JP2000235051A - Detector for detecting direct current component contained in alternating current - Google Patents

Detector for detecting direct current component contained in alternating current

Info

Publication number
JP2000235051A
JP2000235051A JP11038197A JP3819799A JP2000235051A JP 2000235051 A JP2000235051 A JP 2000235051A JP 11038197 A JP11038197 A JP 11038197A JP 3819799 A JP3819799 A JP 3819799A JP 2000235051 A JP2000235051 A JP 2000235051A
Authority
JP
Japan
Prior art keywords
current
hall element
current transformer
transformer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11038197A
Other languages
Japanese (ja)
Inventor
Masaki Kato
正樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11038197A priority Critical patent/JP2000235051A/en
Publication of JP2000235051A publication Critical patent/JP2000235051A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors

Abstract

PROBLEM TO BE SOLVED: To highly precisely detect a direct current component contained in an alternating current, without using a highly precise Hall element type current transformer or a high-cut filter. SOLUTION: A direct current component detector 20 is composed of an electromagnetic type current transformer 21 with current transformation ratio of (n) and a Hall element type current transformer 22, and it is arranged in an alternating current main circuit 23. Total current of an alternating current IAC and a direct current component IDC are flowed in the main circuit 23, and a secondary circuit 21S of the transformer 21 outputs a current of IAC/n. An auxiliary coil 22A with a wound number of (n) is provided in a ring-like iron core 22C of the Hall element transformer 22 to be connected to the secondary circuit 21S, and a magnetic flux of the alternating current IAC out of magnetic fluxes resulting from IAC+IDC generated in the iron core 22C is offset each other with a magnetic flux generated in the auxiliary coil 22A. A remaining magnetic flux of the direct current component IDC is detected by a Hall element 22H provided in a gap of the iron core 22C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、交流回路に流れ
ている交流電流に含まれている直流分電流を高い精度で
検出できる交流電流に含まれる直流分電流検出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting a direct current component contained in an alternating current, which can detect a direct current component contained in an alternating current flowing in an alternating current circuit with high accuracy.

【0002】[0002]

【従来の技術】通常の家庭が使用する電力は、離島など
の特殊な環境を除けば、電力会社が運営する商用電力系
統から受電するのが一般的である。しかし太陽光,太陽
熱,風力,波力などの自然エネルギーを電力に変換して
使用すれば、自然環境を悪化させること無しで電力が得
られるし、省エネルギー効果も発揮できることもあっ
て、近年ではこのような自然エネルギーを利用した発電
装置が各所に設置されるようになってきている。また、
燃料電池は低公害の電気エネルギー発生源であることか
ら、多用されるようになってきている。これらの殆どが
直流電力を発生する電力源であるが、これら各電力源の
中で、太陽の光エネルギーを利用して発電する太陽光発
電システム(以下では太陽電池と略称する)が最も広く
採用されているので、太陽電池を例にして本発明の詳細
を以下に記述する。
2. Description of the Related Art Generally, electric power used by households is received from a commercial electric power system operated by an electric power company, except for a special environment such as a remote island. However, if natural energy such as sunlight, solar heat, wind power, and wave power is converted to electric power and used, electric power can be obtained without deteriorating the natural environment. Power generation devices using such natural energy have been installed in various places. Also,
Fuel cells are increasingly used because they are low-pollution electrical energy sources. Most of these are power sources that generate DC power, and among these power sources, a photovoltaic power generation system (hereinafter abbreviated as a solar cell) that generates power using solar light energy is the most widely used. Therefore, the details of the present invention will be described below using a solar cell as an example.

