of the two ammeters 118a and 118b.

しかし、小出力の電力供給設備116は、図3(b)のように、R相またはT相のいずれか一方とN相に接続されるため、R相またはT相のいずれか一方に接続された1つの内部負荷116aしか変動させることができない。したがって、単相3線式200Vに接続した電力供給設備16と同手順で判断すると、2つの電流計118a、118bのいずれもが追従して変動してしまい、2つの電流計接続点(第1電流計接続点C、第2電流計接続点D)のいずれが電圧線接続点(連系相または中性線)に対応しているか判断することができない。そこで、本実施形態は、その手順を改良し、電圧線接続点(連系相または中性線)と電流計接続点とを適切に対応付け、単相3線式100Vにのみ接続される電力供給設備116であっても、電流計の設置適正を判断することを目的とする。 However, the small output power supply equipment 116 is connected to either the R phase or the T phase and the N phase as shown in FIG. 3B, and thus is connected to either the R phase or the T phase. Only one internal load 116a can be changed. Therefore, when judging in the same procedure as the power supply equipment 16 connected to the single-phase three-wire type 200V, both of the two ammeters 118a and 118b follow and fluctuate, and the two ammeter connection points (first It is not possible to determine which of the ammeter connection point C and the second ammeter connection point D) corresponds to the voltage line connection point (interconnection phase or neutral line). Therefore, in the present embodiment, the procedure is improved so that the voltage line connection point (interconnection phase or neutral line) and the ammeter connection point are appropriately associated with each other, and the electric power is connected only to the single-phase three-wire system 100V. Even in the supply facility 116, the purpose is to determine the appropriateness of installation of the ammeter.

図4は、電流計118の設置方法(電流計設置方法)の流れを示したフローチャートであり、図5は、電圧線接続点(連系相または中性線)と電流計接続点との対応付けを説明するための説明図である。図4に示す設置方法では、電流計と各相(連系相、非連系相、中性線)とを対応付けることで、設置適正のうち、相位置および健全性について判断することができる。 FIG. 4 is a flowchart showing the flow of the installation method of the ammeter 118 (ammeter installation method), and FIG. 5 shows the correspondence between the voltage line connection point (interconnection phase or neutral line) and the ammeter connection point. It is an explanatory view for explaining attachment. In the installation method shown in FIG. 4, the phase position and soundness of the installation suitability can be determined by associating the ammeter with each phase (interconnected phase, non-connected phase, neutral line).

(ステップS10)
まず、図5(a)のように、電力供給設備116の電圧線接続点Aを電圧線(R相またはT相)のいずれか(ここではR相)に接続する。そして、電力供給設備116の中性線接続点Bを中性線(N相)に接続する。
(Step S10)
First, as shown in FIG. 5A, the voltage line connection point A of the power supply equipment 116 is connected to one of the voltage lines (R phase or T phase) (here, R phase). Then, the neutral wire connection point B of the power supply facility 116 is connected to the neutral wire (N phase).

(ステップS11)
続いて、図5(b)に示すように、電流計118のうち一方の第1電流計118aを、電圧線(R相またはT相)のいずれか一方に取り付ける。また、第1電流計118aの配線を、電力供給設備116の電流計接続点のいずれか一方(ここでは第1電流計接続点C)に接続する。このとき、まだ第2電流計118bは電力供給設備116に接続しない。
(Step S11)
Subsequently, as shown in FIG. 5B, one first ammeter 118a of the ammeter 118 is attached to either one of the voltage lines (R phase or T phase). In addition, the wiring of the first ammeter 118a is connected to one of the ammeter connection points of the power supply facility 116 (here, the first ammeter connection point C). At this time, the second ammeter 118b is not yet connected to the power supply equipment 116.

(ステップS12)
次に、負荷制御部140は、単相3線式100Vに接続された内部負荷116aを変動させ、計測値取得部142は、第1電流計接続点Cを通じた電流値、すなわち、第1電流計118aで計測された電流値を取得する。そして、適正判断部144は、内部負荷116aの変動に応じ、想定される所定の範囲内で電流値が追従して変動するか否かによって、第1電流計118a(第1電流計接続点C)に連系相(電圧線接続点A)または非連系相を対応付ける。具体的に、電流値が変動すれば、第1電流計118aに連系相を対応付け、電流値が変動しなければ、第1電流計118aに非連系相を対応付ける。
(Step S12)
Next, the load control unit 140 changes the internal load 116a connected to the single-phase three-wire system 100V, and the measurement value acquisition unit 142 causes the measurement value acquisition unit 142 to measure the current value through the first ammeter connection point C, that is, the first current. The current value measured by the total 118a is acquired. Then, the adequacy determining unit 144 determines whether or not the current value follows and fluctuates within an assumed predetermined range according to the fluctuation of the internal load 116a, and determines whether the first ammeter 118a (the first ammeter connection point C). ) To the connected phase (voltage line connection point A) or the non-connected phase. Specifically, if the current value changes, the first ammeter 118a is associated with the interconnected phase, and if the current value does not change, the first ammeter 118a is associated with the non-connected phase.

(ステップS13)
続いて、図5(c)に示すように、第1電流計118aの接続を解除することなく、他方の第2電流計118bを、中性線(N相)に取り付ける。また、第2電流計118bの配線を、電力供給設備116の電流計接続点の他方(ここでは第2電流計接続点D)に接続する。
(Step S13)
Subsequently, as shown in FIG. 5C, the other second ammeter 118b is attached to the neutral wire (N-phase) without disconnecting the connection of the first ammeter 118a. Further, the wiring of the second ammeter 118b is connected to the other of the ammeter connection points of the power supply equipment 116 (here, the second ammeter connection point D).

(ステップS14)
次に、適正判断部144は、第2電流計118b(第2電流計接続点D)に中性線(中性線接続点B)を対応付ける。
(Step S14)
Next, the appropriateness determination unit 144 associates the neutral line (neutral line connection point B) with the second ammeter 118b (second ammeter connection point D).

(ステップS15)
続いて、適正判断部144によって、第1電流計118aに非連系相が対応付けられたか否か判定する。その結果、非連系相が対応付けられていなければ、すなわち、第1電流計118aに連系相が対応付けられていれば、当該電流計設置方法を終了し、非連系相が対応付けられていれば、ステップS16に処理を移す。
(Step S15)
Subsequently, the appropriateness determining unit 144 determines whether or not the non-interconnection phase is associated with the first ammeter 118a. As a result, if the non-connected phase is not associated, that is, if the first ammeter 118a is associated with the connected phase, the ammeter installation method is terminated and the non-connected phase is associated. If so, the process proceeds to step S16.

(ステップS16)
上記ステップS15において、第1電流計118aに非連系相が対応付けられたと判定すると、第1電流計118aに連系相を対応付けるための処理を行い、当該電流計設置方法を終了する。例えば、一方の電圧線に取り付けられている第1電流計118aを、他方の電圧線に付け替える。こうして、適正判断部144は、第1電流計118a(第1電流計接続点C)と連系相(電圧線接続点A)とを対応付けることができる。
(Step S16)
When it is determined in step S15 that the non-interconnection phase is associated with the first ammeter 118a, a process for associating the interconnection phase with the first ammeter 118a is performed, and the ammeter installation method ends. For example, the first ammeter 118a attached to one voltage line is replaced with the other voltage line. In this way, the appropriateness determination unit 144 can associate the first ammeter 118a (first ammeter connection point C) with the interconnection phase (voltage line connection point A).

また、このように、第1電流計118aを付け替えなくとも、第1電流計118aが非連系相に取り付けられていることを認識させて、第1電流計118aの電流値Iおよび第2電流計118bの電流値Iから連系相の電流値を導出することもできる。 Further, as described above, even if the first ammeter 118a is not replaced, it is recognized that the first ammeter 118a is attached to the non-interconnection phase, and the current value I 1 of the first ammeter 118a and the second ammeter 118a It is also possible to derive the current value of the interconnection phase from the current value I 2 of the ammeter 118b.

例えば、単相3線式100/200Vでは、N相の電流値Iの方向を、電流値IがN相を流れる方向とした場合、N相の電流値I=R相の電流値I−T相の電流値Iが成り立つ。したがって、仮に、第1電流計118aが非連系相(T相)に取り付けられていた場合、連系相(R相)の電流値Iは、N相の電流値I+T相の電流値I、すなわち、第2電流計118bの電流値Iに第1電流計118aの電流値Iを加算することで導出できることとなる。なお、ここでは、説明の便宜上、単に、電流値の方向として説明しているが、電流は本来交流であり、かかる電流値の方向は、実際は、その電流値による電力の潮流方向を示す。以下の計算においても、単に、電流値の方向として説明するが、実際は、その電流値による電力の潮流方向を示しているのは言うまでもない。 For example, the single-phase three-wire 100 / 200V, the direction of the current value I N N-phase, the current value if the I R is the direction of flow of the N-phase, current I N = R phase current value of the N-phase current I T of the I R -T phase is established. Therefore, if the first ammeter 118a is attached to the non-interconnection phase (T phase), the current value I R of the interconnection phase (R phase) is the current value of the N phase I N +T phase current. the value I T, i.e., the ability to derive by adding the current value I 1 of the first ammeter 118a to a current value I 2 of the second ammeter 118b. Note that, here, for convenience of description, the direction of the current value is simply described, but the current is originally an alternating current, and the direction of the current value actually indicates a power flow direction according to the current value. In the following calculation, the direction of the current value will be simply described, but it goes without saying that the power flow direction according to the current value is actually shown.

