JP7229089B2 - Anomaly detection system and anomaly detection method - Google Patents

Anomaly detection system and anomaly detection method Download PDF

Info

Publication number
JP7229089B2
JP7229089B2 JP2019083695A JP2019083695A JP7229089B2 JP 7229089 B2 JP7229089 B2 JP 7229089B2 JP 2019083695 A JP2019083695 A JP 2019083695A JP 2019083695 A JP2019083695 A JP 2019083695A JP 7229089 B2 JP7229089 B2 JP 7229089B2
Authority
JP
Japan
Prior art keywords
power
receiving point
smart meter
unit
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019083695A
Other languages
Japanese (ja)
Other versions
JP2020182311A (en
Inventor
卓也 伴野
崇之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2019083695A priority Critical patent/JP7229089B2/en
Publication of JP2020182311A publication Critical patent/JP2020182311A/en
Application granted granted Critical
Publication of JP7229089B2 publication Critical patent/JP7229089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Description

本発明は、スマートメータまたは分散型電源の異常を検知する異常検知システムおよび異常検知方法に関する。 The present invention relates to an anomaly detection system and an anomaly detection method for detecting anomalies in smart meters or distributed power sources.

需要家の構内(以下、単に需要家という)には、電力系統からの受電点の電力を計測するスマートメータが設けられることがある。また、需要家には、電力系統に接続されるとともに、需要家内の負荷に電力を供給する分散型電源が設けられることがある(例えば、特許文献1)。 A customer's premises (hereinafter simply referred to as a customer) may be provided with a smart meter that measures power at a power receiving point from the power system. In addition, a consumer may be provided with a distributed power source that is connected to a power system and that supplies power to loads within the consumer (for example, Patent Literature 1).

特開2014-075895号公報JP 2014-075895 A

スマートメータに異常が生じると、スマートメータで電力を正確に計測できなくなる場合がある。そうすると、管理サーバは、スマートメータから正確な電力を取得できなくなり、その結果、誤った電気料金を導出するおそれがある。また、分散型電源に異常が生じると、発電電力を適切に制御できなくなる場合がある。その結果、意図せず、分散型電源から電力系統への逆潮流が生じるおそれがある。このため、スマートメータまたは分散型電源に異常が生じた場合には、その異常を早期に検知し、その異常に対応する必要がある。 When an abnormality occurs in the smart meter, it may not be possible to accurately measure electric power with the smart meter. Then, the management server cannot obtain accurate power from the smart meter, and as a result, there is a risk of deriving an incorrect electricity bill. Moreover, when an abnormality occurs in a distributed power supply, it may become impossible to appropriately control the generated power. As a result, reverse power flow from the distributed power source to the power system may occur unintentionally. Therefore, when an abnormality occurs in a smart meter or a distributed power supply, it is necessary to detect the abnormality early and take action against the abnormality.

本発明は、このような課題に鑑み、スマートメータや分散型電源の異常を検知可能な異常検知システムおよび異常検知方法を提供することを目的としている。 In view of such problems, an object of the present invention is to provide an anomaly detection system and an anomaly detection method capable of detecting anomalies in smart meters and distributed power sources.

上記課題を解決するために、本発明の異常検知システムは、電力系統からの受電点における電力を計測するスマートメータと、スマートメータとは独立して、受電点を流れる電流を計測する電流計と、他のエネルギーを電気エネルギーに変換して電気を生成する発電部と、発電部と受電点とを接続する配線の線間電圧を計測する電圧計と、電流計の電流値および電圧計の電圧値に基づいて受電点における電力を導出する電力導出部と、スマートメータで計測された受電点における電力と、電力導出部で導出された受電点における電力とが等しいか否かを判断する比較部と、を備える。 In order to solve the above problems, the anomaly detection system of the present invention includes a smart meter that measures power at a power receiving point from a power system, and an ammeter that measures the current flowing through the power receiving point independently of the smart meter. , a power generation unit that converts other energy into electrical energy to generate electricity, a voltmeter that measures the line voltage of the wiring that connects the power generation unit and the power receiving point, the current value of the ammeter and the voltage of the voltmeter A power derivation unit that derives the power at the power receiving point based on the value, and a comparison unit that determines whether the power at the power receiving point measured by the smart meter is equal to the power at the power receiving point derived by the power derivation unit. And prepare.

また、異常検知システムは、スマートメータで計測された受電点における電力と、電力導出部で導出された受電点における電力とが異なる場合、発電部による発電を停止させる発電制御部をさらに備えてもよい。 Further, the anomaly detection system may further include a power generation control unit that stops power generation by the power generation unit when the power at the power reception point measured by the smart meter and the power at the power reception point derived by the power derivation unit are different. good.