【0003】家庭での電力需要は昼間よりも夜間が多い
が、太陽電池による発電は昼間のみであって、夜間の発
電量は零であるし、昼間であっても曇天や雨天になれば
その発電量は晴天時に比べて大幅に減少してしまう。こ
のように太陽電池が供給する電力量は外的条件に左右さ
れて大きく変動するので、家庭での電力需要を 100%満
足させることは不可能である。そこで、太陽電池の発生
電力だけでは不足する分は前記の商用電力系統から受電
できる設備を備えておくのが一般的であるが、太陽電池
が発生する電力の余剰分を例えば二次蓄電池に蓄えてお
き、必要に応じてこの二次蓄電池に蓄積したエネルギー
を使用する方法などもある。しかし後者の場合でも二次
蓄電池を備えるだけでは未だ電力が不足することもある
ので、不足分電力を商用電力系統から受電できるような
設備を設けるのが通常である。このように太陽電池を設
置する場合は、二次電池の有無には関係無く商用電力系
統から電力を受電できる設備を備える。
Power demand at home is higher at night than at daytime, but power generation by solar cells is only at daytime, and the amount of power generated at night is zero. The amount of power generation is greatly reduced compared to when the weather is fine. In this way, the amount of power supplied by solar cells fluctuates greatly depending on external conditions, and it is impossible to satisfy 100% of household power demand. Therefore, it is common to provide a facility that can receive power from the commercial power system when the power generated by the solar cell is insufficient, but the surplus power generated by the solar cell is stored in, for example, a secondary storage battery. In addition, there is a method of using the energy stored in the secondary storage battery as needed. However, even in the latter case, the power may still be insufficient just by providing the secondary storage battery. Therefore, it is usual to provide a facility capable of receiving the insufficient power from the commercial power system. When a solar cell is installed in this manner, a facility capable of receiving power from a commercial power system regardless of the presence or absence of a secondary battery is provided.

【0004】図2は商用電力系統に太陽光発電装置を接
続する場合の一般的な接続状態を単線で示した単線回路
図である。この図2において、太陽光発電装置5は、家
庭の屋根などに設置して太陽の光エネルギーを直流電力
に変換する太陽電池2と,この直流電力を交流電力に変
換するインバータ3とで構成されており、太陽電池2が
発生する直流電力はインバータ3で交流電力に変換され
て負荷6へ供給する。連系用開閉器8は、太陽電池2の
発生電力だけでは負荷6の需要を賄うことができないと
きにこれを閉路して、商用電力系統7から負荷6へ電力
を供給するための開閉器である。従って連系用開閉器8
を通過する電力は、商用電力系統7から太陽光発電装置
5の方向(矢印の方向)へ流れる。この電力を計測する
ために、連系用開閉器8と負荷6との間に電磁型変流器
11を挿入して、ここを流れる電流値を測定する。
[0004] FIG. 2 is a single-line circuit diagram showing a general connection state in a case where a photovoltaic power generator is connected to a commercial power system by a single line. In FIG. 2, a photovoltaic power generation device 5 includes a solar cell 2 installed on a roof of a house or the like for converting the light energy of the sun into DC power, and an inverter 3 for converting the DC power into AC power. The DC power generated by the solar cell 2 is converted into AC power by the inverter 3 and supplied to the load 6. The interconnecting switch 8 is a switch for closing the load when the power generated by the solar cell 2 alone cannot meet the demand of the load 6 and supplying power from the commercial power system 7 to the load 6. is there. Therefore, the interconnection switch 8
Passes through the commercial power system 7 in the direction of the photovoltaic power generator 5 (in the direction of the arrow). In order to measure this power, an electromagnetic current transformer 11 is inserted between the interconnection switch 8 and the load 6, and the current flowing therethrough is measured.

【0005】晴天時の昼間などでは、太陽電池2が発生
する電力で負荷6の需要を賄っても未だ余剰を生じるこ
ともあるが、従来はこの余剰電力は有効に利用されるこ
とは無く、無駄に捨てられていたが、最近では、この余
剰電力を商用電力系統7へ送り込むことで有効利用でき
るようになった。すなわち連系用開閉器8を通過する電
力を、従来の一方向(商用電力系統7から太陽光発電装
置5への方向,すなわち矢印方向)であったものが、こ
れとは逆の方向にも流せるようになった。逆方向へ電力
を流すことにより商用電力系統7の発電量を減らすこと
ができるので、より大きな省エネルギー効果が得られ
る。
[0005] In the daytime on a sunny day or the like, even if the power generated by the solar cell 2 can cover the demand of the load 6, a surplus may still occur, but conventionally, the surplus power is not used effectively. Although the waste power was wasted, recently, the surplus power has been able to be effectively used by being sent to the commercial power system 7. That is, the electric power passing through the interconnection switch 8 is changed in the conventional one direction (the direction from the commercial power system 7 to the photovoltaic power generator 5, that is, the arrow direction), but also in the opposite direction. You can now run. By flowing power in the opposite direction, the amount of power generated by the commercial power system 7 can be reduced, so that a greater energy saving effect can be obtained.