かかる構成により、単相3線式100Vにのみ接続される電力供給設備116であっても、2つの電流計118a、118bのいずれが連系相や中性線に対応しているか(相位置)を適切に判断することができる。また、対応付けが確定すれば、2つの電流計118a、118bの他の設置適正(潮流方向、健全性)を適切に判断することが可能となる。 With this configuration, which of the two ammeters 118a and 118b corresponds to the interconnection phase or the neutral line even in the power supply facility 116 connected only to the single-phase three-wire system 100V (phase position) Can be appropriately judged. Further, if the association is determined, it is possible to appropriately determine the other installation suitability (the power flow direction and the soundness) of the two ammeters 118a and 118b.

なお、2つの電流計118a、118bの設置適正の判断は、2つの電流計118a、118bの連系相等への対応付けが完了してから実行してもよいし、段階的に、すなわち、第1電流計118aと連系相とが対応付けられた後に第1電流計118aの設置適正を判断し、第2電流計118bと中性線とが対応付けられた後に第2電流計118bの設置適正を判断してもよい。 It should be noted that the determination as to whether or not the two ammeters 118a and 118b are properly installed may be performed after the association of the two ammeters 118a and 118b with the interconnection phase or the like is completed, or stepwise, that is, the first Installation of the first ammeter 118a is determined after the first ammeter 118a is associated with the interconnection phase, and the second ammeter 118b is installed after the second ammeter 118b is associated with the neutral line. You may judge the suitability.

また、上記の電流計設置方法では、ステップS11において、第1電流計118aを、電圧線(R相またはT相)のいずれか一方に無作為に取り付ける例を挙げて説明している。したがって、常に、50%の確率で、第1電流計118aと非連系相とが対応付けられてしまう。そこで、第1電流計118aを取り付ける前に、コンセントチェッカ等により、その電圧線と、電力供給設備116の電圧線接続点Aとが導通しているか否か判定し、導通している電圧線に第1電流計118aを取り付けるとしてもよい。かかる構成により、ステップS12において、第1電流計118aと連系相とを確実に対応付けることが可能となる。 Further, in the above-described ammeter installation method, the first ammeter 118a is randomly attached to either one of the voltage lines (R phase or T phase) in step S11. Therefore, the first ammeter 118a is always associated with the non-interconnection phase with a probability of 50%. Therefore, before attaching the first ammeter 118a, it is determined by an outlet checker or the like whether or not the voltage line is connected to the voltage line connection point A of the power supply equipment 116, and the connected voltage line is determined. The first ammeter 118a may be attached. With this configuration, in step S12, the first ammeter 118a and the interconnection phase can be reliably associated with each other.

(第2の実施形態:電流計の設置適正判断)
上述したように、小出力の電力供給設備116では、R相またはT相のいずれか一方とN相に接続されるため、R相またはT相のいずれか一方に接続された内部負荷116aしか変動させることができない。そこで、第1の実施形態では、2つの電流計118a、118bの設置順を工夫して、いずれが連系相や中性線に対応しているかを判断した。第2の実施形態では、2つの電流計118a、118bをいずれも接続した状態で、連系相や中性線との対応のみならず、その設置適正も自動的に判断することを目的としている。
(Second embodiment: determination of proper installation of ammeter)
As described above, in the low-output power supply equipment 116, since either the R phase or the T phase and the N phase are connected, only the internal load 116a connected to either the R phase or the T phase changes. I can't let you do it. Therefore, in the first embodiment, the installation order of the two ammeters 118a and 118b is devised to determine which corresponds to the interconnection phase or the neutral line. The second embodiment is intended to automatically determine not only the compatibility with the interconnection phase and the neutral line but also the installation suitability of the two ammeters 118a and 118b in a connected state. ..

図6は、電流計118の適正判断(適正判断方法)の流れを示したフローチャートであり、図7は、電圧線接続点(連系相または中性線)と電流計接続点との対応付けを説明するための説明図である。図6に示す適正判断方法では、設置適正のうち、相位置および健全性について判断する。 FIG. 6 is a flowchart showing the flow of the appropriate determination (appropriate determination method) of the ammeter 118, and FIG. 7 shows the correspondence between the voltage line connection point (interconnection phase or neutral line) and the ammeter connection point. It is an explanatory view for explaining. In the adequacy determination method shown in FIG. 6, among the installation adequacy, the phase position and soundness are determined.

(ステップS20)
まず、図7のように、電力供給設備116の電圧線接続点Aを電圧線(R相またはT相)のいずれか(ここでは、R相)に接続するとともに、電力供給設備116の中性線接続点Bを中性線(N相)に接続する。
(Step S20)
First, as shown in FIG. 7, the voltage line connection point A of the power supply facility 116 is connected to one of the voltage lines (R phase or T phase) (here, R phase), and the power supply facility 116 is neutralized. The line connection point B is connected to the neutral line (N phase).

続いて、電流計118のうち一方の第1電流計118aを、電圧線(R相またはT相)のいずれか一方(ここでは、R相)に取り付けるとともに、第1電流計118aの配線を、電力供給設備116の電流計接続点のいずれか一方(ここでは第1電流計接続点C)に接続する。また、電流計118のうち他方の第2電流計118bを、中性線(N相)に取り付けるとともに、第2電流計118bの配線を、電力供給設備116の電流計接続点の他方(ここでは第2電流計接続点D)に接続する。 Subsequently, one of the ammeters 118, the first ammeter 118a, is attached to one of the voltage lines (R phase or T phase) (here, the R phase), and the wiring of the first ammeter 118a is The power supply equipment 116 is connected to one of the ammeter connection points (here, the first ammeter connection point C). Further, the other second ammeter 118b of the ammeter 118 is attached to the neutral wire (N phase), and the wiring of the second ammeter 118b is connected to the other of the ammeter connection points of the power supply equipment 116 (here, Connect to the second ammeter connection point D).

(ステップS21)
次に、計測値取得部142は、第1電流計接続点Cを通じた電流値、すなわち、第1電流計118aで計測された電流値I、および、第2電流計接続点Dを通じた電流値、すなわち、第2電流計118bで計測された電流値Iを取得する。そして、かかる電流値I、Iを内部負荷116a変動前の電流値I1o、I2oとして保持しておく。
(Step S21)
Next, the measurement value acquisition unit 142 determines the current value through the first ammeter connection point C, that is, the current value I 1 measured by the first ammeter 118a and the current through the second ammeter connection point D. The value, that is, the current value I 2 measured by the second ammeter 118b is acquired. Then, the current values I 1 and I 2 are held as the current values I 1o and I 2o before the change of the internal load 116a.

(ステップS22)
続いて、負荷制御部140は、電力供給設備116内において単相3線式100Vに接続された内部負荷116aを変動(例えば増加)させる。
(Step S22)
Subsequently, the load control unit 140 changes (for example, increases) the internal load 116a connected to the single-phase three-wire system 100V in the power supply equipment 116.

(ステップS23)
次に、計測値取得部142は、第1電流計接続点Cを通じた電流値、すなわち、第1電流計118aで計測された電流値I、および、第2電流計接続点Dを通じた電流値、すなわち、第2電流計118bで計測された電流値Iを取得する。
(Step S23)
Next, the measurement value acquisition unit 142 determines the current value through the first ammeter connection point C, that is, the current value I 1 measured by the first ammeter 118a and the current through the second ammeter connection point D. The value, that is, the current value I 2 measured by the second ammeter 118b is acquired.

(ステップS24)
続いて、計測値取得部142は、取得した電流値I、Iの絶対値(実効値)から、ステップS21において保持した電流値I1o、I2oの絶対値(実効値)をそれぞれ減算し、電流値I、Iの絶対値の変動分を示す電流差分Δ|I|、Δ|I|を導出する(Δ|I|=|I|−|I1o|、Δ|I|=|I|−|I2o|)。以下、第1電流計118aで計測された電流値I、電流差分Δ|I|、第2電流計118bで計測された電流値I、および、電流差分Δ|I|に基づいて適正判断を行う。なお、以下の説明において、電流値I、電流差分Δ|I|、電流値I、電流差分Δ|I|がそれぞれ等しいか否か判定する場合、理論的に等しいか否かのみに言及しており、電流計118の計測誤差やノイズといった他の要素は除外して考えるものとする。したがって、例えば、電流差分Δ|I|と電流差分Δ|I|とを比較する場合に、理論的に電流差分Δ|I|=電流差分Δ|I|となるのは、実際には、|(電流差分Δ|I|−電流差分Δ|I|)|<誤差分となる。
(Step S24)
Subsequently, the measurement value acquisition unit 142 subtracts the absolute values (effective values) of the current values I 1o and I 2o held in step S21 from the acquired absolute values (effective values) of the current values I 1 and I 2 , respectively. Then, the current differences Δ|I 1 | and Δ|I 2 | showing the variation of the absolute values of the current values I 1 and I 2 are derived (Δ|I 1 |=|I 1 |−|I 1o |, Δ|I 2 |=|I 2 |−|I 2o |). Hereinafter, based on the current value I 1 measured by the first ammeter 118a, the current difference Δ|I 1 |, the current value I 2 measured by the second ammeter 118b, and the current difference Δ|I 2 | Make an appropriate decision. In the following description, when it is determined whether or not the current value I 1 , the current difference Δ|I 1 |, the current value I 2 , and the current difference Δ|I 2 | are equal, only whether or not they are theoretically equal. , And other factors such as measurement error and noise of the ammeter 118 are excluded. Therefore, for example, when comparing the current difference Δ|I 1 | and the current difference Δ|I 2 |, the theoretical current difference Δ|I 1 |=the current difference Δ|I 2 | , |(current difference Δ|I 1 |−current difference Δ|I 2 |)|< error.