上記課題を解決するために、本発明の異常検知方法は、電力系統からの受電点における電力をスマートメータで計測する電力計測ステップと、スマートメータとは独立して計測された受電点を流れる電流の電流値と、他のエネルギーを電気エネルギーに変換して電気を生成する発電部と受電点とを接続する配線の線間電圧の電圧値とに基づいて、受電点における電力を導出する電力導出ステップと、スマートメータで計測された受電点における電力と、電力導出ステップで導出された受電点における電力とが等しいか否かを判断する比較ステップと、を有する。 In order to solve the above problems, the anomaly detection method of the present invention includes a power measurement step of measuring power at a power receiving point from a power system with a smart meter; and the voltage value of the line-to-line voltage of the wiring that connects the power receiving point and the power generation unit that converts other energy into electrical energy to generate electricity. and a comparison step of determining whether the power at the power receiving point measured by the smart meter is equal to the power at the power receiving point derived in the power deriving step.

本発明によれば、スマートメータや分散型電源の異常を検知可能となる。 According to the present invention, it becomes possible to detect an abnormality in a smart meter or distributed power supply.

本実施形態による異常検知システムの構成を示す概略図である。1 is a schematic diagram showing the configuration of an anomaly detection system according to this embodiment; FIG. 制御部の動作の流れを説明するフローチャートである。4 is a flowchart for explaining the operation flow of a control unit;

以下に添付図面を参照しながら、本発明の実施形態の態様について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Aspects of embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in these embodiments are merely examples for facilitating understanding of the invention, and do not limit the invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are given the same reference numerals to omit redundant description, and elements that are not directly related to the present invention are omitted from the drawings. do.

図1は、本実施形態による異常検知システム1の構成を示す概略図である。図1では、制御信号の流れを破線の矢印で示している。 FIG. 1 is a schematic diagram showing the configuration of an anomaly detection system 1 according to this embodiment. In FIG. 1, the flow of control signals is indicated by dashed arrows.

異常検知システム1は、スマートメータ10、管理サーバ12、分電盤14、負荷16、分散型電源18およびリモートコントローラ20を含む。 Anomaly detection system 1 includes smart meter 10 , management server 12 , distribution board 14 , load 16 , distributed power supply 18 and remote controller 20 .

スマートメータ10は、電力系統22に接続され、需要家における電力系統22からの受電点に設置される。受電点は、需要家と電力系統22との境界を示す。スマートメータ10は、計測部30、通信部32およびサービスブレーカ34を含む。なお、図1では、サービスブレーカ34をSBと表記している。 The smart meter 10 is connected to the electric power system 22 and installed at a power receiving point from the electric power system 22 in the consumer. A power receiving point indicates a boundary between a consumer and the power system 22 . Smart meter 10 includes measurement unit 30 , communication unit 32 and service breaker 34 . In addition, in FIG. 1, the service breaker 34 is written as SB.

計測部30は、受電点を流れる電流、受電点にかかる電圧、受電点における電流および電圧の位相差から導出される力率、受電点における電力(受電点を通じる電力)、および、受電点における所定時間分(例えば、30分)の電力量(kWh)を計測する。計測された電力などは、計測された時刻に関連付けて記憶されてもよい。なお、計測部30は、受電点の順潮流の電力を正値として計測し、受電点の逆潮流の電力を負値として計測してもよい。順潮流は、電力系統22から需要家側に電力が供給されることであり、逆潮流は、需要家側から電力系統22に電力が供給されることである。 The measurement unit 30 measures the current flowing through the power receiving point, the voltage applied to the power receiving point, the power factor derived from the phase difference between the current and the voltage at the power receiving point, the power at the power receiving point (power through the power receiving point), and the power at the power receiving point. The amount of electric power (kWh) for a predetermined time period (for example, 30 minutes) is measured. The measured power and the like may be stored in association with the measured time. Note that the measurement unit 30 may measure the power of the forward power flow at the power receiving point as a positive value and measure the power of the reverse power flow at the power receiving point as a negative value. Forward power flow means that power is supplied from the power system 22 to the consumer side, and reverse power flow means that power is supplied to the power system 22 from the consumer side.

通信部32は、外部と通信(無線通信または有線通信)を確立し、計測部30の計測結果などの内部情報(例えば、電力、電力の計測時刻、電力量、電力量の計測時間など)を外部に送信することができる。例えば、通信部32は、他のスマートメータ10や中継器などを通じてマルチホップ形式で転送することで、管理サーバ12に内部情報を送信する。また、通信部32は、通信キャリアの無線通信網を通じて管理サーバ12に内部情報を送信してもよい。 The communication unit 32 establishes communication (wireless communication or wired communication) with the outside, and transmits internal information such as measurement results of the measurement unit 30 (for example, power, power measurement time, power amount, power amount measurement time, etc.). Can be sent externally. For example, the communication unit 32 transmits the internal information to the management server 12 by transferring it in a multi-hop format through other smart meters 10, repeaters, and the like. Also, the communication unit 32 may transmit the internal information to the management server 12 through the wireless communication network of the communication carrier.