【0006】しかし太陽光発電装置5を商用電力系統7
に連系させる際に、この太陽光発電装置5の不具合が原
因で商用電力系統7に障害(例えば停電など)が発生す
るようなことがあると、一般の需要家は大きな迷惑を受
けることになる。そこでこのような不具合が発生しない
ように、太陽光発電装置5には各種の制約が課せられる
のであるが、その制約の一つに、商用電力系統7への直
流分電流の流出抑制がある。すなわち「分散型電源系統
連系技術指針」では、定格出力電流の1パーセントで直
流分電流流出保護をするように定めている。
However, the photovoltaic power generator 5 is connected to the commercial power system 7.
When a failure (for example, a power outage or the like) occurs in the commercial power system 7 due to the failure of the photovoltaic power generator 5 when interconnecting to a general customer, general consumers are greatly inconvenienced. Become. Therefore, various restrictions are imposed on the photovoltaic power generation device 5 so that such a problem does not occur. One of the restrictions is suppression of outflow of a DC component current to the commercial power system 7. That is, the "distributed power supply system interconnection technical guideline" stipulates that the DC component current outflow protection is performed at 1% of the rated output current.

【0007】太陽電池2は直流電力を出力するが、一般
の負荷6は交流電力で動作する。そこで太陽光発電装置
5から交流電力を出力させるために、直流電力を交流電
力に変換するインバータ3を備えるのであるが、このイ
ンバータ3が出力する交流電力には僅かながら直流分が
存在する。例えば、当該インバータ3を構成している正
極側半導体スイッチ素子の動作時間や動作特性が、負極
側半導体スイッチ素子のそれと僅かに異なることが直流
分を存在させる原因の1つとして挙げられる。前述の原
因,または別の事項が原因でインバータ3の出力交流電
力に規定以上の直流分が含まれてしまうことがあるか
ら、前述の技術指針に基づいて直流分電流の流出保護を
するためには、先ず直流分電流を検出しなければならな
い。しかし図2の回路に使用している電磁型変流器11
は交流電流しか検出できない。
The solar cell 2 outputs DC power, while the general load 6 operates on AC power. In order to output the AC power from the photovoltaic power generator 5, an inverter 3 for converting the DC power into the AC power is provided. The AC power output from the inverter 3 has a small DC component. For example, one of the causes of the presence of a direct current component is that the operating time and operating characteristics of the positive-side semiconductor switch element constituting the inverter 3 are slightly different from those of the negative-side semiconductor switch element. Since the output AC power of the inverter 3 may include a DC component exceeding the specified level due to the above-mentioned cause or another matter, it is necessary to protect the outflow of the DC component current based on the above technical guidelines. Must first detect the direct current component current. However, the electromagnetic current transformer 11 used in the circuit of FIG.
Can only detect alternating current.

【0008】図3は商用電力系統と連系する太陽光発電
装置が出力する交流電流に含まれる直流分電流を検出す
る従来例を単線で示した単線回路図であるが、この図3
に図示の従来例回路は、前述した図2の一般的回路に使
用している電磁型変流器11の代わりにホール素子型変
流器12とハイカットフィルタ13とを設置することで
直流分電流を検出できる構成にしているのであるが、こ
れ以外の部分は図2で既述の一般的回路と同じであるか
ら、同じ部分の説明は省略する。
FIG. 3 is a single-line circuit diagram showing a conventional example for detecting a DC component current included in an alternating current output from a photovoltaic power generation system connected to a commercial power system by a single line.
The conventional circuit shown in FIG. 1 is provided with a Hall element type current transformer 12 and a high cut filter 13 in place of the electromagnetic current transformer 11 used in the above-described general circuit of FIG. However, since the other parts are the same as those of the general circuit described above with reference to FIG. 2, the description of the same parts will be omitted.