(ステップS25)
次に、適正判断部144は、電流差分Δ|I|、Δ|I|がいずれも0以外であるか否か、すなわち、内部負荷116aの変動に応じ、電流差分Δ|I|、Δ|I|がそれぞれ変化したか否か判定する。その結果、いずれも0以外であれば、ステップS27に処理を移し、いずれかが0であれば、ステップS26に処理を移す。
(Step S25)
Next, the adequacy determining unit 144 determines whether or not the current differences Δ|I 1 | and Δ|I 2 | are other than 0, that is, the current difference Δ|I 1 | according to the fluctuation of the internal load 116 a. , Δ|I 2 | are respectively changed. As a result, if neither is 0, the process proceeds to step S27, and if either is 0, the process proceeds to step S26.

(ステップS26)
上記ステップS25において、電流差分Δ|I|、Δ|I|のいずれかが0であると判定されれば、適正判断部144は、電流差分が0である電流計118が内部負荷116aの変動に応じていない、すなわち、第1電流計118aが連系相ではなく非連系相に取り付けられている(非連系相設置エラー)と判断し、当該適正判断方法を終了する。ここで、非連系相に取り付けられていると判断された電流計118は、上述したように、他方の電圧線に付け替えたり、第1電流計118aの電流値Iおよび第2電流計118bの電流値Iから連系相の電流値を導出して、適用することができる。
(Step S26)
If it is determined in step S25 that one of the current differences Δ|I 1 | and Δ|I 2 | is 0, the appropriateness determining unit 144 determines that the ammeter 118 having a current difference of 0 determines that the internal load 116a. It is determined that the first ammeter 118a is not attached to the interconnection phase but to the non-interconnection phase (disconnection phase installation error), and the appropriate determination method ends. Here, as described above, the ammeter 118 determined to be attached to the non-interconnection phase is replaced with the other voltage line, or the current value I 1 of the first ammeter 118a and the second ammeter 118b is changed. The current value of the interconnection phase can be derived from the current value I 2 of the above and applied.

(ステップS27)
上記ステップS25において、電流差分Δ|I|、Δ|I|がいずれも0以外であると判定されれば、適正判断部144は、電流差分Δ|I|と電流差分Δ|I|とが等しいか否か(実際には、|(電流差分Δ|I|−電流差分Δ|I|)|<誤差分か否か)判定する。かかる判定では、R相とT相のいずれの負荷が大きいか判定される。以下、その判定根拠を詳述する。
(Step S27)
If it is determined in step S25 that the current differences Δ|I 1 | and Δ|I 2 | are both other than 0, the appropriateness determining unit 144 determines that the current difference Δ|I 1 | and the current difference Δ|I. 2 | is equal to or not (actually, |(current difference Δ|I 1 |−current difference Δ|I 2 |)|<error amount). In this determination, it is determined which of the R phase load and the T phase load is larger. Hereinafter, the basis for the determination will be described in detail.

図8は、負荷の大きさによる潮流方向と電流値を説明するための説明図である。例えば、図8(a)のように、R相の負荷がT相の負荷より相対的に大きい場合、電流値Iと電流値Iとは、図8(a)中白抜き矢印で示したように、いずれも正の値となる。そうすると、内部負荷116aを増加した場合、電流値Iおよび電流値Iのいずれも、正の値から、絶対値がより大きい正の値に変化する。例えば、内部負荷116aの増加に応じて、電流値Iが5Aから7Aに2A増加すると、電流値Iは1Aから3Aに2A増加する。ここでは、電流値Iおよび電流値Iの増加前後の値が全て正の値なので、電流値Iおよび電流値Iの絶対値の増加は、電流値Iおよび電流値Iの値の増加と等しく2Aとなる。したがって、内部負荷116aの変動による電流差分Δ|I|と電流差分Δ|I|とは等しくなる。 FIG. 8 is an explanatory diagram for explaining the power flow direction and the current value depending on the magnitude of the load. For example, when the R-phase load is relatively larger than the T-phase load as shown in FIG. 8A, the current value I 1 and the current value I 2 are indicated by white arrows in FIG. 8A. As described above, both are positive values. Then, when the internal load 116a is increased, both the current value I 1 and the current value I 2 change from a positive value to a positive value having a larger absolute value. For example, when the current value I 1 increases from 5A to 7A by 2A according to the increase of the internal load 116a, the current value I 2 increases from 1A to 3A by 2A. Here, since all the values before and after the increase in the current value I 1 and the current value I 2 positive value, the current value I 1 and the current value I 2 increase in absolute value, the current value I 1 and the current value I 2 It becomes 2A, which is equal to the increase in the value. Therefore, the current difference Δ|I 1 | and the current difference Δ|I 2 | due to the fluctuation of the internal load 116a become equal.

一方、図8(b)のように、R相の負荷がT相の負荷より相対的に小さい場合、図8(b)中白抜き矢印で示したように、電流値Iが正の値を示すのに対し、電流値Iは負の値を示す。そうすると、内部負荷116aを増加した場合、電流値Iは正の値から、絶対値がより大きい正の値に変化する一方で、電流値Iは負の値から、絶対値がより小さい負の値に変化するか、または、負の値から正の値に変化する。したがって、電流値の増加量は等しいものの、電流値の絶対値の増加量は等しくならない。 On the other hand, when the R-phase load is relatively smaller than the T-phase load as shown in FIG. 8B, the current value I 1 is a positive value as indicated by the white arrow in FIG. 8B. While the current value I 2 shows a negative value. Then, when the internal load 116a is increased, the current value I 1 changes from a positive value to a positive value with a larger absolute value, while the current value I 2 changes from a negative value to a negative value with a smaller absolute value. Value, or from a negative value to a positive value. Therefore, although the amount of increase in current value is equal, the amount of increase in absolute value of current value is not equal.

例えば、内部負荷116aの増加に応じて、電流値Iが5Aから7Aに2A増加すると、電流値Iは−3Aから−1Aに2A増加する。しかし、その絶対値に関しては、電流値Iの絶対値が5Aから7Aに2A増加するのに対し、電流値Iの絶対値は3Aから1Aに2A減少する。また、内部負荷116aの増加に応じて電流値Iが5Aから7Aに2A増加すると、電流値Iは−0.5Aから1.5Aに2A増加する。しかし、その絶対値に関しては、電流値Iの絶対値が5Aから7Aに2A増加するのに対し、電流値Iの絶対値は0.5Aから1.5Aに1A増加するに留まる。したがって、内部負荷116aの変動による電流差分Δ|I|と電流差分Δ|I|とは等しくならない。 For example, when the current value I 1 increases 2A from 5A to 7A according to the increase of the internal load 116a, the current value I 2 increases 2A from -3A to -1A. However, regarding the absolute value, the absolute value of the current value I 1 increases by 2 A from 5 A to 7 A, while the absolute value of the current value I 2 decreases by 2 A from 3 A to 1 A. Further, when the current value I 1 increases by 2 A from 5 A to 7 A according to the increase of the internal load 116 a, the current value I 2 increases by 2 A from −0.5 A to 1.5 A. However, regarding the absolute value, the absolute value of the current value I 1 is increased by 2 A from 5 A to 7 A, whereas the absolute value of the current value I 2 is increased by 1 A from 0.5 A to 1.5 A. Therefore, the current difference Δ|I 1 | and the current difference Δ|I 2 | due to the fluctuation of the internal load 116a are not equal.

そうすると、電流差分Δ|I|と電流差分Δ|I|とが等しい場合、R相の負荷がT相の負荷より相対的に大きく、電流差分Δ|I|と電流差分Δ|I|とが等しくない場合、R相の負荷がT相の負荷より相対的に小さいこととなる。 Then, when the current difference Δ|I 1 | and the current difference Δ|I 2 | are equal, the R-phase load is relatively larger than the T-phase load, and the current difference Δ|I 1 | and the current difference Δ|I If 2 | is not equal, the R-phase load is relatively smaller than the T-phase load.

したがって、ステップS27において、電流差分Δ|I|と電流差分Δ|I|とが等しければ、適正判断部144は、ステップS28に処理を移し、電流差分Δ|I|と電流差分Δ|I|とが等しくなければ、適正判断部144は、ステップS33に処理を移す。 Therefore, in step S27, if the current difference Δ|I 1 | and the current difference Δ|I 2 | are equal, the appropriateness determining unit 144 shifts the processing to step S28, and the current difference Δ|I 1 | and the current difference Δ. If |I 2 | is not equal, the appropriateness determining unit 144 moves the process to step S33.

(ステップS28)
上記ステップS27において、電流差分Δ|I|と電流差分Δ|I|とが等しいと判定されれば、適正判断部144は、ステップS23において取得した電流値Iと電流値Iとを比較する。これは以下の理由による。
(Step S28)
If it is determined in step S27 that the current difference Δ|I 1 | and the current difference Δ|I 2 | are equal, the appropriateness determining unit 144 determines that the current value I 1 and the current value I 2 acquired in step S23 are equal to each other. To compare. This is for the following reason.