また、通信部32は、分散型電源18と通信(無線通信または有線通信)を確立し、分散型電源18に内部情報(例えば、電力、電力の計測時刻、電力量、電力量の計測時間など)を送信することもできる。例えば、通信部32は、無線LANを通じて分散型電源18に内部情報を送信してもよい。 In addition, the communication unit 32 establishes communication (wireless communication or wired communication) with the distributed power sources 18, and transmits internal information (for example, power, power measurement time, power amount, power amount measurement time, etc.) to the distributed power sources 18. ) can also be sent. For example, the communication unit 32 may transmit the internal information to the distributed power supply 18 through the wireless LAN.

管理サーバ12は、電力系統22の管理者により設置される。管理サーバ12は、例えば、需要家毎に収集したスマートメータ10の内部情報を用いて、需要家に請求する電気料金などを導出する。 The management server 12 is installed by an administrator of the power system 22 . The management server 12 uses, for example, the internal information of the smart meter 10 collected for each consumer to derive the electricity rate to be billed to the consumer.

サービスブレーカ34は、契約電流容量を超過する電流が流れたときに遮断される。なお、サービスブレーカ34の機能は、分電盤14に設けられてもよい。 The service breaker 34 is cut off when a current exceeding the contract current capacity flows. Note that the function of the service breaker 34 may be provided in the distribution board 14 .

分電盤14は、需要家の屋内に設置され、スマートメータ10に接続される。分電盤14は、漏電ブレーカ40、複数の分岐ブレーカ42a、42bおよび電流計44を含む。なお、図1では、漏電ブレーカ40をELBと表記している。 The distribution board 14 is installed indoors of the consumer and connected to the smart meter 10 . The distribution board 14 includes an earth leakage breaker 40 , a plurality of branch breakers 42 a and 42 b and an ammeter 44 . In addition, in FIG. 1, the earth leakage breaker 40 is written as ELB.

漏電ブレーカ40は、スマートメータ10のサービスブレーカ34に接続される。漏電ブレーカ40は、漏電が生じた場合に遮断される。漏電ブレーカ40には、複数の分岐ブレーカ42a、42bが接続される。以後、複数の分岐ブレーカ42a、42bを総称して、分岐ブレーカ42と呼ぶ場合がある。なお、漏電ブレーカ40に接続される分岐ブレーカ42の数は、2個に限らず、1個でもよいし、3個以上であってもよい。 The earth leakage breaker 40 is connected to the service breaker 34 of the smart meter 10 . The earth leakage breaker 40 is cut off when an earth leakage occurs. A plurality of branch breakers 42 a and 42 b are connected to the earth leakage breaker 40 . Hereinafter, the plurality of branch breakers 42 a and 42 b may be collectively referred to as branch breaker 42 . The number of branch breakers 42 connected to earth leakage breaker 40 is not limited to two, and may be one or three or more.

複数の分岐ブレーカ42のうち、例えば、分岐ブレーカ42aには、負荷16が接続される。電力系統22は、分電盤14を通じて負荷16に電力を供給することができる。また、複数の分岐ブレーカ42のうち、例えば、分岐ブレーカ42bには、分散型電源18が接続される。 The load 16 is connected to, for example, the branch breaker 42 a among the plurality of branch breakers 42 . Power system 22 may supply power to load 16 through distribution board 14 . Among the plurality of branch breakers 42, for example, the distributed power supply 18 is connected to the branch breaker 42b.

電流計44は、分電盤14において、サービスブレーカ34と漏電ブレーカ40との間の電流経路に設けられる。電流計44は、具体的には、計器用変流器(CT)である。電流計44は、スマートメータ10とは独立して、受電点を流れる電流を計測する。電流計44で計測された電流値は、計測された時刻に関連付けて制御部56に記憶されてもよい。 Ammeter 44 is provided on a current path between service breaker 34 and earth leakage breaker 40 in distribution board 14 . The ammeter 44 is specifically a current transformer (CT). The ammeter 44 measures the current flowing through the power receiving point independently of the smart meter 10 . The current value measured by the ammeter 44 may be stored in the controller 56 in association with the measured time.

分散型電源18は、例えば、需要家において発電する燃料電池である。なお、分散型電源18は、燃料電池に限らず、太陽光発電機、風力発電機、水力発電機、地熱発電機、太陽熱発電機、大気中熱発電機等の再生可能エネルギー発電設備であってもよいし、内燃力発電機、蓄電池等であってもよい。 The distributed power source 18 is, for example, a fuel cell that generates power at the consumer. The distributed power supply 18 is not limited to a fuel cell, and may be a renewable energy power generation facility such as a solar power generator, a wind power generator, a hydraulic power generator, a geothermal power generator, a solar heat power generator, and an atmospheric heat power power generator. Alternatively, it may be an internal combustion power generator, a storage battery, or the like.