【0009】ホール素子は、その特定方向に一定電流I
C を流しておき、この電流とは直角の方向に磁束密度が
Bなる磁束を加えると、一定電流IC と磁束Bとの両者
に直角の方向にホール起電力VH を生じるが、このホー
ル起電力VH の大きさは一定電流IC と磁束Bとの積に
比例する。よってホール起電力VH を計測することによ
り磁束Bの大きさを知ることができる。ホール素子型変
流器12は、リング状に成形した鉄心に複数のギャップ
を設け、この各ギャップに前述のホール素子を別個に挿
入して構成する。主回路電流が流れる導体をこのリング
状鉄心の中央を貫通させるが、主回路電流の大きさに対
応して前述の磁束Bが変化するから、ホール起電力VH
を計測することにより主回路電流の大きさを知ることが
できる。このホール素子型変流器12はその特性から、
主回路電流が交流でも直流でも検出が可能である。それ
故、ホール素子型変流器12にハイカットフィルタ13
を接続して検出電流から商用周波数の交流電流を除去す
れば、太陽光発電装置5が出力する交流電流に含まれて
いる直流分電流のみを検出することができる。
The Hall element has a constant current I in its specific direction.
When a magnetic flux having a magnetic flux density B is applied in a direction perpendicular to this current, a Hall electromotive force V H is generated in the direction perpendicular to both the constant current I C and the magnetic flux B. The magnitude of the electromotive force V H is proportional to the product of the constant current I C and the magnetic flux B. Thus, it is possible to know the magnitude of the magnetic flux B by measuring the Hall electromotive force V H. The Hall element type current transformer 12 is configured by providing a plurality of gaps in a ring-shaped iron core, and separately inserting the above-described Hall elements in each of the gaps. A conductor through which the main circuit current flows passes through the center of the ring-shaped iron core. Since the magnetic flux B changes according to the magnitude of the main circuit current, the Hall electromotive force V H
Is measured, the magnitude of the main circuit current can be known. This Hall element type current transformer 12 has
It can detect whether the main circuit current is AC or DC. Therefore, the high cut filter 13 is connected to the Hall element type current transformer 12.
Is connected to remove the AC current of the commercial frequency from the detection current, only the DC component current included in the AC current output by the photovoltaic power generator 5 can be detected.

【0010】前述したように、太陽光発電装置5を商用
電力系統7と連系させるときは、連系用開閉器8を通過
する電力は矢印で図示のように双方向となるが、この連
系用開閉器8をどのような時点で開閉するかは本発明と
は無関係であるから、その説明は省略する。
As described above, when the photovoltaic power generator 5 is interconnected with the commercial power system 7, the electric power passing through the interconnection switch 8 is bidirectional as indicated by the arrow. At what point in time the system switch 8 is opened and closed is irrelevant to the present invention, and a description thereof will be omitted.

【0011】[0011]

【発明が解決しようとする課題】図3で既述の従来例回
路では、ホール素子型変流器12とハイカットフィルタ
13とを組み合わせて直流分電流を検出するのである
が、電子部品で構成しているハイカットフィルタ13
は、その構成部品の温度ドリフトが原因で特性が変化す
るから、高い精度で直流分電流を検出するのは困難であ
る。またホール素子型変流器12の出力には一般に定格
出力の1%程度のオフセット誤差が存在する。技術指針
で定格出力電流の1%で直流分電流流出保護をするよう
に定めていても、1%のオフセット誤差があっては、実
際の直流分電流とオフセット誤差とを区別することは困
難である。これには更にハイカットフィルタ13の温度
ドリフトに起因する誤差が加わることになる。それ故、
通常よりは高精度で高価なホール素子型変流器12を採
用すると共に、ハイカットフィルタ13も高精度で高価
なものを使用しなければならない不都合がある。
In the conventional circuit described above with reference to FIG. 3, the DC current is detected by combining the Hall element type current transformer 12 and the high cut filter 13, but it is constituted by electronic components. High cut filter 13
However, it is difficult to detect the DC component current with high accuracy because the characteristics change due to the temperature drift of the components. The output of the Hall element type current transformer 12 generally has an offset error of about 1% of the rated output. Even if the technical guidelines stipulate that DC component current outflow protection is performed at 1% of the rated output current, it is difficult to distinguish the actual DC component current from the offset error if there is an offset error of 1%. is there. In addition to this, an error due to the temperature drift of the high cut filter 13 is further added. Therefore,
There is a disadvantage that the Hall element type current transformer 12 which is more accurate and expensive than usual is adopted, and the high cut filter 13 must be used with high accuracy and expensive.