すなわち、図8(a)に示したように、R相の負荷がT相の負荷より相対的に大きい場合、N相の電流値Iは、R相の電流値I−T相の電流値Iとなり、T相の電流値Iが0でない限り、R相の電流値Iよりその絶対値が小さくなる。したがって、R相の負荷がT相の負荷より相対的に大きい場合、電流の絶対値が相対的に大きい方がR相の電流値Iとなり、電流の絶対値が相対的に小さい方がN相の電流値Iとなる。 That is, as shown in FIG. 8A, when the R-phase load is relatively larger than the T-phase load, the N-phase current value IN is equal to the R -phase current value IR-T-phase current. unless next value I T, the current value I T T-phase non-zero, the absolute value than the current value I R of R-phase is reduced. Therefore, when the load of the R phase is relatively larger than the load of the T phase, the one with a relatively large absolute value of the current becomes the current value I R of the R phase, and the one with a relatively small absolute value of the current is N. a current value I N phases.

したがって、ステップS28において、電流値Iの絶対値が電流値Iの絶対値よりも大きければ、適正判断部144は、ステップS29に処理を移し、電流値Iの絶対値が電流値Iの絶対値以下であれば、ステップS30に処理を移す。 Therefore, in step S28, if the absolute value of the current value I 1 is larger than the absolute value of the current value I 2 , the appropriateness determining unit 144 shifts the processing to step S29, and the absolute value of the current value I 1 is the current value I 1. If it is less than or equal to the absolute value of 2 , the process proceeds to step S30.

(ステップS29)
上記ステップS28において、電流値Iの絶対値が電流値Iの絶対値よりも大きいと判定されれば、適正判断部144は、第1電流計118a(第1電流計接続点C)に連系相(電圧線接続点A)を対応付けるとともに、第2電流計118b(第2電流計接続点D)に中性線(中性線接続点B)を対応付け、当該適正判断方法を終了する。
(Step S29)
When it is determined in step S28 that the absolute value of the current value I 1 is larger than the absolute value of the current value I 2 , the appropriateness determination unit 144 determines that the first ammeter 118a (the first ammeter connection point C) is selected. The interconnection phase (voltage line connection point A) is associated, and the neutral line (neutral line connection point B) is associated with the second ammeter 118b (second ammeter connection point D), and the appropriateness determination method ends. To do.

(ステップS30)
上記ステップS28において、電流値Iの絶対値が電流値Iの絶対値以下であると判定されれば、適正判断部144は、電流値Iの絶対値が電流値Iの絶対値よりも小さいか否か判定する。その結果、電流値Iの絶対値が電流値Iの絶対値よりも小さければ、適正判断部144は、ステップS31に処理を移し、電流値Iの絶対値が電流値Iの絶対値より小さくない、すなわち、電流値Iの絶対値と電流値Iの絶対値とが等しい場合、適正判断部144は、ステップS32に処理を移す。
(Step S30)
If it is determined in step S28 that the absolute value of the current value I 1 is less than or equal to the absolute value of the current value I 2 , the appropriateness determining unit 144 determines that the absolute value of the current value I 1 is the absolute value of the current value I 2 . Is smaller than. As a result, if the absolute value of the current value I 1 is smaller than the absolute value of the current value I 2 , the appropriateness determining unit 144 shifts the processing to step S31, and the absolute value of the current value I 1 is the absolute value of the current value I 2 . If it is not smaller than the value, that is, if the absolute value of the current value I 1 and the absolute value of the current value I 2 are equal, the appropriateness determination unit 144 moves the process to step S32.

(ステップS31)
上記ステップS30において、電流値Iの絶対値が電流値Iの絶対値よりも小さいと判定されれば、適正判断部144は、第2電流計118b(第2電流計接続点D)に連系相(電圧線接続点A)を対応付けるとともに、第1電流計118a(第1電流計接続点C)に中性線(中性線接続点B)を対応付け、当該適正判断方法を終了する。
(Step S31)
If it is determined in step S30 that the absolute value of the current value I 1 is smaller than the absolute value of the current value I 2 , the appropriateness determining unit 144 determines that the second ammeter 118b (the second ammeter connection point D) is selected. The interconnection phase (voltage line connection point A) is associated, and the neutral line (neutral line connection point B) is associated with the first ammeter 118a (first ammeter connection point C), and the appropriateness determination method ends. To do.

(ステップS32)
上記ステップS30において、電流値Iの絶対値が電流値Iの絶対値より小さくないと判定されれば、適正判断部144は、2つの電流計118a、118bが同相に設置され、同相の電流値を計測している(同相設置エラー)と判断し、当該適正判断方法を終了する。
(Step S32)
If it is determined in step S30 that the absolute value of the current value I 1 is not smaller than the absolute value of the current value I 2 , the appropriateness determining unit 144 installs the two ammeters 118a and 118b in the same phase, It is determined that the current value is being measured (in-phase installation error), and the appropriateness determination method ends.

(ステップS33)
上記ステップS27において、電流差分Δ|I|と電流差分Δ|I|とが等しくないと判定されれば、適正判断部144は、電流差分Δ|I|と電流差分Δ|I|とを比較する。これは以下の理由による。なお、ここでは、相位置と併せて健全性も判定される。
(Step S33)
If it is determined in step S27 that the current difference Δ|I 1 | and the current difference Δ|I 2 | are not equal, the appropriateness determining unit 144 determines that the current difference Δ|I 1 | and the current difference Δ|I 2 | Compare with |. This is for the following reason. Here, the soundness is also determined together with the phase position.

すなわち、図8(b)を用いて説明したように、R相の負荷がT相の負荷よりも相対的に小さい場合、内部負荷116aの増加に応じて、電流値Iは正の値から、絶対値がより大きい正の値に変化する一方で、電流値Iは負の値から、絶対値がより小さい負の値に変化するか、または、負の値から正の値に変化する。例えば、内部負荷116aの増加に応じて、電流値Iが2A増加すると、電流値Iも2A増加するものの、その絶対値に関しては、電流値Iの絶対値が5Aから7Aに2A増加するのに対し、電流値Iの絶対値は3Aから1Aに2A減少したり、0.5Aから1.5Aに1A増加するに留まることとなる。このように電流値Iの絶対値は、減少したり、または、電流値Iより小さく増加する。したがって、R相の負荷がT相の負荷より相対的に大きい場合、電流差分ΔIが相対的に大きい方(正である方)がR相の電流差分ΔIとなり、電流差分ΔIが相対的に小さい方(負である方)がN相の電流差分ΔIとなる。 That is, as described with reference to FIG. 8B, when the R-phase load is relatively smaller than the T-phase load, the current value I 1 changes from a positive value as the internal load 116a increases. , The absolute value changes to a larger positive value, while the current value I 2 changes from a negative value to a smaller negative value, or changes from a negative value to a positive value .. For example, when the current value I 1 increases by 2 A as the internal load 116a increases, the current value I 2 also increases by 2 A. However, regarding the absolute value, the absolute value of the current value I 1 increases from 5 A to 7 A by 2 A. On the other hand, the absolute value of the current value I 2 only decreases from 3A to 1A by 2A or increases from 0.5A to 1.5A by 1A. Thus, the absolute value of the current value I 2 decreases or increases smaller than the current value I 1 . Therefore, when the load of the R phase is relatively larger than the load of the T phase, the one in which the current difference ΔI is relatively large (the one that is positive) becomes the current difference ΔI R in the R phase, and the current difference ΔI is relatively large. smaller (who is negative) is the current difference [Delta] I N N-phase.

したがって、ステップS33において、電流差分Δ|I|が電流差分Δ|I|よりも大きく、かつ、電流差分Δ|I|が閾値(電流閾値)よりも大きければ、適正判断部144は、ステップS34に処理を移し、電流差分Δ|I|が電流差分Δ|I|以下であるか、または、電流差分Δ|I|が電流閾値以下であれば、適正判断部144は、ステップS35に処理を移す。なお、ここでの電流閾値は、内部負荷116aの変動に対して想定される電流差分ΔIより小さく、かつ、0より大きな値であり、例えば、想定される電流差分ΔIの1/2としてもよい。 Therefore, in step S33, if the current difference Δ|I 1 | is larger than the current difference Δ|I 2 | and the current difference Δ|I 1 | is larger than the threshold value (current threshold value), the appropriateness determination unit 144 determines If the current difference Δ|I 1 | is less than or equal to the current difference Δ|I 2 | or if the current difference Δ|I 1 | is less than or equal to the current threshold, the appropriateness determining unit 144 determines , And moves the processing to step S35. Note that the current threshold value here is a value that is smaller than the current difference ΔI that is assumed for fluctuations in the internal load 116a and is greater than 0, and may be, for example, 1/2 of the assumed current difference ΔI. ..

(ステップS34)
上記ステップS33において、電流差分Δ|I|が電流差分Δ|I|より大きく、かつ、電流差分Δ|I|が電流閾値より大きいと判定されれば、適正判断部144は、第1電流計118a(第1電流計接続点C)に連系相(電圧線接続点A)を対応付けるとともに、第2電流計118b(第2電流計接続点D)に中性線(中性線接続点B)を対応付け、当該適正判断方法を終了する。
(Step S34)
If it is determined in step S33 that the current difference Δ|I 1 | is larger than the current difference Δ|I 2 | and the current difference Δ|I 1 | is larger than the current threshold value, the appropriateness determining unit 144 determines that The one ammeter 118a (first ammeter connection point C) is associated with the interconnection phase (voltage line connection point A), and the second ammeter 118b (second ammeter connection point D) is connected to the neutral line (neutral line). The connection point B) is associated, and the appropriateness determination method ends.