分散型電源18は、発電部50、電圧計52、通信部54、制御部56および報知部58を含む。 Distributed power supply 18 includes power generation unit 50 , voltmeter 52 , communication unit 54 , control unit 56 and notification unit 58 .

発電部50は、電力系統22とは独立して構成される。発電部50は、例えば、燃料電池等で構成され、他のエネルギー(電気エネルギー以外のエネルギー)を電気エネルギーに変換して電気を生成(発電)する。 The power generation unit 50 is configured independently of the power system 22 . The power generation unit 50 is configured by, for example, a fuel cell or the like, and converts other energy (energy other than electrical energy) into electrical energy to generate electricity.

発電部50は、例えば、単相3線式の配線で、分電盤14を通じて受電点(スマートメータ10)に接続される。つまり、図1では、配線が単線で示されているが、実際には、発電部50は、複数の電線(例えば、2本の電圧線および1本の中性線からなる電線のセット)で受電点に接続される。また、発電部50は、分電盤14を通じて負荷16に接続可能であり、発電した電力を負荷16に供給可能である。 The power generation unit 50 is connected to a power receiving point (smart meter 10 ) through the distribution board 14 by, for example, single-phase three-wire wiring. In other words, although the wiring is shown as a single wire in FIG. Connected to the receiving point. Also, the power generation unit 50 can be connected to the load 16 through the distribution board 14 and can supply the generated power to the load 16 .

電圧計52は、発電部50と受電点とを接続する配線の線間電圧(例えば、2本の電圧線間の電圧)を計測する。電圧計52で計測された電圧値は、計測された時刻に関連付けて制御部56に記憶されてもよい。 The voltmeter 52 measures the line-to-line voltage (for example, the voltage between two voltage lines) that connects the power generation unit 50 and the power receiving point. The voltage value measured by the voltmeter 52 may be stored in the controller 56 in association with the measured time.

通信部54は、外部と通信(無線通信または有線通信)を確立し、少なくとも情報を受信できる。通信部54は、例えば、スマートメータ10の通信部32と通信を確立し、スマートメータ10の内部情報を受信する。具体的には、通信部54は、スマートメータ10で計測された受電点における電力および所定時間分の電力量を受信できる。また、通信部54は、管理サーバ12を通じて受電点における電力および所定時間分の電力量を受信してもよい。 The communication unit 54 can establish communication (wireless communication or wired communication) with the outside and receive at least information. The communication unit 54 establishes communication with, for example, the communication unit 32 of the smart meter 10 and receives internal information of the smart meter 10 . Specifically, the communication unit 54 can receive the power at the power receiving point measured by the smart meter 10 and the amount of power for a predetermined period of time. Further, the communication unit 54 may receive the power at the power receiving point and the power amount for a predetermined time through the management server 12 .

制御部56は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路から構成される。制御部56は、プログラムを実行することで、発電制御部60、取得部62、電力導出部64および比較部66として機能する。 The control unit 56 is composed of a semiconductor integrated circuit including a central processing unit (CPU), a ROM storing programs and the like, a RAM as a work area, and the like. The control unit 56 functions as a power generation control unit 60, an acquisition unit 62, a power derivation unit 64, and a comparison unit 66 by executing programs.

取得部62は、所定制御周期毎(例えば1分毎)に、通信部54を通じて、スマートメータ10で計測された受電点における電力および電力の計測時刻を取得する。以後、スマートメータ10で計測された受電点における電力を、メータ側電力と呼ぶ場合がある。 The acquisition unit 62 acquires the power at the power receiving point measured by the smart meter 10 and the measurement time of the power through the communication unit 54 at each predetermined control cycle (for example, every minute). Hereinafter, the power at the power receiving point measured by the smart meter 10 may be referred to as meter-side power.

また、取得部62は、所定のサンプリング周期で、電流計44から電流値を取得し、電圧計52から電流値を取得する。取得部62は、電流値および電圧値を大凡同じタイミングで取得する。サンプリング周期は、例えば、メータ側電力の取得周期以下に設定される。取得部62は、取得された電流値および電圧値を、取得された時刻と関連付けて、一時的に記憶する。 The acquisition unit 62 also acquires a current value from the ammeter 44 and a current value from the voltmeter 52 at a predetermined sampling cycle. Acquisition unit 62 acquires the current value and the voltage value at approximately the same timing. The sampling period is set, for example, equal to or less than the meter-side power acquisition period. Acquisition unit 62 temporarily stores the acquired current value and voltage value in association with the acquired time.