【0012】そこでこの発明の目的は、交流電流に含ま
れる直流分電流を、高精度のホール素子型変流器やハイ
カットフィルタを使用しなくても、高い精度で検出でき
るようにすることにある。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to detect a DC component current contained in an AC current with high accuracy without using a high-precision Hall element type current transformer or a high cut filter. .

【0013】[0013]

【課題を解決するための手段】前記の目的を達成するた
めに、この発明の交流電流に含まれる直流分電流検出装
置は、交流主回路に電磁形変流器とホール素子形変流器
とを設置し、前記ホール素子形変流器が検出する主回路
電流のうちの交流電流分を、前記電磁形変流器が検出す
る二次電流で相殺させる構成とする。
In order to achieve the above object, a DC component current detecting device included in an AC current according to the present invention comprises an AC main circuit comprising an electromagnetic current transformer and a Hall element type current transformer. Is installed, and the alternating current component of the main circuit current detected by the Hall element type current transformer is offset by the secondary current detected by the electromagnetic current transformer.

【0014】前記ホール素子形変流器のリング状鉄心に
は所定の巻数の補助コイルを設け、この補助コイルに前
記電磁形変流器の二次電流を流すことで、当該ホール素
子形変流器のリング状鉄心に生じる主回路電流による磁
束のうちの交流電流分による磁束を、前記補助コイルの
磁束で相殺させる構成とする。
An auxiliary coil having a predetermined number of turns is provided on the ring-shaped iron core of the Hall element type current transformer, and a secondary current of the electromagnetic current transformer is caused to flow through the auxiliary coil, whereby the Hall element type current transformer is provided. The magnetic flux due to the alternating current component of the magnetic flux due to the main circuit current generated in the ring-shaped core of the vessel is offset by the magnetic flux of the auxiliary coil.

【0015】[0015]

【発明の実施の形態】図1は本発明の実施例を表した回
路図である。この図1において、直流分電流検出装置2
0は電磁型変流器21とホール素子型変流器22とで構
成していて、この両者を、直流分を含んだ交流電流が流
れる交流主回路23に設置するが、この交流主回路23
には交流分電流IACと直流分電流IDCとの和の電流が流
れている。この交流主回路23は、前述した図3の従来
例回路における連系用開閉器8と負荷6とを接続する線
路に相当する。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. In FIG. 1, a DC component current detecting device 2
Numeral 0 designates an electromagnetic current transformer 21 and a Hall element type current transformer 22, both of which are installed in an AC main circuit 23 through which an AC current including a DC component flows.
, A current equal to the sum of the AC component current I AC and the DC component current I DC flows. The AC main circuit 23 corresponds to a line connecting the interconnection switch 8 and the load 6 in the above-described conventional circuit of FIG.

【0016】電磁型変流器21は主回路電流中の交流電
流IACのみを検出する。よって当該電磁型変流器21の
変流比をnとすると、これの二次回路21SにはIAC
nなる電流が流れる。一方ホール素子型変流器22のリ
ング状鉄心22Cには、主回路電流IAC+IDCに起因す
る磁束を発生している。そこでこのリング状鉄心22C
に巻数がnである補助コイル22Aを設け、これに前述
した電磁型変流器21の二次回路21Sを接続すれば、
当該補助コイル22Aは交流電流IACに起因する磁束を
発生を発生することになるが、この補助コイル22Aの
発生磁束の極性を、前述した主回路電流IAC+IDCに起
因する磁束とは逆極性にする。その結果、交流電流IAC
による磁束は相殺される。よってホール素子22Hから
得られるホール起電力k・VH (但しkは定数である)
を計測すれば、交流主回路23に流れる主回路電流IAC
+IDCに含まれている直流分電流IDCの値を検出するこ
とができる。
The electromagnetic current transformer 21 detects only the AC current I AC in the main circuit current. Therefore, assuming that the current transformer ratio of the electromagnetic current transformer 21 is n, the secondary circuit 21S of the current transformer 21 has I AC /
A current of n flows. On the other hand, a magnetic flux due to the main circuit current I AC + I DC is generated in the ring-shaped core 22C of the Hall element type current transformer 22. Therefore, this ring-shaped iron core 22C
Is provided with an auxiliary coil 22A having n turns and connected to the secondary circuit 21S of the electromagnetic current transformer 21 described above.
The auxiliary coil 22A generates a magnetic flux due to the AC current I AC, and the polarity of the magnetic flux generated by the auxiliary coil 22A is opposite to the magnetic flux due to the main circuit current I AC + I DC described above. Polarity. As a result, the AC current I AC
The magnetic flux due to is canceled. Therefore, the Hall electromotive force k · V H obtained from the Hall element 22H (where k is a constant)
Is measured, the main circuit current I AC flowing through the AC main circuit 23 is obtained.
The value of the DC component current I DC included in + I DC can be detected.