(ステップS35)
上記ステップS33において、電流差分Δ|I|が電流差分Δ|I|以下であるか、または、電流差分Δ|I|が電流閾値以下であると判定されれば、適正判断部144は、電流差分Δ|I|が電流差分Δ|I|より小さく、かつ、電流差分Δ|I|が電流閾値より大きいか否か判定する。その結果、電流差分Δ|I|が電流差分Δ|I|より小さく、かつ、電流差分Δ|I|が電流閾値より大きければ、適正判断部144は、ステップS36に処理を移し、電流差分Δ|I|が電流差分Δ|I|より小さくない(電流差分Δ|I|と電流差分Δ|I|とが等しい)、または、電流差分Δ|I|が電流閾値以下であれば、適正判断部144は、ステップS37に処理を移す。
(Step S35)
If it is determined in step S33 that the current difference Δ|I 1 | is less than or equal to the current difference Δ|I 2 | or the current difference Δ|I 1 | is less than or equal to the current threshold value, the appropriateness determining unit 144 is determined. a current difference Δ | I 1 | current difference Δ | I 2 | smaller than, and current difference Δ | I 2 | determines greater or not than the current threshold. As a result, if the current difference Δ|I 1 | is smaller than the current difference Δ|I 2 | and the current difference Δ|I 2 | is larger than the current threshold value, the appropriateness determination unit 144 shifts the processing to step S36, The current difference Δ|I 1 | is not smaller than the current difference Δ|I 2 | (the current difference Δ|I 1 | and the current difference Δ|I 2 | are equal), or the current difference Δ|I 2 | is the current If it is less than or equal to the threshold value, the appropriateness determining unit 144 moves the process to step S37.

(ステップS36)
上記ステップS35において、電流差分Δ|I|が電流差分Δ|I|より小さく、かつ、電流差分Δ|I|が電流閾値より大きいと判定されれば、適正判断部144は、第2電流計118b(第2電流計接続点D)に連系相(電圧線接続点A)を対応付けるとともに、第1電流計118a(第1電流計接続点C)に中性線(中性線接続点B)を対応付け、当該適正判断方法を終了する。
(Step S36)
In step S35, if it is determined that the current difference Δ|I 1 | is smaller than the current difference Δ|I 2 | and the current difference Δ|I 2 | is larger than the current threshold value, the appropriateness determining unit 144 determines that The second ammeter 118b (second ammeter connection point D) is associated with the interconnection phase (voltage line connection point A), and the first ammeter 118a (first ammeter connection point C) is neutralized (neutral line). The connection point B) is associated, and the appropriateness determination method ends.

(ステップS37)
上記ステップS35において、電流差分Δ|I|が電流差分Δ|I|より小さくない、または、電流差分Δ|I|が電流閾値以下であると判定されれば、適正判断部144は、2つの電流計118a、118bは健全ではない(不健全エラー)と判断し、当該適正判断方法を終了する。
(Step S37)
If it is determined in step S35 that the current difference Δ|I 1 | is not smaller than the current difference Δ|I 2 | or the current difference Δ|I 2 | is less than or equal to the current threshold value, the appropriateness determining unit 144 determines that It is determined that the two ammeters 118a and 118b are not healthy (unhealthy error), and the appropriateness determination method ends.

かかる適正判断方法により、設置適正のうち、相位置および健全性について判断することが可能となる。 According to the appropriateness determining method, it is possible to determine the phase position and soundness of the installation appropriateness.

図9は、電流計118の適正判断(適正判断方法)の流れを示したフローチャートであり、図10は、適正判断を実行するための構成を示した説明図である。図9に示す適正判断方法では、図6の適正判断方法によって相位置および健全性が判断された2つの電流計118a、118bについて潮流方向の適正を判断する。 FIG. 9 is a flow chart showing the flow of the appropriateness determination (property determination method) of the ammeter 118, and FIG. 10 is an explanatory diagram showing the configuration for performing the appropriateness determination. In the adequacy determination method shown in FIG. 9, the adequacy of the power flow direction is determined for the two ammeters 118a and 118b whose phase position and soundness have been determined by the adequacy determination method of FIG.

(ステップS40)
まず、計測値取得部142は、図10に示すように、電圧計116bを通じて相間電圧の波形(位相変化の情報を含む)を取得する。
(Step S40)
First, as shown in FIG. 10, the measurement value acquisition unit 142 acquires the waveform of the interphase voltage (including information about the phase change) through the voltmeter 116b.

(ステップS41)
続いて、計測値取得部142は、図10に示すように、第1電流計接続点Cを通じた電流波形(位相変化の情報を含む)、すなわち、第1電流計118aで計測された電流波形、および、第2電流計接続点Dを通じた電流波形、すなわち、第2電流計118bで計測された電流波形を取得する。
(Step S41)
Then, the measurement value acquisition unit 142, as shown in FIG. 10, the current waveform through the first ammeter connection point C (including information on the phase change), that is, the current waveform measured by the first ammeter 118a. , And the current waveform through the second ammeter connection point D, that is, the current waveform measured by the second ammeter 118b is acquired.

(ステップS42)
次に、計測値取得部142は、取得した相間電圧の波形と第1電流計118aで計測された電流波形とを比較し、その位相差が閾値(位相閾値)より大きいか否か判定する。その結果、位相閾値より大きければ、適正判断部144は、ステップS43に処理を移し、位相閾値以下であれば、なんら位相操作を行うことなく、ステップS44に処理を移す。ここで、位相閾値は、位相が反転していないと判断できる90度以下の値、例えば、10度である。
(Step S42)
Next, the measurement value acquisition unit 142 compares the acquired waveform of the interphase voltage with the current waveform measured by the first ammeter 118a, and determines whether the phase difference is larger than a threshold value (phase threshold value). As a result, if it is larger than the phase threshold value, the appropriateness determining unit 144 shifts the processing to step S43, and if it is equal to or lower than the phase threshold value, shifts the processing to step S44 without performing any phase operation. Here, the phase threshold value is a value of 90 degrees or less, for example, 10 degrees, at which it can be determined that the phase is not inverted.

(ステップS43)
上記ステップS42において、位相差が位相閾値より大きいと判定されれば、適正判断部144は、第1電流計118aの潮流方向が逆であると判断し、第1電流計接続点Cを通じた電流波形、すなわち、第1電流計118aで計測された電流波形の位相を反転してまたは180度遅らせて認識させる。
(Step S43)
If it is determined in step S42 that the phase difference is larger than the phase threshold, the appropriateness determining unit 144 determines that the power flow direction of the first ammeter 118a is opposite, and the current through the first ammeter connection point C is determined. The waveform, that is, the phase of the current waveform measured by the first ammeter 118a is inverted or delayed by 180 degrees for recognition.

(ステップS44)
続いて、計測値取得部142は、取得した相間電圧の波形と第2電流計118bで計測された電流波形とを比較し、その位相差が閾値(位相閾値)より大きいか否か判定する。その結果、位相閾値より大きければ、適正判断部144は、ステップS45に処理を移し、位相閾値以下であれば、なんら位相操作を行うことなく、当該適正判断方法を終了する。
(Step S44)
Subsequently, the measurement value acquisition unit 142 compares the acquired waveform of the interphase voltage with the current waveform measured by the second ammeter 118b, and determines whether the phase difference is larger than a threshold value (phase threshold value). As a result, if it is larger than the phase threshold value, the appropriateness determining unit 144 moves the process to step S45, and if it is equal to or less than the phase threshold value, the appropriateness determining method ends without performing any phase operation.

(ステップS45)
上記ステップS44において、位相差が位相閾値より大きいと判定されれば、適正判断部144は、第2電流計118bの潮流方向が逆であると判断し、第2電流計接続点Dを通じた電流波形、すなわち、第2電流計118bで計測された電流波形の位相を反転してまたは180度遅らせて認識させる。
(Step S45)
If it is determined in step S44 that the phase difference is larger than the phase threshold, the appropriateness determining unit 144 determines that the power flow direction of the second ammeter 118b is opposite, and the current through the second ammeter connection point D is determined. The waveform, that is, the phase of the current waveform measured by the second ammeter 118b is inverted or delayed by 180 degrees for recognition.

かかる適正判断方法により、設置適正のうち、潮流方向を正すことが可能となる。 According to the appropriateness determining method, it is possible to correct the tidal current direction in the installation appropriateness.

なお、第1の実施形態および第2の実施形態において、負荷制御部140が電力供給設備116の内部に設けられた内部負荷116aを変動させる例を挙げて説明したが、かかる場合に限らず、電力供給設備116と等しい単相3線式100Vに接続された外部の負荷を変動させてもよい。 In addition, in the first embodiment and the second embodiment, an example in which the load control unit 140 changes the internal load 116a provided inside the power supply equipment 116 has been described, but the present invention is not limited to such a case. An external load connected to the single-phase three-wire 100V equal to the power supply facility 116 may be changed.

(第3の実施形態:受電電力導出)
続いて、設置適正が判断された2つの電流計118a、118bを用いて受電電力を導出する処理について説明する。
(Third embodiment: Derivation of received power)
Next, a process of deriving the received power using the two ammeters 118a and 118b whose installation suitability has been determined will be described.