取得部62でメータ側電力が取得されると、電力導出部64は、取得されたメータ側電力の計測時刻と大凡同じ時刻(メータ側電力の計測時刻に最も近い時刻)にサンプリングされた電流値および電圧値を取得部62から読み出す。電力導出部64は、読み出された電流値および電圧値に基づいて、電流値および電圧値がサンプリングされた時刻における電力(瞬時値)を導出する。導出された電力は、受電点における電力に相当する。以後、電力導出部64で導出された受電点における電力を、分散型電源側電力と呼ぶ場合がある。 When the meter-side power is acquired by the acquisition unit 62, the power derivation unit 64 obtains the current value sampled at approximately the same time as the acquired meter-side power measurement time (the closest time to the meter-side power measurement time). and the voltage value are read out from the obtaining unit 62 . The power derivation unit 64 derives the power (instantaneous value) at the time when the current value and voltage value are sampled based on the read current value and voltage value. The derived power corresponds to power at the receiving point. Hereinafter, the power at the power receiving point derived by the power derivation unit 64 may be referred to as distributed power source side power.

なお、電力導出部64は、導出された電力を所定時間分(例えば、30分)だけ積算し、受電点における所定時間分の電力量(kWh)を導出してもよい。 Note that the power deriving unit 64 may integrate the derived power for a predetermined time period (for example, 30 minutes) to derive the power amount (kWh) for the predetermined time period at the power receiving point.

発電制御部60は、電流計44の電流値、電圧計52の電圧値、電力導出部64で導出された電力などに基づいて発電部50を制御する。 The power generation control unit 60 controls the power generation unit 50 based on the current value of the ammeter 44, the voltage value of the voltmeter 52, the power derived by the power derivation unit 64, and the like.

比較部66は、メータ側電力と、メータ側電力の計測時刻に最も近い時刻にサンプリングされた電流値および電圧値に基づいて導出された分散型電源側電力(メータ側電力の計測時刻と大凡同じ時刻の分散型電源側電力)とが等しいか否かを判断する。例えば、比較部66は、メータ側電力と、メータ側電力の計測時刻と大凡同じ時刻の分散型電源側電力との差分を導出する。比較部66は、差分がゼロを含む所定範囲以内であれば、メータ側電力と分散型電源側電力とが等しいと判断する。所定範囲は、例えば、スマートメータ10、電流計44および電圧計52の各々における測定誤差を考慮して設定される。 The comparison unit 66 calculates the distributed power supply side power derived based on the meter side power and the current and voltage values sampled at the time closest to the meter side power measurement time (approximately the same as the meter side power measurement time). distributed power supply side power at time) are equal to each other. For example, the comparison unit 66 derives the difference between the meter-side power and the distributed power supply-side power at approximately the same time as the meter-side power measurement time. If the difference is within a predetermined range including zero, the comparison unit 66 determines that the meter-side power and the distributed power supply-side power are equal. The predetermined range is set, for example, in consideration of measurement errors in each of smart meter 10 , ammeter 44 and voltmeter 52 .

メータ側電力と分散型電源側電力とが等しい場合、スマートメータ10および分散型電源18は、正常に機能しているとみなせる。一方、メータ側電力と分散型電源側電力とが異なる場合、スマートメータ10または分散型電源18に異常が生じたとみなせる。つまり、比較部66は、メータ側電力と分散型電源側電力とが等しいか否かを判断することで、スマートメータ10または分散型電源18に異常が生じたか否かを検知する。 When the meter-side power and the distributed power supply-side power are equal, the smart meter 10 and the distributed power supply 18 can be considered to be functioning normally. On the other hand, if the meter-side power and the distributed power supply-side power are different, it can be assumed that an abnormality has occurred in the smart meter 10 or the distributed power supply 18 . That is, the comparison unit 66 detects whether an abnormality has occurred in the smart meter 10 or the distributed power supply 18 by determining whether the meter-side power and the distributed power supply-side power are equal.

なお、比較部66は、スマートメータ10で計測された受電点における電力量と、その電力量が計測された時間において導出された受電点における電力量とが等しいか否かを判断してもよい。 Note that the comparison unit 66 may determine whether the amount of power at the power receiving point measured by the smart meter 10 is equal to the amount of power at the power receiving point derived at the time when the power amount was measured. .

報知部58は、メータ側電力と分散型電源側電力とが異なる場合、異常が生じた旨を報知する。報知部58は、警報音を発するスピーカなどであってもよいし、点灯や点滅などで異常を報知する警報ランプなどであってもよい。これにより、スマートメータ10または分散型電源18に異常が生じたことを需要家に認識させることができる。 The notification unit 58 notifies that an abnormality has occurred when the power on the meter side and the power on the distributed power supply side are different. The notification unit 58 may be a speaker or the like that emits an alarm sound, or may be an alarm lamp or the like that notifies an abnormality by lighting or blinking. This makes it possible for the consumer to recognize that the smart meter 10 or distributed power supply 18 has become abnormal.