【0017】前述したように、リング状鉄心22Cでは
交流電流IACによる磁束は相殺されて零であり、直流分
電流IDCによる磁束のみが残る。ところが直流分電流I
DCは一般に交流電流IACに比べて遙に小さく、例えば交
流電流IACの5%程度であるとするならば、この直流分
電流IDCを検出するためのホール素子型変流器22の定
格電流も、交流電流IACを検出する電磁型変流器21の
定格電流の5%で良いことになる。ホール素子型変流器
22のオフセット誤差が1%あるとしても、これは交流
電流の定格値に対しては0.05%である。従って、前述し
た技術指針が要求する直流分電流流出保護のために定格
出力電流の1%を検出するにあたって、通常の程度のオ
フセット誤差を有するホール素子型変流器22を使用し
ても、そのオフセット誤差は無視できる程度に小さな値
となる。
As described above, in the ring-shaped iron core 22C, the magnetic flux due to the AC current I AC is canceled out to be zero, and only the magnetic flux due to the DC component current I DC remains. However, the DC component current I
DC is generally much smaller than the AC current I AC , for example, if it is about 5% of the AC current I AC , the rating of the Hall element type current transformer 22 for detecting this DC component current I DC The current may be 5% of the rated current of the electromagnetic current transformer 21 for detecting the AC current I AC . Even if the offset error of the Hall element type current transformer 22 is 1%, this is 0.05% with respect to the rated value of the alternating current. Therefore, even if a Hall element type current transformer 22 having a normal offset error is used to detect 1% of the rated output current for the DC component current outflow protection required by the above technical guideline, The offset error has a small value that can be ignored.

【0018】[0018]

【発明の効果】太陽電池などの直流電源を商用電力系統
と連系する際に、ホール素子型変流器とハイカットフィ
ルタとを組み合わせることで交流電流に含まれている直
流分電流を検出する装置では、ハイカットフィルタの温
度ドリフトによる誤差やホール素子型変流器のオフセッ
ト誤差などが原因で、技術指針が要求している定格出力
電流の1%で直流分電流流出保護を行うのは困難であっ
た。そこで温度ドリフトの少なくするために非標準で高
価になるハイカットフィルタと、オフセット誤差を極力
低減するために非標準で高価になるホール素子型変流器
とを使用することになり、納期が長くなるなど各種の不
具合が生じていた。
According to the present invention, when a DC power supply such as a solar cell is connected to a commercial power system, a device for detecting a DC component current included in an AC current by combining a Hall element type current transformer and a high cut filter. Therefore, it is difficult to provide DC current leakage protection at 1% of the rated output current required by the technical guidelines due to errors due to temperature drift of the high-cut filter and offset errors of the Hall element type current transformer. Was. Therefore, a non-standard and expensive high-cut filter to reduce the temperature drift and a non-standard and expensive Hall element type current transformer to reduce the offset error as much as possible will be used, resulting in a longer delivery time. And various other problems.