図11は、電力供給設備116の他の課題を説明するための説明図である。仮に、単相3線式200Vに電力供給設備16を接続したとする。ここでは、電力供給設備16の電力の出力端のうち、電圧線接続点AにR相が接続され、電圧線接続点AAにT相が接続され、中性線接続点BにN相が接続される。そして、2つの電流計118a、118bのいずれか一方が電力供給設備16の電流の入力端である第1電流計接続点Cに接続され、他方が、第2電流計接続点Dに接続される。 FIG. 11 is an explanatory diagram for explaining another problem of the power supply equipment 116. It is assumed that the power supply facility 16 is connected to the single-phase three-wire type 200V. Here, the R phase is connected to the voltage line connection point A, the T phase is connected to the voltage line connection point AA, and the N phase is connected to the neutral line connection point B among the output ends of the power of the power supply equipment 16. To be done. Then, one of the two ammeters 118a and 118b is connected to the first ammeter connection point C, which is the current input terminal of the power supply equipment 16, and the other is connected to the second ammeter connection point D. ..

そして、図11(a)のように、第1電流計118aが電圧線であるR相の電流値Iを計測し、第2電流計118bが電圧線であるT相の電流値Iを計測したとする。また、電力供給設備16に設けられた電圧計16cがN相に対するR相の相間電圧値Vを計測し、電圧計16dがN相に対するT相の相間電圧値Vを計測したとする。 Then, as shown in FIG. 11A, the first ammeter 118a measures the current value I R of the R phase, which is the voltage line, and the second ammeter 118b measures the current value I T of the T phase, which is the voltage line. Suppose you have measured. Further, it is assumed that the voltmeter 16c provided in the power supply equipment 16 measures the interphase voltage value VR of the R phase with respect to the N phase, and the voltmeter 16d measures the interphase voltage value V T of the T phase with respect to the N phase.

このように計測された電流値I、I、相間電圧値V、Vに基づき、それぞれの相(R相、T相)に関し、電流値と相間電圧値と力率との積(I×V×cosθ、I×V×cosθ)を求めると、その和(I×V×cosθ+I×V×cosθ)が受電電力となる。かかる受電電力により、受電電力一定制御、RPR機能、UPR機能等を実現することが可能となる。 Based on the measured current values I R and I T and interphase voltage values V R and V T , the product of the current value, the interphase voltage value, and the power factor (for each phase (R phase, T phase)) I R × V R × cosθ R , when obtaining the I T × V T × cosθ T ), the sum (I R × V R × cosθ R + I T × V T × cosθ T) is the received power. With such received power, it is possible to realize the constant received power control, the RPR function, the UPR function, and the like.

しかし、本実施形態のように、単相3線式100Vに電力供給設備116を接続する場合において、2つの電流計118a、118bを電圧線であるR相とT相に取り付けると、一方は非連系相なので、その電流計118についは設置適正を判断できなくなる。また、図11(b)のように、設置適正を判断できない電流計118をN相に付け替えれば、その電流計118についても設置適正を判断できるようになるが、非連系相の電流値や相間電圧を把握できないため、図11(a)を用いて説明したような既存の手順では受電電力を導出できないといった問題があった。 However, in the case where the power supply equipment 116 is connected to the single-phase three-wire system 100V as in the present embodiment, if two ammeters 118a and 118b are attached to the voltage lines R phase and T phase, one is not connected. Since it is an interconnected phase, it is impossible to judge the installation suitability of the ammeter 118. Further, as shown in FIG. 11B, if the ammeter 118, which cannot determine the installation suitability, is replaced with the N phase, the installation suitability of the ammeter 118 can also be determined. Since the interphase voltage cannot be grasped, there is a problem that the received power cannot be derived by the existing procedure as described with reference to FIG.

そこで、ここでは非連系相の電流値や相間電圧を推定し、電流計118の設置適正の判断を実行しつつ、受電電力を導出することを目的とする。 Therefore, an object of the present invention is to estimate the current value and the inter-phase voltage of the non-interconnection phase and to derive the received power while performing the determination of the installation suitability of the ammeter 118.

本実施形態の電力供給設備116においては、図11(b)のように、第1電流計118aがR相またはT相のいずれか一方と接続され、第2電流計118bがN相に接続される。したがって、第1電流計118aがR相の電流値Iを計測し、第2電流計118bがN相の電流値Iを計測することができる。そして、計測値取得部142は、電流値Iおよび電流値Iを取得する。ただし、受電電力を導出するのに必要なT相の電流値Iを計測することができない。 In the power supply facility 116 of the present embodiment, as shown in FIG. 11B, the first ammeter 118a is connected to either the R phase or the T phase, and the second ammeter 118b is connected to the N phase. It Therefore, the first ammeter 118a can measure the R-phase current value I R , and the second ammeter 118b can measure the N-phase current value I N. Then, the measurement value acquisition unit 142 acquires the current value I R and the current value I N. However, the T-phase current value I T necessary to derive the received power cannot be measured.

しかし、上述したように、N相の電流値Iの方向を電流値IがN相を流れる方向とした場合、単相3線式100/200Vでは、N相の電流値I=R相の電流値I−T相の電流値Iが成り立つ。そうすると、R相の電流値IとN相の電流値Iとを把握できれば、T相の電流値Iを推定することができる。そこで、電流値推定部146は、第1電流計118aおよび第2電流計118bに基づいて、他方の単相3線式100Vにおける電圧線であるT相の電流値Iを推定して推定電流値ITAとする。 However, as described above, when the direction of the current I R of the current value I N N-phase is the direction of flow of the N phase, the single-phase three-wire 100 / 200V, the current value of N phase I N = R The phase current value I R −T phase current value I T holds. Then, if grasp the current value I N of the current value I R and N phase of R-phase, it is possible to estimate the current value I T T-phase. Therefore, the current value estimation unit 146 estimates the current value I T of the T-phase, which is the voltage line in the other single-phase three-wire system 100V, based on the first ammeter 118a and the second ammeter 118b to estimate the estimated current. Let the value I TA .

具体的に、電流値推定部146は、R相の電流値I−N相の電流値I、すなわち、第1電流計118aの電流値Iから第2電流計118bの電流値Iを減算することでT相の推定電流値ITAを導出することが可能となる。 Specifically, the current value estimation unit 146, a current value I N of the current value I R -N-phase R-phase, i.e., the current value from the current value I 1 of the first ammeter 118a second ammeter 118b I 2 It becomes possible to derive the estimated current value I TA of the T phase by subtracting.

また、単相3線式100Vに電力供給設備116を接続する場合、図11(b)のように、接続されている単相3線式100Vの相間電圧値(ここでは、R相の相間電圧値V)を計測することができる。そして、計測値取得部142は、相間電圧値Vを取得する。しかし、接続されている単相3線式100Vの相間電圧値(ここでは、R相の相間電圧値V)は検出できるものの、接続されていない他方の単相3線式100Vの相間電圧値(ここでは、T相の相間電圧値V)は検出できない。ここでは、計測不能な他方の単相3線式100Vの相間電圧値Vを推定することで、上記の推定電流値ITAと合わせ、単相3線式200Vに接続した電力供給設備と実質的に等しい条件で受電電力を導出する。 Further, when the power supply equipment 116 is connected to the single-phase three-wire system 100V, the connected inter-phase voltage value of the single-phase three-wire system 100V (here, the inter-phase voltage of the R phase is used, as shown in FIG. 11B). the value V R) can be measured. The measurement value acquisition unit 142 obtains the phase voltage V R. However, although the interphase voltage value of the connected single-phase three-wire system 100V (here, the interphase voltage value VR of the R phase) can be detected, the interphase voltage value of the other unconnected single-phase three-wire system 100V. (Here, the interphase voltage value V T of the T phase) cannot be detected. Here, by estimating the interphase voltage value V T of the other single-phase three-wire system 100 V that cannot be measured, it is combined with the above estimated current value I TA and the power supply facility connected to the single-phase three-wire system 200 V is substantially used. The received power is derived under the same condition.

ところで、電気事業法において電力会社から供給される電力の相間電圧値は、101V±6Vの範囲内と定められている。したがって、T相の相間電圧値は、95V(規定最小電圧値)〜107V(規定最大電圧値)の範囲内でしか変動しない。そこで、当該電力システム100が逆潮流を許容する場合(逆潮流有り連系)、相間電圧値として取り得る範囲であり、かつ、引き込み線10の電圧降下(例えば2V)を考慮して、上述したT相の相間電圧値の想定値VTAとして、例えば、中心値である101Vを選択することができる。 By the way, according to the Electricity Business Law, the interphase voltage value of the electric power supplied from the electric power company is determined to be within the range of 101V±6V. Therefore, the interphase voltage value of the T phase fluctuates only within the range of 95V (specified minimum voltage value) to 107V (specified maximum voltage value). Therefore, when the power system 100 allows reverse power flow (interconnection with reverse power flow), it is within the range that can be taken as the interphase voltage value and the voltage drop of the lead-in wire 10 (for example, 2 V) is taken into consideration. As the assumed value V TA of the interphase voltage value of the T phase, for example, 101 V that is the center value can be selected.