リモートコントローラ20は、例えば、屋内に設置される。リモートコントローラ20は、分散型電源18の制御部56との間で、情報の授受を行うことができる。リモートコントローラ20は、分散型電源18に指示する各種の設定値などの入力操作を受け付ける入力機能と、分散型電源18の状態などをディスプレイに表示する出力機能とを有する。 The remote controller 20 is installed indoors, for example. The remote controller 20 can exchange information with the controller 56 of the distributed power supply 18 . The remote controller 20 has an input function for receiving input operations such as various setting values to be instructed to the distributed power sources 18 and an output function for displaying the state of the distributed power sources 18 and the like on a display.

比較部66は、メータ側電力と分散型電源側電力とが異なる場合、異常が生じた旨を、リモートコントローラ20のディスプレイに表示させてもよい。これにより、スマートメータ10または分散型電源18に異常が生じたことを需要家に認識させることができる。 The comparison unit 66 may cause the display of the remote controller 20 to indicate that an abnormality has occurred when the power on the meter side and the power on the distributed power supply side are different. This makes it possible for the consumer to recognize that the smart meter 10 or distributed power supply 18 has become abnormal.

また、メータ側電力と分散型電源側電力とが異なる場合、分散型電源18に異常が生じている可能性があるため、発電制御部60は、発電部50による発電を停止させてもよい。これにより、発電部50の異常な発電電力で分散型電源18の各部や負荷などが損傷することを防止できる。 If the meter-side power and the distributed power supply side power are different, the power generation control unit 60 may stop power generation by the power generation unit 50 because there is a possibility that an abnormality has occurred in the distributed power supply 18 . As a result, it is possible to prevent damage to each part and load of the distributed power supply 18 due to the abnormal power generated by the power generation unit 50 .

また、メータ側電力と分散型電源側電力とが異なる場合、比較部66は、異常が生じた旨を管理サーバ12に通知してもよい。異常が生じた旨の通知を受信した管理サーバ12は、スマートメータ10の検針員や分散型電源18のメンテナンス作業者などを現地に向かわせる手配をしてもよい。これにより、スマートメータ10および分散型電源18を早期に復旧させることができる。 Further, when the meter-side power and the distributed power supply-side power are different, the comparison unit 66 may notify the management server 12 that an abnormality has occurred. The management server 12 that has received the notification that an abnormality has occurred may make arrangements to send a meter reader for the smart meter 10 or a maintenance worker for the distributed power supply 18 to the site. As a result, the smart meter 10 and distributed power supply 18 can be quickly restored.

図2は、制御部56の動作の流れを説明するフローチャートである。制御部56は、所定制御周期(例えば、1分など)の割り込み制御として図2の一連の処理を繰り返す。 FIG. 2 is a flowchart for explaining the operation flow of the control unit 56. As shown in FIG. The control unit 56 repeats the series of processes in FIG. 2 as interrupt control at a predetermined control period (for example, 1 minute).

まず、スマートメータ10では、電力系統22からの受電点における電力を計測する電力計測ステップが所定時間毎に行われる。 First, in the smart meter 10, a power measurement step of measuring power at a power receiving point from the power system 22 is performed at predetermined time intervals.

取得部62は、所定の制御タイミングとなると、通信部54を通じて、スマートメータ10で計測された電力(メータ側電力)およびメータ側電力の計測時刻の最新値を取得する取得ステップを行う(S100)。 At a predetermined control timing, the acquisition unit 62 performs an acquisition step of acquiring the electric power (meter-side electric power) measured by the smart meter 10 and the latest measurement time of the meter-side electric power through the communication unit 54 (S100). .

次に、電力導出部64は、所定サンプリング周期で予め取得して記憶された電流値および電圧値のうち、メータ側電力の計測時刻に最も近い時刻の電流値および電圧値を読み出す(S110)。次に、電力導出部64は、読み出された電流値および電圧値に基づいて、受電点における電力(分散型電源側電力)を導出する電力導出ステップを行う(S120)。 Next, the power deriving unit 64 reads out the current value and the voltage value at the closest time to the meter-side power measurement time among the current and voltage values acquired and stored in advance at a predetermined sampling period (S110). Next, the power derivation unit 64 performs a power derivation step of deriving power (distributed power supply side power) at the power receiving point based on the read current value and voltage value (S120).

次に、比較部66は、取得されたメータ側電力と導出された分散型電源側電力とが等しいか否かを判断する比較ステップを行う(S130)。具体的には、比較部66は、メータ側電力と分散型電源側電力との差分がゼロを含む所定範囲内の場合、メータ側電力と分散型電源側電力とが等しいと判断する。 Next, the comparison unit 66 performs a comparison step of determining whether or not the acquired meter-side power and the derived distributed power supply-side power are equal (S130). Specifically, when the difference between the meter-side power and the distributed power source-side power is within a predetermined range including zero, the comparison unit 66 determines that the meter-side power and the distributed power source-side power are equal.