【0019】本発明では、交直両電流を検出できるホー
ル素子型変流器のリング状鉄心に所定の巻数の補助コイ
ルを設け、電磁型変流器の2次回路をこの補助コイルに
接続することで生じる磁束で、前記リング状鉄心に交流
電流により生じる磁束を打ち消させる。その結果、リン
グ状鉄心に挿入されているホール素子からは直流分電流
に対応したホール起電力を検出することができる。それ
故、温度ドリフトにより誤差の原因となる高価なハイカ
ットフィルタは不要になる。また、ホール素子型変流器
は直流分電流が検出できれば良いことから、その定格電
流を小さく選定することが可能である。よってホール素
子型変流器に従来と同じオフセット誤差があっても、定
格電流に対するオフセット誤差の比率は技術指針が定め
る1%よりも遙に小さくできるので、高精度のホール素
子型変流器を使用する必要が無くなる。その結果、高い
精度で直流分電流を検出するにもかかわらず、装置の大
きさを抑制し、且つ価格も低減できる効果が得られる。
According to the present invention, an auxiliary coil having a predetermined number of turns is provided on a ring-shaped core of a Hall element type current transformer capable of detecting both AC and DC currents, and a secondary circuit of the electromagnetic current transformer is connected to the auxiliary coil. The magnetic flux generated in step (1) cancels the magnetic flux generated by the alternating current in the ring-shaped iron core. As a result, it is possible to detect the Hall electromotive force corresponding to the DC component current from the Hall element inserted into the ring-shaped iron core. Therefore, an expensive high-cut filter which causes an error due to temperature drift is not required. Further, since the Hall element type current transformer only needs to be able to detect a DC component current, its rated current can be selected to be small. Therefore, even if the Hall element type current transformer has the same offset error as the conventional one, the ratio of the offset error to the rated current can be much smaller than the technical guideline of 1%. There is no need to use it. As a result, the effect of suppressing the size of the device and reducing the price can be obtained despite the fact that the DC component current is detected with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を表した回路図FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】商用電力系統に太陽光発電装置を接続する場合
の一般的な接続状態を単線で示した単線回路図
FIG. 2 is a single-line circuit diagram showing a general connection state when a solar power generation device is connected to a commercial power system with a single line.

【図3】商用電力系統と連系する太陽光発電装置が出力
する交流電流に含まれる直流分電流を検出する従来例を
単線で示した単線回路図
FIG. 3 is a single-line circuit diagram showing a conventional example of detecting a DC component current included in an alternating current output from a photovoltaic power generation system connected to a commercial power system with a single line.

【符号の説明】[Explanation of symbols]

2 太陽電池 3 インバータ 5 太陽光発電装置 6 負荷 7 商用電力系統 8 連系用開閉器 12,22 ホール素子型変流器 11,21 電磁型変流器 13 ハイカットフィルタ 20 直流分電流検出装置 21S 電磁型変流器の二次回路 22A ホール素子型変流器の補助コイル 22C ホール素子型変流器のリング状鉄心 22H ホール素子 23 交流主回路 2 Solar cell 3 Inverter 5 Photovoltaic power generator 6 Load 7 Commercial power system 8 Interconnection switch 12,22 Hall element type current transformer 11,21 Electromagnetic type current transformer 13 High cut filter 20 DC current detection device 21S Electromagnetic Circuit of secondary current transformer 22A Auxiliary coil of Hall element type current transformer 22C Ring-shaped core of Hall element type current transformer 22H Hall element 23 AC main circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】交流主回路に電磁形変流器とホール素子形
変流器とを設置し、前記ホール素子形変流器が検出する
主回路電流のうちの交流電流分を、前記電磁形変流器が
検出する二次電流で相殺させることを特徴とする交流電
流に含まれる直流分電流検出装置。
An electromagnetic current transformer and a Hall element type current transformer are installed in an AC main circuit, and an alternating current component of a main circuit current detected by the Hall element type current transformer is converted to the electromagnetic type current. A DC component current detecting device included in an AC current, wherein the DC component current is offset by a secondary current detected by a current transformer.
【請求項2】交流主回路に電磁形変流器とホール素子形
変流器とを設置し、前記ホール素子形変流器を流れる主
回路電流により当該ホール素子形変流器のリング状鉄心
に生じる磁束のうちの交流電流分による磁束を、前記電
磁形変流器の二次電流で相殺させる極性と巻数の補助コ
イルを、前記リング状鉄心に備えることを特徴とする交
流電流に含まれる直流分電流検出装置。
2. An annular current transformer having an electromagnetic current transformer and a Hall element type current transformer installed in an AC main circuit, and a ring-shaped core of the Hall element type current transformer according to a main circuit current flowing through the Hall element type current transformer. Auxiliary coils of the polarity and the number of turns that cancel out the magnetic flux due to the alternating current component of the magnetic flux generated by the secondary current of the electromagnetic current transformer are included in the alternating current characterized in that the ring-shaped iron core is provided. DC component current detector.
JP11038197A 1999-02-17 1999-02-17 Detector for detecting direct current component contained in alternating current Pending JP2000235051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11038197A JP2000235051A (en) 1999-02-17 1999-02-17 Detector for detecting direct current component contained in alternating current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11038197A JP2000235051A (en) 1999-02-17 1999-02-17 Detector for detecting direct current component contained in alternating current