また、このような電力システム100では、R相とT相の負荷が均一に近くなることが多いので、T相の相間電圧値の想定値VTAとして、例えば、連系相であるR相の相間電圧値Vを、そのまま流用してもよい。かかる構成により、受電点での潮流を0近傍とすることが可能となり、電力供給設備116で発電された電力を有効に利用することができる。また、R相とT相とは位相が180度異なることが多いので、想定力率cosθTAとして、例えば、非連系相であるT相のN相に対する相間電圧の位相を、連系相であるR相のN相に対する相間電圧の位相を反転した(180度異ならせた)位相とみなし、想定力率cosθTAを決定してもよい。 In addition, in such a power system 100, since the loads of the R phase and the T phase are often close to uniform, the assumed value V TA of the interphase voltage value of the T phase is, for example, that of the R phase which is the interconnection phase. the interphase voltage value V R, may be diverted as it is. With such a configuration, the power flow at the power receiving point can be made close to 0, and the power generated by the power supply facility 116 can be effectively used. Since the R phase and the T phase are often 180 degrees different in phase, the assumed power factor cos θ TA is, for example, the phase of the interphase voltage with respect to the N phase of the T phase, which is the non-connected phase, in the connected phase. The assumed power factor cos θ TA may be determined by regarding the phase of the interphase voltage with respect to the N phase of a certain R phase as being the phase inverted (180° different).

また、当該電力システム100が逆潮流を許容しない場合(逆潮流無し連系)、電力導出部148は、他方であるT相の電流の方向に応じて、想定値VTAおよび想定力率cosθTAを決定するとしてもよい。例えば、T相の電流が逆潮流となる方向(図11(b)の破線矢印と異なる方向)に流れているとする。このとき、T相の相間電圧値Vは、規定最小電圧値(95V)から規定最大電圧値(107V)の範囲で変動し得るので、T相に関する電力は、(電流値I×規定最小電圧値)から(電流値I×規定最大電圧値)の範囲で変動することとなる。ここでは、安全側である(電流値I×規定最大電圧値)の値をとることで逆潮流が生じないことを明示する。すなわち、電力導出部148は、T相の電流が逆潮流となる方向に流れている場合、想定値VTAとして規定最大電圧値を設定する。また、不足電力を厳しく(安全側で)判定すべく、T相の電力が最大となるように、想定力率cosθTAを1とみなして演算してもよい。 In addition, when the power system 100 does not allow reverse power flow (connection without reverse power flow), the power derivation unit 148 determines the estimated value V TA and the estimated power factor cos θ TA according to the direction of the other T-phase current. May be determined. For example, it is assumed that the T-phase current is flowing in a reverse power flow direction (direction different from the dashed arrow in FIG. 11B). At this time, the inter-phase voltage value V T of the T phase can fluctuate in the range from the specified minimum voltage value (95 V) to the specified maximum voltage value (107 V), so that the power related to the T phase is (current value I T ×specified minimum value). It changes in the range of (voltage value) to (current value IT ×specified maximum voltage value). Here, it is clarified that the reverse power flow does not occur by taking a value of (current value IT ×specified maximum voltage value) on the safe side. That is, the power deriving unit 148 sets the specified maximum voltage value as the assumed value V TA when the T-phase current is flowing in the reverse power flow direction. Further, in order to make a strict (safety) determination of the power shortage, the assumed power factor cos θ TA may be regarded as 1 so that the T-phase power becomes maximum.

同様に、電力導出部148は、T相の電流が逆潮流とならない方向(図11(b)の破線矢印と等しい方向)に流れている場合、想定値VTAとして、安全側である規定最小電圧値を設定する。また、不足電力を厳しく(安全側で)判定すべく、T相の電力が最小となるように、想定力率cosθTAを所定の値(例えば0)とみなして演算してもよい。 Similarly, when the T-phase current flows in the direction in which the reverse power flow does not occur (the direction equal to the broken line arrow in FIG. 11B), the power derivation unit 148 determines the estimated value V TA as the safe minimum value. Set the voltage value. Further, in order to make a strict (safety) determination of the power shortage, the assumed power factor cos θ TA may be regarded as a predetermined value (for example, 0) and calculated so that the power of the T phase is minimized.

かかる構成により、逆潮流を許容しない場合において、単相3線式100Vにのみ接続される電力供給設備116を単相3線式100/200Vとして換算した場合の最も安全側での受電電力を求めることができ、電力供給設備116の逆潮流を適切に回避することが可能となる。 With such a configuration, when reverse power flow is not allowed, the safest received power is calculated when the power supply facility 116 connected only to the single-phase three-wire system 100V is converted into the single-phase three-wire system 100/200V. Therefore, the reverse power flow of the power supply equipment 116 can be appropriately avoided.

そして、電力導出部148は、T相の電流値としての推定電流値ITAおよびT相の相間電圧値としての所定の想定値VTAおよびT相の相間電圧の力率としての所定の想定力率cosθTAを参照し、単相3線式100/200Vの受電電力を導出する。具体的に、電力導出部148は、R相に関する電力(I×V×cosθ)と、T相に関する想定電力(ITA×VTA×cosθTA)とを求め、その和(I×V×cosθ+ITA×VTA×cosθTA)を導出して単相3線式100/200Vの換算された受電電力とする。 Then, the power derivation unit 148 determines the estimated current value I TA as the current value of the T phase, the predetermined assumed value V TA as the interphase voltage value of the T phase, and the predetermined assumed power as the power factor of the interphase voltage of the T phase. The power received by the single-phase three-wire system 100/200 V is derived with reference to the rate cos θ TA . Specifically, the power deriving unit 148 obtains the power (I R ×V R ×cos θ R ) related to the R phase and the assumed power (I TA ×V TA ×cos θ TA ) related to the T phase, and the sum (I R × and V R × cosθ R + I TA × V TA × cosθ TA) to derive terms have been received power of single-phase three-wire 100 / 200V.

かかる構成により、単相3線式100Vにのみ接続される電力供給設備116であっても、単相3線式100/200Vの受電電力を適切に求めることができる。 With such a configuration, even in the power supply facility 116 connected only to the single-phase three-wire system 100V, it is possible to appropriately obtain the received power of the single-phase three-wire system 100/200V.

(第4の実施形態:電力システム200)
図12は、第4の実施形態における電力システム200の接続関係を示した説明図である。かかる電力システム200では、電力導出部248の処理が第3の実施形態と異なるが、他の構成要素については第3の実施形態と実質的に等しい。
(Fourth Embodiment: Power System 200)
FIG. 12 is an explanatory diagram showing a connection relationship of the power system 200 according to the fourth embodiment. In the electric power system 200, the process of the electric power deriving unit 248 is different from that of the third embodiment, but other components are substantially the same as those of the third embodiment.

第4の実施形態において、電力導出部248は、想定値を固定的に選択せず、当該電力システム200の任意の機器から相間電圧値に関する情報を取得し、その情報に基づいて想定値を随時決定する。例えば、図12の例において、電力導出部248は、電力メータ112における相間電圧値、具体的には、電力供給設備116が接続されている相とは異なる相の相間電圧値を取得し、その相間電圧値を想定値とする。 In the fourth embodiment, the power derivation unit 248 does not fixedly select the estimated value, acquires information regarding the interphase voltage value from any device of the power system 200, and based on the information, sets the estimated value at any time. decide. For example, in the example of FIG. 12, the power derivation unit 248 acquires the interphase voltage value in the power meter 112, specifically, the interphase voltage value of a phase different from the phase to which the power supply facility 116 is connected, and The interphase voltage value is assumed.

かかる構成により、本来の相間電圧値に近い値を想定値VTAとし、より厳密に受電電力を求めることができる。 With this configuration, a value close to the original inter-phase voltage value can be set as the assumed value V TA, and the received power can be obtained more accurately.

ただし、電力メータ112の相間電圧値の更新頻度によっては、本来の相間電圧値と異なる値を参照することになってしまう。例えば、電力メータ112が数十秒に1回のみ更新される場合、参照する相間電圧値が数十秒前の相間電圧値となる場合がある。そこで、電力導出部248は、かかる電力メータ112における相間電圧値Vを蓄積して、それを統計的に処理して想定値を決定してもよい。 However, depending on the update frequency of the interphase voltage value of the power meter 112, a value different from the original interphase voltage value will be referred to. For example, when the power meter 112 is updated only once in several tens of seconds, the interphase voltage value to be referred to may be the interphase voltage value of several tens of seconds ago. Therefore, the power derivation unit 248 may accumulate the inter-phase voltage value V T in the power meter 112 and statistically process it to determine the assumed value.

例えば、電力導出部248は、電力メータ112における、過去の任意の期間(年、月、週、日、時間等)分の相間電圧値を蓄積し、その間の最小電圧値(実測最小電圧値)と最大電圧値(実測最大電圧値)とを求める。ここで、T相の相間電圧値Vは、実測最小電圧値から実測最大電圧値の範囲で変動しているので、T相に関する電力は、(電流値I×実測最小電圧値)から(電流値I×実測最大電圧値)の範囲で変動することとなる。 For example, the power deriving unit 248 accumulates the interphase voltage value for an arbitrary past period (year, month, week, day, time, etc.) in the power meter 112, and the minimum voltage value during that period (measured minimum voltage value). And the maximum voltage value (measured maximum voltage value). Here, since the interphase voltage value V T of the T phase fluctuates in the range from the actually measured minimum voltage value to the actually measured maximum voltage value, the power related to the T phase is calculated from (current value I T ×measured minimum voltage value) ( It will fluctuate within the range of (current value IT ×measured maximum voltage value).

ここで、電力導出部248は、T相の電流が逆潮流となる方向(図11(b)の破線矢印と異なる方向)に流れている場合、想定値VTAとして、安全側である実測最大電圧値を設定する。また、電力導出部248は、T相の電流が逆潮流とならない方向(図11(b)の破線矢印と等しい方向)に流れている場合、想定値VTAとして、安全側である実測最小電圧値を設定する。 Here, when the T-phase current flows in the direction in which the T-phase current flows in the reverse direction (direction different from the dashed arrow in FIG. 11B), the power deriving unit 248 sets the assumed value V TA to the measured maximum value on the safe side. Set the voltage value. Further, when the T-phase current flows in the direction in which the reverse power flow does not occur (the direction equal to the broken line arrow in FIG. 11B), the power deriving unit 248 sets the assumed minimum value V TA to the measured minimum voltage on the safe side. Set the value.

かかる構成により、単相3線式100Vにのみ接続される電力供給設備116を単相3線式100/200Vとして換算した場合の最も安全側での受電電力を求めることができる。 With such a configuration, it is possible to obtain the received power on the safest side when the power supply equipment 116 connected only to the single-phase three-wire system 100V is converted into the single-phase three-wire system 100/200V.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such embodiments. It is obvious to those skilled in the art that various changes or modifications can be conceived within the scope described in the claims, and naturally, they also belong to the technical scope of the present invention. Understood.

例えば、上述した実施形態では、電力メータ112から制御ユニット116dに対し、相間電圧値を送信する例を挙げて説明したが、電力メータ112がスマートメータであった場合、その機能、例えば、HEMS(Home Energy Management System)を通じて電力メータ112から制御ユニット116dに送信してもよい。 For example, in the above-described embodiment, the example in which the power meter 112 transmits the inter-phase voltage value to the control unit 116d has been described, but when the power meter 112 is a smart meter, its function, for example, HEMS( It may be transmitted from the power meter 112 to the control unit 116d through the Home Energy Management System).

また、上述した実施形態では、過去の任意の期間分の相間電圧値を蓄積し、その間の最小電圧値(実測最小電圧値)と最大電圧値(実測最大電圧値)とを求める例を挙げて説明したが、統計的に導き出した、例えば、統計的な偏差から、実効的な最小電圧値(実測最小電圧値)と最大電圧値(実測最大電圧値)とを求めるとしてもよい。 Further, in the above-described embodiment, an example in which interphase voltage values for an arbitrary period in the past are accumulated and a minimum voltage value (actually measured minimum voltage value) and a maximum voltage value (actually measured maximum voltage value) between them are obtained is given. Although described, the effective minimum voltage value (measured minimum voltage value) and maximum voltage value (measured maximum voltage value) may be obtained from statistically derived statistical deviations, for example.

本発明は、構内に電力供給設備が設けられた電力システムに利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in an electric power system in which electric power supply equipment is provided on the premises.

10 引き込み線
100 電力システム
112 電力メータ
114 分電盤
116 電力供給設備
116a 内部負荷
116b 電圧計
116d 制御ユニット
118a 第1電流計(電流計)
118b 第2電流計(電流計)
140 負荷制御部
142 計測値取得部
144 適正判断部
146 電流値推定部
148、248 電力導出部
10 service line 100 power system 112 power meter 114 distribution board 116 power supply equipment 116a internal load 116b voltmeter 116d control unit 118a first ammeter (ammeter)
118b Second ammeter (ammeter)
140 load control unit 142 measured value acquisition unit 144 appropriateness determination unit 146 current value estimation unit 148, 248 power derivation unit

Claims (4)

電力系統からの引き込み線である単相3線式のうちR相またはT相のいずれか一方と、N相とに接続された電力供給設備と、
前記R相またはT相の一方、および、N相それぞれに流れる電流値を計測する第1電流計および第2電流計と、
前記第1電流計および前記第2電流計それぞれで計測された電流値を取得する計測値取得部と、
前記第1電流計および前記第2電流計それぞれの設置適正を判断する適正判断部と、
前記第1電流計および前記第2電流計に基づいて前記R相またはT相の他方の電流値を推定して推定電流値とする電流値推定部と、
前記R相またはT相の一方に係る相間電圧値と電圧線の電流値とその力率とを乗じた値と、想定値と前記推定電流値と想定力率とを乗じた値とを加算し受電電力を導出する電力導出部と、
を備える電力システム。
A power supply facility connected to either one of the R phase or the T phase and the N phase of the single-phase three-wire system that is a service line from the power system,
A first ammeter and a second ammeter for measuring the current value flowing in one of the R phase or the T phase and the N phase, respectively,
A measurement value acquisition unit that acquires current values measured by the first ammeter and the second ammeter, respectively;
An adequacy determining unit that determines the installation adequacy of each of the first ammeter and the second ammeter,
A current value estimation unit that estimates the other current value of the R phase or the T phase based on the first ammeter and the second ammeter to obtain an estimated current value;
A value obtained by multiplying the interphase voltage value relating to one of the R phase or the T phase, the current value of the voltage line and the power factor thereof, and an estimated value, a value obtained by multiplying the estimated current value and the assumed power factor are added. A power derivation unit that derives received power,
Power system comprising.
前記電力導出部は、前記推定電流値の方向に応じて、相間電圧値として取り得る規定最小電圧値および規定最大電圧値のいずれかを前記想定値とする請求項1に記載の電力システム。 The power system according to claim 1, wherein the power derivation unit uses, as the assumed value, one of a specified minimum voltage value and a specified maximum voltage value that can be taken as an interphase voltage value according to the direction of the estimated current value. 前記電力系統に接続され、前記R相またはT相の他方に係る相間電圧値を計測可能な電力メータを備え、
前記電力導出部は、前記電力メータが計測した相間電圧値を前記想定値とする請求項1に記載の電力システム。
A power meter that is connected to the power system and can measure an interphase voltage value related to the other of the R phase and the T phase,
The power system according to claim 1, wherein the power deriving unit sets the inter-phase voltage value measured by the power meter as the assumed value.
前記電力導出部は、前記電力メータが計測した相間電圧値を統計的に処理し、前記推定電流値の方向に応じて、統計的に導き出した実測最小電圧値および実測最大電圧値のいずれかを前記想定値とする請求項3に記載の電力システム。 The power derivation unit statistically processes the inter-phase voltage value measured by the power meter, depending on the direction of the estimated current value, one of the statistically derived actually measured minimum voltage value and actually measured maximum voltage value. The power system according to claim 3, wherein the assumed value is used.
JP2016229595A 2016-11-25 2016-11-25 Power system Active JP6723904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229595A JP6723904B2 (en) 2016-11-25 2016-11-25 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229595A JP6723904B2 (en) 2016-11-25 2016-11-25 Power system

Publications (2)

Publication Number Publication Date
JP2018084563A JP2018084563A (en) 2018-05-31
JP6723904B2 true JP6723904B2 (en) 2020-07-15

Family

ID=62238393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229595A Active JP6723904B2 (en) 2016-11-25 2016-11-25 Power system

Country Status (1)

Country Link
JP (1) JP6723904B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137323B (en) * 2021-10-15 2024-02-20 国网山东省电力公司昌邑市供电公司 Metering multiplying power file accuracy judging method and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070166A (en) * 2001-08-23 2003-03-07 Tokyo Gas Co Ltd Linkage system
JP2005184895A (en) * 2003-12-16 2005-07-07 Toshiba Corp Power supply system to single phase load having single phase private power generator
JP2012222923A (en) * 2011-04-07 2012-11-12 Panasonic Corp Distributed generator
US9081043B2 (en) * 2012-02-10 2015-07-14 Sharp Laboratories Of America, Inc. System and method for calculating power using contactless voltage waveform shape sensor
JP6077225B2 (en) * 2012-05-24 2017-02-08 三菱電機株式会社 Grid interconnection power converter
JP5936533B2 (en) * 2012-12-26 2016-06-22 大阪瓦斯株式会社 Distributed power system
JP6717705B2 (en) * 2016-08-18 2020-07-01 東京瓦斯株式会社 Power system
JP6757272B2 (en) * 2017-02-14 2020-09-16 シャープ株式会社 Power measuring device, power measuring method and power measuring program

Also Published As

Publication number Publication date
JP2018084563A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
KR101728692B1 (en) System and method of predicting and monitoring anomaly of solar module
Pezeshki et al. Consumer phase identification in a three phase unbalanced LV distribution network
JP6717705B2 (en) Power system
RU2635849C2 (en) Device and method of voltage and power determination of every phase in medium voltage network
JP6723906B2 (en) Power system
JP6723905B2 (en) Power system and ammeter installation method
JP6712217B2 (en) Power system
JP6723904B2 (en) Power system
JP5506502B2 (en) Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines
CN105098754A (en) Systems and methods to protect an energy utility meter from overvoltage events
CN113985342A (en) Electricity utilization inspection method and device for metering equipment
Wellssow et al. Identification of topology faults by smart meter data in meshed low voltage grids
JP6176573B2 (en) Reverse power detection device
JP6730172B2 (en) Power system
Vargas et al. Faults location variability in power distribution networks with high pv penetration level
JP7000227B2 (en) Power system
JP6411830B2 (en) Electric power system, small output power generation unit, and power storage unit
JP7210358B2 (en) Power supply equipment
JP7378946B2 (en) power supply equipment
Mukherjee Applying the distribution system in grid restoration/NERC CIP-014 risk assessment
JP7082510B2 (en) Power system
JP6781007B2 (en) Power system
JP6709992B2 (en) Decentralized power generation system
JP7186005B2 (en) Relay system and relay
JP7229089B2 (en) Anomaly detection system and anomaly detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R150 Certificate of patent or registration of utility model

Ref document number: 6723904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250