メータ側電力と分散型電源側電力とが等しい場合(S130におけるYES)、比較部66は、スマートメータ10および分散型電源18が正常であるとみなし、一連の処理を終了する。 If the meter-side power and the distributed power supply-side power are equal (YES in S130), the comparison unit 66 determines that the smart meter 10 and the distributed power supply 18 are normal, and terminates the series of processes.

メータ側電力と分散型電源側電力とが等しくない(異なる)場合(S130におけるNO)、比較部66は、スマートメータ10または分散型電源18に異常が生じたとみなし、異常が生じた旨を報知部58に報知させる報知ステップを行う(S140)。また、比較部66は、異常が生じた旨を、リモートコントローラ20のディスプレイに表示させてもよいし、管理サーバ12に通知してもよい。 If the meter-side power and the distributed power supply-side power are not equal (different) (NO in S130), the comparison unit 66 determines that an abnormality has occurred in the smart meter 10 or the distributed power supply 18, and notifies that an abnormality has occurred. A notification step is performed to notify the unit 58 (S140). Further, the comparison unit 66 may display on the display of the remote controller 20 or notify the management server 12 that an abnormality has occurred.

そして、発電制御部60は、発電部50による発電を停止させる発電停止ステップを行い(S150)、一連の処理を終了する。 Then, the power generation control unit 60 performs a power generation stop step for stopping power generation by the power generation unit 50 (S150), and ends the series of processes.

以上のように、本実施形態の異常検知システム1では、メータ側電力と分散型電源側電力とが等しいか否かが判断される。したがって、本実施形態の異常検知システム1によれば、スマートメータ10または分散型電源18の異常を検知可能となる。 As described above, in the abnormality detection system 1 of the present embodiment, it is determined whether or not the meter-side power and the distributed power supply-side power are equal. Therefore, according to the anomaly detection system 1 of the present embodiment, an anomaly of the smart meter 10 or the distributed power supply 18 can be detected.

なお、本実施形態の異常検知システム1では、スマートメータ10および分散型電源18の異常だけでなく、スマートメータ10および分散型電源18に対する不正(例えば、受電電力量の改ざんなど)を検知することもできる。 Note that the anomaly detection system 1 of the present embodiment can detect not only an anomaly of the smart meter 10 and the distributed power supply 18 but also an illegality (for example, falsification of the amount of power received) to the smart meter 10 and the distributed power supply 18. can also

また、本実施形態の異常検知システム1では、メータ側電力と分散型電源側電力との比較が分散型電源18内で行われていた。しかし、メータ側電力と分散型電源側電力との比較は、スマートメータ10で行われてもよい。例えば、スマートメータ10は、通信部32を通じて電力導出部64で導出された分散型電源側電力を取得し、メータ側電力と分散型電源側電力との比較を行ってもよい。また、メータ側電力と分散型電源側電力との比較は、管理サーバ12で行われてもよい。例えば、管理サーバ12は、スマートメータ10からメータ側電力を取得し、分散型電源18から分散型電源側電力を取得し、メータ側電力と分散型電源側電力との比較を行ってもよい。 Further, in the anomaly detection system 1 of the present embodiment, the comparison between the meter-side power and the distributed power supply-side power is performed within the distributed power supply 18 . However, the comparison between the meter-side power and the distributed power supply-side power may be performed by the smart meter 10 . For example, the smart meter 10 may acquire the distributed power source side power derived by the power derivation unit 64 through the communication unit 32 and compare the meter side power and the distributed power source side power. Moreover, the comparison between the meter-side power and the distributed power supply-side power may be performed by the management server 12 . For example, the management server 12 may acquire meter-side power from the smart meter 10, acquire distributed power supply-side power from the distributed power supply 18, and compare the meter-side power and the distributed power supply-side power.

以上、添付図面を参照しながら本発明の実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such embodiments. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood.

本発明は、異常検知システムおよび異常検知方法に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for an anomaly detection system and an anomaly detection method.

1 異常検知システム
10 スマートメータ
22 電力系統
44 電流計
50 発電部
52 電圧計
60 発電制御部
64 電力導出部
66 比較部
1 Anomaly detection system 10 Smart meter 22 Electric power system 44 Ammeter 50 Power generation unit 52 Voltmeter 60 Power generation control unit 64 Power derivation unit 66 Comparison unit

Claims (3)

電力系統からの受電点における電力を計測するスマートメータと、
前記スマートメータとは独立して、前記受電点を流れる電流を計測する電流計と、
他のエネルギーを電気エネルギーに変換して電気を生成する発電部と、
前記発電部と前記受電点とを接続する配線の線間電圧を計測する電圧計と、
前記電流計の電流値および前記電圧計の電圧値に基づいて前記受電点における電力を導出する電力導出部と、
前記スマートメータで計測された前記受電点における電力と、前記電力導出部で導出された前記受電点における電力とが等しいか否かを判断する比較部と、
を備える異常検知システム。
A smart meter that measures power at a power receiving point from the power system;
an ammeter that measures the current flowing through the power receiving point independently of the smart meter;
a power generation unit that converts other energy into electrical energy to generate electricity;
a voltmeter for measuring a line voltage of wiring connecting the power generation unit and the power receiving point;
a power derivation unit that derives power at the power receiving point based on the current value of the ammeter and the voltage value of the voltmeter;
a comparison unit that determines whether the power at the power receiving point measured by the smart meter and the power at the power receiving point derived by the power derivation unit are equal;
anomaly detection system.
前記スマートメータで計測された前記受電点における電力と、前記電力導出部で導出された前記受電点における電力とが異なる場合、前記発電部による発電を停止させる発電制御部をさらに備える請求項1に記載の異常検知システム。 2. The power generation control unit for stopping power generation by the power generation unit when the power at the power reception point measured by the smart meter and the power at the power reception point derived by the power derivation unit are different. An anomaly detection system as described. 電力系統からの受電点における電力をスマートメータで計測する電力計測ステップと、
前記スマートメータとは独立して計測された前記受電点を流れる電流の電流値と、他のエネルギーを電気エネルギーに変換して電気を生成する発電部と前記受電点とを接続する配線の線間電圧の電圧値とに基づいて、前記受電点における電力を導出する電力導出ステップと、
前記スマートメータで計測された前記受電点における電力と、前記電力導出ステップで導出された前記受電点における電力とが等しいか否かを判断する比較ステップと、
を有する異常検知方法。
a power measurement step of measuring power at a power receiving point from the power system with a smart meter;
The current value of the current flowing through the power receiving point that is measured independently of the smart meter, and the line distance of the wiring that connects the power receiving point and a power generation unit that converts other energy into electrical energy to generate electricity a power derivation step of deriving power at the power receiving point based on the voltage value of the voltage;
a comparing step of determining whether the power at the power receiving point measured by the smart meter is equal to the power at the power receiving point derived in the power deriving step;
An anomaly detection method comprising:
JP2019083695A 2019-04-25 2019-04-25 Anomaly detection system and anomaly detection method Active JP7229089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019083695A JP7229089B2 (en) 2019-04-25 2019-04-25 Anomaly detection system and anomaly detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019083695A JP7229089B2 (en) 2019-04-25 2019-04-25 Anomaly detection system and anomaly detection method

Publications (2)

Publication Number Publication Date
JP2020182311A JP2020182311A (en) 2020-11-05
JP7229089B2 true JP7229089B2 (en) 2023-02-27

Family

ID=73024745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019083695A Active JP7229089B2 (en) 2019-04-25 2019-04-25 Anomaly detection system and anomaly detection method

Country Status (1)

Country Link
JP (1) JP7229089B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017794A (en) 2015-06-29 2017-01-19 日東工業株式会社 Power distribution line abnormality monitoring system
JP2017045234A (en) 2015-08-26 2017-03-02 中国電力株式会社 Electricity rate menu creation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017794A (en) 2015-06-29 2017-01-19 日東工業株式会社 Power distribution line abnormality monitoring system
JP2017045234A (en) 2015-08-26 2017-03-02 中国電力株式会社 Electricity rate menu creation device

Also Published As

Publication number Publication date
JP2020182311A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US10996247B2 (en) Volt-VAR device monitor
JP2014512625A (en) System and method for analyzing energy usage
EP2806280A1 (en) Detecting electrical islands using wide-area measurements
JP2015136233A (en) Photovoltaic power generation system
Radhika et al. Smart grid test bed based on GSM
KR20160038927A (en) The System and Method of Detecting Events by Checking Frequency in Microgrid
JP6717705B2 (en) Power system
KR101728690B1 (en) Real-time anomaly notice system and method in solar energy generation
JP4666507B2 (en) Test apparatus and test method for isolated operation detection device
JP5506502B2 (en) Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines
JP5427007B2 (en) Power monitoring system
JP7229089B2 (en) Anomaly detection system and anomaly detection method
US20200033393A1 (en) Electrical transmission line sensing
CN105162409B (en) The embedded anti-electricity-theft device of the grid-connected modular electric power generation system of distributed photovoltaic
JP2014161171A (en) Method for diagnosing soundness of photovoltaic power generation device, and information processing device
JP2014089998A (en) Monitor system for photovoltaic power generation equipment
JP6723906B2 (en) Power system
CN204906306U (en) Embedded anti -electricity -theft device of distributing type grid -connected PV modularization power generation system
JP5370566B1 (en) Connection state diagnosis device and connection state diagnosis method
JP6730172B2 (en) Power system
KR101898928B1 (en) Monitoring apparatus for digital meter and solar energy generation system using the same
JP2016063616A (en) Electric power system, small-output power generation unit, and power storage unit
JP7210358B2 (en) Power supply equipment
CN209964017U (en) Photovoltaic power station troubleshooting system
JP7378946B2 (en) power supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7229089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150