Publications (1)

Publication Number Publication Date
JP2000235051A true JP2000235051A (en) 2000-08-29

Family

ID=12518638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11038197A Pending JP2000235051A (en) 1999-02-17 1999-02-17 Detector for detecting direct current component contained in alternating current

Country Status (1)

Country Link
JP (1) JP2000235051A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370363A (en) * 2000-12-22 2002-06-26 Nada Electronics Ltd Measuring DC component of AC current
EP1972947A2 (en) * 2007-03-19 2008-09-24 Balfour Beatty plc Device for measuring the DC component superposed to an AC component of a current flowing in the conductors of AC railways
US7719258B2 (en) 2008-10-13 2010-05-18 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores
CN102760568A (en) * 2011-04-28 2012-10-31 南京江北自动化技术有限公司 Current transformer
CN103592490A (en) * 2013-10-21 2014-02-19 中国电力科学研究院 High-accuracy electronic compensated current transformer
KR101954638B1 (en) * 2019-02-14 2019-05-16 디에이치파워 주식회사 Current measurement device
JP2019103234A (en) * 2017-12-01 2019-06-24 東芝産業機器システム株式会社 Dc active filter and converter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370363A (en) * 2000-12-22 2002-06-26 Nada Electronics Ltd Measuring DC component of AC current
EP1972947A2 (en) * 2007-03-19 2008-09-24 Balfour Beatty plc Device for measuring the DC component superposed to an AC component of a current flowing in the conductors of AC railways
EP1972947A3 (en) * 2007-03-19 2011-04-27 Balfour Beatty PLC Device for measuring the DC component superposed to an AC component of a current flowing in the conductors of AC railways
US7719258B2 (en) 2008-10-13 2010-05-18 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores
CN102760568A (en) * 2011-04-28 2012-10-31 南京江北自动化技术有限公司 Current transformer
CN103592490A (en) * 2013-10-21 2014-02-19 中国电力科学研究院 High-accuracy electronic compensated current transformer
CN103592490B (en) * 2013-10-21 2017-06-16 国家电网公司 A kind of high accuracy electronic compensation type current transformer
JP2019103234A (en) * 2017-12-01 2019-06-24 東芝産業機器システム株式会社 Dc active filter and converter
JP6997605B2 (en) 2017-12-01 2022-01-17 東芝産業機器システム株式会社 DC active filter, converter
KR101954638B1 (en) * 2019-02-14 2019-05-16 디에이치파워 주식회사 Current measurement device

Similar Documents

Publication Publication Date Title
US11545835B2 (en) Energy generation load compensation
Kroposki et al. Microgrid standards and technologies
JP3809316B2 (en) Solar power plant
US6282104B1 (en) DC injection and even harmonics control system
US20110005567A1 (en) Modular solar panel system
US20190273393A1 (en) Energy management system, method and device for maximizing power utilization from alterative electrical power sources
US20160329721A1 (en) Zero export relay
JP6717705B2 (en) Power system
JP2000235051A (en) Detector for detecting direct current component contained in alternating current
EP3032682B1 (en) Power supply system, power conversion device, and distribution board
Olatoke Investigations of power quality problems in modern buildings
US6636784B1 (en) Electricity transfer station
JP4996908B2 (en) Magnetic contactor for adjustment
Gao et al. Comparative analysis and considerations for PV interconnection standards in the united states and china
JP2013212038A (en) Natural energy power generation system and power distribution method
JP2018161007A (en) Wiring system
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP7000227B2 (en) Power system
JP6781007B2 (en) Power system
JP3495194B2 (en) Control device for received power
JP6778076B2 (en) Power system
Rathore et al. Power electronic applications, grid codes, power quality issues, and electricity markets for distributed generation
Lakshmi Automatic Power Control of Online UPS
Jagadeesh SERIES TRANSFORMER BASED SOLID STATE FAULT CURRENT LIMITER
Dumais Grid-Connected Solar Microinverter Reference Design Using a dsPIC® Digital Signal Controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees